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Dense embeddings of surface groups
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PETER STORM

We discuss dense embeddings of surface groups and fully residually free groups in
topological groups. We show that a compact topological group contains a nonabelian
dense free group of finite rank if and only if it contains a dense surface group. Also,
we obtain a characterization of those Lie groups which admit a dense faithfully
embedded surface group. Similarly, we show that any connected semisimple Lie
group contains a dense copy of any fully residually free group.

22E40; 20H10

1 Introduction

Given a locally compact topological group G and an abstract group � , it is natural
to ask whether � can be embedded densely in G . More generally, for a given G one
would like to understand its dense subgroups, and for a given � one would like to
know its possible completions G which are topological groups. These questions are
more accessible in the case where G is a finite dimensional analytic Lie group over
a local field. While discrete subgroups of Lie groups have been thoroughly studied
for the last fifty years, very little is known about nondiscrete, and in particular, dense1

subgroups of Lie groups. A dense embedding of � in G may yield interesting data on
� , G , and the spaces on which they act (Margulis [11], Sullivan [14], Gelander and
Żuk [8], Lubotzky and Weiss [10], Breuillard and Gelander [4; 3], Abert and Glasner
[1]).

By a surface group, we mean the fundamental group of a closed oriented surface
of genus at least 2. By a free group, we mean a nonabelian free group on at least
two generators. We obtain various results, all of which are proved by continuously
deforming a given representation to a faithful one.

1Note that when G is a connected simple Lie group, a generic subgroup with sufficiently many
generators is either discrete or dense
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Our first result states that free groups and surface groups have the same compactifications
within the category of topological groups.

Theorem 1.1 Let G be a compact group. Then the following two assertions are
equivalent:
� G contains a dense free subgroup of finite rank.
� G contains a dense surface group.

As a corollary we obtain that a compact group contains a surface group if and only if it
contains a free group. It is sometimes fairly easy to verify that a given compact group
contains a free subgroup by means of probabilistic methods. However, we do not know
a simple characterization of the compact groups containing a dense free subgroup of
finite rank. It was shown in [3] that the profinite completion b� of a finitely generated
linear group � contains a dense free subgroup of finite rank if and only if it is not
virtually solvable (ie, contains no solvable subgroup of finite index). However, there
are examples of topologically finitely generated profinite groups that satisfy a nontrivial
group law (hence admit no free subgroups) although they are not virtually solvable (de
Cornulier and Mann [5]). On the other hand, it is possible to verify that any connected
second countable nonabelian compact group contains a dense free subgroup of rank 2
(see Proposition 8.2). Hence any such group contains also a dense surface group.

The method used to prove our Theorem 1.1 above can be pushed a little further to get
a result that holds for an arbitrary locally compact group:

Theorem 1.2 Let G be a locally compact group. Suppose that G contains a nondis-
crete free subgroup F of finite rank r > 1. Then G has a subgroup � containing F

such that � is isomorphic to a surface group (of genus 2r ). In particular, if G has a
dense free subgroup of finite rank, then it has a dense surface group.

Remark As a corollary of Theorem 1.2 we obtain an elementary proof of a result
from Gelander and Glasner [7], that surface groups are primitive, ie, admit faithful
primitive permutation representations. Indeed, let � be a surface group and embed �
densely in PSL2.Qp/. Then �D � \PSL2.Zp/ is a maximal subgroup of � which
contains no nontrivial normal subgroup of � , and the action of � on �=� is primitive
and faithful.

When G is a (nondiscrete) real Lie group with a countable number of connected
components, then G contains a finitely generated dense free group if and only if the
connected component of the identity Gı is not solvable and G=Gı is finitely generated
[4; 3].

We thus obtain:
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Corollary 1.3 Let G be a nondiscrete real Lie group. Then the following are equiva-
lent:

� G contains a finitely generated dense free subgroup.
� G contains a dense surface group.
� Gı is not solvable and G=Gı is finitely generated.

One key property of surface groups which motivated this research is the fact that they
are fully residually free. A finitely generated group � is fully residually free if for
every finite set K � � n f1g there is a homomorphism �W �! F onto a free group F

with K\Ker.�/D∅. In other words, � is fully residually free if any finite set can
be separated through a surjective map onto a free group.

The class of fully residually free groups also appears in the work of Sela [13], where he
shows that it coincides with his notion of limit groups. The fact that surface groups are
fully residually free is due to Baumslag [2]. A group � is called d -fully residually free
if any finite set can be separated trough a surjection on Fd . Note that if � is d -fully
residually free then it is also k -fully residually free for any 2� k < d (see Lemma 2.1
below).

