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Homogeneous coordinate rings and
mirror symmetry for toric varieties

MOHAMMED ABOUZAID

Given a smooth toric variety X and an ample line bundle O.1/ , we construct a
sequence of Lagrangian submanifolds of .C?/n with boundary on a level set of
the Landau–Ginzburg mirror of X . The corresponding Floer homology groups
form a graded algebra under the cup product which is canonically isomorphic to the
homogeneous coordinate ring of X .

14J32; 53D40

1 Introduction

In this paper we give some evidence for M Kontsevich’s homological mirror symmetry
conjecture [13] in the context of toric varieties. Recall that a smooth complete toric
variety is given by a simplicial rational polyhedral fan � such that j�j D Rn and
all maximal cones are non-singular (Fulton [10, Section 2.1]). The convex hull of
the primitive vertices of the 1–cones of � is a convex polytope which we denote by
P , containing the origin as an interior point, and may be thought of as the Newton
polytope of a Laurent polynomial W W .C?/n ! C. This Laurent polynomial is the
Landau–Ginzburg mirror of X .

Our construction will rely on choosing an ample line bundle O.1/ on X . On the
complex side, we know that sections of this line bundle are given by lattice points of a
polytope Q determined by O.1/. Further, we can recover the original toric variety as

(1–1) X D Proj

0@M
j�0

CjQ\Zn

1A ;
with product given by linearly extending the formula

xk ˝yl ! xk Cyl :
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For the bulk of the paper, it will be more convenient to identify the integral points of
jQ with the 1

j
integral points of Q, and re-write the product as

(1–2) xk ˝yl !
kxk C lyl

kC l
:

On the symplectic side, we study the Floer homology of Lagrangian submanifolds of
.C?/n with boundary on W �1.0/. O.1/ will induce a subdivision of P , and hence a
tropical degeneration of W �1.0/ in the sense of Mikhalkin. In order to simplify our
computations, we will have to replace O.1/ by a sufficiently high power (see Remark
3.10). The combinatorial data which determines O.1/ will then allow us to construct
Lagrangians which we suggestively call L.j / for every integer j . We will write L for
L.0/. Our main result is the following:

Theorem 1.1 The Floer cohomology groups HF0.L;L.j // for j � 0 form an
associative algebra under the cup product which is canonically isomorphic to the
homogeneous coordinate ring of X equipped with the line bundle O.1/.

We now summarize the contents of this paper. In Section 2, we will introduce the
notion of admissible Lagrangian (originally due to Kontsevich), and explain why their
Floer theory is well defined. In Section 3, we will review the results of Mikhalkin
[15] which we will need, and explain how the datum of a line bundle on a toric variety
gives rise to a tropical degeneration of its mirror. Ignoring boundary problems, we
will also introduce some flat Lagrangian submanifolds of T �Rn=Zn whose Floer
cohomology groups correspond to holomorphic sections of the line bundles O.j /. In
Section 4, we will give an explicit construction of a smooth symplectic submanifold
which interpolates between the complex hypersurface and its “tropical” counterpart,
as well as a construction of the Lagrangian submanifold L which corresponds to the
structure sheaf of X . In Section 5, we will use the Lagrangians introduced in Section
3 to construct the admissible Lagrangians L.j / that appear in the main theorem, and
complete its proof. There is a minor change of notation which occurs in the middle of
the paper as explained in Remark 4.18.

We would like to comment on some related work. We do not discuss any homological
algebra in this paper, but the result we prove establishes the existence of a functor from
the Fukaya category of the mirror of X� to the category of coherent sheaves on X� .
Let us briefly sketch the construction. The functor takes every Lagrangian to the graded
vector space

L
j�0 HF0.ƒ;L.j //. By Theorem 1.1 this is naturally a graded module

over the homogeneous coordinate ring of X . A classical result of Serre implies that
the category of coherent sheaves is a quotient of the category of graded modules.
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In order to prove that this functor yields an equivalence of derived categories, one
would need to understand how the A1 structures on both sides affect the construction.
For CP2 , this can be done explicitly using essentially the methods of this paper and
Beilinson’s description of the category of coherent sheaves on projective spaces [1],
and we expect the computation to extend to CPn . However, for a general toric variety,
it is not clear how to obtain such an explicit description of the category of coherent
sheaves. In an upcoming paper, we will establish such an equivalence of categories,
but the methods are unfortunately much less explicit than those used here, and pass
through Morse theory. Also, if we consider the Lagrangians @L.j /�M , we can use
the ideas of this paper to give evidence for the mirror conjecture, this time in the case
of Calabi–Yau hypersurfaces in toric varieties.
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2 Floer (co)-homology for Lagrangians with boundary along
a complex hypersurface

2.1 Admissible Lagrangians

We begin by observing that many properties of closed Lagrangian manifolds can be
extended to the case where the Lagrangians have boundary. For example, the cotangent
bundle of any manifold with boundary is itself a manifold with boundary which carries
the usual symplectic structure.

Recall that the restriction of the cotangent bundle to the boundary carries a canonical
oriented rank–1 trivial sub-bundle E@L which annihilates the tangent space to the
boundary and induces the appropriate co-orientation on @L. Note that we can think of
this sub-bundle as lying in the restriction of the tangent space of T �L to the boundary
of the zero section. The proof of Weinstein’s neighbourhood theorem extends to this
setting to show that Lagrangian submanifolds with boundary, with a choice of a rank–1
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oriented sub-bundle at the boundary, are locally modeled after the cotangent bundle
with its canonical sub-bundle at the boundary.

Lemma 2.1 Let L be a Lagrangian submanifold of a symplectic manifold N , and let
E be an oriented rank–1 sub-bundle of the symplectic orthogonal complement of T @L

such that the pairing
TLj@L˝E! R

induced by the symplectic form is non-degenerate and yields the appropriate co-
orientation on @L.

Inside a sufficiently small neighbourhood of L in N , there exists a full dimensional
submanifold with boundary .VL; @VL/, such that the inclusion .L; @L/� .VL; @VL/

satisfies the following properties:

� The restriction of T @VL to @L contains the sub-bundle E .
� There exists a symplectomorphism .VL; @VL/! .T �L;T �Lj@L/ identifying L

with the zero section of its cotangent bundle and E with the canonical sub-bundle
E@L and a projection to .L; @L/ such that the following diagram commutes:

.VL; @VL/

&&MMMMMMMMMM
// .T �L;T �Lj@L/

wwoooooooooooo

.L; @L/

As usual, this allows us to reduce problems about the topology of nearby Lagrangian
submanifolds to questions about closed forms on L. We will find the following lemma
particularly useful:

Lemma 2.2 Let L0 and L be two Lagrangian submanifolds of N which have the
same boundary. Let VL be a submanifold of N which satisfies the conditions of Lemma
2.1. If L0 is transverse to @VL and there is a neighbourhood of @L0 in L0 which is
contained in VL , then there exists a Lagrangian submanifold L00 which satisfies the
following conditions:

� L00 is Hamiltonian isotopic to L.
� L00 agrees with L0 in a sufficiently small neighbourhood of @L0 .
� L00 agrees with L away from a larger neighbourhood of the boundary.

Moreover, L00 is independent, up to Hamiltonian isotopy, of the choices which will be
made in its construction.
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Proof Consider a point p in @L0 , and let En be a tangent vector in TL0p which points
towards the interior. Since L0 and @VL are transverse, En projects to a vector in TLp

which is transverse to the boundary. Since there is a neighbourhood of @L0 in L0 which
is contained in VL , the image of En must point towards the interior of L. Therefore,
the restriction of the projection VL!L to L0 is a submersion in a neighbourhood of
the boundary. In particular, passing to the cotangent bundle of L, we can identify L0

locally as the graph of a closed 1–form which vanishes on @L. Since the inclusion of
@L in a neighbourhood induces an isomorphism on cohomology this 1–form is exact,
so we may write it as the differential of a function H 0 .

By choosing a cutoff function with appropriately bounded derivatives, we can construct
a function H 00W L! R with support in a neighbourhood of @L which agrees with
H 0 in a smaller neighbourhood of the boundary, and such that the graph of dH 00 lies
in a neighbourhood of L which is identified with VL . Linear interpolation yields an
isotopy between any two choices for H 00 . Pulling back the graph of the exact 1–form
dH 00 to VL yields the desired Lagrangian L00 .

In the situation considered in this paper, N will be a Stein manifold and all the
Lagrangians we will consider will have their boundary lying on M , the zero level set
of a holomorphic map f W N ! C with 0 as a regular value. We can equip this Stein
manifold with the structure of an exact symplectic manifold by choosing an embedding
into CR and restricting the usual symplectic form on CR and its primitive. We will
denote the symplectic form by ! , and the primitive by � . As usual, the complex and
symplectic structures induce a metric g . Given a Lagrangian L, the existence of the
complex structure determines @VL to first order since we can let the line bundle E be
spanned by J En, with En the normal vector of the inclusion @L�L.

Note that � restricts to a closed 1–form on every Lagrangian submanifold. The
following definition is standard.

Definition 2.3 A Lagrangian submanifold L is exact if there is a function h on L

such that dhD � jL .

In essence, this exactness conditions provides a priori bounds for the energy of pseudo-
holomorphic discs. Since our Lagrangian submanifolds may have boundary, we will
require an additional condition as a mean to guarantee some compactness results for
such discs (see Lemma 2.8). Recall that the symplectic orthogonal complement to the
tangent space of the fibre defines a distribution on N . Every tangent vector in C has a
unique lift to this orthogonal complement, so we may associate a connection to the
map f . Given a Lagrangian in the symplectic hypersurface f �1.0/ and a curve 
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L1

L2

L1

L2

Figure 1: The pair .L1;L2/ on the left is a positively oriented pair. The one
on the right picture is negatively oriented.

in C with an endpoint at the origin, parallel transport with respect to this connection
determines a unique Lagrangian submanifold of N whose image under f is exactly

 .

Definition 2.4 A compact oriented exact Lagrangian submanifold .L; @L/ of N

which has boundary on M is admissible if there exists a curve 
 in C such that 
 .0/D0

and L agrees with the parallel transport of @L along 
 in some neighbourhood of the
origin.

Note that the condition of admissibility is of course vacuous if @LD ∅, which is a
possibility that we do not exclude. As far as the author knows, the idea of studying
such Lagrangians is due to Kontsevich [12, page 30].

As our goal is to define and compute Floer homology for admissible Lagrangians, we
will have to understand the possible behaviours at the boundary. If L is admissible,
then there exists a non-zero vector 
 0.0/D v 2 R2 such that the image of a transverse
vector to T @L in TLj@L lies in the ray RCv .

