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Standard versus reduced
genus-one Gromov–Witten invariants

ALEKSEY ZINGER

We give an explicit formula for the difference between the standard and reduced
genus-one Gromov–Witten invariants. Combined with previous work on geometric
properties of the latter, this paper makes it possible to compute the standard genus-one
GW-invariants of complete intersections. In particular, we obtain a closed formula
for the genus-one GW-invariants of a Calabi–Yau projective hypersurface and verify
a recent mirror symmetry prediction for a sextic fourfold as a special case.

14D20, 14N35; 53D45, 53D99

1 Introduction

Gromov–Witten invariants are counts of holomorphic curves in symplectic manifolds
that play prominent roles in string theory, symplectic topology, and algebraic geometry.
A variety of predictions concerning these invariants have arisen from string theory,
only some of which have been verified mathematically. These invariants are generally
difficult to compute, especially in positive genera. For example, the 1991 Candelas–de
la Ossa–Green–Parkes prediction [2] for the genus-zero GW-invariants of the quintic
threefold was mathematically confirmed in the mid-1990s, while even low-degree
cases of the 1993 Bershadsky–Cecotti–Ooguri–Vafa prediction [1] for its genus-one
GW-invariants remained unaccessible until early this century.

In contrast to the genus-zero case, the expected hyperplane (or hyperplane-section)
relation between GW-invariants of a complete intersection and those of the ambient
space does not hold in positive genera; see Subsection 1.2 in [16] for more details.
This issue is entirely avoided by Gathmann [4] and Maulik–Pandharipande [10] by
approaching GW-invariants of complete intersections through degeneration techniques.
The methods of [4] and [10] can be used for low-degree checks of [1], but they do
not seem to provide a ready platform for an application of combinatorial techniques
as in the genus-zero case. In contrast, the failure of the expected hyperplane relation
for genus-one invariants is addressed by Li and the author in [8] by showing that
the reduced genus-one GW-invariants, defined by the author in [15], do satisfy the
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hyperplane relation. Combined with the desingularization construction of Vakil and
the author [13], this last approach provides a platform suitable for an application of
combinatorial techniques (the classical localization theorem); the author has used it
to obtain a closed formula for the reduced GW-invariants of a Calabi–Yau projective
hypersurface [16]. For symplectic manifolds of real dimension six, the standard and
reduced genus-one GW-invariants without descendants differ by a multiple of the
genus-zero GW-invariant.1 The prediction of [1] is thus fully verified in [16] as a
special case.

Remark The ranges of applicability of the two degeneration methods and of the
reduced-invariants method are very different, with a relatively limited overlap. The
wider-ranging degeneration method, that of [10], can in principle be used to compute
arbitrary-genus GW-invariants of low-degree low-dimension complete intersections.
While the computation in each case is generally difficult, Maulik and Pandharipande
have used it to compute genus-one and genus-two GW-invariants of the Enriques
Calabi–Yau threefold [9]. On the other hand, the reduced-invariants method applies to
arbitrary complete intersections, but at this point in the genus-one case only.

In theory, reduced genus-one GW-invariants are not new invariants, as by Propo-
sition 3.1 in [15] the difference between these invariants and the standard ones is
some combination of genus-zero GW-invariants. However, this is not part of the
definition of reduced genus-one invariants and the relation described by Proposition 3.1
in [15] is not convenient for immediate applications; see Proposition 3.2 below. In this
paper, we determine an explicit relation; see Theorems 1A and 1B. Combining this
relation with the closed formula for the reduced genus-one GW-invariants of a Calabi–
Yau hypersurface derived in [16], we then obtain a closed formula for the standard
genus-one GW-invariants of a Calabi–Yau hypersurface; see Theorem 2. The Klemm–
Pandharipande mirror symmetry prediction [6] for a sextic fourfold is confirmed by the
nD6 case of Theorem 2. The n>6 cases of Theorem 2 go beyond even predictions, as
far as the author is aware.

It is interesting to observe that only one boundary stratum of a partially regularized
moduli space of genus-one stable maps accounts for the difference between the standard
and reduced genus-one GW-invariants without descendants. This implies that if X

is a sufficiently regular almost Kahler manifold (eg a low-degree projective hypersur-
face), only two strata of the moduli space SM1;k.X; ˇ/ of degree–ˇ genus-one stable
maps to X with k marked points contribute to the genus-one GW-invariants without
descendants:

1For the purposes of this statement, all three GW-invariants are viewed as linear functionals on the
same vector space (consisting of tuples of homology elements in the manifold).
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(i) the main stratum M0
1;k
.X; ˇ/ consisting of stable maps from smooth domains;

(ii) the stratum M1;∅
1;k .X; ˇ/ consisting of stable maps from a union of a smooth

genus-one curve and a P1 , with the map constant on the genus-one curve and
with all k marked points lying on the latter; see the first diagram in Figure 1.

At a first glance, this statement may seem to contradict reality, as well as Theorems 1A
and 1B. For example, if n�4, the formula for the difference in Theorems 1A and 1B
involves the GW-invariant GWˇ

.2;∅/ that counts two-component rational curves; this is
consistent with [6]. This term may appear to arise from the stratum M2;∅

1;k .X; ˇ/ of
SM1;k.X; ˇ/ consisting of maps from a smooth genus-one curve CP with two P1 ’s
attached directly to CP so that the map is constant on CP ; see the middle diagram
in Figure 1. In fact, GWˇ

.2;∅/ arises from a homology class on SM0;kC1.X; ˇ/, or
equivalently from the closure of a boundary stratum of SM1;∅

1;k .X; ˇ/. This boundary
stratum lies in the intersection of SM1;∅

1;k .X; ˇ/ with SM2;∅
1;k .X; ˇ/; see the last diagram

in Figure 1.

.1; 0/

.0; ˇ/

.1; 0/ .0; ˇ1/

.0; ˇ2/

ˇ1; ˇ2 ¤0 ˇ1Cˇ2 Dˇ

.1; 0/

.0; 0/

.0; ˇ2/

.0; ˇ1/

Figure 1: Generic elements of SM1;∅
1;k .X; ˇ/ , SM2;∅

1;k .X; ˇ/ , and
SM1;∅

1;k .X; ˇ/\ SM2;∅
1;k .X; ˇ/ , respectively; the lines and curves represent the

components of the domain of a stable map and the pair of integers next to
each component indicates the genus of the component and the degree of the
map on the component.

After setting up notation for GW-invariants in Section 2.1, we state the main theorem
of this paper in Section 2.2. Theorem 1A expresses the difference between the standard
and reduced genus-one GW-invariants as a linear combination of genus-zero invariants.
The coefficients in this linear combination are top intersections of tautological classes
on the blowups of moduli spaces of genus-one curves constructed in Subsection 2.3
in [13] and reviewed in Section 3.1 below. These are computable through the recursions
obtained by the author in [19] and restated in Section 2.2 below; (2–9) gives an explicit
formula for these coefficients when no descendants are involved. We then deduce a more
compact version of Theorem 1A; Theorem 1B involves certain (un-)twisted  –classes
and coefficients that satisfy simpler recursions than the coefficients in Theorem 1A. The
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descendant-free case of Theorem 1B, (2–15), is used in Section 2.3 to obtain a closed
formula for the difference between the two genus-one GW-invariants of a Calabi–Yau
hypersurface from a closed formula for its genus-zero GW-invariants confirmed in the
book Mirror symmetry [5]; see Lemma 2.2. Using a closed formula for the reduced
genus-one GW-invariants of such a hypersurface derived in [16], we thus obtain a
closed formula for its standard genus-one GW-invariants.

Theorem 1A is proved in Section 3. In addition to reviewing the blowup construction
of Subsection 2.3 in [13], Section 3.1 describes natural bundle homomorphisms over
moduli spaces of genus-one curves and their twisted versions. These are used to describe
the difference between the two genus-one GW-invariants in Section 3.3 and to compute
it explicitly in Section 3.4, respectively. The blowup construction of Subsection 2.4
in [13] for moduli spaces of genus-zero curves is used in Section 3.2 to obtain a formula
for top intersections of tautological classes on blowups of moduli spaces of genus-one
curves; Proposition 3.1 is used at the end of Section 3.4. Section 3.3 reviews the
relevant aspects of [15], concluding with a description of the difference between the
two genus-one GW-invariants; see Proposition 3.2. This difference can be computed
explicitly through the direct, but rather involved, setup of [18]. Section 3.4 instead
presents a more conceptual approach motivated by the blowup construction of Section 3
in [13] for moduli spaces of genus-zero maps.

The author would like to thank J Li for first drawing the author’s attention to the issue of
computing genus-one GW-invariants of projective hypersurfaces, R Pandharipande for
pointing out the mirror symmetry prediction for a sextic fourfold in [6], and the referee
for suggestions for improving the exposition. This research was partially supported by
a Sloan fellowship and DMS Grant 0604874.

2 Overview

2.1 Gromov–Witten invariants

Let .X; !;J / be a compact symplectic manifold with a compatible almost complex
structure. If g; k 2 xZC are nonnegative integers and ˇ 2H2.X IZ/, we denote by
SMg;k.X; ˇIJ / the moduli space of genus–g degree–ˇ J –holomorphic maps into
X with k marked points. For each jD1; : : : ; k , let

evj W SMg;k.X; ˇIJ / �!X

be the evaluation map at the j –th marked point and let

 j 2H 2
�SMg;k.X; ˇIJ /

�
Geometry & Topology, Volume 12 (2008)
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be the first Chern class of the universal cotangent line bundle at the j –th marked point.
More generally, if J is a finite set, we denote by SM0;J .X; ˇIJ / the moduli space of
genus–0 degree–ˇ J –holomorphic maps into X with marked points indexed by the
set J and by

evj W SM0;J .X; ˇIJ / �!X;  j 2H 2
�SM0;J .X; ˇIJ /

�
; 8 j 2 J;

the corresponding evaluation maps and  –classes. If ˇ¤0, for each J 0�J there is a
well-defined forgetful map

fJ 0 W SM0;J .X; ˇIJ / �! SM0;J�J 0.X; ˇIJ /;
obtained by dropping the marked points indexed by J 0 from the domain of every stable
map in SM0;J .X; ˇIJ / and contracting the unstable components of the resulting map.
Let

z j � f �J�j j 2H 2
�SM0;J .X; ˇIJ /

�
be the untwisted j –th  –class.