For general fully residually free groups we prove the following:

Theorem 1.4 Let G be a connected nonsolvable Lie group. Then there is a number
d D d.G/ < dim.G/ (defined in Section 6) such that: if � is a finitely generated
d -fully residually free group, then there is a dense embedding � ,!G .

When G is topologically perfect, ie, does not surject onto the circle, then we can take d

to be the minimal number of generators for the Lie algebra of G . Since any semisimple
Lie algebra is generated by 2 elements, we obtain:

Theorem 1.5 Any connected semisimple Lie group contains a dense copy of any
finitely generated nonabelian fully residually free group.

Remark A group � is residually free if for every 
 2�nf1g there is �W �!Fd with

 … Ker.�/. For example, if � is a surface group then � �� is residually free. Since
PSL2.C/ does not have subgroups isomorphic to � �� we observe that in Theorem
1.4 the condition “� is fully residually free” cannot be weakened to “� is residually
free”.

Let us end this introduction by remarking that all the results obtained in this paper are
concerned with the existence of subgroups with certain desired properties. However we
do not obtain concrete examples. In general, this problem seems much more difficult.
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2 Eventually faithful homomorphisms and a lemma of Baum-
slag

Let .�n/n�0 be a sequence of homomorphisms from a group H to a group G . We
say that .�n/n�0 is eventually faithful if for every h 2Hnf1g there exists an integer
n0 D n0.h/ such that �n.h/¤ 1 for all n� n0:

Since any finitely generated free group can be embedded into F2 , the free group on
two generators, it follows that a finitely generated group is fully residually free if and
only if it admits an eventually faithful sequence of homomorphisms to F2:

Let us recall the following lemma of Baumslag [2].

Lemma 2.1 (Baumslag) Let u; a1; :::; ak be elements of a free group F . Assume
that u does not commute with any of the ai ’s. Then there exists n0 � 0 such that for
all integers n1; :::; nk with jni j � n0 we have

un1a1un2a2 � ::: �u
nk ak ¤ 1

This lemma has a few corollaries. The first one proves that surface groups are fully
residually free.

Corollary 2.2 Let � D �2r be the fundamental group of an orientable surface of
genus 2r (r � 1). Let us write a presentation of � as

(1) � D
˝
ai ; a

0
i ; bi ; b

0
i ; 1� i � r j Œa1; a

0
1� � ::: � Œar ; a

0
r � � Œb

0
r ; br � � ::: � Œb

0
1; b1�D 1

˛
Now consider the automorphism � of � that leaves the ai ’s and a0i ’s fixed while
sending every bi to 
bi


�1 and every b0i to 
b0i

�1 , where 
 D Œa1; a

0
1
� � ::: � Œar ; a

0
r �:

Finally let f be the surjective homomorphism from � to the free group F2r with free
generators x1; :::;xr and x0

1
; :::;x0r defined by f .ai/D f .bi/D xi ; f .a

0
i/D f .b

0
i/D

x0i .

Then the sequence of maps .f ı �n/n�0 is eventually faithful.
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The maps � and f have the following simple topological interpretation. In the above
classical representation of � as the fundamental group of a surface, the relation gives
the gluing instructions for forming a genus 2r surface from a 4r -gon in the plane. This
is demonstrated in Figure 1 for the case r D 2. The element 
 correponds to the closed
curve separating the surface into two equal parts. The map � corresponds to a Dehn
twist around 
 . The map f is obtained by reflecting the surface across the separating
curve 
 . The image of this reflection is a surface of genus r with one boundary
component, whose fundamental group is freely generated by x1; :::;xr ;x

0
1
; :::;x0r .

a1

a01

a�1
1

a0
�1
1

a2
a0

2

a�1
2

a0
�1
2

b0
2

b2

b0
�1
2

b�1
2

b01

b1

b0
�1
1

b�1
1




f

x1

x0
1

x�1
1

x0
�1
1x2

x0
2

x�1
2

x0
�1
2

Figure 1: All curves are oriented counterclockwise. Fold the genus 4 surface
across 
 to obtain f .

Proof Let g 2 �nf1g: The element g can be written in the form g D w1.ai ; a
0
i/ �

w2.bi ; b
0
i/ � :: � w2p�1.ai ; a

0
i/ � w2p.bi ; b

0
i/ where each wi is a reduced word in 2r

letters and the first and the last wi may be trivial. Up to modifying the odd w2j�1 , we
may assume that each even w2j (1� j � p ) is such that w2j .bi ; b

0
i/ is not a power

of 
 . Note that the centralizer of 
 in � is the cyclic group generated by 
 . By
regrouping several wj ’s into a longer word if necessary, unless g itself is a power of

Geometry & Topology, Volume 10 (2006)



1378 Breuillard, Gelander, Souto and Storm


 , we may also assume that w2j�1.ai ; a
0
i/ is not a power of 
 . Let 
 be the image of


 under f . We have f ı �n.g/D w1 � 

nw2


�n
� :: �w2p�1 � 


nw2p

�n where each

wj D wj .xi ;x
0
i/: Since 
 does not commute with any of the wj , Lemma 2.1 implies

that f ı 
 n is eventually faithful.