Definition 2.5 A pair of admissible Lagrangians .L1;L2/, whose tangent spaces at
the boundary project to vectors .v1; v2/, is positively oriented if the angle from v1 to
v2 lies in the interval .0; �

2
/. If this angle is between ��

2
and 0, we say that the pair

is negatively oriented.

Assume the pair .L1;L2/ is negatively oriented. We may choose a vector v0
2

such that
.v1; v

0
2
/ is a positively oriented pair and the angle between v2 and v0

2
is less than �

2
.

The latter condition is enough to guarantee that the parallel transport of @L2 along a
the straight half ray 
 0

2
with tangent vector v0

2
at the origin lies in a neighbourhood

of L2 in which we can apply Lemma 2.2 to obtain a Lagrangian submanifold L00
2

which interpolates between L2 and the parallel transport of its boundary along 
 0
2

.
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This process takes the configuration on the right in Figure 1 to the one on the left. We
conclude the following:

Lemma 2.6 If the pair .L1;L2/ is negatively oriented and H 1.L2; @L2/D 0, then
L2 is Hamiltonian isotopic to an admissible Lagrangian L00

2
such that the pair .L1;L

00
2
/

is positively oriented. Furthermore, L00
2

is independent of the choices that are made
in the construction up to a Hamiltonian isotopy which preserves the admissibility and
positivity of the pair .L1;L

00
2
/.

Proof The only parts which we have not checked are the exactness and uniqueness of
L00

2
. But the restriction of � to L2 , and therefore to @L2 is exact. Since L2 and L00

2

are homeomorphic, the vanishing of H 1.L2; @L2/ guarantees that � jL00
2

is also exact.

We already proved uniqueness in Lemma 2.2 by using a linear isotopy. But such
an isotopy does not necessarily preserve admissibility. However, any two candidates
L00

2;0
and L00

2;1
can be made the endpoints of a 1–parameter family of admissible

Lagrangians L00
2;t

such that .L1;L
00
2;t
/ is a positively oriented pair for every time t .

Since the submanifolds L00
2;t

agree away from a tubular neighbourhood of the boundary,
this 1–parameter family is generated by a time dependent 1–form which vanishes
away from a neighbourhood of the boundary. On the other hand, it also vanishes at the
boundary since all Lagrangians L00

2;t
have the same boundary. Therefore the 1–form is

exact, and the 1–parameter family L00
2;t

is generated by a time-dependent Hamiltonian
function.

2.2 Compactness for pseudo-holomorphic discs

We will define a Floer theory for admissible Lagrangians in which the possible boundary
intersection points are ignored. To this effect, let L1 and L2 be admissible Lagrangians
which intersect transversely away from M , and choose p and q , a pair of transverse
intersection points between these two Lagrangians. In analogy with Morse theory,
where we count gradient trajectories connecting critical points, we will count pseudo-
holomorphic maps connecting p and q .

Formally, we equip the strip

S D R� Œ0; 1�D ft; sj �1< t <C1 ; 0� s � 1g

with the usual complex structure

JS

@

@t
D
@

@s
JS

@

@s
D�

@

@t
:
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Just as Morse theory relies on choosing a function whose gradient flow with respect
to an underlying metric satisfies appropriate transversality conditions, we will have
to perturb the complex structure to an almost complex structure in order to achieve
transversality, (these almost complex structures are called regular, Floer–Hofer–Salamon
[7]). Perturb the complex structure on N to such a regular almost complex structure J

while maintaining the condition that the map f W N ! C remains holomorphic in a
neighbourhood of M . In the closed case, [7, Remark 5.2] proves that regularity may
be achieved by perturbing the almost complex structure on any open subset where
every pseudo-holomorphic curve passes. The case of curves with Lagrangian boundary
conditions is entirely analogous, and we can therefore choose a perturbation which is
supported in a small neighbourhood of p and q , and hence occurs far away from M .

Even though the perturbed almost complex structure on N is not integrable, we may
still consider holomorphic maps

uW S !N;

such that u.t; 0/ 2L1 , u.t; 1/ 2L2 . We say that such a map has finite energy if the
integral Z

S

u�.!/

is finite.

The classical theory studies M.p; q/, the moduli space of finite energy maps such that
for every s 2 Œ0; 1�,

lim
t!C1

u.t; s/D p

lim
t!�1

u.t; s/D q:

We will need to add an additional restriction.

Definition 2.7 Let L1 and L2 be admissible Lagrangians with transverse intersection
points p and q which occur away from the boundary. An admissible strip u is an
elements of M.p; q/ whose image does not intersect M .

Note that M.p; q/ admits a free R action corresponding to translation in the t direction,
and the regularity of the almost complex structure implies that the quotient is a smooth
manifold. However, unlike the case for closed Lagrangians, M.p; q/=R does not admit
a compactification to a manifold with boundary because of those pseudo-holomorphic
strips whose boundary intersects the boundaries of L1 or L2 . However, for admissible
strips, we have the following:

Geometry & Topology, Volume 10 (2006)
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L1

L2

B� B�0

Figure 2: The image of @S 0 is contained in the thick lines.

Lemma 2.8 Let L1 and L2 be admissible Lagrangians, and let p and q be transverse
intersection points. If u� is a 1–parameter family of holomorphic strips in M.p; q/

such that u0 is admissible, then there exists an � > 0 such that the image of f ıu� does
not intersect the closed � neighbourhood of the origin for all 0� � � 1. In particular
u1 is admissible.

Proof The reader may find Figure 2 useful in what follows.

Let � be such that f .L1/ and f .L2/ do not intersect in the punctured 2� neighbour-
hood of the origin. Assume that � is the smallest time at which the lemma does not
hold. Consider .u� ı f /�1.B�0.0// D S 0 for some �0 between � and 2� . Since the
critical points of holomorphic maps are isolated, we may choose �0 such that S 0 is a
submanifold of S with boundary. Notice that the boundary of S 0 must be mapped to
the union of the set f .L1/[f .L2/ with the circle of radius �0 .

We can compute the degree of u� ıf by choosing a generic point p in the image of
S 0 , and counting the number of preimages. However, one may find a path from p to
the interior of B�.0/ which does not pass through the image of @S 0 or through any
critical point. Since the number of preimages can only change at a critical point or on
the boundary, and the image of S 0 does not intersect the interior of the ball of radius
� , we conclude that p has no preimages. But this proves that u.S/ does not intersect
the ball of radius � .

Note that the inclusion,
Madm.p; q/�M.p; q/

is clearly open. The above lemma shows that it is also closed, so Madm.p; q/ con-
sists of components of the moduli space of all finite energy strips connecting p and
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q . Moreover, the lemma also guarantees that the images of all admissible pseudo-
holomorphic strips lie in a compact subset of N that does not intersect the boundary of
the Lagrangians Li . In particular we can conclude that the closure of Madm.p; q/=R

in the Gromov compactification M.p; q/=R is a compact manifold with corners as
long as we can prove the existence of a bound on the energy of pseudo-holomorphic
strips. This is where the exactness conditions are used. Indeed, since ! is exact, we
have Z

S

u�.!/D

Z
@S

�

by Stokes’s theorem. But @S consists of two segments, one on L1 and the other on L2 ,
with endpoints at p and q . Since the restriction of � to Li is exact, the right hand-side
is independent of the paths between p and q . This implies that all pseudo-holomorphic
strips in M.p; q/ have the same energy.

2.3 Floer homology

Having proved the necessary compactness result, we can now define relatively graded
Floer homology groups over a field of characteristic 2 for admissible Lagrangians. We
will follow the construction of these groups for closed Lagrangians which is due to
Floer, [6]. We assume .L1;L2/ is a positively oriented pair of Lagrangians which
intersect transversely away from the boundary, and define a chain complex

CF�.L1;L2/D
M

p2.L1\L2/�M

Z2 � Œp�

with differential
d Œp�D

X
Œq�

jMadm.p; q/=Rj � Œq�

where the sum is taken over all points q such that Madm.p; q/ is 1–dimensional, and
jMadm.p; q/=Rj is the cardinality of the space of unparametrized strips connecting p

to q . The following result is classical.

Lemma 2.9 If L1 and L2 are exact, then d2 D 0.

Proof The proof that d2 D 0 relies on interpreting the terms in the expression for
d2Œp� as the boundaries of 1–dimensional moduli spaces of unparametrized strips. So
we must show the boundary of such moduli spaces consists only of pairs of holomorphic
strips, ie, that no bubbling of pseudo-holomorphic discs occurs. But given a pseudo-
holomorphic disc u with boundary on one of the Lagrangians Li we can use Stokes’s

Geometry & Topology, Volume 10 (2006)
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theorem to compute that

0¤

Z
D

u�.!/D

Z
S1

u�.�/:

This contradicts the assumption that the restriction of � to Li is exact.

This construction produces a Z2 graded theory which cannot be lifted, in general, to
the usual Z grading which we expect in a homology theory. However, if N admits a
complex volume form (ie, if c1.N /D 0), then there is a special class of Lagrangians
for which such a theory exists, see Seidel [18]. Choosing a complex volume form �,
we define a phase map

L! S1

p 7!
�.e1 ^ � � � ^ en/

j�.e1 ^ � � � ^ en/j

where feig
n
iD1

is an oriented frame for the tangent space of L at p .

Definition 2.10 A graded Lagrangian submanifold of N is an oriented Lagrangian
submanifold of N together with a lift of its phase map from S1 to R.

Note, in particular, that the obstruction to the existence of a lift lies in H 1.L/, so
that all simply connected Lagrangians are gradable. We refer to [18] for details on
the construction of Z–graded Floer homology. We also need to lift these homology
groups to C–valued invariants in order to compare them to cohomology groups of line
bundles on the mirror. The need for appropriate orientations accounts for the additional
restrictions in

Definition 2.11 An admissible Lagrangian brane is an admissible graded Lagrangian
L which is spin, together with a choice of a spin structure.

Remark 2.12 The term brane is borrowed from string theory, where the “Lagrangian
branes” that we’re considering can be thought of as boundary conditions for open
strings in the A–model. Other than the fact that string theory motivates the homological
mirror symmetry conjecture, physical considerations are completely irrelevant to our
arguments.

The relevance of spin structures to the orientation of moduli spaces of discs was
observed by de Silva in [2] and by Fukaya, Oh, Ohta, and Ono in [9]. We will give a
short description of the signed differential. The reader should keep Figure 3 in mind
during the next few paragraphs.
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TqL2

TqL1

�2

�1

TpL2

TpL1

�q Hq S

Figure 3: Gluing Hq to S

Consider an intersection point p between L1 and L2 . The tangent spaces TpL1 and
TpL2 are linear Lagrangians in a symplectic vector space V . The grading determines
a unique path up to homotopy �p from TpL1 to TpL2 . We may therefore define a
Cauchy–Riemann operator x@Hp

on a copy of the upper half-plane Hp with Lagrangian
boundary conditions, given by the path �p , that converge to L1 along the negative real
axis and to L2 along the positive real axis.