We also define moduli spaces of tuples of genus-zero stable maps. If m2xZC , let

Œm�D ˚i2ZC W 1�i�m
	
:

If m2ZC and J is a finite set, we define

SM.m;J /.X; ˇIJ /D
�
.bi/i2Œm� 2

iDmY
iD1

SM0;f0gtJi
.X; ˇi IJ /W

ˇi2H2.X IZ/�f0g; Ji�J I
iDmX
iD1

ˇiDˇ;

iDmG
iD1

JiDJ; ev0.bi/Dev0.bi0/ 8 i; i 02Œm�
�
:

There is a well-defined evaluation map

ev0W SM.m;J /.X; ˇIJ / �!X; .bi/i2Œm� �! ev0.bi/;

where i is any element of Œm�. For each i2Œm�, let

�i W SM.m;J /.X; ˇIJ / �!
G

ˇi2H2.X IZ/

G
Ji�J

SM0;f0gtJi
.X; ˇi IJ /

be the projection onto the i –th component. If p2xZC , we define

�p; z�p 2H 2p
�SM.m;J /.X; ˇIJ /

�
Geometry & Topology, Volume 12 (2008)
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to be the degree–2p terms of

iDmY
iD1

��i
1

.1� 0/
;

iDmY
iD1

��i
1

.1� z 0/
2H�

�SM.m;J /.X; ˇIJ /
�
;

respectively. Thus, �p and z�p are the sums of all degree–p monomials in˚
��i  0 W i2Œm�	 and

˚
��i z 0 W i2Œm�	;

respectively. For example, if mD2,

�3 D ��1 3
0 C��2 3

0 C��1 2
0 �
�
2 0C��1 0 �

�
2 

2
0 2H 6

�SM.2;J /.X; ˇIJ /
�
:

The symmetric group on m elements, Sm , acts on SM.m;J /.X; ˇIJ / by permuting
the elements of each m–tuple of stable maps. Let

Z.m;J /.X; ˇIJ /D SM.m;J /.X; ˇIJ /
ı

Sm:

Since the map ev0 and the cohomology classes �q and z�q on SM.m;J /.X; ˇIJ / are
Sm –invariant, they descendant to the quotient:

ev0W Z.m;J /.X; ˇIJ / �!X and �q; z�q 2H 2q
�
Z.m;J /.X; ˇIJ /

�
:

The constructions of Fukaya–Ono [3] and Li–Tian [7] endow

SMg;k.X; ˇIJ /; SM.m;J /.X; ˇIJ /; and Z.m;J /.X; ˇIJ /
with virtual fundamental classes (VFCs). If the real dimension of X is 2n, the first
VFC is of real dimension

2 dimvirSMg;k.X; ˇIJ /D 2 dimg;k.X; ˇ/

� 2
�˝

c1.TX /; ˇ
˛C .n�3/.1�g/C k

�
:

(2–1)

The other two VFCs are of real dimension

2 dimvirSM.m;J /.X; ˇIJ /D 2 dimvirZ.m;J /.X; ˇIJ /
D 2 dim.m;J /.X; ˇ/

� 2
�
dim0;jJ j.X; ˇ/C 3� 2m

�
:

(2–2)

The VFC for SM.m;J /.X; ˇIJ / is obtained from the VFCs for SM0;f0gtJi
.X; ˇi IJ /

via the usual method of a Kunneth decomposition of the (small) diagonal (eg as in the
proof of commutativity of the quantum product). The VFC for Z.m;J /.X; ˇIJ / is the
homology class induced from the Sm –action on SM.m;J /.X; ˇIJ /.
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For each tuple

�� �c1; : : : ; ck I�1; : : : ; �k

� 2 .xZC/k ˚H�.X IZ/k(2–3)

such that

j�j �
jDkX
jD1

�
2ci C deg�i

�D 2 dim1;k.X; ˇ/;(2–4)

GWˇ
1;k.�/�

˝�
 

c1

1
ev�1�1

�
: : :
�
 

ck

k
ev�k�k

�
;
�SM1;k.X; ˇIJ /

�vir˛let

GWˇI0
1;k
.�/� ˝� c1

1
ev�1�1

�
: : :
�
 

ck

k
ev�k�k

�
;
�SM0

1;k.X; ˇIJ /
�vir˛and

be the standard and reduced genus-one degree–ˇ GW-invariants of X corresponding
to the tuple �. The latter is constructed in [15].

If � is as in (2–3), m2ZC , and J�Œk�, let

(2–5) �J D
Y
j2J

�j 2H�.X IZ/; pJ .�/D
X
j2J

cj ; dm;J .�/Dn�2m�jJ jCpJ .�/:

If j�jD2 dim1;k.X; ˇ/, then

(2–6) deg
��

ev�0�J

Y
j 62J

�
 

cj
j ev�j�j

��\ �Z.m;Œk��J /.X; ˇIJ /
�vir
�
D 2dm;J .�/:

Thus, when pCqD2dm;J .�/, �2H 2p.Z.m;Œk��J /.X; ˇIJ //, and �02H 2q.X IZ/,
we define

GWˇ
.m;J /

�
�; �0I�

�D D� ev�0.�0�J /
Y
j 62J

�
 

cj
j ev�j�j

�
;
�
Z.m;Œk��J /.X; ˇIJ /

�vir
E
2Q:

Remark The exact definitions of standard and reduced GW-invariants are not essential
for the purposes of the present paper, as our starting point in Section 3 will be Propo-
sition 3.1 in [15], restated as Proposition 3.2 below, which gives a description of the
difference between the two invariants. Roughly speaking, the standard GW-invariants
are modeled on the moduli spaces SMg;k.P

n; d/ of stable maps to Pn . The reduced
genus-one invariants are modeled on the closure

SM0
1;k.P

n; d/� SM1;k.P
n; d/

of the locus consisting of genus-one maps from smooth domains. The standard invariants
are counts of solutions u of a perturbed x@–equation

x@uC �.u/D 0
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for a generic family of deformations � . The reduced genus-one invariants are also
counts of solutions a perturbed x@–equation, but with a generic effectively supported
family of deformations � ; see Section 3.3. An algebro-geometric approach to reduced
genus-one invariants is described at the end of [12], though it remains to be formally
proved that the resulting invariants agree with [15]. The reduced invariants see genus-
one holomorphic curves, but not regular genus-zero holomorphic maps; the standard
invariants do not separate the two. One of the key points of [15] is that the intersections
of natural main strata of moduli spaces of genus-one stable maps do not contribute to
the standard invariants, and thus these invariants can be split into contributions from
the main strata.

2.2 Main theorem

The description of Proposition 3.1 in [15] implies that the difference between GWˇ
1;k.�/

and GWˇI0
1;k.�/ is some linear combination of the invariants GWˇ

.m;J /

�
�p; cq.TX /I��

or equivalently of GWˇ
.m;J /

�z�p; cq.TX /I��. The coefficients should be sums of
products of top intersections of tautological classes on moduli spaces of genus-zero and
genus-one curves, SMg;N . The simplest expressions in the first case, however, appear
to be given by Hodge numbers on the blowups �M1;.Œm�;J / of SM1;mCjJ j constructed
in Subsection 2.3 in [13] and involve the universal  –class

z � c1.zE/ 2H 2
� �M1;.Œm�;J /

�
obtained by twisting the Hodge line bundle E; see Section 3.1 below.

Thus, given finite sets I and J , not both empty, and a tuple of integers .zc; .cj /j2J /,
we define

(2–7)
˝zcI .cj /j2J

˛
.I;J /

D
D z zc �Y

j2J

�� cj
j ;

� �M1;.I;J /

�E 2Q;

where � W �M1;.Œk�;J / �! SM1;Œk�tJ is the blowdown map. If zcCPj2J cj¤jI jCjJ j,
zc<0, or cj<0 for some j 2J , the number in (2–7) is zero. By Theorem 1.1 in [19],
the numbers (2–7) satisfy:

(R1) If i�2I and cj>0 for all j 2J ,˝zcI .cj /j2J

˛
.I;J /

D ˝zcI .cj /j2J

˛
.I�i�;Jti�/

I

Geometry & Topology, Volume 12 (2008)
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(R2) If cj�D0 for some j �2J ,˝zcI .cj /j2J

˛
.I;J /

D jI j˝zc�1I .cj /j2J�fj�g
˛
.I;J�j�/

C
X

j2J�fj�g

˝zcI cj�1; .cj 0/j 02J�fj�;jg
˛
.I;J�j�/

:

Along with the relation

(2–8)
˝
0I 1; 1; : : : ; 1„ ƒ‚ …

m

˛
.0;Œm�/

� ˝ 1 : : :  m;
� SM1;m

�˛D .m�1/!

24
;

which follows from the usual dilation relation [5, Section 26.2], the two recursions
completely determine the numbers (2–7). In particular (see Corollary 1.2 in [19]):

(2–9)
˝jI jCjJ jI 0˛

.I;J /
� ˝ z jI jCjJ j; � �M1;.I;J /

�˛D 1

24
� jI jjJ j � .jI j�1/!

Theorem 1A If .X; !/ is a compact symplectic manifold of real dimension 2n,
k2xZC , ˇ2H2.X IZ/�0, and � is as in (2–3) and (2–4), then

GWˇ

1;k
.�/�GWˇI0

1;k
.�/

D
X

m2ZC

X
J�Œk�

�
.�1/mCjJ j�pJ .�/

�
mCjJ j�pJ .�/I .cj /j2J

�
.Œm�;J /

(2–10)

�
dm;J .�/X

pD0

GWˇ

.m;J /

�
�p; cdm;J .�/�p.TX /I���:

The sum in (2–10) is finite because Z.m;Œk��J /.X; ˇIJ / is empty if h!; ˇi=m is
smaller than the minimal energy of a nonconstant J –holomorphic map S2 �! X .
Therefore, GWˇ

.m;J / is zero if h!; ˇi=m is smaller than the minimal energy of a
nonconstant J –holomorphic map S2 �!X for any !–compatible almost complex
structure J . Theorem 1A is proved in Section 3.