The next two corollaries are very simple applications of Lemma 2.1, and are only
recorded here for further use.

Corollary 2.3 Let F be a free group of rank nC 1 with free generators x1; :::;xnC1:

Let F� be the subgroup generated by x1; :::;xn: Suppose a and b are noncommuting
elements in F�: Consider the automorphism � of F defined by �.xi/D xi if i � n

and �.xnC1/ D bxnC1b�1: Let f be the homomorphism of F into F� that sends
each xi to itself for 1� i � n; and xnC1 to a. Then the sequence of homomorphisms
.f ı �n/n�0 is eventually faithful.

Remark It follows from the definition that Lemma 2.1 remains true when the free
group F is replaced by any nonabelian fully residually free group, and in particular by
a surface group.

Corollary 2.4 Let �r D
˝
ai ; a

0
i ; 1� i � r j Œa1; a

0
1
� � ::: � Œar ; a

0
r �D 1

˛
be a presenta-

tion of a surface group of genus r . Let F be a free group of rank 2r generated by
xi ;x

0
i for 1� i � r . For each integer n� 0 consider the homomorphism �nW F ! �r

given by �n.xi/D ai for i � 2, �n.x
0
i/D a0i for i � 1 and �n.x1/D a1 � .a

0
1
/n: Then

the sequence .�n/n�1 is eventually faithful.

3 Proof of Theorem 1.1

Here we give a proof of Theorem 1.1. Let G be a compact group containing a dense
free group F on r generators. We are going to show that G contains a surface group
containing F . In order to do so, we first make sure that G contains a dense free
group on an even number of generators. This is done, if r is odd, by enlarging F

in the following way. Let a1; :::; ar be generators of F and fix a and b in F two
noncommuting elements. Then let B be the closure in G of the cyclic group generated
by b . Let FC be the abstract free group on r C 1 generators y1; :::;yrC1: To every
ˇ 2 B; we associate the homomorphism �ˇW F

C ! G which sends each yi to ai

when 1 � i � r , and sends yrC1 to ˇaˇ�1: From Corollary 2.3, we know that the
sequence of homomorphisms .�bn/n�1 is eventually faithful. Let w 2 FCnf1g and
consider the set Ow D fˇ 2 B W �ˇ.w/ ¤ 1g: Clearly Ow is open in B . It is also
dense because the set fbn W n � n0g is dense in B for any n0 � 0. Baire’s theorem
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implies that O D \w2F Cnf1gOw is dense in B , and is in particular nonempty. Let
ˇ0 2O: The homomorphism �ˇ0

is faithful and �ˇ0
.FC/ is a dense free subgroup of

G of rank r C 1.

We may therefore assume that r D 2k: Let x1;x
0
1
; :::;xk ;x

0
k

be the 2k free generators
of F: Set 
 D Œx1;x

0
1
� � ::: � Œxk ;x

0
k
�: Let K be the closure in G of the cyclic group

generated by 
 . Keeping the same notation as in Corollary 2.2 for the presentation of
the surface group �2r , we define for every ˛ 2K a homomorphism �˛W �2r !G by
sending ai to xi , a0i to x0i , bi to ˛xi˛

�1 and b0i to ˛x0i˛
�1: From Corollary 2.2, we

know that the sequence of homomorphisms .�
n/n�1 is eventually faithful. As above,
let w 2 �2rnf1g and consider the set Uw D f˛ 2K j �˛.w/¤ 1g: Clearly Uw is open
in K . It is also dense, because for any n0 � 0 the set f
 n W n � n0g is dense in K .
Applying Baire’s theorem, we obtain that U WD \w2F Cnf1gUw is dense in K and in
particular nonempty. Let ˛0 2 U: Note that for every ˛ 2 K the image �˛.�2r / is
dense in G because it contains F as a subgroup. The homomorphism �˛0

is faithful
and �˛0

.�2r / is a surface group densely embedded in G:

We now pass to the converse statement. Let �r be a dense surface group of genus r in
G: Keep the notation of Corollary 2.4 and let A be the closure in G of the cyclic group
generated by a0

1
: For every ! 2A let �! W F2r !G be the homomorphism that sends

x1 to a1! , while for i � 2; xi is sent to ai and for i � 1; x0i is sent to a0i : According
to Corollary 2.4, the sequence .�.a0

1
/n/n�1 is eventually faithful. A Baire argument

similar to the one above show that �!0
is faithful for some !0 2A: It remains to check

that �!0
.F2r / is dense in G: This is clear because it contains all ai ’s for i � 2 and

a0i ’s for i � 1. In particular �!0
.F2r / contains a0

1
, hence the closure of �!0

.F2r /

must contain !0: Therefore the closure of �!0
.F2r / must contain a1 , implying it is

all of G . This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Let us make the obvious remark that there are (non–locally compact) Hausdorff nondis-
crete topological groups where the property of Theorem 1.2 does not hold. For instance
consider the free group with the induced topology coming from a dense embedding
inside a compact Lie group.