More precisely, choose a map hW R! Œ0; 1� which takes a neighbourhood of �1 to 0

and of 1 to 1, and consider maps from Hp to the vector space V that have values in
the Lagrangian �p.h.t// subspace at a point t of the boundary. We denote this space
by C1

�p
.Hp;V /. We can now define the operator

x@Hp
W C1�p

.Hp;V /! C1.Hp;V ˝�
0;1.Hp//

to be the usual x@ operator. We can perform the same construction at any other intersec-
tion point q to produce an operator x@Hq

with boundary conditions �q .

Let S be an element of Madm.p; q/. Since the upper half-plane is biholomorphic to a
1–sided strip, we may glue Hq to the negative end of S to yield a surface S#Hq which
is again bi-holomorphic to a one-sided strip. Strictly speaking, this means that we should
choose an identification of a neighbourhood of infinity in Hq with .�1; 0�� Œ0; 1�.
For any R> 0 we can remove .�1;�R/� Œ0; 1� from S and from Hq , then identify
the two copies of Œ�R; 0�� Œ0; 1� in S and in Hq using the biholomorphism

.t; s/ 7! .�R� t; 1� s/:

Further, for R sufficiently large, since the asymptotic boundary conditions agree,
we can glue the Cauchy–Riemann operators x@S and x@Hq

to get a Cauchy–Riemann
operator x@S #x@Hq

on the strip S#Hq . We do not keep track of R in the notation because
the construction is essentially independent of R if it is sufficiently large.
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To make sense of the boundary conditions, we trivialize the restriction of TN to S , so
that the boundary conditions u.t; 0/ 2L1 and u.t; 1/ 2L2 yield two paths

�1W R! V such that �1.�1/D TqL1 and �1.C1/D TpL1

�2W R! V such that �2.�1/D TqL2 and �2.C1/D TpL2:

The boundary condition �S#Hq
for x@S #x@Hq

is just given by concatenating the paths
��1 , �q , and �2 , where ��1 corresponds to traversing the path “backwards”. In
particular, we have the asymptotic conditions

�S#Hq
.�1/D TpL1 and �S#Hq

.C1/D TpL2

which are the same conditions as those of �p . Since the space of graded Lagrangians
is simply connected, the paths �p and �S#Hq

are homotopic. Moreover, the choice of
spin structures determines, up to homotopy, a unique such homotopy between �p and
�S#Hq

. If we consider the extensions of our Cauchy–Riemann operators to appropriate
Hilbert space completions of spaces of smooth functions, the above path will therefore
yield an isomorphism

det.x@S#Hq
/Š det.x@Hp

/:

On the other hand, the gluing theorem yields the following isomorphism of determinant
bundles

det.x@S#Hq
/Š det.x@S /˝ det.x@Hq

/:

If S is a strip with 1–dimensional parametrized moduli space, then det.x@S / is canoni-
cally trivialized by the translation operator @

@t
. We therefore obtain an isomorphism

det.x@Hp
/Š det.x@Hq

/:

The orientations of L1 and L2 determine orientations of these two vector spaces.
The contribution of S to d Œp� will be positive if the above isomorphism preserves
orientations, and negative otherwise.

2.4 Stability of Floer homology under perturbations

While we are interested in the symplectic topology of a complex hypersurface M �

.C?/n , our constructions will rely on deforming M to symplectic submanifolds of

.C?/n that are not necessarily complex. We will therefore have to generalize the above
discussion to the non-integrable situation. There is a more general setting of exact
symplectic manifolds with properly embedded hypersurfaces to which this discussion
can be extended, but our aims here are more modest. We remark that our construction of
Floer homology for admissible Lagrangians is still valid if we perturb both the complex
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structure and the fibration near the 0–level set so long as the following conditions are
preserved:

� The perturbed almost complex structure is compatible with the symplectic form
and J –convex at infinity.

� The map to C near the 0–level set remains holomorphic.

The first condition is familiar from the study of the symplectic topology of Stein
manifolds Eliashberg–Gromov [5]. The second condition is necessary for the validity
of Lemma 2.8.

Note that admissibility is not stable under exact Hamiltonian perturbations (even those
that preserve M ). However, given two positively oriented admissible Lagrangians L1

and L2 one may still consider exact Hamiltonian deformations which preserve the
admissibility of L1 . As long as the tangent vectors v1 and v2 are appropriately oriented,
Lemma 2.8 will apply for some � . In particular, the usual proofs of invariance of Floer
homology are valid for those Hamiltonian isotopies that preserve the admissibility
of L1 , and the positivity of the pair .L1;L2/. As in the classical situation, this
allows us to compute Floer homology for a pair of admissible Lagrangian branes that
do not intersect transversely away from M by choosing an appropriate Hamiltonian
deformation of one of them.

In particular, if .L1;L2/ is a pair of admissible Lagrangian branes which is negatively
oriented, we can use Lemma 2.6 in order to unambiguously define

CF�.L1;L2/� CF�.L1;L
00
2/

where the pair .L1;L
00
2
/ is positively oriented.

We also observe that our conventions for “positivity” are designed to guarantee that
Floer’s old result that expresses Floer homology of nearby Lagrangians in terms of
ordinary homology extends to this setting,

HF�.L;L/ŠH�.L; @L/:

We now consider what happens when we vary the holomorphic map f in a family.

Lemma 2.13 Let ft be a 1–parameter family of symplectic fibrations which are
holomorphic near the origin, and assume that .ft /

�1.0/ DM . There is a bijection
between Hamiltonian isotopy classes of admissible Lagrangians for f0 and f1 . For
Lagrangians satisfying H 1.L; @L/ D 0, this bijection respects the Floer homology
groups.
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Proof Assume that L is an admissible Lagrangian with respect to f0 . Since @L
is compact, we can uniformly bound the derivatives @f

@t
in a neighbourhood of @L.

We can therefore choose an � such that the parallel transport of @L with respect to
ft lies in an arbitrarily small neighbourhood of the parallel transport of @L with
respect to ftC� . If this neighbourhood is small enough, we can apply Lemma 2.2. In
particular, subdividing the interval Œ0; 1� into sufficiently many subintervals, we obtain
a Hamiltonian isotopy between L and a Lagrangian which is admissible with respect
to f1 .

Let L1 and L2 be two admissible Lagrangians with respect to f0 . We can choose
the Hamiltonian isotopies which we used in the previous paragraph to be supported
in an arbitrarily small neighbourhood of M , and such that no new intersection points
are created. In particular, these isotopies will equal the identity near the images of the
elements of M.p; q/ for all pairs of intersection p and q between L1 and L2 . This
yields the desired invariance of Floer homology groups.

2.5 Cohomology and cup product

With Poincaré duality in mind, we can now define Floer cohomology by simply re-
indexing the Floer complex as

CF�.L1;L2/� CFn��.L1;L2/

which on cohomology yields

HF�.L1;L2/�HFn��.L1;L2/:

Remark 2.14 Note that Floer homology and cohomology are Poincaré dual with
these conventions, but there is no degree preserving duality between them. Whereas
the classical analogue of our Floer homology groups is the homology of L relative
its boundary, the classical analogue of our Floer cohomology group is the ordinary
cohomology of L. These classical groups are indeed Poincaré dual. One can resolve this
unfortunate state of affairs by introducing Floer homology in two flavours, with positive
and negative orientations at the boundary. In this language, our Floer cohomology
between L1 and L2 would indeed be the (ordinary) dual of Floer homology between
L2 and L1 with the opposite convention to the one we have chosen. Since the main
goal of this paper is to perform a computation, we will not discuss these issues further,
and simply use the above definition.
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Figure 4: A marked disc

As in the case of closed Lagrangians the Floer co-chain complex admits a cup product

CF�.L1;L2/˝CF�.L2;L3/! CF�.L1;L3/:

In order to describe the cup product, we need some preliminary definitions. There
are essentially no differences between the case we are studying, and that of closed
Lagrangians which is explained in Fukaya and Oh [8].

Definition 2.15 A Riemann surface with strip-like ends is an open Riemann surface
with a choice of biholomorphisms between its ends (ie, complements of sufficiently
large compact subsets) and the strip Œ0; 1��RC .

We let D be the unit disc in C, and � D e
2�i

3 . Note that T DD � f�; �2; 1g admits
the structure of a Riemann surface with strip-like ends. Assuming all Lagrangians
intersect transversely and the pairs .L1;L2/, .L2;L3/ and .L1;L3/ are positively
oriented, we consider finite energy pseudo-holomorphic maps uW T !N which satisfy
the following conditions (see Figure 4):

� u maps the arcs .1; �/ to L1 , .�; �2/ to L2 , and .�2; 1/ to L3 .

� Along the strip-like ends associated to the punctures .�; �2; 1/, the image of
u converges uniformly to interior intersection points .p; q; r/ among the La-
grangians Lj .

� The image of T under u does not intersect M .
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We denote the above moduli space by Madm.p; q; r/. We can now define the cup
product over Z2 by the formula

Œp�˝ Œq� 7!
X

r

jMadm.p; q; r/j � Œr �;

where the sum is taken over 0–dimensional moduli spaces. Just as we proved that
d2 D 0, the usual proof that this cup product descends to an associative product on
cohomology applies in our situation.

To obtain a product in Floer cohomology over C, we follow the same strategy as for
obtaining signs in the differential. Given a holomorphic triangle T with strip like ends
associated to three points p , q and r , we attach copies of the upper half-plane at the
incoming ends to form a 1–sided strip T #Hp#Hq . As before, we obtain an operator
x@T #Hp#Hq

. The gluing theorem yields a canonical isomorphism

det.x@T #Hp#Hq
/Š det.x@T /˝ det.x@Hp

/˝ det.x@Hq
/:

There is a unique path (up to homotopy) between the boundary conditions for this
operator and those for the operator x@Hr

, yielding a canonical isomorphism

det.x@T #Hp#Hq
/Š det.x@Hr

/:

Since u only contributes to the cup product when its associated x@ operator is invertible,
we have a canonical trivialization of det.x@T /. So we obtain an isomorphism

det.x@Hp
/˝ det.x@Hq

/Š det.x@Hr
/;

whose compatibility with orientations determines the signed contribution of T to the
image of Œp�˝ Œq� under the cup product.