We next express the difference between GWˇ
1;k.�/ and GWˇI0

1;k
.�/ in terms of the

numbers GWˇ
.m;J /

�z�p; cq.TX /I��. If J is a finite set, c�.cj /j2J is a J –tuple of
integers, and J0�J , let

pJ0
.c/D

X
j2J0

cj 2 Z:

Geometry & Topology, Volume 12 (2008)
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If in addition m2ZC , we define

‚m;J .c/D
X

JDFiDm
iD0 Ji

 
.�1/mCjJ0j�pJ0

.c/�mCjJ j�pJ0
.c/I .cj /j2J0

�
.Œm�;J0/

�
iDmY
iD1

� jJi j�1

.cj /j2Ji

�!
;

(2–11)

� jJi j�1

.cj /j2Ji

�
�
� jJi j�1

.cj /j2Ji
; jJi j�1�pJi

.c/

�
;

��1

.�/
�
� 1:where

The multinomial coefficients above appear as Hodge numbers on SM0;jJi jC2 .

Along with the relation�
N

c1; c2; : : : ; cl

�
D
�

N�1

c1�1; c2; : : : ; cl

�
C : : :C

�
N�1

c1; c2; : : : ; cl�1; cl�1

�
;

the recursions (R1) and (R2) imply that the numbers in (2–11) satisfy

( zR1) If m>1 and cj>1 for all j 2J ,

‚m;J

�
.cj /j2J

�D�.m�1/‚m�1;J

�
.cj /j2J

�CX
j2J

‚m�1;J

�
cj�1; .cj 0/j 02J�j

�I
( zR2) If cj�D0 for some j �2J ,

‚m;J

�
.cj /j2J

�D X
j2J�fj�g

‚m;J�j�
�
cj�1; .cj 0/j 02J�fj�;jg

�
:

Along with the relation

‚1;∅./D� 1

24
;

which follows from (2–8), ( zR1) and ( zR2) are sufficient to determine ‚m;J

�
.cj /j2J

�
in many cases. In particular,

(2–12) ‚m;J

�
.cj /j2J

�D .�1/m.m�1/!

24

(
1; if J D∅I
0; if

P
j2J cj < jJ j:

The original recursions (R1) and (R2) are sufficient to compute ‚m;J

�
.cj /j2J

�
in

all cases. However, it is more convenient to make use of the remaining relation of
Theorem 1.1 in [19]: if cj�D1 for some j �2J , then

(2–13)
˝zcI .cj /j2J

˛
.I;J /

D �jI jCjJ j � 1
�˝zcI .cj /j2J�j�

˛
.I;J�j�/

:

This gives us a third relation for the numbers (2–11):

Geometry & Topology, Volume 12 (2008)
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( zR3) If cj�D1 for some j �2J ,

‚m;J

�
.cj /j2J

�D �mCjJ j�1
�
‚m;J�j�

�
.cj /j2J�j�

�
:

The three relations ( zR1)–( zR3), along with the initial condition ‚1;∅./D�1=24,
determine the numbers ‚m;J .c/ completely.

Theorem 1B If .X; !/ is a compact symplectic manifold of real dimension 2n,
k2xZC , ˇ2H2.X IZ/�0, and � is as in (2–3) and (2–4), then

GWˇ
1;k.�/�GWˇI0

1;k
.�/D

X
m2ZC

X
J�Œk�

�
‚m;J

�
.cj /j2J

�

�
dm;J .�/X

pD0

GWˇ
.m;J /

�z�p; cdm;J .�/�p.TX /I���:(2–14)

This theorem follows immediately from Theorem 1A above and Lemma 2.1 below.
In turn, the latter follows from Lemma 2.2.1 and Subsection 3.2 in [11]; see also
Subsection 3.3 in [18].2

Lemma 2.1 Suppose .X; !/ is a compact symplectic manifold of real dimension 2n,
k2 xZC , ˇ2H2.X IZ/�0, and � is as in (2–3) and (2–4). If m2ZC , p2 xZC , and
J�Œk�,

GWˇ
.m;J /

�
�p;cdm;J .�/�p.TX /I��
D

X
J�J 0�Œk�

� X
J 0�JDFiDm

iD1 Ji

iDmY
iD1

� jJi j�1

.cj /j2Ji

�

�GWˇ

.m;J 0/

�z�p�jJ 0�J jCpJ0�J .�/
; cdm;J .�/�p.TX /I���:

The advantage of Theorem 1B over Theorem 1A is that the coefficients of the genus-
zero GW-invariants in (2–14) satisfy simpler recursions and are more likely to vanish,

2Lemma 2.1 is a consequence of the following identities. If J0 � J is nonempty, let DJ0
�

SM0;0tJ .X; ˇIJ / be the (virtual) divisor whose (virtually) generic element is a map from a union of two
P1 ’s, one of which is contracted and carries the marked points indexed by the set 0tJ0 . In particular,
DJ0
� SM0;f0;1gtJ0

� SM0;0t.J�J0/
.X; ˇIJ /: If �P and �B are the two component projection maps,

then  0 D z 0C
P

∅¤J0�J DJ0
;  0jDJ0

D ��
P
 0;

z 0jDJ0
D ��

B
z 0 .
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1214 Aleksey Zinger

due to (2–12). For example, if cjD0 for all j , ie there are no descendant classes
involved, (2–14) reduces to

GWˇ
1;k.�/�GWˇI0

1;k
.�/

D 1

24

2m�nX
mD1

�
.�1/m.m�1/!

n�2mX
pD0

GWˇ

.m;∅/
�z�p; cn�2m�p.TX /I���:(2–15)

This formula looks remarkably similar to the formula for the correction term in The-
orem 1.1 in [18] enumerating one-nodal rational curves.3 This is not too surprising
as both expressions arise from counting zeros of analogous affine bundle maps; see
Section 3.4.

2.3 Genus-one GW-invariants of Calabi–Yau hypersurfaces

The essence of mirror symmetric predictions for GW-invariants of Calabi–Yau manifolds
is that these invariants can be expressed in terms of certain hypergeometric series. In this
subsection, we deduce a mirror symmetry type of formula for the standard genus-one
GW-invariants of Calabi–Yau projective hypersurfaces from a formula for the reduced
genus-one GW-invariants obtained in [16], (2–15), and a formula for genus-zero GW-
invariants confirmed in [5, Chapter 30]. In particular, we show that the difference
between the two invariants, ie (2–15), simply cancels the last term in Corollary 3.5
in [16]. The n�5 cases of Theorem 2 below have already been obtained [16], with
the nD5 case confirming the prediction of [1]. The nD6 case confirms the prediction
of [6].

Fix an integer n�3 and let X �Pn�1 be a smooth degree–n hypersurface. In this
case, d1;0.X; ˇ/D0 for every ˇ2H2.X IZ/. For each d2ZC , denote by N d

1
.X /2Q

and N
d I0
1

.X /2Q the standard and reduced degree–d genus-one GW-invariant of
X�Pn�1 , ie the sum of GWˇ

1;0
.∅/ and GWˇI0

1;0
.∅/, respectively, over all ˇ lying in

the preimage of d` under the natural homomorphism

H2.X IZ/ �!H2.P
n�1IZ/;

where `2H2.P
n�1IZ/ is the homology class of the line.

For each qD0; 1; : : :, define I0;q.t/ by

(2–16)
1X

qD0

I0;q.t/w
q � ewt

1X
dD0

edt

QrDnd
rD1 .nwCr/QrDd
rD1 .wCr/n

�R.w; t/:

3In [18], the meanings of �p and z�p are reversed.
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Standard vs reduced genus-one GW-invariants 1215

Each I0;q.t/ is a degree–q polynomial in t with coefficients that are power series
in et . For example,

(2–17) I0.t/D 1C
1X

dD1

edt .nd/!

.d!/n
; I1.t/D tI0.t/C

1X
dD1

edt

�
.nd/!

.d!/n

ndX
rDdC1

n

r

�
:

For p; q2ZC with q�p , let

(2–18) Ip;q.t/D d

dt

�
Ip�1;q.t/

Ip�1;p�1.t/

�
:

It is straightforward to check that each of the “diagonal” terms Ip;p.t/ is a power series
in et with constant term 1, whenever it is defined. In particular, the division in (2–18)
is well-defined for all p . A definition of Ip;p.t/ involving power series in qDet only
(and not in t ) and a number of relations between the power series Ip;p.t/ can be found
in [14]. Let

(2–19) T D I0;1.t/

I0;0.t/
:

By (2–17), the map t �! T is a change of variables; it will be called the mirror map.

Theorem 2 The genus-one degree–d Gromov–Witten invariants of a degree–n hyper-
surface X in Pn�1 are given by

1X
dD1

edT N d
1 .X /

D
�
.n�2/.nC1/

48
C 1� .1�n/n

24n2

�
.T�t/C n2�1C .1�n/n

24n
ln I0;0.t/

�
(

n�1
48

ln
�
1�nnet

�CP.n�3/=2
pD0

.n�1�2p/2

8
ln Ip;p.t/; if 2 6 jnI

n�4
48

ln
�
1�nnet

�CP.n�4/=2
pD0

.n�2p/.n�2�2p/
8

ln Ip;p.t/; if 2jn;

where t and T are related by the mirror map (2–19).

The distinction between the n odd and n even cases appears because the formula of
Corollary 3.5 in [16] uses the reflection symmetry property of Theorem 2 in [14] to
reduce the number of different power series Ip;p used. A uniform formula can be
obtained from Theorem 3.3 in [16].
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Let xR.w; t/DR.w; t/=I0;0.t/. Then, e�wt xR.w; t/ is a power series with et –constant
term 1 and

Dp
w ln xR.w; t/� 1

p!

�
d

dw

�p�
ln
� xR.w; t/��ˇ̌̌̌

wD0

2Q
��

et
��

for all p2ZC with p�2. Theorem 2 follows immediately from Corollary 3.4 in [16],
which we restate below, (2–14), and Lemma 2.2. Note that since dim XDn�2 and
kD0, (2–15) can be written as

N d
1 .X /�N

d I0
1

.X /D 1

24

n�2X
pD2

2m�pX
mD1

.�1/m.m�1/! GWd
.m;∅/

�
�p�2m; cn�2�p.TX /I∅�:

Theorem [16, Corollary 3.4] The reduced genus-one degree–d Gromov–Witten
invariants of a degree–n hypersurface X in Pn�1 are given by

1X
dD1

edT N
d I0
1

.X /

D
�
.n�2/.nC1/

48
C 1� .1�n/n

24n2

�
.T�t/C n2�1C .1�n/n

24n
ln I0;0.t/

�
(

n�1
48

ln
�
1�nnet

�CP.n�3/=2
pD0

.n�1�2p/2

8
ln Ip;p.t/; if 2 6 jnI

n�4
48

ln
�
1�nnet

�CP.n�4/=2
pD0

.n�2p/.n�2�2p/
8

ln Ip;p.t/; if 2jnI

C n

24

n�2X
pD2

�
Dn�2�p
w

.1Cw/n

.1Cnw/

��
Dp
w ln xR.w; t/� ;

where t and T are related by the mirror map (2–19).