Let x1; :::;xr be the r free generators of the nondiscrete free subgroup F . As in the
compact case, we are first going to enlarge the free subgroup F (of rank r ) to a bigger
free subgroup of rank 2r by adding r free generators, then deform that free subgroup
into a surface group.
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By the structure theory of locally compact groups (Van Dantzig’s theorem, see Mont-
gomery and Zippin [12]) G has an open subgroup H 0 containing the connected
component of the identity Gı in such a way that H 0=Gı is compact. Moreover there
is a normal compact subgroup K of H 0 such that H 0=K is a Lie group, and K can
be chosen sufficiently small for the finite set of conjugates fKi D xiKx�1

i g
r
iD1

to
be contained in the open finite intersection \r

iD1
xiH

0x�1
i [12, Theorem 4.6]. This

second assumption is used only to know that the set KK1 : : :Kr is a subgroup of G .
Up to replacing H 0 by a smaller open subgroup H �G we can assume that H=K is
connected.

Let U and V be sufficiently small neighborhoods of the identity in H so that
xiux�1

i u�1 2 V for any u 2 U and i D 1; :::; r , and so that the projection of any
element in V r lies in a 1-parameter subgroup of H=K . We are going to find elements
x0

1
; :::;x0r in U which, together with the xi ’s, form 2r free generators of a free

subgroup of G .

For this purpose, pick two noncommuting elements a and b in F that are in U modulo
K . This is always possible because F is not discrete. The proof will have two cases.
Case (I) is when F \K ¤ f1g. Case (II) is when F \K D f1g. In case (I) we can
clearly assume that a and b belong to K . (Pick an element in F\K and some suitable
conjugate of it.) Suppose that x0

1
; :::;x0j have been constructed. Define FrCjC1 to be

an abstract free group on r C j C 1 generators y1; :::;yr ;y
0
1
; :::;y0

jC1
, and let us find

x0
jC1

: We will handle the two cases separately.

Assume first we are in case (I). Let B �K be the closure of the cyclic group generated
by b . For ˇ 2 B let �ˇ be the homomorphism sending each yi to xi , each y0i to x0i
for i � j , and y0

jC1
to ˇaˇ�1 . Corollary 2.3 and Baire’s theorem ensure that the

subset of those ˇ for which �ˇ is faithful is Baire dense in B , and hence nonempty.
Fix such an element ˇ0 2 B . The desired new generator is x0

jC1
D �ˇ0

.y0
jC1

/.

Now assume we are in case (II). Morally, we repeat the argument of case (I), but the
details differ. By induction we may assume the free group hx1 , : : :, xr , x0

1
, : : : , x0j i

intersects K trivially. Let B be the 1-parameter subgroup of H=K containing the
coset bK . For ˇ 2 B let �ˇ be the map to H=K sending each yi to xiK , each y0i
to x0iK for i � j , and y0

jC1
to ˇaˇ�1 , where aD aK . This yields a one parameter

family of representations from hy1; : : : ;yr ;y
0
1
; : : : ;y0

jC1
i to H=K . For any word w

in hy1; : : : ;yr ;y
0
1
; : : : ;y0

jC1
i, the set fˇ 2 B W �ˇ.w/ 6D 1g is open because the map

evwW ˇ 7! �ˇ.w/ is continuous. By Corollary 2.3 this continuous map evw is not
constant. Now we use the fact that B and H=K are Lie groups, which implies they
are real analytic manifolds and evw is real analytic. Therefore the closed set ev�1

w .1/

is nowhere dense. By Baire’s theorem the subset of ˇ 2 B for which �ˇ is faithful is
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nowhere dense in B . Fix such a ˇ0 2B sufficiently near the identity for there to be an
element x0

jC1
contained in the intersection ��1

ˇ0
.y0

jC1
/\U �G . This choice of x0

jC1

completes the induction in case (II).