3 Tropical geometry

3.1 Background

Let f be a Laurent polynomial in n variables over C. In [11], Gel’fand, Kapranov,
and Zelevinsky introduced the amoeba of f as the projection of f �1.0/ to Rn under
the logarithm map

Log.z1; : : : ; zn/D .log jz1j; : : : ; log jznj/:

One may also define amoebas for varieties over fields other than C. Amongst other
results on varieties over non-Archimedean fields, Kapranov gave a description of
their amoebas in term of polyhedral complexes in Rn [4]. Mikhalkin then used this
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description in order to obtain new results about the topology of complex hypersurfaces
[15]. We will follow his point of view with small modifications.

In coordinates, we will write
f D

X
˛2Zn

c˛z˛

with c˛ 2 C and z˛ D z
˛1

1
z
˛2

2
� � � z

˛n
n . Since f is a polynomial, only finitely many

monomials have non-zero coefficients, and we let A be the set of vectors which label
these monomials. Let P be the convex hull of A thought of as a subset of Rn (Newton
polytope of f ).

Definition 3.1 The convex support of a function �W A ! R is the largest convex
function y�W P ! R such that y�.˛/� �.˛/.

The function y� is in fact piece-wise linear on P , so we may decompose P D
S

P�i
,

where each �i is a linear function, and P�i
is the domain where �i and y� agree. We

say that the decomposition P D
S

P�i
is the coherent subdivision of P induced by � .

The following result is well known.

Lemma 3.2 Each polytope of the coherent subdivision induced by a function �W A!
R is a lattice polytope whose vertices lie in A.

We will be particularly interested in subdivisions which satisfy the following additional
condition (See Theorem 3.11).

Definition 3.3 A subdivision of P is maximal if each polytope of the subdivision is
equivalent under the action of ASL.n;Z/ to the standard n–dimensional simplex.

The function � also determines a piecewise linear function L� W Rn! R , its Legendre
transform, which is defined by,

(3–1) L�.u/Dmax
˛2A

.h˛;ui � �.˛// :

Since it is defined as the maximum of finitely many linear functions, L� is smooth
away from a subset of zero measure.

Definition 3.4 Given any function �W A! R, the locus of non-smoothness of L� is
a tropical hypersurface or tropical amoeba of f .
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Note that this tropical hypersurface of f is the set where two or more linear functions
agree. It will be sufficient for our purposes to think of the tropical amoeba … as an
n� 1 dimensional polyhedral complex whose k skeleton corresponds to the set where
n� k C 1 functions agree. In particular, each k –face is dual to a unique .n� k/–
polytope of the polyhedral subdivision of A induced by � . We will denote the dual
of � by L� . Given a face � of …, we will also use L� for its dual polytope in P . Our
conventions are that all polytopes and faces are closed.

When k D 0, we obtain a component of Rn�… rather than a face of …. Concretely,
every component of Rn�… may be labeled by the unique ˛ 2A which, on the given
component, achieves the maximum in the equation defining L� . We can therefore
write

Rn
�…D

G
˛2A

C˛ � @C˛:

In general, some of these components may be empty.

Going back to the complex numbers, we may use the function � to define the patch-
working polynomials

ft .z/D
X
˛2A

c˛t��.˛/z˛:

For every t , we consider At the Log–amoeba of ft . One expression of the connection
between tropical and complex amoebas is given by the following theorem which is due
to Mikhalkin [15, Theorem 5] and Rullgård [17, Theorem 9].

Theorem 3.5 In the Gromov–Hausdorff topology, the sets At= log.t/ converge to …
as t goes to infinity.

We will be studying the hypersurface f �1.0/� .C?/n from the symplectic point of
view. In order to be precise, we must choose a symplectic structure on .C?/n . We will
use

! D

nX
jD1

dzj ^ dxzj

2i
ˇ̌
zj

ˇ̌2 ;

where fzj g
n
jD1

are the standard coordinates on .C?/n . With respect to the usual .C?/n

action, this is an invariant Kähler form on .C?/n . The vectors f @
@zj
gn
jD1

and their
complex conjugates form an orthogonal basis for the Kähler metric. In particular,ˇ̌̌̌

@

@zj

ˇ̌̌̌
D

1ˇ̌
zj

ˇ̌
and hence ˇ̌̌

dzj
ˇ̌̌
D
ˇ̌
zj

ˇ̌
:
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It will be convenient to have a different description of .C?/n as a symplectic manifold.
Consider the cotangent bundle of Rn with standard coordinates fuj g

n
jD1

on Rn and
f�j D duj g

n
jD1

on the fibre of the cotangent bundle. The coordinates fuj g
n
jD1

induce
an affine structure on the base, which determines a lattice in the fibre. We will choose
this lattice to be spanned by f2��j gnjD1

.

Lemma 3.6 The quotient of T �Rn by the lattice 2�Zn in each cotangent fibre is
symplectomorphic to .C?/n with the identification given by the exponential map

.uj ; �j /! eujCi�j :

Note that the inverse of the above exponential map is the logarithmic map whose first
component arises in the definition of amoebas,

zj ! .log jzj j; arg.zj //:

We will omit all notation for the above symplectomorphisms, and will use either
coordinate system at our convenience. Note, however, that these symplectomorphisms
identify the projection of the cotangent bundle onto its base manifold with the Log
projection of .C?/n onto Rn , hence identify the cotangent fibres with the set of points
in .C?/n whose components have fixed norms. We will also be using the standard
Euclidean metric on Rn . As usual this metric identifies the tangent and cotangent
bundles, and carries the natural complex structure of the tangent bundle to a complex
structure on the cotangent bundle which is compatible with the symplectic form.

The advantage of the cotangent bundle point of view is that many constructions can
now be performed on the base Rn , and some of them reduce to linear algebra. For
example, recall that a diffeomorphism of a manifold induces a symplectomorphism
of its cotangent bundle. If, in addition, this diffeomorphism is an isomorphism of the
affine structure, it will induce a symplectomorphism of the associated Lagrangian torus
bundle. Thus, every affine transformation in ASL.n;Z/ induces a symplectomorphism
of .C?/n . Assume, for simplicity, that we have a linear transformation. If we represent
it by a matrix A, then in the standard coordinates of T �Rn this symplectomorphism
is given by multiplying by A in the coordinates corresponding to the base, and by
.AT /�1 in the coordinates corresponding to the fibre. In general such a transformation
does not preserve the standard Euclidean metric on the base, hence does not preserve
the complex structure on the fibre.

Indeed, given an element of ASL.n;Z/, there is a different automorphism of the torus
fibration which does preserve the complex structure. Assuming again that we have a
linear transformation represented by an integral matrix A, this complex automorphism,
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in the standard coordinates of T �Rn , is given by using A in both the base and the
fibre directions. In the standard coordinates of .C?/n as a complex manifolds, it can
be thought of as the multiplicative change of variables

.z1; : : : ; zn/! .z˛1 ; : : : ; z˛n/

where ˛i are the rows of A.

3.2 The tropical model

Let X be a complete toric variety. Let vi be the primitive vertices of the 1–cones of
the fan � defining X . We consider AD fvig

m
iD1
[f0g and its convex hull P . To each

maximal cone � 2�.n/ we assign the convex polytope P .�/ which is the convex hull
of the set f0g[ fvi jvi 2 �g.

We will assume that every polytope P .�/ is a minimal simplex; this is equivalent to
the requirement that the set fvi jvi 2 �g forms a basis for Zn . Fans with this property
correspond to smooth toric varieties, [10, page 34]. Let W be the Laurent polynomial

W .z/D�1C
X

0¤˛2A

z˛

and let M DW �1.0/.

Remark 3.7 The choice of coefficients on the monomials which appear in W is
only done for convenience. After passing to the tropical limit, any other choice of
(non-zero) coefficients is related to the one we picked by rescaling followed by a
symplectomorphism.

Lemma 3.8 Every ample line bundle on X induces a coherent subdivision of P

which near 0 is given by the polytopes P .�/. In particular, near 0, we have a maximal
triangulation.

Proof Every ample line bundle on X is determined up to an integral linear function
by a strictly convex function � on j�j which is integral linear on each cone. Consider
the coherent subdivision of P induced by �jA . To prove the lemma, it will suffice to
prove that 0 is a vertex of this subdivision, and that each full-dimensional polytope of
the subdivision abutting on the origin is equal to P .�/ for some cone � 2�.n/.

To prove this we observe that on each polytope P .�/ the convex support  of the
function �jA agrees with � since the latter is convex. Since � is in fact strictly convex,
we conclude that each P .�/ is contained in a distinct polytope of the subdivision. It
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remains to show that P .�/ is equal to a polytope of the subdivision. Indeed, if this
were not the case, this polytope would have a vertex not belonging to � . But coherent
subdivisions do not create new vertices, so this vertex is in fact the minimal vertex v� 0
of some 1–cone � 0 . This contradicts the strict convexity of � .

The choice of an ample line bundle therefore induces a choice of patchworking polyno-
mials Wt , whose amoebas converge (after rescaling) to a tropical hypersurface … as
in the previous section. Since the origin is a vertex of the subdivision induced by � ,
we conclude that there must be a non-empty component, Q, of the complement of …
which is dual to the origin.

Corollary 3.9 Q is the convex polytope which, in toric geometry, describes X as a
toric variety with ample line bundle O.1/.

Proof Observe that Equation (3–1) shows that Q is the polytope consisting of points
y which satisfy

hvi ;yi � �.vi/

for every primitive vertex vi . After adjusting for different sign conventions, this is
therefore the polytope whose integral points form a basis for the space of sections of
the ample line bundle O.1/ [10, Section 3.4].

We do not get a global triangulation of our Newton polytope, but we certainly have
a maximal triangulation near the origin. Since we will only be studying … in a
neighbourhood of Q, we may appeal to the results of Mikhalkin about maximal
tropical degenerations.

Remark 3.10 While we could use any ample line bundle, it will be convenient to have
a lattice point in the interior of Q. Note that this can be achieved by replacing O.1/
by a sufficiently high power, and we may assume that the origin is an interior point.

3.3 Twisting the tropical zero-section

We begin by producing a “tropical” version of our construction. In particular, the
boundary of this version will not be smooth, hence it will not be clear how the results
that we obtain would be invariant under a natural class of Hamiltonian isotopies as
discussed in the previous section. Nonetheless, as the complete version requires many
choices that are necessary to produce a meaningful answer, but that obscure the simple
nature of the construction, we will prefer to discuss the tropical case first.