Lemma 2.2 If X�Pn�1 is a degree–n hypersurface, x2H 2.Pn�1IZ/ is the hyper-
plane class, and p; q2xZC with 2�p �n�2,

cq.TX /D
�
Dq
w

.1Cw/n

.1Cnw/

�
xqjX ;(2–20)

1X
dD1

edT

 
2m�pX
mD1

.�1/m.m�1/! GWd
.m;∅/

�
�p�2m;x

n�2�pI∅�!(2–21)

D�nDp
w ln xR.w; t/;

if T and t are related by the mirror map (2–19).
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The relation (2–20) is immediate from c.T Pn�1/D.1Cx/n . We deduce (2–21) below
from the conclusion of Chapter 30 in [5].

Let U be the universal curve over SM.m;∅/.P
n�1; d/, with structure map � and evalu-

ation map ev:

U

�
��

ev // Pn�1

SM.m;∅/.P
n�1; d/:

In other words, the fiber of � over a tuple
�
ŒCi ;ui �

�
i2Œm� is the wedge of curves Ci

identified at the marked point x0 of each of the curves, while

ev
��
.Ci ;ui/i2Œm�; z

��D ui.z/ if z2Ci :

The orbi-sheaf
��ev�OPn�1.n/ �! SM.m;∅/.P

n�1; d/

is locally free; it is the sheaf of (holomorphic) sections of the vector orbi-bundle

V.m;∅/ � SM.m;∅/.L; d/ �! SM.m;∅/.P
n�1; d/;

where L �! Pn�1 is the total space of the line bundle corresponding to the
sheaf OPn�1.n/. By the (genus-zero) hyperplane-section relation,

.m�1/!GWd
.m;∅/

�
�p�2m;x

n�2�pI∅�
D 1

m

˝
�p�2mev�0xn�2�pe.V.m;∅//;

�SM.m;∅/.P
n�1; d/

�˛
:

(2–22)

The mD1 case of (2–22) is completely standard, and the same argument applies in all
cases.

There is a natural surjective bundle homomorphism

eev0W V.1;∅/ �! ev�0OPn�1.n/;
�
ŒC;u; ��

� �! �
�
x0.C/

�
;

over SM.1;∅/.P
n�1; d/�SM0;f0g.Pn�1; d/. Thus,

V 0.1;∅/ � ker eev0 �! SM.1;∅/.P
n�1; d/

is a vector orbi-bundle. It is straightforward to see that

(2–23) e.V.m;∅//D n ev�0x

iDmY
iD1

��i e.V 0.1;∅//:
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For each r2xZC , let

Zr .e
T /D

1X
dD1

edT
˝
 r

0 ev�0xn�3�r e.V 0.1;∅//; ŒSM.1;∅/.P
n�1; d/�

˛
:

Using the string relation [5, Section 26.3], the conclusion of [5, Chapter 30] can be
reformulated as

(2–24) eTw

�
1C

n�3X
rD0

Zr .e
T /wrC2

�
D xR.w; t/ 2QŒw�

��
et
��
=wn;

with T and t related by the mirror map (2–19) as before.

We now verify (2–21). By (2–22), (2–23), and the decomposition along the small
diagonal in .Pn�1/m , the left-hand side of (2–21) equals

n

1X
dD1

edT

 
2m�pX
mD1

.�1/m

m

D
ev�0xn�1�p

iDmY
iD1

��i
e.V 0

.1;∅//

1� 0

;
�SM.m;∅/.P

n�1; d/
�E!

D n

2m�pX
mD1

.�1/m

m

1X
dD1

edT

�
 X
PiDm

iD1 diDd
di>0

X
PiDm

iD1 piDp
pi�0

iDmY
iD1

D
ev�0xn�1�pi

e.V 0
.1;∅//

1� 0

;
�SM.1;∅/.P

n�1; di/
�E!

D n

2m�pX
mD1

.�1/m

m

X
PiDm

iD1 piDp
pi�2

iDmY
iD1

Zpi�2.e
T /D�nDp

w ln
�

1C
n�3X
rD0

Zr .e
T /wrC2

�
:

The relation (2–21) now follows from (2–24).

3 Proof of Theorem 1A

3.1 Blowups of moduli spaces of genus-one curves

In this subsection we review some aspects of the blowup construction of Subsection 2.3
in [13] and add new ones, which will be used in Section 3.4.

If I is a finite set, let

(3–1) A1.I/D
˚�

IP ; fIk W k2Kg�WK¤∅I ID
G

k2fPgtK

Ik I jIk j�2 8 k2K
	
:
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Here P stands for “principal” (component). If �D.IP ; fIk W k2Kg/ is an element
of A1.I/, we denote by M1;� the subset of SM1;I consisting of the stable curves C
such that

(i) C is a union of a smooth torus and jKj projective lines, indexed by K ;

(ii) each line is attached directly to the torus;

(iii) for each k2K , the marked points on the line corresponding to k are indexed
by Ik .

For example, the first diagram in Figure 2 shows an element of M1;� with

�D �fi1; i2g; ˚fi3; i4; i5; i6g; fi7; i8; i9g	�I
the number next to each component indicates the genus. Let SM1;� be the closure
of M1;� in SM1;I . It is well-known that each space SM1;� is a smooth subvariety
of SM1;I .

i1

i2

i3
i4

i5
i6

i7 i8 i9

1

0

0

IP Dfi1; i2g;K Df1; 2g
I1 Dfi3; i4; i5; i6g; I2 Dfi7; i8; i9g

�
i1

i2

i3
i4

i5
i6

i7 i8 i9

1

0

0

i1

i2

i3
i4

i5
i6

i7
i8

i9

1

0 i1

i2

i3
i4

i5 i6

i7 i8 i9

1

0

0

0

Figure 2: Examples of partial ordering (3–2)

We define a partial ordering on the set A1.I/tf.I;∅/g by setting

(3–2) �0��I 0P ; fI 0k W k2K0g�� ���IP ; fIk W k2Kg�
if �0¤� and there exists a map 'W K �!K0 such that Ik�I 0

'.k/
for all k2K . This

condition means that the elements of M1;�0 can be obtained from the elements of
M1;� by moving more points onto the bubble components or combining the bubble
components; see Figure 2.

Let I and J be finite sets such that I is not empty and jI jCjJ j�2. We put

A1.I;J /D
˚�
.IPtJP /; fIktJk W k2Kg�2A1.ItJ /W Ik¤∅ 8 k2K

	
:
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1220 Aleksey Zinger

Note that if �2A1.ItJ /, then �2A1.I;J / if and only if every bubble component
of an element of M1;� carries at least one element of I . The partially ordered set
.A1.I;J /;�/ has a unique minimal element

�min �
�
∅; fItJ g�:

Let < be an ordering on A1.I;J / extending the partial ordering �. We denote the
corresponding maximal element by �max . If �2A1.I;J /, define

(3–3) ��1D
(

maxf�02A1.I;J /W �0<�g; if �¤�minI
0; if �D�min;

where the maximum is taken with respect to the ordering <.

The starting data for the blowup construction of Subsection 2.3 in [13] is given by

SM0
1;.I;J / D SM1;ItJ ; E0 D E �! SM0

1;.I;J /:

Suppose �2A1.I;J / and we have constructed

(I1) a blowup ���1W SM��1

1;.I;J /
�! SM0

1;.I;J /
of SM0

1;.I;J /
such that ���1 is one-to-

one outside of the preimages of the spaces SM0
1;�0

with �0��� 1;

(I2) a line bundle E��1 �! SM��1

1;.I;J /
.

For each ��>��1, let SM��1
1;��

be the proper transform of SM1;�� in SM��1

1;.I;J /
.

If �2A1.I;J / is as above, let

z��W SM�

1;.I;J /
�! SM��1

1;.I;J /

be the blowup of SM��1

1;.I;J /
along SM��1

1;�
. We denote by SM�

1;�
the corresponding

exceptional divisor and define

(3–4) E� D z��� E��1˝O. SM�
1;�
/:

It is immediate that the requirements (I1) and (I2), with ��1 replaced by � , are
satisfied.

The blowup construction is concluded after j�maxj steps. Let�M1;.I;J / D SM�max
1;.I;J /

; zED E�max ;
z D c1.zE/:

By Lemma 2.6 in [13], the end result of this blowup construction is well-defined,
ie independent of the choice of an ordering < extending the partial ordering �. The

Geometry & Topology, Volume 12 (2008)



Standard vs reduced genus-one GW-invariants 1221

reason is that different extensions of the partial order � correspond to different orders
of blowups along disjoint subvarieties.4

Remark If ID∅ or jI jCjJ jD1, we define �M1;.I;J / D SM1;ItJ and zED E.

We next define natural line bundle homomorphisms si W Li �! E� over SM1;I , where
Li �! SM1;I is the universal tangent line bundle at the i –th marked point. These
homomorphisms will then be twisted to isomorphisms zsi on �M1;.I;J / . The homomor-
phism si is induced by the natural pairing of tangent vectors and cotangent vectors at
the i –th marked point. Explicitly,˚

si.ŒCI v�/
	
.ŒC;  �/D  xi .C/v

ŒC�2 SM1;I ; ŒC; v�2Li jCDTxi .C/C; ŒC;  �2EjCDH 0.CIT �C/;if

and xi.C/2C is the marked point on C labeled by i . The homomorphism si vanishes
precisely on the curves for which the i –th marked point lies on a bubble component.
In fact, as divisors,

(3–5) s�1
i .0/D

X
�2B1.I Ii/

SM1;�; where B1.I I i/D
˚�

IP ; fIBg
�2A1.I/W i2IB

	
:

If I and J are finite sets such that I is not empty and jI jCjJ j�2, then

B1.ItJ I i/�A1.I;J / 8 i2I:

For each i2I , let

L0;i DLi �! SM0
1;.I;J / ; s0;i D si 2H 0

� SM0
1;.I;J /IHom.L0;i ;E

�/
�
:

Suppose �2A1.I;J / and we have constructed line bundles L��1;i �! SM��1

1;.I;J /
for

i2I and bundle sections

s��1;i 2H 0. SM��1

1;.I;J /
IHom.L��1;i ; �

�
��1E�/

�
(3–6)

s�1
��1;i.0/D

X
��2B1.ItJ Ii/;��>��1

SM��1
1;��

:such that

4If �; �02A1.I;J / are not comparable with respect to � and �<�0 , SM��1
1;�

and SM��1
1;�0

are disjoint
subvarieties in SM��1

1;.I;J /
. However, SM1;� and SM1;�0 need not be disjoint in SM1;ItJ . For example, if

IDf1; 2; 3; 4g , JD∅ ,

�12 D
�
.f3; 4g/; ff1; 2gg�; �34 D

�
.f1; 2g/; ff3; 4gg�; �12;34 D

�
.∅/; ff1; 2g; f3; 4gg�;

then SM1;�12
and SM1;�34

intersect at SM1;�12;34
in SM1;4 , but their proper transforms in the blowup of

SM1;4 along SM1;�12;34
are disjoint.
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By (3–5), this assumption is satisfied for ��1D0. If

(3–7) �D �IPtJP ; fIktJk W k2Kg�
and i2I , we define

(3–8) L�;i D
(
z���L��1;i ˝O. SM�

1;�
/; if i 62IP I

z���L��1;i ; if i2IP :

By the inductive assumption, s��1;i induces a section s�;i of L��;i˝���E� such that

s�1
�;i .0/D

X
��2B1.ItJ Ii/;��>�

SM�
1;��

:

Thus, the inductive assumption (3–6) is satisfied with ��1 replaced by � . Let

zLi DL�max;i �! �M1;.I;J /; zsi D s�max;i 2H 0. �M1;.I;J /IHom. zLi ; z��E�/
�
:

By (3–6), zsi W zLi �! z��E� is an isomorphism of line bundles.

Remark The line bundles zLi and bundle isomorphisms zsi just defined are not the
same as in Subsection 2.3 in [13] or Subsection 2.1 in [19].

3.2 Blowups of moduli spaces of genus-zero curves

In this subsection we give a formula for the numbers (2–7) that involves the blowups
of moduli spaces of genus-zero curves defined in Subsection 2.4 of [13] and moduli
spaces of genus-one curves, not their blowups. The formula of Proposition 3.1 will be
used at the conclusion of Section 3.4.

If I is a finite set, let

A0.I/D
˚�

IP ; fIk W k2Kg�WK¤∅I ID
G

k2fPgtK

Ik I jIk j�2 8 k2KI jKjCjIP j�2
	
:

Similarly to Section 3.1, each element � of A0.I/ describes a smooth subvariety

SM0;� � SM0;f0gtI ;

with the “principal” component of each curve in M0;� carrying the marked points
indexed by the set f0gtJP . There is a partial ordering � on A0.I/, defined analogously
to the partial ordering � on A1.I/. If J is also a finite set, let

A0.I;J /D
˚�
.IPtJP /; fIktJk W k2Kg�2A0.ItJ /W Ik¤∅ 8 k2K

	
:
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Suppose @ is a finite nonempty set and %D.Il ;Jl/l2@ is a tuple of finite sets such that
Il¤∅ and jIl jCjJl j�2 for all l2@. Let

SM0;% D
Y
l2@
SM0;f0gtIltJl

and F% D
M
l2@

��l L0 �! SM0;%;

where L0 �! SM0;f0gtIltJl
is the universal tangent line bundle for the marked point 0

and

�l W SM0;% �! SM0;f0gtIltJl

is the projection map. Denote by


% �! PF%

the tautological line bundle.

With % as above, let

A0.%/D
˚�@P ; .�l/l2@

�W @P�@; @P¤∅I
�l2f.IltJl ;∅/gtA0.Il ;Jl/ 8 l2@I(3–9)

�lD.IltJl ;∅/8 l2@�@P I
�@P ; .�l/l2@

�¤�@; .IltJl ;∅/l2@
�	
:

We define a partial ordering on A0.%/ by setting

(3–10) �0��@0P ; .�0l/l2@�� ���@P ; .�l/l2@
�

if �0¤� , @0
P
�@P , and for every l2@ either �0

l
D�l , �0

l
��l , or �0

l
D.IltJl ;∅/. Let <

be an ordering on A0.%/ extending the partial ordering �. Denote the corresponding
minimal and maximal elements of A0.%/ by �min and �max , respectively. If �2A0.%/,
define

��1 2 f0gtA0.%/

as in (3–3).

If �2A0.%/ is as in (3–10), let

SM0;� D
Y
l2@
SM0;�l

; F� D
M
l2@P

��l L0

ˇ̌
SM0;�
� F%; �M0

0;�DPF� � �M0
0;%�PF%:

The spaces �M0
0;%

and �M0
0;�

can be represented by diagrams as in Figure 3. The
thinner lines represent typical elements of the spaces SM0;�l

, with the marked point 0

lying on the thicker vertical line. We indicate the elements of @P�@ with the letter P
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next to these points. Note that by (3–9), every dot on a vertical line for which the
corresponding tree has more than one line must be labeled with a P .

P

P

P

@Df1; 2; 3g
jI1tJ1jD2

jI2tJ2jDjI3tJ3jD3

@P Df1; 2; 3g
�1 D.I1tJ1;;/
�2 D.I2tJ2;;/
�3 D.I3tJ3;;/

P

P

@Df1; 2; 3g
jI1tJ1jD2

jI2tJ2jDjI3tJ3jD3

@P Df2; 3g
�1 D.I1tJ1;;/
�2 ¤.I2tJ2;;/
�3 D.I3tJ3;;/

Figure 3: Typical elements of �M0
0;%

and �M0;�

The blowup construction now proceeds similarly to that in Section 3.1 with

E0D
% �! �M0
0;%:

The analogue of (3–4) has the same form:

(3–11) E� D z��� E��1˝O. �M�
0;�
/:

As before, we take

�M0;% D �M�max
0;%

; zED E�max ;
z D c1.zE/:

As in Section 3.1, the end result of the above blowup construction is well-defined,
ie independent of the choice of the ordering < extending the partial ordering �.

We now return to the construction of Section 3.1. If �2A1.I;J / is as in (3–7), let

IP .�/D IP ; JP .�/D JP ; @.�/DK; %B.�/D
�
Il ;Jl

�
l2@.�/:

Note that

(3–12) SM1;� � SM1;IP .�/tJP .�/t@.�/ � SM0;%B.�/:

If �D0, we set

IP .�/D I; JP .�/D J; @.�/D∅;
D z zc ; � �M0;%B.�/�

E
D
(

1; if zcD�1I
0; otherwise:

Let �Dc1.E/ be the Hodge class on SM1;N .
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Proposition 3.1 If I and J are finite sets and .zc; .cj /j2J /2Z�ZJ , then˝zcI .cj /j2J

˛
.I;J /

D
X

�2f0gtA1.I;J /

 D Y
j2JP .�/

 
cj
j ;

� SM1;IP .�/tJP .�/t@.�/
�ED z zc�1

Y
j2J�JP .�/

 
cj
j ;

� �M0;%B.�/

�E

C
D
�
Y

j2JP .�/

 
cj
j ;

� SM1;IP .�/tJP .�/t@.�/
�ED z zc�2

Y
j2J�JP .�/

 
cj
j ;

� �M0;%B.�/

�E!
:

It is immediate that this statement holds if zc�0. For each �2A1.I;J /, let�M1;� � �M1;.I;J /

be the proper transform of the exceptional divisor SM�
1;�

for the blowup at step � .
Since SM�

1;�
is a divisor in SM�

1;.I;J /
and the blowup loci SM�

1;��
, with ��>� , are

not contained in SM�
1;�

, �M1;� is the pullback of the cohomology class determined by
SM�

1;�
under the blowdown map�M1;.I;J / �! SM�

1;.I;J /
:

Therefore, by (3–4),

(3–13) z D �C
X

�2A1.I;J /

�M1;� 2H 2
� �M1;.I;J /

�
:

Furthermore, by an inductive argument on the stages of the blowup construction similar
to Subsections 3.4 and 4.3 in [13],

(3–14) �M1;� � �M1;.IP .�/t@.�/;JP .�// � �M0;%B.�/;
z ˇ̌ �M1;�

� ��B z ;

where �B is projection onto the second component.5 The zcD1 case of Proposition 3.1
follows immediately from (3–13) and (3–14). If zc�2, then by (3–13), (3–14), and

5The induction begins with (3–12) and �j SM1;�
D��

P
� . One then shows that

SM��1
1;�
� �M1;.IP .�/t@.�/;JP .�//

� SM0;%B.�/
; c1.E%�1/j SM��1

1;�

D ��P z ;

and the normal bundle of SM��1
1;�

is ��
P
zE�˝��

B
F%B.�/

. Thus,

SM�
1;�
� �M1;.IP .�/t@.�/;JP .�//

� �M0
0;%B.�/

; c1.E%/j SM�
1;�
D ��Bc1.E0/:

The proper transforms of SM�
1;�

under blowups along SM���1
1;��

with ���� correspond to blowups of the
second component of SM�

1;�
and the twisting (3–11) changes ��

B
c1.E0/ to ��

B
c1.zE/ .

Geometry & Topology, Volume 12 (2008)
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�2D0, we have

z D z zc�2

�
�C

X
�2A1.I;J /

�M1;�

�2

D z zc�1
X

�2A1.I;J /

�M1;�C� z zc�2
X

�2A1.I;J /

�M1;�

D
X

�2A1.I;J /

�
��B z zc�1C .��P�/.��B z zc�2/

� �M1;�:

This implies the zc�2 cases of Proposition 3.1.

3.3 Analytic setup

We now recall the parts of Subsections 1.3, 1.4, 3.1, and 3.2 in [15] needed to formulate
Proposition 3.1 of [15] giving a description of the difference between the two genus-one
GW-invariants.