Continuing the argument in both cases, call F 0 the new free subgroup on 2r generators.
Note that F � F 0 , and in case (II) we have F 0 \K D f1g: Consider the product
of commutators 
 D Œx1;x

0
1
� � ::: � Œxr ;x

0
r �. Let �2r be a surface group given with

the presentation written above in .1/: Consider the centralizer ZG.
 / of 
 in G .
Given an element ˛ in ZG.
 / we can define a representation �˛W �2r !G by setting
�˛.ai/D xi ; �˛.a

0
i/D x0i , �˛.bi/D ˛xi˛

�1 , and �˛.b0i/D ˛x0i˛
�1: Corollary 2.2

shows that the sequence .�
n/n�1 is eventually faithful. We will make use of the
following lemmas:

Lemma 4.1 Let H be a locally compact group and K a compact normal subgroup
such that H=K is a Lie group. Let fx.t/gt be a 1-parameter subgroup in H=K . Then
fx.t/gt can be lifted to a 1-parameter subgroup fex .t/gt in H such that �.ex .t//Dx.t/

where � W H !H=K is the quotient map.

Proof See the end of Section 4.7 of [12].

Lemma 4.2 Let H be a locally compact group and K a compact normal subgroup
such that H=K is connected. Then H DZH .K/K where ZH .K/ is the centralizer
of K in H .

Proof It follows from Lemma 4.1 that H DH ıK .

Let �W H !Aut.K/ be a map that sends h 2H to the automorphism i.h/ of K given
by the conjugation by h. Then ker �DZH .K/: We need to show that �.H /D �.K/

and for this it is clearly enough to prove that �.H ı/ is contained in Inn.K/, the group
of inner automorphisms of K . This is a consequence of the following lemma:

Lemma 4.3 Let K be a compact group. Then the connected component of the identity
of Aut.K/ is contained in Inn.K/:

Proof First assume that K is a Lie group. Then K ' D � T � S where S is
semisimple, T a torus and D is a finite group. As is well-known, Inn.S/ has finite
index in Aut.S/, and Aut.T / is discrete. It follows easily that Aut.K/ı � Inn.S/.
Now we pass to the general case.

According the Peter-Weyl theorem, K has a descending chain of compact normal
subgroups C1 � C2 � C3 � : : : such that any open neighborhood of the identity
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contains all but a finite number of the subgroups fCig, and the quotient K=Ci is
always a Lie group. By pulling back a small identity neighborhood from K=Ci to K

we obtain an open set Ui �K containing Ci such that any subgroup of K inside Ui

is in fact contained in Ci . Therefore by connectivity every automorphism in Aut.K/ı

preserves Ci . This yields a map

Aut.K/ı! Aut.K=Ci/
ı
� Inn.K=Ci/:

Let � 2Aut.K/ı . For each i pick an element hi 2K such that �.g/CiDhigh�1
i Ci for

all g 2K . Since the subgroups fCig become arbitrarily small it follows that i.hi/! �

in the compact-open topology on Aut.K/. Since Inn.K/ is a closed subgroup of
Aut.K/ it follows that � is an inner automorphism. This completes the proof of
Lemmas 4.2 and 4.3.

Let us return to the proof of Theorem 1.2. Suppose we are in case (I). Then 
 is
contained in the compact subgroup KK1 : : :Kr � G , where Ki D xiKx�1

i . Let A

be the closure in G of the cyclic group generated by 
 . By our assumption, A is
compact. Then A�ZG.
 /, and by Corollary 2.2, if w is a nontrivial element in �2r

then f˛ 2 A W �˛.w/¤ 1g is an open dense subset of A. By Baire’s theorem there
is an ˛0 2A such that �˛0

is faithful. Its image contains F and is isomorphic to the
surface group �2r : This completes the proof in case (I).

Finally suppose that we are in case (II). Then F 0 \K D f1g and the sequence .� ı
�
n/n�1 is eventually faithful, where � W H!H=K is the projection map. Let �.
 /D
ˇ.1/ where fˇ.t/gt is a 1-parameter subgroup of H=K . The centralizer ZH .K/ is
closed in H , hence locally compact, and by Lemma 4.2, H=KŠZH .K/=K\ZH .K/:

Lemma 4.1 ensures that fˇ.t/gt can be lifted to a 1-parameter subgroup fc.t/gt in
ZH .K/, ie, ˇ.t/D c.t/K . We now claim that fc.t/gt �ZG.
 /.

Indeed, by Lemma 4.2, we can write 
 D ck where c 2ZH .K/ and k 2K: However
�.
 /D ˇ.1/, hence c.1/KD 
K; hence c.1/k 0D c for some k 0 2K: But for each t;

c.t/ commutes with c.1/ and with k 0; hence it commutes with c: As c.t/ 2ZH .K/

it must also commute with k , hence with 
 . This proves the claim.