We now consider the situation where our toric variety X is smooth. In this situation,
we may restate a result of Mikhalkin.
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Theorem 3.11 [15, Lemma 6.2] Given a maximal triangulation of P , there exists a
natural choice of a piecewise smooth symplectic hypersurface M1 of .C?/n which
projects to the tropical amoeba ….

In fact, we only need this theorem as motivation, since we will be using Proposition
4.2 to prove the precise results. We will therefore not give a complete description of
M1 which may be thought of as a limit of W �1

t .0/ after rescaling, but we will use
the following results that follow from the proof of Theorem 3.11 or of Proposition 4.2.

� The preimage of a point on a k –face � of … contains a subtorus of the fibre
Rn=2�Zn which is parallel to the tangent space of � (thought of modulo Zn of
course).

� The preimage a point on the interior of an n� 1 dimensional facet � is equal to
a torus in the fibre which is parallel to the tangent space of � .

Remark 3.12 We have chosen the coefficients of the monomials that appear in W

exactly in such a way as to ensure that the intersection of M1 with the zero section
contains @Q�…, the boundary of the component of Rn�… which corresponds to
the origin. This guarantees that the preimage of an n�1 facet of Q is exactly equal to
the tangent space of this facet. Note that the tangent space to a k face is equal to the
intersection of the tangent spaces to all the maximal cells that contain it, so that the
statement extends to lower dimensional strata of the boundary of Q.

Since the zero section is a Lagrangian submanifold of T Rn , the polytope Q may be
thought of as a Lagrangian ball with boundary on M1 ; we denote this ball by L1 .

Consider the Hamiltonian function

H1.u1; : : : ;ui/D��

nX
iD1

ui
2

and let �1
1 be its time–1 Hamiltonian flow. In the universal cover, an explicit formula

for �1
1 is given by

�1
1.u1; �1; : : : ;un; �n/D .u1; �1� 2�u1; : : : ;un; �n� 2�un/

which we can write more conveniently as

(3–2) �1
1.u; �/D .u; � � 2�u/:

Lemma 3.13 �1
1.@L1/�M1
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Proof Note that Equation (3–2) implies that if u is an integral point of Rn , then �1
1

pointwise fixes the inverse image of u under the projection map. In particular, the
inverse image of every vertex of Q is fixed.

Consider a top dimensional cell of Q. After a suitable translation by an element of
Zn , we may assume that one of its vertices is the origin. But the restriction of �1

1 to
the zero section of a linear subspace is just the map

.v; 0/! .v;�2�v/:

So the subset of M1 which lies over a top dimensional cell is preserved by �1
1 .

Since @L1 �M1 , this establishes the result for the restriction of @L1 to the top
dimensional cells. The lemma follows from Remark 3.12.

We will denote �1
1.L1/ by L1.1/. The previous lemma in fact shows that the time

l flow satisfies
�l
1.@L1/�M1

for every integer l , so we have well defined Lagrangian balls L1.l/ with boundaries
on M1 .

3.4 A preliminary computation of Floer groups

Even though we don’t have smooth boundary conditions yet, we will set out to compute
the Lagrangian Floer homology groups of the pairs .L1.l1/;L1.l2//. We are missing
the usual compactness and transversality results that guarantee that our answers will
be invariant under Hamiltonian perturbations but we will proceed regardless with the
construction. We will justify the use of small Hamiltonian perturbations of the interior
points by constructing admissible Lagrangians in Corollaries 5.9 and 5.10, which will
also resolve the issue of boundary intersection points.

Note that Lagrangian sections of the cotangent bundle have a natural grading coming
from the Morse index [18, Example 2.10]. In particular, whenever two such sections L,
L0 intersect transversely at a point p , we may write them locally as the graphs of df

and df 0 for smooth real valued functions f and f 0 such that p is a non-degenerate
critical point of f 0�f . As an element of CF�.L;L

0/, the class of p will have degree
equal to its Morse index as a critical point of f 0 � f . We write �p.L;L

0/ for this
index. These choices carry naturally to the quotient of the cotangent bundle by a lattice
coming from an affine structure on the base [14] to give a canonical choice of grading
on sections of Lagrangian torus bundles.

We also need to resolve the issue of the status of intersection points that occur on the
boundary. Our temporary ad-hoc prescription, which we will justify in Section 5.4, is
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that boundary intersection points are included in CF�.L1.l1/;L1.l2// if and only if
l1 < l2 . We will also stipulate that the group CF�.L1.l/;L1.l// is isomorphic to C

concentrated in degree n.

Lemma 3.14 The Floer homology groups between the Lagrangians L1.j / are given
by

HFn.L1.l1/;L1.l2//D
M

p2Q\ 1
l2�l1

Zn

C � Œp�

with all other groups zero if l1 < l2 , and

HF0.L1.l1/;L1.l2//D
M

p2.Q�@Q/\ 1
l2�l1

Zn

C � Œp�

with all other groups zero if l1 > l2 .

Proof First we reduce to the case where the first Lagrangian is the zero section by
applying an appropriate twist. In other words, we have a natural graded isomorphism

CF�.L1.l1/;L1.l2//Š CF�.L1.l1C i/;L1.l2C i//

for any integer i . Considering the case i D�l1 reduces the computation to one we’ve
already done.

Indeed, we have already remarked in our proof of Lemma 3.13 that the intersection
points of L1 and L1.l/ correspond to the 1

l
Zn points of Q. For simplicity, we first

discuss the case where l > 0. Note that the lift of L1.l/ to T �Rn which intersects
the zero section at a point pD .p1; : : : ;pn/ is given by the differential of the function
�l�

Pn
iD1.ui �pi/

2 . Therefore, since the Morse index of this function at p is n if
0< l , the Floer complex is concentrated in degree n, where it is given by

CFn.L1;L1.l//D
M

p2Q\ 1
l

Zn

C � Œp�:

The same computation yields that if l < 0 the Floer complex is concentrated in degree
0, ie,

CF0.L1;L1.l//D
M

p2.Q�@Q/\ l
l

Zn

C � Œp�:

Since all these complexes are concentrated in one degree, the differential is necessarily
trivial.
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We will now pass to cohomology in order to compute the cup product. Recall that the
degree of a transverse intersection point p 2 L\L0 in cohomology is

Ip.L;L
0/D n��p.L;L

0/:

We will compute the cup product

HF�.L1.l1/;L1.l2//˝HF�.L1.l2/;L1.l3//!HF�.L1.l1/;L1.l3//;

by counting holomorphic triangles connecting three intersection points. Assume the
integers l1 , l2 , and l3 are all distinct.

Lemma 3.15 If p D .p1; � � � ;pn/ is an intersection point of L1.l1/ and L1.l2/,
and q D .q1; � � � ; qn/ is an intersection point of L1.l2/ and L1.l3/, then there exists
at most one intersection point r of L1.l1/ and L1.l3/ such that

M.p; q; r/¤∅:

Furthermore, if the intersection point r exists, it is given by the formula

(3–3) r D
.l2� l1/pC .l3� l2/q

l3� l1
:

Remark 3.16 The reader should note the similarity with Equation (1–2).

Proof There is a topological obstruction to the existence of a holomorphic triangle
with the appropriate boundary conditions which we now describe.

After choosing a lift zp of p to T �Rn , there are uniquely determined lifts of each
Lagrangian. In particular, the lifts of L1.l2/ and L1.l3/ intersect at a lift zq of q ,
while the lifts of L1.l1/ and L1.l3/ intersect at most in a unique points which we
call zr . For the next few paragraphs, we will compute everything in term of these lifts.

Using the metric to identify the cotangent fibre with the tangent space, and the vector
space structure on the base to identify each tangent space with that of the origin, we
may write zp D .p; zp1; : : : ; zpn/. The lift of L1.l1/ can be identified with the graph
of the affine transformation

.x1; � � � ;xn/! .�l1.x1�p1/C zp1; : : : ;�l1.xn�pn/C zpn/

and similarly for the lift of L1.l2/. Since q lies on L1.l2/, its lift is therefore

zq D .q;�l2.q1�p1/C zp1; : : : ;�l2.qn�pn/C zpn/:
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This allows us to conclude that the lift of L1.l3/ that we’re considering is the graph of

xi!�l3.xi � qi/C zqi

D�l3.xi � qi/� l2.qi �pi/C zpi :

Note that our sought after intersection point r is given by the solution to the system of
linear equations

�l1.ri �pi/C zpi D�l3.ri � qi/� l2.qi �pi/C zpi ; 1� i � n;

which is clearly given by Equation (3–3).

3.5 Cup product

We must now count holomorphic triangles with appropriate boundary conditions in
order to compute the cup product. As in the previous section, any statements that are
not justified here are handled in future sections, in particular Section 5.4. As we’re
working with products of Lagrangians in different copies of C? , we appeal to the
fact that the holomorphic triangle admits no deformations, so proving regularity for a
pseudo-holomorphic map

uW .T; @T /! .M;[iLi/

amounts to proving the surjectivity of the x@ operator

W 1;p..T; @T /; .u�TM;[iu
�TLi//!Lp.T; �0;1.T /˝u�TM /:

If Li ,!M are given by products of Lagrangians in different factors of the symplectic
manifold M , then the above map splits into direct summands, and surjectivity amounts
to surjectivity for each of the summands of u.

It is well known that non-constant holomorphic polygons on Riemann surfaces are
regular, though we will only give a proof in this specific situation.

Lemma 3.17 Consider three lines L1 , L2 and L3 in R2 D C with rational slope
which intersect at three distinct points .p; q; r/. If there is a holomorphic triangle in
M.p; q; r/, then it is necessarily regular.

Proof Note that the usual index theoretic argument shows that such a holomorphic
triangle has index 0. In particular, it suffices to show the operator

W 1;p..T; @T /; .C;[iTLi//!Lp.T;C/

is injective.

Geometry & Topology, Volume 10 (2006)



1124 M Abouzaid

Assume that F is an element of the kernel, and choose an integer K such that the
images of the tangent lines TLi under the map z ! zK is the real axis. Note that
FK will therefore be a holomorphic map from T to C which takes @T to R. By the
maximum principle, all such maps are constant. However, since F has finite W 1;p

norm, and hence finite Lp norm with respect to an infinite measure (because of the
strip-like ends), it must therefore be identically 0.