An element of the moduli space SMg;k.X; ˇIJ / is represented by a stable continuous
degree–ˇ map u from a pre-stable genus–g Riemann surface .†; j / with k marked
points to X which is smooth on each component of † and satisfies the Cauchy–Riemann
equation corresponding to .J ; j /:

x@J ;j u� 1

2

�
duCJ ı du ı j

�D 0:

We denote by SMg;k.X; ˇIJ ; �/ the space of solutions to the �–perturbed Cauchy–
Riemann equation:

x@J ;j uC �.u/D 0:

The perturbation term �.u/ is a section of the vector bundle

ƒ
0;1
J ;j T �†˝u�TX � ˚�2HomR.T†;u

�TX /W J ı �D�� ı j
	 �!†

and depends continuously on u and smoothly on each stratum XT .X; ˇ/ of the space
Xg;k.X; ˇ/ of all continuous degree–ˇ maps that are smooth (or L

p
1

with p>2)
on the components of the domain. More formally, � is a multi-section of a Banach
orbi-bundle �0;1

g;k
.X; ˇIJ / over Xg;k.X; ˇ/.6

6The topological and analytic aspects of the setup in Subsection 1.3 of [15] are analogous to [3] and [7],
respectively.
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Suppose m2ZC , J is a finite set, and ˇ2H2.X IZ/. If � is a perturbation on the spaces
X0;f0gtJi

.X; ˇi/ as above, with Ji�J and ˇi2H2.X IZ/ such that !.ˇi/�!.ˇ/, let

SM.m;J /.X; ˇIJ ; �/

D
�
.bi/i2Œm� 2

iDmY
iD1

SM0;f0gtJi
.X; ˇi IJ ; �/W Ji�J;

iDmG
iD1

JiDJ I

ˇi2H2.X IZ/�f0g;
iDmX
iD1

ˇiDˇI ev0.bi/Dev0.bi0/ 8 i; i 02Œm�
�
:

Let M.m;J /.X; ˇIJ ; �/�SM.m;J /.X; ˇIJ ; �/ be the subspace consisting of m–tuples
of maps from smooth domains. Define

�i W SM.m;J /.X; ˇIJ ; �/ �!
G

ˇi2H2.X IZ/�0

G
Ji�J

SM0;f0gtJi
.X; ˇi IJ ; �/;

�p; z�p 2H 2p
�SM.m;J /.X; ˇIJ ; �/

�
; ev0W SM.m;J /.X; ˇIJ / �!X;

as in Section 2.1.

We will call a perturbation � on X0;f0gtJ .X; ˇ/ supported away from x0 if �.u/
vanishes on a neighborhood of the marked point x0 for every element Œ†;u� of
X0;f0gtJ .X; ˇ/. In such a case, u is holomorphic on a neighborhood of the marked
point x0 for every element Œ†;u� of SM0;f0gtJ .X; ˇIJ ; �/. Therefore, there is a
well-defined (C–linear) vector bundle homomorphism (VBH)

D0W L0 �! ev�0TX;
�
†;uIw� �! dujx0

w if w 2L0jŒ†;u� D Tx0
†;

over SM0;f0gtJ .X; ˇIJ ; �/. If m, J , and � are as in the previous paragraph and � is
supported away from x0 , we obtain m VBHs

��i D0W ��i L0 �! ev�0TX

over SM0;.m;J /.X; ˇIJ ; �/. The difference between the standard and reduced genus-
one GW-invariants is described below in terms of these VBHs and the homomor-
phisms si defined in Section 3.1.

In the genus-one case, Definition 1.2 in [15] describes a class of perturbations � called
effectively supported. These perturbations vanish on all components of the domain
of a stable map u on which the degree of u is zero, as well as near such compo-
nents (including after small deformations of Œ†;u�). If �es is effectively supported,
Œ†;u� is an element of SM1;k.X; ˇIJ ; �es/, and u has degree 0 on a component †i

of †, then u is constant on †. For a generic effectively supported perturbation �es ,
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SM1;k.X; ˇIJ ; �es/ has the same general topological structure as SM1;k.P
n; d/. In

particular, if .X; !;J / is sufficiently regular (eg a low-degree projective hypersurface),
�es can be taken to be 0 for our purposes.

A stratum XT of X1;k.X; ˇ/ is specified by the topological type of the domain †
of the stable maps u in XT , including the distribution of the k marked points, and
the choice of the components of † on which the degree of u is not zero. A stratum
XT of X1;k.X; ˇ/ will be called degenerate if the degree of any map u in XT on the
principal, genus-carrying, component(s) of its domain is zero. The restriction of u to a
component †i�S2 of † on which the degree of u is not zero defines a projection

(3–15) �T Ii W XT �!
G

ˇi2H2.X IZ/�0

X0;KitJi
.X; ˇi/

for some Ji�Œk� and finite set Ki consisting of the nodes of †i . If XT is degenerate,
Ki has a distinguished element, the node closest to the principal component(s) of †; it
will be denoted by 0. As in Subsection 3.2 in [15], let G

gd
1;k
.X; ˇIJ / be the space of

all effectively supported deformations �es such that for every degenerate stratum XT ,
Œ†;u�2XT , and every component †i�S2 of † on which the degree of u is nonzero

(3–16) �es.u/j†i
D ˚��T Ii�T Ii	.u/j†i

for a fixed (independent of u) perturbation �T Ii on the right-hand side of (3–15) such
that for every ˇi2H2.X IZ/�0 with !.ˇi/�!.ˇ/:

(gd1) the linearization

(3–17) DJ ;�T Ii IbW
˚
�2�.†bIu�bTX /W �.x0.b//D0

	�!�
�
†bIƒ0;1

J ;j T �†b̋ u�bTX
�

of x@JC�T Ii at b is surjective for every b�Œ†b;ub �2 SM0;KitJi
.X; ˇi IJ ; �T Ii/;

(gd2) the restriction of the section

D0 2 �
�SM0;KitJi

.X; ˇi IJ ; �T Ii/IHom.L0; ev�0TX /
�

to every stratum of SM0;KitJi
.X; ˇi IJ ; �T Ii/ for which the degree of the maps

on the component containing x0 is nonzero is transverse to the zero section.

If m2ZC and J�Œk�, let

M
m;J
1;k

.X; ˇIJ ; �es/� SM1;k.X; ˇIJ ; �/
be the subspace consisting of the stable maps Œ†;u� such that † is a union of a smooth
torus †P and m spheres attached directly to †P , the degree of u is zero on †P and

Geometry & Topology, Volume 12 (2008)



Standard vs reduced genus-one GW-invariants 1229

nonzero on each of the m spheres, and †P carries the marked points indexed by J . If
�es2G

gd
1;k
.X; ˇIJ /, there is a natural splitting

(3–18) M
m;J
1;k

.X; ˇIJ ; �es/�
�
M1;Œm�tJ�M.m;Œk��J /.X; ˇIJ ; �B/

�.
Sm;

where M1;Œm�tJ� SM1;Œm�tJ is the subspace of smooth curves and �B is a perturbation
supported away from x0 . With our assumptions on �es , �B is in fact effectively
supported. Furthermore, SM.m;Œk��J /.X; ˇIJ ; �B/ is stratified by smooth orbifolds (in
the sense of Remark 1 in Subsection 1.3 in [15]) with the expected normal bundles
(ie analogously to SM.m;Œk��J /.P

n; d/). The splitting in (3–18) extends to an immersion
over the closures, from the right hand side to the left.

Let � be a tuple as in (2–3) and (2–4). As in Subsection 3.1 in [15], choose generic
pseudocycle representatives fj W xYj �!X for the Poincare duals of the cohomology
classes �j and let

SM1;k

�
X; ˇIJ ; �esI .fj /j2Œk�

�� SM1;k

�
X; ˇIJ ; �es

�� jDkY
jD1

xYj

be the preimage of the diagonal �k
X
� .X 2/k under

QjDk
jD1

.evj�fj /. Let

SM1;k

�
X; ˇIJ ; �esI�

�� SM1;k

�
X; ˇIJ ; �esI .fj /j2Œk�

�
be the zero set of a section ' of the vector bundle

V� �
jDkM
jD1

cj L�j �! SM1;k

�
X; ˇIJ ; �esI .fj /j2Œk�

�
:

For good choices of fj and ' , the splitting (3–18) induces a splitting

M
m;J
1;k

.X; ˇIJ ; �esI�/�
�
M

m;J
1;k

.X; ˇIJ ; �es/�
jDkY
jD1

Yj

�
\ SM1;k

�
X; ˇIJ ; �esI�

�
�
�
M1;Œm�tJ .�/�M.m;Œk��J /.X; ˇIJ ; �BI�/

�.
Sm;(3–19)

for all m2ZC and J�Œk�. This splitting extends as an immersion over the compactifi-
cations.

Denote by

�P ; �BW SM1;Œm�tJ .�/�SM.m;Œk��J /.X; ˇIJ ; �BI�/
�! SM1;Œm�tJ .�/�SM.m;Œk��J /.X; ˇIJ ; �BI�/
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the two component projection maps. With si as in Section 3.1 and D0 as above, define

Dm;J
1;k
W

iDmM
iD1

��P Li˝��B��i L0 �! ��P E�˝��Bev�0TX;

.vi˝wi/i2Œm� �!
iDmX
iD1

si.v/˝D0.wi/:

This is a VBH over SM1;Œm�tJ .�/�SM.m;Œk��J /.X; ˇIJ ; �BI�/, which descends to
SMm;J

1;k
.X; ˇIJ ; �esI�/.

Finally, suppose SM is a compact topological space which is a disjoint union of smooth
orbifolds, one of which, M, is a dense open subset of SM, and the real dimensions of
all others do not exceed dimM�2. Let

E;O �! SM
be vector orbi-bundles such that the restrictions of E and O to every stratum of SM is
smooth and

rkO� rk E D 1

2
dimRM:

If ˛2�� SMIHom.E;O/
�

is a regular section in the sense of Definition 3.9 in [17],
then the signed cardinality of the zero set of the affine bundle map

 ˛;x��˛Cx�W E �!O

is finite and independent of a generic choice of x�2�. SMIO/, by Lemma 3.14 in [17].
We denote it by N.˛/.

Proposition 3.2 Suppose .X; !;J / is a compact almost Kahler manifold of real di-
mension 2n, k2xZC , ˇ2H2.X IZ/, � is as in (2–3) and (2–4), and �es2Ggd

1;k
.X; ˇIJ /.

If the pseudocycle representatives fj and bundle section ' are chosen generically,
subject to the existence of a splitting (3–19), then

(3–20) GWˇ
1;k.�/�GWˇI0

1;k
.�/D

1X
mD1

X
J�Œk�

Cm;J
1;k

.x@/;

where Cm;J
1;k

.x@/ is the x@–contribution of M
m;J
1;k

.X; ˇIJ ; �esI�/ to GWˇ
1;k.�/. It is

given by

(3–21) Cm;J
1;k

.x@/DN
�
Dm;J

1;k

�
;
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where we view Dm;J
1;k

as a vector bundle homomorphism over SMm;J
1;k

.X; ˇIJ ; �esI�/.
In particular, the bundle homomorphism Dm;J

1;k
is regular.