As a consequence, we obtain a one parameter family of representations �t W �2r ! G

by setting �t WD �c.t/: Again ft 2 R W � ı �t .w/¤ 1g is open because t 7! �t .w/ is
continuous from R to G: By Corollary 2.2, the sequence � ı�nD� ı�
n is eventually
faithful. This implies that the analytic map t 7! � ı �t .w/ from R to the Lie group
H=K is not constant. Therefore the set ft 2 R W � ı �t .w/ ¤ 1g is dense. Again,
by Baire’s theorem there must be a t0 2 R such that � ı �t0

is faithful. Then �t0
is

also faithful and its image is a subgroup of G isomorphic to �2r containing F . This
completes the proof of Theorem 1.2.
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5 The analytic structure of Hom.�; G /

In this section we will recall some facts about the structure of Hom.�;G/ as an analytic
variety, where � is a finitely generated group and G is a Lie group.

Consider first the case that � is isomorphic to a free group Fk with free basis e1; : : : ; ek .
A homomorphism � 2 Hom.Fk ;G/ is determined by �.e1/; : : : ; �.ek/ and hence we
have an identification of Hom.Fk ;G/ with the analytic manifold Gk DG � � � � �G .
Given an element 
 D ei1

: : : eil
2 Fk we consider the analytic map

P
 W G
k
!G; P
 .A1; : : : ;Ak/DAi1

� � �Ail
:

The set P�1

 .1G/D f� 2 Hom.Fk ;G/ W 
 2 Ker.�/g is a closed analytic subvariety

of Hom.Fk ;G/. Recall the following basic result (Epstein [6]):

Theorem 5.1 Let G be a connected nonsolvable Lie group. Then the set of faithful
homomorphisms � W Fk!G is dense and has full Haar measure in Hom.Fk ;G/ŠGk .

We include a proof for the convenience of the reader.

Proof By definition [
2Fkn1Fk
P�1

 .1G/ is the complement of the set of faithful

representations. The claim follows from the Baire category theorem if P�1

 .1G/ is

nowhere dense and of 0 measure for all 
 ¤ 1� . Since P�1

 .1G/ is an analytic

subvariety of Gk , it is either nowhere dense and of 0 measure or contains Gk since
G is connected. To show that the later case cannot occur, it suffices to find one faithful
representation, ie, it suffices to find a nonabelian free subgroup of G . The existence of
a free subgroup in G follows from the Tits alternative [15], or more simply from the
fact that G contains a subgroup locally isomorphic to either PSL2.R/ or PSO.3/, and
each of these groups contains a free subgroup.

Now let � be a general finitely generated group. To a given presentation � D

h
1; : : : ; 
k j fRigi2I i of � , we associate the surjection � W Fk ! � defined by
�.ej /D 
j . The homomorphism � induces an injective map

��W Hom.�;G/! Hom.Fk ;G/

and its image coincides with \i2I P�1
Ri
.1G/. Hence, we can identify Hom.�;G/ with

an analytic subvariety of Gk . (In fact, the induced structure of Hom.�;G/ as an
analytic variety does not depend on the presentation of � . We will not use this.) An
important observation is that for all 
 2 � the map P�


 W Hom.�;G/! G given by
P�

 .�/D �.
 / is analytic. Moreover, if Œ
 � 2 Fk is an element representing 
 then
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we have P�

 D PŒ
 �jHom.�;G/ . This is why in the sequel we will simplify notation and

write P�

 D P
 .

An important fact for our considerations is that analytic subvarieties admit locally finite
stratifications with smooth strata. The following crucial result is due to Whitney, Thom
and Lojasiewicz. We refer to Kaloshin [9] for its proof.

Proposition 5.2 Let V be an analytic subvariety of an analytic manifold M . Then
there is a locally finite decomposition V D [Vi , where Vi are connected analytic
submanifolds of M .

The statement of Proposition 5.2 is much weaker than, and follows directly from, [9,
Theorem 1]. We have chosen this simplified statement to avoid recalling the more
subtle properties of stratifications. Despite this, we will refer to the submanifolds Vi

as the strata of V .

6 Dense subgroups of connected Lie groups

This section will establish some properties of dense subgroups of connected Lie groups.
We begin by recalling some results from [4]. We then determine the number d.G/ of
Theorem 1.4, and finally study the structure of the set D.Fk ;G/ of dense representations
of the free group Fk in G .

A Lie group H is topologically perfect if its commutator group is dense. Recall the
following theorem from [4] (see also [8]):

Theorem 6.1 Let H be a connected topologically perfect Lie group. Assume that the
Lie algebra Lie.H / is generated (as a Lie algebra) by d D d.H / elements. Then there
is an identity neighborhood U �H , and a proper analytic subvariety R� U d , such
that hh1; : : : ; hd i is dense in H for any .h1; : : : ; hd / 2 U d nR.