Lemma 3.18 Assume p and q are such that r D .l2�l1/pC.l3�l2/q
l3�l1

lies in the polytope
Q and that the integers l1 , l2 , and l3 are distinct. If l1 < l2 then

M.p; q; r/¤∅

if and only if

(3–4) l3 < l1 < l2 or l1 < l2 < l3:

If l2 < l1 , then the moduli space is non-empty if and only if

(3–5) l2 < l3 < l1:

Proof By the preceding discussion, the existence of a holomorphic triangle in the total
space with boundary on our given affine subspaces is equivalent to the existence of n

holomorphic triangles with boundary on a configuration of straight lines in R2 . But
Riemann’s mapping theorem says that such a triangle exists if and only if orientations
are preserved. Moreover, since in each factor such a triangle is unique if it exists, there
can be at most one holomorphic disc with appropriate boundary conditions. One might
also be concerned that the holomorphic triangles we’re finding may go outside the
the inverse image of Q even when all the intersection points between the different
Lagrangians lie within Q. But this doesn’t happen because Q is convex. Indeed,
representing the triangle with three marked points as a geodesic triangle T in the plane,
we see that each component ui of the holomorphic map uW T !Cn is in fact given by
an affine transformation of the plane. In particular, the image of T is the flat triangle
determined by the points . zp; zq; zr/, hence projects to the flat triangle determined by
.p; q; r/. Convexity implies that this triangle is contained in Q.

We have therefore reduced the problem to establishing whether the triples .�; �2; 1/

and ..pi ; zpi/; .qi ; zqi/; .ri ; zri// have the same orientation, assuming the latter consists
of distinct points. It follows from Formula (3–3) (see also, Figure 5) that if l1 < l2 , the
orientations are the same if and only if

l3 < l1 < l2 or l1 < l2 < l3
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zp

L1.l3/

zrL1.l1/

L1.l2/

zq
zp

zr

zq

L1.l2/

L1.l3/

L1.l1/

(1) (2)

Figure 5: Holomorphic discs with l1 < l2 < l3 (1), and l2 < l3 < l1 (2)

while if l2 < l1 , then the orientations are the same if and only if

l2 < l3 < l1:

In particular, this condition is independent of which factor we’re considering, so the
above is the necessary and sufficient condition for the existence of a holomorphic disc
with marked points on . zp; zq; zr/ if these points are distinct.

We must now deal with the case where the marked points are not distinct. Observe
that since all the slopes li are assumed to be different, this can only occur if all three
points are equal. We must appeal to a yet unproven invariance under Hamiltonian
deformations to interpret the product among Lagrangian submanifolds in non-generic
positions in terms of the product for nearby Lagrangians. Note the Conditions (3–4) or
(3–5) are clearly invariant under small Hamiltonian deformations. In particular, given
a triple intersection point between L1.l1/, L1.l2/, and L1.l3/, we may locally
deform one of the Lagrangians, through Lagrangians which are also given as L1.l/
for some real number l , preserving Conditions (3–4) or (3–5). But the argument we
gave when li are distinct integers did not depend on their integrality, so we reach the
desired conclusion that Conditions (3–4) or (3–5) suffice to describe the existence of a
regular holomorphic triangle.

Remark 3.19 The perturbation argument that we’re using breaks down whenever
p D q D r is a point on the boundary. In Section 5, we will “push intersection points
to the interior,” and thereby legitimate the perturbation argument.
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If two of the Lagrangian sections are equal, recall that we have made an as yet unjustified
claim that the corresponding Floer cohomology group is concentrated in degree 0 and
is isomorphic to a copy of C. We will justify in Section 5.4 that under the cup product,
this group acts by scalar multiplication on the Floer cohomology group of a pair of
Lagrangian manifolds.

To complete our analysis of the presence of holomorphic triangles, we must find
appropriate conditions for zr to lie within the prescribed region. We will only do this
for a special case.

Lemma 3.20 Assume that l1 � l2 � l3 . The product in Floer cohomology is given by

HF0.L1.l1/;L1.l2//˝HF0.L1.l2/;L1.l3//!HF0.L1.l1/;L1.l3//

Œp�˝ Œq� 7! ˙

�
.l2� l1/pC .l3� l2/q

l3� l1

�
:(3–6)

Proof Since Q is convex, and all the coefficients in Equation (3–3) are positive, we
conclude that zr projects to an intersection point of L1.l1/ and L1.l3/. In the case
of strict inequalities among the lj , Equation (3–4) implies that there is necessarily a
holomorphic triangle connecting p , q and r . The case where two of the Lagrangians
may be equal follows from the previous discussion.

We also know from Equation (3–5) that there might be other non-trivial cup products if
the condition l1 � l2 � l3 does not hold. The point is that these are the same products
that show up on the algebraic side. We will take this up again in Section 5.5.

We will now prove that we may choose all signs in Equation (3–6) to be positive.

Lemma 3.21 There is a choice of generators for CF�.L.li/;L.lj // such that all the
signs that arise in the cup product are positive.

Proof We already know that

Œp�˝ Œq� 7! ˙Œr �

and it remains to prove that all signs may be chosen to be positive. However, since
any configuration of three Lagrangian sections with l1 < l2 < l3 is isotopic through
Lagrangian sections to any other configuration and the cup product is invariant under
such Lagrangian isotopies, we conclude that all signs are either positive or negative. If
necessary, we complete the argument by replacing every generator by its negative.
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In fact, this argument extends to products in which the triple of Lagrangians does not
necessarily satisfy the condition l1 < l2 < l3 . Indeed, one can then simply dualize the
operation that induces the cup product to reduce every other possible configuration
to the case l1 < l2 < l3 . For example, if l3 < l1 < l2 , then, restricting to the interior
intersection points, the map

CF�.L.l1/;L.l2//˝CF�.L.l2/;L.l3//! CF�.L.l1/;L.l3//

can be obtained by dualizing the map

CF�.L.l3/;L.l1//˝CF�.L.l1/;L.l2//! CF�.L.l3/;L.l2//:

But we know from the previous lemma that with our choice of generators, the sign
that appears in this last product is positive, hence so it is for the first one. Once this is
established for the interior intersection points, it immediately follows that it is true when
boundary intersection points are involved as well because the signs are determined by
local considerations which are insensitive to the distinction between the interior and
the boundary.

4 Tropical localization

Mikhalkin used Theorem 3.5 to study the topology of smooth complex hypersurfaces
M of .C?/n by producing a subset of Rn which interpolates between the polyhedral
complex … (thought of as the tropical amoeba of a non-Archimedean variety) and the
Log–amoeba of M . He observed that the tropical amoeba has a complex analogue to
which the hypersurface M degenerates. We will give a slight modification of his proof
which will allow us to obtain a stronger result about the symplectic structures.

4.1 Construction

Recall from Section 3 that each component of the complement of log.t/… D …t

corresponds to a vertex ˛ of a coherent subdivision. We defined C˛ in terms of the
linear function attached to ˛ , but one might equivalently define log.t/C˛ DC˛;t as the
image of the open subset of .C?/n where the monomial t��.˛/z˛ dominates all others.
For the purposes of this section, we will need some bounds on polyhedral geometry of
P . For simplicity, we will assume that c˛ D 1.

Let N be the maximum of the `1 norms of all vectors ˛�ˇ for ˛ , ˇ neighbouring
vertices of the subdivision, and of all vectors ˛ 2 A. Note that N is also an upper
bound for the Euclidean norm of such vectors. Assume that � induces a triangulation,
and that the affine map from the standard k –dimensional vector space to Rn induced
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by every simplex of the subdivision of A distorts length by an amount bounded by
� > 1. Note that such a bound exists simply because these affine maps are all injective.

If ˛ and ˇ are distinct elements of A, let H.˛; ˇ/ denote the hyperplane defined by
the equation

h˛;ui � �.˛/D hˇ;ui � �.ˇ/:

Note that every face of … is supported by such a hyperplane.

Lemma 4.1 There exists a constant c > 0 such that for � sufficiently small

d.p;C˛/� �) d.p;H.˛; ˇ//� 2c�

for every p 2 Cˇ and for all pairs ˛ ¤ ˇ .

Proof Since A only has finitely many elements, it suffices to found a bound for each
of them and then take the minimum. Accordingly, fix a component Cˇ .

Choose a constant ı such that 2ı neighbourhood of C˛ can only intersect Cˇ if their
boundaries share a face. Since … is a finite cell complex and H.˛; ˇ/ cannot asymptot-
ically approach Cˇ at infinity, there exists a constant K such that d.p;H.˛; ˇ//�K

whenever p does not lie in the ı neighbourhood of C˛ .

Let us assume for simplicity that the face � shared by C˛ and Cˇ is bounded. In this
case, the boundary of the ı neighbourhood of � intersects Cˇ in a compact subset
which we will denote S . Note that convexity of Cˇ implies that Cˇ \H.˛; ˇ/D � .
In particular, the distances to H.˛; ˇ/ and � are bounded above and below on S by
non-zero constants, so an appropriate ratio yields the desired constant c . Consider
p 2 Cˇ �C˛ such that d.p; �/D � < ı . There are points q on � and r on H.˛; ˇ/
which realize the distance from p to these respective sets. The ratio between these
distances can be computed from the angles of the triangle with corners p , q and r . By
extending the segment from p to q , we eventually reach a point p0 on S . Note that
q is the point of � closest to p0 . If r 0 is the orthogonal projection of p0 on H.˛; ˇ/,
then the right triangles with corners .p; q; r/ and .p0; q; r 0/ are similar. In particular,
the ratios of their sides are equal. Since the ratio of the sides of the triangle .p0; q; r 0/
is bounded by 2c , the same bound works for the triangle .p; q; r/. Further, since

d.p; q/� d.p;C˛/D �;

we conclude that

d.p;H.˛; ˇ//D d.p; r/� 2cd.p; q/� 2c�:

If the intersection between C˛ and Cˇ is not compact, we choose a ball B that for
every point q1 of .C˛ \Cˇ/�B there is a point q2 in C˛ \Cˇ \B such that there is
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an isometry of the 2ı neighbourhoods of q1 and q2 which takes the intersection of
… with one neighbourhood to its intersection with the other. The existence of such
a ball is a consequence of the fact that … is a finite polyhedral complex. If p lies
in the ı neighbourhood of q , then the point of H.˛; ˇ/ nearest to p lies in the 2ı

neighbourhood of q . So the problem is entirely local, and the bound obtained by
considering the intersection of B with the boundary of the ı neighbourhood of C˛
in Cˇ yields a bound which is also valid for the complement of B . The rest of the
argument proceeds as in the compact case.

Now pick � such that ı > � > 0. By Theorem 3.5, there exists a T such that
d.At ;…t / < log.t/� for all t > T . Choose such � and T > 1 such that the following
additional conditions are satisfied for all t > T

e�c� log.t/

� log.t/
<

1

40 jAj �
(4–1)

e�c� log.t/ <
1

5 jAj2 �N
:(4–2)

In addition, choose nowhere negative C1 functions �˛ on Rn such that the following
properties hold

d.p;C˛;t /�
� log.t/

2
, �˛.p/D 0(4–3)

d.p;C˛;t /� � log.t/, �˛.p/D 1(4–4)

(4–5)
nX

iD1

ˇ̌̌̌
@�˛.p/

@ui

ˇ̌̌̌
<

4

� log.t/
:

We will also abuse notation and write �˛.z/ for �˛.Log.z//. Further, we will assume
that �˛ and the norm of its derivatives are C 0 close to functions which depend only
on the distance to C˛ .