This is the essence of Proposition 3.1 in [15]. While Subsections 3.1 and 3.2 in [15]
explicitly treat only the case without descendants, ie cjD0 for all j 2Œk�, exactly the
same argument applies in the general case. The notion of x@–contribution of a stratum
to GWˇ

1;k.�/ is made precise in Proposition 3.1 in [15], but (3–20) and (3–21) suffice
for our purposes.

Proposition 3.2 shows only the main strata M
m;J
1;k

.X; ˇIJ ; �es/ of SM1;k.X; ˇIJ ; �es/

contribute to the difference between the standard and reduced genus-one GW-invariants.
Furthermore, if cjD0 for all j 2Œk�, ie there are no  –classes involved, the numbers
h�i1;Œm�tJ and h�I�i1;Œm�tJ in (3–31) below are integrals of 1 and � on SM1;Œm�tJ .
Thus, if cjD0 for all j 2 Œk�, the contribution of M

m;J
1;k

.X; ˇIJ ; �es/ is zero unless
.m;J /D.1;∅/. Even in this case, the difference between the two invariants involves
genus-zero GW-invariants arising from the closure of the second component in the
decomposition (3–18) with .m;J /¤ .1;∅/; see (2–15). However, this is also the
second component in the analogous decomposition of the boundary stratum

M.mIJ ;Œk��J /.X; ˇIJ ; �B/� SM1;kC1.X; ˇIJ ; �B/

defined in Section 3.4. As indicated by the .m;J /D.1;∅/ case of (3–31) and its proof,
the latter is the reason that the genus-zero .m;J /–invariants arise in (2–15).

3.4 Topological computations

In this subsection we express the numbers (3–21) in terms of cohomology classes and
GW-invariants and thus conclude the proof of Theorem 1A.

With notation as in the previous subsection, let

SM.m;Œk��J / � SM.m;Œk��J /.X; ˇIJ ; �BI�/:
Equation (3–21) can be restated as

(3–22) Cm;J
1;k

.x@/DN
�
Dm;J

1;k

�ı
m!

with Dm;J
1;k

viewed as a VBH over SM1;Œm�tJ .�/�SM.m;Œk��J / . It is straightforward to
see that

N.Dm;J
1;k

/DN.�Dm;J
1;k

/;

Geometry & Topology, Volume 12 (2008)



1232 Aleksey Zinger

where �Dm;J
1;k

is the VBH over �M1;.Œm�;J /.�/�SM.m;Œk��J / given by

�Dm;J
1;k
W

iDmM
iD1

��P zLi˝��B��i L0 �! ��P E�˝��Bev�0TX;

.vi˝wi/i2Œm� �!
iDmX
iD1

zsi.v/˝D0.wi/;

with zLi and zsi as at the end of Section 3.1.7

Since zsi W zLi �! E� is an isomorphism for all i2Œm�,
N.Dm;J

1;k
/DN

�
��P idE�˝��BD.m;Œk��J /

�
;

where idE� is viewed as a VBH on �M1;.Œm�;J /.�/ and D.m;Œk��J / is the VBH on
SM.m;Œk��J / defined by

D.m;Œk��J /W F.m;Œk��J / �
iDmM
iD1

��i L0 �! ev�0TX; .wi/i2Œm� �!
iDmX
iD1

D0.wi/:

This VBH induces a VBH over the projectivization of F.m;Œk��J / ,

�D0 2 �.�M0
.m;Œk��J /IHom.E0I ev�0TX /

�
;

where �M0
.m;Œk��J / D PF.m;Œk��J /; E0 D 
.m;Œk��J /;

and 
.m;Œk��J / �! PF.m;Œk��J / is the tautological line bundle. It is straightforward
to see from the definition that

(3–23) N
�
��P idE�˝��BD.m;Œk��J /

�DN
�
��P idE�˝��B�D0

�
:

By (gd1) and a dimension count as below, PF.m;Œk��J / is stratified by orbifolds with
the expected normal bundles and �D0 does not vanish on every stratum of PF.m;Œk��J /

on which its restriction is transverse to the zero set (unless �M1;.Œm�;J /.�/ is empty).
Using (gd2), the strata of PF.m;Œk��J / on which �D0 is not transverse to the zero set
can be described as follows.

7 SM1;Œm�tJ .�/ is the zero of a section 'J of the vector bundle V�IJ �
L

j2J cj L�j over SM1;Œm�tJ

such that the restriction of 'J to every blowup locus is transverse to the zero set. �M1;.Œm�;J /.�/ is the
preimage of SM1;Œm�tJ .�/ under the blowdown map �M1;.Œm�;J / �! SM1;Œm�tJ .
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If J is a finite set and ˇ2H2.X IZ/, let

A0.J /D
˚
.mIJP ;JB/Wm2ZCI JP ;JB�J ImCjJP j�2

	I
SM.0;J /.X; ˇIJ ; �B/D SM0;f0gtJ .X; ˇIJ ; �B/:

If �D.mIJP ;JB/ is an element of A0.J /, let

M� .X; ˇIJ ; �B/� SM0;f0gtJ .X; ˇIJ ; �B/

be the subset of consisting of the stable maps Œ†;u� such that

(i) the components of † are †iDP1 with i2fPgtŒk�;
(ii) uj†P

is constant and the marked points on †P are indexed by the set f0gtJP ;

(iii) for each i2Œm�, †i is attached to †P and uj†i
is not constant.

We denote by
SM� .X; ˇIJ ; �B/� SM0;f0gtJ .X; ˇIJ ; �B/

the closure of M� .X; ˇIJ ; �B/. In each diagram of Figure 4, the irreducible compo-
nents of † are represented by lines, and the homology class next to each component
shows the degree of u on that component. We indicate the marked points lying on the
component †P only.

If m2ZC and J is a finite set, let

A0.mIJ /D
˚�
.�i/i2Œm�;JB

�W .�i ;∅/2f.0;∅/gtA0.Ji;P /; .�i/i2Œm�¤.0/i2Œm�I
iDmG
iD1

Ji;PDJ�JB

	
:

If %��.�i/i2Œm�;JB

�
is an element of A0.mIJ /, we put

@P .%/D
˚
i2Œm�W �i¤0

	
and @S .%/D

˚
i2Œm�W �iD0

	
:

Here P and S stand for the subsets of principal and secondary elements of Œm�,
respectively. Note that @P .%/¤∅ for all %2A0.mIJ /. Let

SM%.X; ˇIJ ; �B/D
n
.bi/i2Œm� 2

iDmY
iD1

SM.�i ;Ji;B/.X; ˇi IJ ; �B/W

iDmX
iD1

ˇiDˇI
iDmG
iD1

Ji;BDJBI ev0.bi1
/Dev0.bi2

/ 8 i1; i22Œm�
o
:

This is a subspace of SM.m;J /.X; ˇIJ ; �B/.
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0

ˇ1

ˇ2

�
j1

0

ˇ0
1

ˇ0
2

mD2; JP Dfj1g
ˇ0

1
; ˇ0

2
¤0, ˇ0

1
Cˇ0

2
Dˇ

0

ˇ00
1

ˇ00
2

ˇ00
3

Figure 4: Examples of partial ordering (3–24)

With � as before and %2A0.mI Œk��J /, let

SM% D
�SM%.X; ˇIJ ; �B/�

jDkY
jD1

xYj

�
\ SM.m;Œk��J /.X; ˇIJ ; �BI�/:

Define

F%IP D
M

i2@P .%/

��i L0

ˇ̌̌
SM%

� F.m;Œk��J /

ˇ̌
SM%
; �M0

% D PF%IP � �M0
.m;Œk��J /:

It is immediate from the definition of �D0 that it vanishes identically on �M0
% for

every element % in A0.mI Œk��J /, since D0 vanishes identically on the strata of
SM0;f0gtJi

.X; ˇi IJ ; �B/ for which the degree of the maps on the component carrying
the 0–th marked point is zero. On the other hand, by (gd2), the restriction of �D0 to
any stratum of �M0

.m;Œk��J /
in the complement of every �M0

% is transverse to the zero
set and thus does not vanish by a dimension count as below (unless �M1;.Œm�;J /.�/ is
empty).

As described in Section 3 of [17], the number N.�D0/ is the euler class of the quotient
of the target bundle of �D0 by the domain line bundle minus a correction from �D�1

0
.0/.

The correction splits into contributions from the strata of �D�1
0
.0/ each of which is

again the number of zeros of an affine bundle map, but with the rank of the target bundle
reduced by at least one. The linear part of each affine bundle map is determined by the
topological behavior of �D�1

0
in the normal direction to each stratum. This behavior

(for D0 and thus for �D0 ) is described in Subsection 2.4 of [15]. Thus, by iteration, one
obtains a finite tree of cohomology classes at the nodes which sum up to N.�D0/. The
tree in this case is similar to a subtree of the tree in Subsection 3.2 of [18], but twisted
with E� . Thus, N.�D0/ can be expressed in terms of cohomology classes by a direct,
though laborious, computation nearly identical to the one in Subsections 3.1 and 3.2
in [18]. This time, we will instead compute N.�D0/ by blowing up �M0

.m;Œk��J /
and
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twisting �D0 to a nowhere-vanishing vector bundle homomorphism �D.m;Œk��J / . This
construction is a direct generalization of Section 3 in [13].

Define a partial ordering on the set A0.J / by setting

(3–24) � 0�.m0IJ 0P ;J 0B/� ��.mIJP ;JB/ if � 0¤�; m0�m; J 0P�JP :

Similarly to Section 3.1, this condition means that the elements of M� 0.X; ˇIJ ; �/
can be obtained from the elements of M� .X; ˇIJ ; �B/ by moving more points onto
the bubble components or combining the bubble components; see Figure 4. The bubble
components are the components not containing the marked point 0. Define a partial
ordering � on A0.mIJ / by setting

(3–25) %0��.� 0i/i2Œm�;J 0B�� %��.�i/i2Œm�;JB/

if %0¤% and for every i2Œm� either � 0iD�i , .� 0i ;∅/�.�i ;∅/, or � 0iD0. Note that

(3–26) %0 � % H) @P .%
0/� @P .%/I %D �.mi IJi;P /i2@P .%/; .0/i2@S .%/;JB

�
for some mi and Ji;P . Choose an ordering < on A0.mIJ / extending the partial
ordering �. Denote the corresponding minimal element by %min and the largest element
for which SM% is nonempty by %max . For every %2A0.mIJ /, define

%�1 2 f0gtA0.mIJ /
as in (3–3).