When G is topologically perfect we can define the constant d.G/ of Theorem 1.4 to
be the minimal number of generators for Lie.G/. As a consequence of Theorem 6.1
we obtain:

Corollary 6.2 Let G be a connected topologically perfect Lie group. Then D.�;G/
is open in Hom.�;G/, and dense in a neighborhood of the trivial representation.

Proof If �0 2 Hom.�;G/ is a representation of � in G with dense image, then for
some 
1; : : : ; 
d 2� , where d D d.G/, we have .�0.
1/; : : : ; �0.
d //2U d nR. But
then .�.
1/; : : : ; �.
d // 2 U d nR for any � sufficiently close to �0 in Hom.�;G/.
By Theorem 6.1 any such � has a dense image.
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We now define d.G/ for a general connected Lie group G .

For a connected abelian Lie group A; define rank.A/ as the dimension of the tensor
with R, ie, if T is the one dimensional torus and AD Tj �Rk then rank.A/D k . It
is easy to see that a generic set (in the sense of the Baire category theorem or measure
theory) of k C 1 elements generates a dense subgroup in A. For example, if A is
compact then a generic element generates a dense cyclic subgroup. In general, kC 1

elements a1; : : : ; akC1 2A generate a dense subgroup if and only if the projections
of the first k elements a1; : : : ; ak to the second factor Rk form a basis, and, after
identifying the compact quotient A=ha1; : : : ; aki with TjCk , the j Ck coordinates of
the projection of the last element akC1 to this torus are independent. For a connected
abelian Lie group A, we thus define d.A/D rank.A/C 1.

Let now G be a general connected Lie group. Set G0 DG and define inductively Gi

to be the closure of the derived group ŒGi�1;Gi�1�. (In more standard notation, the
subgroup Gi is denoted by the mildly cumbersome G.i/ , which will not be used here.)
The decreasing sequence Gi must stabilize after finitely many steps m to a group
H DGm , and H has the property that its commutator is dense, ie, it is topologically
perfect. The general case is reduced to the abelian and topologically perfect cases using
the following:

Lemma 6.3 A subgroup D of G is dense if and only if

(1) its image in G=G2 is dense in G=G2 , and

(2) its intersection with H is dense in H .

Proof If D is dense then (1) follows immediately. Moreover the commutator group
ŒD;D� is clearly dense in G1 , and by a simple induction the mth commutator of D is
dense in H DGm .

The other direction will follow if we can show that (1) implies the image of G in G=H

is dense in G=H . To do this we will use the fact that G=H is solvable. In a connected
solvable Lie group B , a subgroup is dense if and only if its image in B=B2 (modulo
the second closed commutator) is dense in B=B2 . To see this, note that the commutator
of a connected solvable Lie group is nilpotent, and that a subgroup of a nilpotent group
is dense if and only if it is dense modulo the first commutator.

We define the number d.G/ as follows2:

d.G/Dmaxfd.G0=G1/; d.G1=G2/; d.H /g;

2In case G=H is nilpotent, one can take d.G/Dmaxfd.G0=G1/; d.H /g:
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where d.H / is the minimal number of generators for the Lie algebra of H , and
d.Gi=GiC1/D rank.Gi=GiC1/C 1.

Consider the following subsets of Hom.�;G/:

DH .�;G/D f� 2 Hom.�;G/ W �.�/\H DH g; and

DG=G2
.�;G/D f� 2 Hom.�;G/ W �.�/G2 DGg:

By Lemma 6.3 we have:

D.�;G/DDH .�;G/\DG=G2
.�;G/:

Moreover, for free groups we have:

Lemma 6.4 Suppose that k � d.G/, then:

� The set DH .Fk ;G/ is open in Hom.Fk ;G/.

� The set DG=G2
.Fk ;G/ is the complement of a countable union of proper closed

analytic subvarieties of Hom.Fk ;G/. In particular, it is of second category.

Proof The first claim follows from Theorem 6.1: if �0 2DH .Fk ;G/; then �.Fk/m
is dense in Gm DH: Hence there are d.H / words involving commutators of length
m in k letters, such that when applying them to the image (under �0 ) of the generators
of Fk (think of them as the coordinates of a point in Gd.H / ) one gets a point in
U d.H / nR � H d.H / . Clearly if � is sufficiently close to �0 then the same words
applied to the � image of the generators still yield a point in U d.H / nR. By Theorem
6.1, �.Fk ;G/\H is dense in H .

To see the second claim note that a subgroup of G=G2 is dense in G=G2 if its image
in G=G1 is dense in G=G1 and its intersection with G1 projects to a dense subgroup
of G1=G2 . Both conditions are generic in the sense that their complements are a
countable union of proper analytic closed subvarieties: there are d.G0=G1/ words
with k letters which generically generate a dense subgroup in the quotient G0=G1 , and
d.G1=G2/ words involving commutators of the k letters which generically generate a
dense subgroup in the quotient G1=G2 . The former assertion is clear, while the latter
is a little harder to see and we leave it to the reader as an exercise. In fact, if x1; :::;xk

are generic elements of G then the commutators Œx1;xi � for 2� i � k form a basis of
G1=G2 , and together with

Qk
iD2Œx

i
1
;xi � they generate a dense subgroup of G1=G2 .