We now consider the family of maps

ft;s D

X
˛2A

t��.˛/.1� s�˛.z//z
˛:

Our goal is to prove the following:

Proposition 4.2 For large enough t , f �1
t;s .0/DMt;s is a family of symplectic hyper-

surfaces parametrized by s .
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Figure 6: The amoeba of the standard hyperplane in .C?/2 , its “tropical
localization," and its tropical amoeba

We will call ft;1 a “tropical localization” of the Laurent polynomial f . The choice of
terminology should be clear from Figure 6.

It follows from the definition of Mt;1 that near a face �t of …t , the equations that
define M depend only on those coordinates which are orthogonal to �t . In order to be
more precise, we consider a fixed cover of Rn .

Definition 4.3 Given any polytope � of the subdivision of P , define O L� to be the set
of points p 2 Rn such that �˛.p/¤ 1 for all ˛ 2 � , and �˛.p/D 1 for all ˛ … � .

Our choices of functions �˛ ensure that[
�

O L� D Rn:

One way to see this is to observe that, although it is not an open set, we can still think of
each O L� as a neighbourhood of an open subset of L�t D log.t/ L� , the face of …t dual to
� . Indeed, it is not hard to show that a point p that is distance more than � log.t/ away
from L�t must be distance at least � log.t/ from some C˛;t with ˛ 2 � , so �˛.p/D 1

by construction. This proves that O L� is contained in an � log.t/ neighbourhood of L�t .

However, since every face of @ L� is dual to a polytope � 0 �Q such that � � @� 0 , we
know that near every face L� 0t of the boundary of L�t , there exists at least one vertex
ˇ … � such that �ˇ is not equal to 1. This implies that @ L�t is not contained in O L� .
But if we restrict to the complement of an � log.t/ neighbourhood of @ L�t in L�t , then
�ˇ D 1 for every ˇ … � .

In addition, note that since we’re working with maximal subdivisions, every polytope
� of the subdivision of P induces a product decomposition

.C?/n D .C?/� � .C?/ L�
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where L� is the face of … which is dual to � . We therefore have the following description.

Lemma 4.4 In O L� , Mt;1 is a product

Mt;1 DM �
t;1 �U;

with M �
t;1

a hypersurface in .C?/� and U a subset of .C?/ L� . The set U may itself be

decomposed at T L� �U 0 with T L� the real subtorus of .C?/ L� .

Away from its boundary, U 0 is an open set of .RC/k and may be identified with the
open subset of L� consisting of points which lie sufficiently far away from the boundary.
Furthermore, in the identification of .C?/n with T Rn=Zn , the torus T L� corresponds
to the tangent space of L� .

To prove Proposition 4.2, we will use a simple observation which was used by Donaldson
in [3]: In order to show that f �1.0/ is symplectic it suffices to prove that on the
preimage of 0,

ˇ̌̌
@f
ˇ̌̌
< j@f j, where the norms are computed with respect to the unique

metric determined by the complex and symplectic structures. We compute that

@ft;s D

X
˛2A

t��.˛/@z˛ � s
X
˛2A

t��.˛/
�
�˛.z/@z

˛
C z˛@�˛.z/

�
while

@ft;s D s
X
˛2A

t��.˛/z˛@�˛.z/:

Since our norm comes from a hermitian metric, and �˛ is only a function of the norm
of z , it suffices to show that

(4–6)

ˇ̌̌̌
ˇX
˛2A

t��.˛/@z˛

ˇ̌̌̌
ˇ> s

 ˇ̌̌̌
ˇX
˛2A

t��.˛/�˛.z/@z
˛

ˇ̌̌̌
ˇC 2

ˇ̌̌̌
ˇX
˛2A

t��.˛/z˛@�˛.z/

ˇ̌̌̌
ˇ
!

hence it suffices to show the above inequality for s D 1.

The idea behind our choice of cut-off functions �˛ is that �˛ is only non-zero whenever
the corresponding monomial contributes negligibly to ft;s . Formally we have the
following:

Lemma 4.5 If Log.z/D p is in Cˇ;t and �˛.p/¤ 0 thenˇ̌̌̌
ˇ t��.˛/z˛t��.ˇ/zˇ

ˇ̌̌̌
ˇ< e�c� log.t/j˛�ˇj:
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Proof Consider the shortest segment with one endpoint at p and the other at q , the
closest point in H.˛; ˇ/. We have

hq; ˇi � log.t/�.ˇ/D hq; ˛i � log.t/�.˛/:

We compute ˇ̌̌̌
ˇ t��.˛/z˛t��.ˇ/zˇ

ˇ̌̌̌
ˇD t��.˛/

ˇ̌̌
ehp;˛i

ˇ̌̌
t��.ˇ/

ˇ̌
ehp;ˇi

ˇ̌
D ehp;˛�ˇiClog.t/.��.˛/C�.ˇ//

D ehq;˛�ˇiClog.t/.��.˛/C�.ˇ//ehp�q;˛�ˇi

D ehp�q;˛�ˇi:

Since the segment from p to q is normal to �t , the vector from p� q is parallel to
˛�ˇ , so

hp� q; ˛�ˇi D �jp� qjj˛�ˇj

� �c� log.t/j˛�ˇj

where the last inequality follows from �˛.p/¤ 0, and Lemma 4.1.

We will only be considering points at which ft;s vanishes. The next two lemmata
establish constraints that such points must satisfy.

Lemma 4.6 If At;s is the amoeba of the hypersurface Mt;s , then d.At;s;…t / <

log.t/� for all s .

Proof Note that if d.p;…t /� log.t/� , then there exists a unique monomial t��.ˇ/zˇ

such that �ˇ D 0. By Lemma 4.5 and Condition (4–2), we haveˇ̌̌
.1� s�˛.z//t

��.˛/z˛
ˇ̌̌
�

ˇ̌̌
t��.˛/z˛

ˇ̌̌
<

1

5 jAj2 �N

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
<

1

jAj

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
for every ˛ ¤ ˇ . Since there are exactly jAj such terms in our expression for ft;s for
which ˛ ¤ ˇ , we conclude that ft;s.z/ cannot vanish.
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Lemma 4.7 If s and z are such that ft;s.z/D 0, and Log.z/ 2 Cˇ , then

ˇ̌
ft;r .z/

ˇ̌
<

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
5jAj�N

for every 0� r � 1. The same bound holds for:ˇ̌̌̌
ˇ̌ X
�˛.z/¤1

t��.˛/z˛

ˇ̌̌̌
ˇ̌

Proof It suffices to observe that:ˇ̌
ft;r .z/

ˇ̌
D
ˇ̌
ft;r .z/�ft;s.z/

ˇ̌
D

ˇ̌̌̌
ˇ̌.r � s/

X
�˛.z/¤0

t��.˛/�˛.z/z
˛

ˇ̌̌̌
ˇ̌

�

X
�˛.z/¤0

ˇ̌̌
t��.˛/z˛

ˇ̌̌
� jAj e�c� log.t/

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
�

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
5� jAjN

The same computation yields the second part of the lemma:ˇ̌̌̌
ˇ̌ X
�˛.z/¤1

t��.˛/z˛

ˇ̌̌̌
ˇ̌D

ˇ̌̌̌
ˇ̌s X

0<�˛.z/<1

�˛.z/t
��.˛/z˛ �

X
�˛.z/D1

t��.˛/.1� s�˛.z//z
˛

ˇ̌̌̌
ˇ̌

�

X
�˛.z/¤0

ˇ̌̌
t��.˛/z˛

ˇ̌̌

�

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
5� jAjN

We now complete the proof of this section’s main result.

Proof of Proposition 4.2 Assume that ft;s.z/D 0, and Log.z/2O L� . By Lemma 4.6,
� consists of at least two vectors. Since the subdivision induced by � is a triangulation,
each subpolytope is in fact a simplex. We choose ı in � such that Log.z/ 2 Cı;t ,

Geometry & Topology, Volume 10 (2006)



1134 M Abouzaid

which implies that
ˇ̌̌
t��.ı/zı

ˇ̌̌
�

ˇ̌̌
t��.ˇ/zˇ

ˇ̌̌
for all ˇ . In addition, choose a vertex 
 in

� which differs from ı , and re-write

X
˛2A

t��.˛/@z˛ D
X
ˇ2�

t��.ˇ/z
@zˇ�
 C
X
ˇ2�

t��.ˇ/zˇ�
@z
 C
X

˛2A��

t��.˛/@z˛:

In order to establish Equation (4–6), we decompose its left hand-side as above, so it
will suffice to prove the inequality:

ˇ̌̌̌
ˇ̌z
X

ˇ2�

t��.ˇ/@zˇ�


ˇ̌̌̌
ˇ̌>

ˇ̌̌̌
ˇX
˛2A

t��.˛/�˛.z/@z
˛

ˇ̌̌̌
ˇC 2

ˇ̌̌̌
ˇX
˛2A

t��.˛/@�˛.z/z
˛

ˇ̌̌̌
ˇ

C

ˇ̌̌̌
ˇ̌X
ˇ2�

t��.ˇ/zˇ�
@z


ˇ̌̌̌
ˇ̌C

ˇ̌̌̌
ˇ̌X
˛…�

t��.˛/@z˛

ˇ̌̌̌
ˇ̌

We start by bounding the left hand-side from below.

ˇ̌̌̌
ˇ̌z
X

ˇ2�

t��.ˇ/@zˇ�


ˇ̌̌̌
ˇ̌D

ˇ̌̌̌
ˇ̌X
ˇ2�

t��.ˇ/z

nX

iD1

.ˇi � 
i/z
ˇ�
�ei dzi

ˇ̌̌̌
ˇ̌

D

nX
iD1

ˇ̌̌̌
ˇ̌X
ˇ2�

t��.ˇ/.ˇi � 
i/z
ˇ�ei dzi

ˇ̌̌̌
ˇ̌

D

nX
iD1

ˇ̌̌̌
ˇ̌X
ˇ2�

.ˇi � 
i/t
��.ˇ/zˇ

ˇ̌̌̌
ˇ̌

�

ˇ̌̌
t��.ı/zı

ˇ̌̌
�

To see the last step, we interpret the penultimate line as the norm of a vector in Cn

which is the image of the k –vector .t��.ˇ/zˇ/jˇ¤
 under the linear map which takes
the standard basis vectors to the vectors .ˇ � 
 /ˇ2� . The constant � was chosen to
be a bound for the length distortion of this linear map. It suffices therefore to bound
the norm of .t��.ˇ/zˇ/jˇ¤
 . We have simply used the size of the ı component as the
lower bound for the norm of this vector.