With % as (3–26), let

%P D
�
Œmi �;Ji;P

�
i2@P .%/

; mB.%/D
ˇ̌@S .%/jC

X
i2@P .%/

mi ;

JB.%/D JB; G% D
Y

i2@P .%/

Smi
:

With �M0
0;%P

as in Section 3.2, there is a natural node-identifying immersion

�0;%W �M0
0;%P

.�/� SM.mB.%/;JB.%// �! �M0
% � �M0

.m;Œk��J /:

It descends to an immersion

x�0;%W
� �M0

0;%P
.�/�SM.mB.%/;JB.%//

�ı
G% �! �M0

.m;Œk��J /;

which is an embedding outside the preimages of �M0
%0 with %0�%.

As in the blowup construction of Section 3.1, we inductively define

z�%W �M%

.m;Œk��J /
�! �M%�1

.m;Œk��J /
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to be the blowup of �M%�1

.m;Œk��J /
along the proper transform �M%�1

% of �M0
% in�M%�1

.m;Œk��J /
. If �M%

%��M%

.m;Œk��J /
is the exceptional divisor, let

(3–27) E% D z��%E%�1˝O
��M%

%

�
:

The vector bundle homomorphism �D%�1W E%�1 �! ev�
0
TX induces a section

�D% 2 ���M%

.m;Œk��J /
IHom.E%; ev�0TX /

�
:

As described in detail in Subsection 3.4 in [13] (in the case .X;J /DPn ), �0;% induces
an immersion

�%�1;%W �M0;%P
.�/� SM.mB.%/;JB.%// �! �M%�1

% � �M%�1

.m;Œk��J /

and an embedding

x�%�1;%W
� �M0;%P

.�/�SM.mB.%/;JB.%//

�
=G% �! �M%�1

.m;Œk��J /
:

Thus, the centers of all blowups are smooth (in the appropriate sense) and

�M%
% �

� �M0;%P
.�/� �M0

.mB.%/;JB.%//

�ı
G%:

Furthermore,

(3–28) z��% c1.E%�1/
ˇ̌�M%

%
D ��P z ; c1.E%/

ˇ̌�M%
%
D ��Bc1

�

.mB.%/;JB.%//

�
;

where

�P ; �BW �M0;%P
.�/� �M0

.mB.%/;JB.%//
�! �M0;%P

.�/; �M0
.mB.%/;JB.%//

are the projection maps. Finally, the restriction of D% to every stratum of �M%

.m;Œk��J /

not contained in the proper transform �M%
%� of �M0

% for any %�2A0.mI Œk��J / with
%�>% is transverse to the zero set.8

�M.m;Œk��J / D �M%max
.m;Œk��J /

; zED E%max ;Define �D.m;Œk��J / D �D%max 2 �
��M.m;Œk��J /IHom.zE; ev�0TX /

�
:

As can be seen directly from the definition,

N.��P idE�˝��B�D0

�DN
�
��P idE�˝��B�D.m;Œk��J /

�
;

8This statement is obtained as in Subsection 3.4 in [13], using the description of the behavior of D0 in
Subsection 2.4 in [15] and the assumption (gd2) .
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where the maps �P and �B on the right-hand side are the two component projections

�M1;.Œm�;J /.�/� �M.m;Œk��J / �! �M1;.Œm�;J /.�/; �M.m;Œk��J /:

On the other hand, by the previous paragraph, the restriction of �D.m;Œk��J / to every
stratum of �M.m;Œk��J / is transverse to the zero set. By (2–1), (2–2), (2–4), and (gd1),

dim �M1;.Œm�;J /.�/��M.m;Œk��J / D 2.n�m/C 2.m�1/ < 2rkC
�
��P E�˝��Bev�0TX

�
:

Therefore, ��
P

idE�˝��B�D.m;Œk��J / is injective and thus

Cm;J
1;k

.x@/D 1

m!
N
�
��P idE�˝��B�D.m;Œk��J /

�
D 1

m!

˝
e
�
.��P E�˝��Bev�0TX /

ı
.��P E�˝��B zE/

�
;(3–29) � �M1;.Œm�;J /.�/��M.m;Œk��J /

�˛
:

Remark Since c1.E
�/2D�2D0, the last expression in (3–29) is zero if mCjJ j>1 and

cjD0 for all j2J . Thus, if � involves no descendants, ie cjD0 for all j2Œk�, the only
stratum of SM1;k.X; ˇIJ ; �es/ contributing to the difference between the standard and
reduced genus-one degree–ˇ invariants corresponding to � is M1;∅

1;k .X; ˇIJ ; �es/.

It remains to express the right-hand side of (3–29) in terms of GW-invariants. Let˝
�
˛
1;Œm�tJ

D
DY
j2J

 
cj
j ;

� SM1;Œm�tJ �
E
;

˝
�I�˛

1;Œm�tJ
D
D
�
Y
j2J

 
cj
j ;

� SM1;Œm�tJ �
E
;

˝ z pI�˛
.0;%P /

D ˝ z p
Y

j2JP .%/

 
cj
j ;

� �M0;%P

�˛
;

xA0.mI Œk��J /D f0g tA0.mI Œk��J /; xA1.I;J /D f0g tA1.I;J /:

Since �2D0, by (3–29),

Cm;J
1;k

.x@/D 1

m!

�˝
�
˛
1;Œm�tJ

nX
pD1

˝
c1.zE�/p�1ev�0cn�p.TX /;

��M.m;Œk��J /�
˛

� ˝�I�˛
1;Œm�tJ

n�1X
pD1

˝
c1.zE�/p�1ev�0cn�1�p.TX /;

��M.m;Œk��J /�
˛�
:

(3–30)
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For each %2 xA0.mI Œk��J /, let x�%W �M.m;Œk��J / �! �M%

.m;Œk��J /
be the blowdown

map. By (3–27),

c1.zE/D x��0 c1

�

.m;Œk��J /

�C X
%2A0.mIŒk��J /

x��% �M%
% :

Thus, we find that

c1.zE/p�1 D x��0 c1

�

.m;Œk��J /

�p�1

C
X

%2A0.mIŒk��J /

p�1X
qD1

�
�C

X
%0<%

x��%0 �M%0

%0

�p�1�q�
�C

X
%0�%
x��%0 �M%

%

�q�1

x��% �M%
%

D x��0 c1

�

.m;Œk��J /

�p�1

C
X

%2A0.mIŒk��J /
x��%
 

p�1X
qD1

�z��% c1.E%�1/
p�1�qc1.E%/

q�1
�\ �M%

%

!
:

Note that for every %2 xA0.mI Œk��J /˝
c1.


�
.mB.%/;JB.%//

/q�1ev�0cr .TX /;
��M0

.mB.%/;JB.%//

�˛
D ˝�q�mB.%/ev�0cr .TX /;

�SM.mB.%/;JB.%//

�˛
Dm!jG%jGWˇ

.mB.%/;JB.%//

�
�q�mB.%/; cr .TX /I��;

with .mB.0/;JB.0//�.mI Œk��J / and jG0j�1.

Thus, by (3–28) and (3–30),

Cm;J
1;k

.x@/D
X

�2 xA0.mIŒk��J /

pDnX
pD1

qDpX
qD1

(
.�1/p�q

˝ z p�1�qI�˛
.0;%P /

�
 ˝
�
˛
1;Œm�tJ

GWˇ

.mB.%/;JB.%//

�
�q�mB.%/; cn�p.TX /I��(3–31)

� ˝�I�˛
1;Œm�tJ

GWˇ

.mB.%/;JB.%//

�
�q�mB.%/; cn�1�p.TX /I��!);

˝ z r I�˛
.0;0P /

D
(

1; if rD�1I
0; otherwise:

where we set
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Most terms in (3–31) vanish for dimensional reasons. By (2–6), Cm;J
1;k

.x@/ is thus
given by

1X
m�Dm

X
J�J ��Œk�

X
�2 xA1.Œm��;J �/
jIP .�/jCj@.�/jDm

JP .�/DJ 
n�m�X
qD0

�
.�1/n�m��dm�;J� .�/GWˇ

.m�;J �/

�
�q; cdm�;J� .�/�qI�

�
�
�˝
�
˛
1;Œm�tJ

˝ z n�m��dm�;J� .�/�1I�˛
.0;%B.�//

C ˝�I�˛
1;Œm�tJ

˝ z n�m��dm�;J� .�/�2I�˛
.0;%B.�//

��!
:

Summing over all .m;J / as required by (3–20) and using the last expression in (2–5),
we obtain

GWˇ
1;k.�/�GWˇI0

1;k
.�/

D
1X

m�D1

X
J ��Œk�

(
.�1/m

�CjJ �j�pJ� .�/ �
�dm�;J� .�/X

qD0

GWˇ

.m�;J �/

�
�q; cdm�;J� .�/�qI�

��

�
X

�2 xA1.Œm��;J �/

�˝
�
˛
1;IP .�/tJP .�/t@.�/

˝ z m�CjJ �j�pJ� .�/�1I�˛
.0;%B.�//

C ˝�I�˛
1;IP .�/tJP .�/t@.�/

˝ z m�CjJ �j�pJ� .�/�2I�˛
.0;%B.�//

�)
:

Finally, Proposition 3.1 reduces the last expression to the statement of Theorem 1A.

Remark Since �M0
.m;Œk��J /

is not a complex manifold, some care is needed in con-
structing its “complex” blowups. These are obtained by modifying normal neighbor-
hoods to the strata of the blowup centers in the expected way. The information needed
to specify the normal bundles to such strata is described in Subsection 2.4 of [15].
Similarly, (3–27) describes a twisting of line bundles, not of sheaves. In fact, we know
a priori that N.�D0/ depends only on the topology of the situation:

(T1) the domain and target bundles of �D0 ;

(T2) the normal bundles to the strata of �D�1
0
.0/;

(T3) the topological behavior of �D0 in the normal directions to the strata of �D�1
0
.0/.
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By constructing a tree of Chern classes, as suggested above and similarly to Subsec-
tion 3.2 in [18], one can obtain a universal formula expressing N.�D0/ in terms of the
Chern class of (T1) and (T2) evaluated on the closures of the strata of �D�1

0
.0/, with

the coefficients determined by (T3). If such a universal formula holds in the presence
of additional geometry (eg in the complex category), it must hold in general. Thus, it is
sufficient to obtain a formula for N.�D0/ assuming �M0

.m;Œk��J /
is a complex manifold.
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