Corollary 6.5 Assume G is a connected nonsolvable Lie group. If k � d.G/ then
there exists a sequence of faithful representations .�i/�D.Fk ;G/ converging to the
trivial representation.
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Proof By Corollary 6.2 there exists a sequence .� 0i/�D.Fk ;H / converging to the
trivial representation. By Lemma 6.4 and Theorem 5.1, it is possible to obtain the
desired sequence .�i/ via an arbitrarily small perturbation of .� 0i/.

7 Proof of Theorem 1.4

We are now in a position to complete the proof of Theorem 1.4. We begin by fixing
once and for all a relatively compact open neighborhood B �Hom.�;G/ of the trivial
homomorphism and let V1; : : : ;Vs be finitely many strata of Hom.�;G/ covering B .

The group � is, as assumed, d -fully residually free for dDd.G/. Hence it is generated
by k � d elements and there is a sequence of surjective homomorphisms �i W �! Fd

such that for every 
 2 � n 1� there is i
 with 
 … Ker.�i/ for all i � i
 . The
assumption that � is nonabelian implies that d � 2. The homomorphisms �i induce
analytic maps ��i W Hom.Fd ;G/! Hom.�;G/. By Corollary 6.5 we can choose a
sequence .�i/�Hom.Fd ;G/ of faithful representations with dense image sufficiently
close enough to the trivial homomorphism so that ��i .�i/ 2 B for all i . Up to passing
to a subsequence and relabelling, we may assume that ��i .�i/ 2 V1 � Hom.�;G/ for
all i .

Given 
 2 � n 1� we deduce from the connectivity of V1 , using analytic continuation
and the implicit functions theorem, that either V1 � fP

�1

 .1G/g or V1\fP

�1

 .1G/g

is nowhere dense in V1 . The former case cannot occur since by construction we have
P
 .�

�
i .�i//D�i.�i.
 //¤1G for all i sufficiently large. In particular, Baire’s category

theorem implies that the set F.�;G/\V1 of all faithful � 2 V1 is of second category
in V1 .

By construction the image of ��
1
.�1/ coincides with the image of �1 and hence is dense.

This implies that the open subset DH .�;G/\ V1 of V1 is nonempty. Additionally
it implies that the set DG=G2

.�;G/ \ V1 is nonempty. Since it is the complement
of a countable union of proper closed analytic subvarieties we conclude, again by
analyticity and the implicit functions theorem, that all these varieties are proper, and
that DG=G2

.�;G/\V1 is also of second category. Hence the intersection

F.�;G/\D.�;G/\V1 D F.�;G/\DG=G2
.�;G/\DH .�;G/\V1

is not empty because it is the intersection of the second category subset

F.�;G/\DG=G2
.�;G/\V1

with the nonempty open subset DH .�;G/\V1 of V1 .
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8 Some remarks on connected compact groups

When G is a connected compact Lie group then d.G/D1 if G is abelian and d.G/D2

if it is not. For compact semisimple Lie groups one can easily deduce the following
lemma from Theorem 6.1. The general case follows by an simple argument similar to
the one given in the proof of Lemma 6.4.

Lemma 8.1 Let G be a connected compact Lie group. Then the set D.F2;G/ is of
full Haar measure and Baire dense in Hom.F2;G/ŠG �G:

When G is nonabelian, Theorem 5.1 says that a generic pair .a; b/ 2 G � G also
generates a free group. We shall now generalize this result to an arbitrary compact
connected group.

Proposition 8.2 Let G be a second countable connected compact nonabelian group.
Then there exists a subset O in G �G; which is both of second Baire category and of
full Haar measure, such that any pair .a; b/ in O generates a dense free subgroup in G .

Proof By the Peter-Weyl theorem (c.f. [12]) there is a decreasing sequence of normal
compact subgroups Kn C G such that each quotient G=Kn is a connected compact
Lie group and

T
n�1 Kn D f1g. Let Dn be the set of all pairs .a; b/ in G �G that

generate a dense subgroup in the quotient G=Kn: Clearly D.F2;G/D
T
Dn , and by

Lemma 8.1, Dn is of second Baire category and of full Haar measure.

The analogous assertion for F.F2;G/ follows easily from Theorem 5.1 because one
of the quotients G=Kn is nonabelian.

Corollary 8.3 Any connected second countable nonabelian compact group contains a
dense surface group of genus 2.
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