Geometry & Topology, Volume 10 (2006)



Homogeneous coordinate rings and mirror symmetry 1135

We now successively bound all the terms in the right hand-side. We begin with the first
term using Lemma 4.5.ˇ̌̌̌

ˇX
˛2A

t��.˛/�˛.z/@z
˛

ˇ̌̌̌
ˇ� X

�˛.z/¤0

t��.˛/�˛.z/
ˇ̌
@z˛

ˇ̌
�

X
�˛.z/¤0

t��.˛/
nX

iD1

j˛i j
ˇ̌
z˛
ˇ̌

�N jAj e�c� log.t/
ˇ̌̌
t��.ı/zı

ˇ̌̌
<

ˇ̌̌
t��.ı/zı

ˇ̌̌
5�

The same bound works for the last term. We use Lemma 4.7 to bound the third term.ˇ̌̌̌
ˇ̌X
ˇ2�

t��.ˇ/zˇ�
@z


ˇ̌̌̌
ˇ̌D nX

iD1

ˇ̌̌̌
ˇ̌X
ˇ2�

t��.ˇ/zˇ�

iz

�ei dzi

ˇ̌̌̌
ˇ̌

D

nX
iD1

j
i j

ˇ̌̌̌
ˇ̌X
ˇ2�

t��.ˇ/zˇ

ˇ̌̌̌
ˇ̌

<

ˇ̌̌
t��.ı/zı

ˇ̌̌
5�

Finally, we bound the second term.ˇ̌̌̌
ˇX
˛2A

t��.˛/@�˛.z/z
˛

ˇ̌̌̌
ˇ� X

�˛.z/¤0

ˇ̌̌
t��.˛/z˛

ˇ̌̌
j@�˛.z/j

�

X
�˛.z/¤0

ˇ̌̌
t��.˛/z˛

ˇ̌̌ nX
iD1

ˇ̌̌̌
@�˛.z/

@ log jzi j

dzi

xzi

ˇ̌̌̌

D

X
�˛.z/¤0

ˇ̌̌
t��.˛/z˛

ˇ̌̌ nX
iD1

ˇ̌̌̌
@�˛.z/

@ui

ˇ̌̌̌

�

X
�˛.z/¤0

ˇ̌̌
t��.ı/zı

ˇ̌̌
e�c� log.t/ 4

� log.t/

�

ˇ̌̌
t��.ı/zı

ˇ̌̌
10�
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Note that we can use the above bounds to conclude the following:

Corollary 4.8 Under the hypotheses used in this section we have the bound j@ft;sj>
jt��.ı/zıj

10�
.

4.2 Moser’s argument

Our goal in this section is to prove the following:

Proposition 4.9 After rescaling the symplectic form, the pairs ..C?/n;Mt;s/ are
symplectomorphic for all t and all s for which they are defined.

In the data of a pair .N;M / of symplectic manifolds, we remember the inclusion of
M as a symplectic submanifold of N . In particular, a symplectomorphism of pairs is
a symplectomorphism between the total spaces which carries the submanifolds to each
other. If we fix t , we will define a map

 sW
�
.C?/n;Mt;0/! ..C?/n;Mt;s

�
:

We will only prove the result for varying s , as the result for varying t is entirely
analogous, although it requires rescaling the symplectic form by log.t/. We begin by
showing that the hypersurfaces Mt;s are symplectomorphic using the fact that our proof
that Mt;s is a symplectic hypersurface in fact proves that ft;s is a symplectic fibration
in a neighbourhood of each Mt;s . In particular we obtain a symplectic connection. Let
Yt;s be the horizontal lift of �@ft;s

@s
. We need to bound Yt;s in order to show that it

integrates to a flow. But first, we would like to obtain an explicit formula for it. This is
a problem in linear algebra, for which we need a little notation.

Let .V; !/ be a symplectic vector space. The symplectic form ! determines an
isomorphism between V and V � which we denote by !# and define by the formula

h!#.v/; wi D !.v;w/:

The inverse isomorphism will be written !# . We will also use the same symbols when
we extend these maps i –linearly to the complexification of V and its dual. We equip
C with the standard symplectic form

dx ^ dy D
i

2
dz ^ dxz:
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Lemma 4.10 Let f� be a linear map between the symplectic vector spaces .V; !/
and .C; !0/ with symplectic kernel and with dual f � . The horizontal lift of the vector
a 2 C is given by

f !.a/D
2i

!.f �dz; f �dxz/
!#.f

�!#
0a/:

Proof We will work with the complexification of the vector space throughout. First,
note that the image of C under the composition !#ıf

�ı!#
0

is precisely the orthogonal
complement of the kernel of f� . Hence it suffices to show that the right hand side
of our formula maps to a under the linear map f� . By linearity, it suffices to check
this for @

@z
and @

@xz
, where, keeping in mind our application, we’ve used a suggestive

notation for the standard basis of the complexification of C. We check it for @
@z

by
computing the pairing with dz and dxz .�

f�

�
2i

! .f �dz; f �dxz/
!#f

�

�
!#

0

@

@z

��
; dz

�
D

2i
˝
f�

�
!#f

�
�

idxz
2

��
; dz

˛
!.f �dz; f �dxz/

D
�
˝
!#f

�dxz; f �dz
˛

!.f �dz; f �dxz/

D 1�
f�

�
2i

!.f �dz; f �dxz/
!#f

�

�
!#

0

@

@z

��
; dxz

�
D

˝
!#f

�dxz; f �dxz
˛

!.f �dz; f �dz/

D 0:

Of course, the same computation works for @
@xz

.

Lemma 4.11 Yt;s is a bounded vector field, hence integrates to a local diffeomorphism
near the fibre Mt;s .

Proof By the previous lemma, we have the expression

f !
t;s

�
@ft;s

@s

�
D

2i

!.f �t;sdz; f �t;sdxz/
!#f

�
t;s

�
!#

0

@ft;s

@s

�
:

Since ft;s is almost holomorphic, this vector field has norm less than or equal to

4j
@ft;s

@s
j � jf �t;sdzj

jf �t;sdzj2
:

By Corollary 4.8

jf �t;sdzj �
j@ft;sj

2
�

ˇ̌̌
t��.ı/zı

ˇ̌̌
20�
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with ı as in the proof of Proposition 4.2. On the other handˇ̌̌̌
@ft;s

@s

ˇ̌̌̌
D

ˇ̌̌̌
ˇ̌ X
�˛.z/¤0

�˛.z/t
��.˛/z˛

ˇ̌̌̌
ˇ̌

�

ˇ̌̌
t��.ı/zı

ˇ̌̌
5 jAj �N

as in Lemma 4.7.

Lemma 4.12 The flow x s of Yt;s restricts to a symplectomorphism between Mt;0

and Mt;s .

Proof First, we observe that by construction of Yt;s

@

@s
ft;s

�
x s.z/

�
D ft;s�

�
Yt;sj x s.z/

�
C
@ft;s

@s

ˇ̌̌̌
x s.z/

D 0:

So the flow of Yt;s preserves the level sets of the function ft;s , and hence maps the
zero fibres to each other. To check that this is, indeed, a symplectomorphism, it suffices
to compute

@

@s
x �s
�
!Mt;s

�
D
@

@s
x �s
�
!jMt;s

�
D x �s

�
LYt;s

!jMt;s

�
D x �s

�
d.iYt;s

!/jMt;s

�
D 0

using Cartan’s formula, the fact that ! is closed, and that Yt;s is orthogonal to Mt;s .
In particular, iYt;s

! vanishes on Mt;s and hence also its exterior derivative.

We must now check whether this symplectomorphism can be embedded in an appropri-
ate symplectomorphism of pairs. Similar results are well known in the compact case
[16] and the proof extends to the open case provided one can bound the vector fields.

Lemma 4.13 There exists a Hamiltonian time-dependent vector field Y 0t;s on .C?/n

which is supported in a neighbourhood of Mt;s and which integrates to a symplectic
flow  s that maps Mt;0 to Mt;s .
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Homogeneous coordinate rings and mirror symmetry 1139

Proof There exists a function Hs which vanishes on Mt;s , and such that dHsjMt;s
D

iYt;s
! . This can be seen locally by taking any trivialization of a neighbourhood of Mt;s

and thinking of iYt;s
! as an initial value problem for a function, then using a partition

of unity to produce a global function. We can always choose Hs to be supported in a
neighbourhood of Mt;s . The form dHs gives the closed form which corresponds to
our vector field Y 0t;s . Since our initial values are bounded, an appropriate choice of
cutoff function ensures that the vector field Y 0t;s is also bounded, hence integrates to a
Hamiltonian isotopy.

Remark 4.14 Note that we can choose the germs of the vector fields Y 0t;s and Yt;s to
be C1 close at Mt;s . In particular, this means we can assume that  s respects the
fibration to arbitrarily high order at Mt;s .

Note that if J is any compatible complex structure J on V such that f� is a map of
complex vector spaces, then the symplectic horizontal lift agrees with the orthogonal
lift which for a unit length vector v is given by

f !.v/D
1

g
�
f �g#

0
v; f �g#

0
v
�g#f

�g#
0v:

In particular, if f� is the derivative at the origin of a symplectic fibration f W N ! C,
we consider the real valued function fR , which is the restriction of f to the inverse
image of the real axis. Since dfR D f

�g#
0
@
@x

, we conclude

gradfR D jdfRj
2f ! @

@x
:

In future section, we will let ƒ be a compact Lagrangian submanifold of the zero
fibre of f , which we denote M , and consider parallel transports of ƒ along straight
half-rays originating at the origin, and moving in the left half-plane. We write such a
line as


c.t/D�t.1C 2ci/:

Denote the parallel transport along this line by Lc , and the distance to ƒ by rƒ . On
L0 , the gradient of rƒ and the lift of @

@x
are both orthogonal to ƒ, and satisfy

grad rƒ D jdfRjf
! @

@x
:

Lemma 4.15 Let J be an almost complex structure in a neighbourhood of M for
which f is holomorphic and M is an almost complex submanifold. If we identify a
neighbourhood of L0 with its cotangent bundle as in Lemma 2.1, then Lc is given as
the graph of a 1–form which agrees with the differential of cr2

ƒ
.u/ to first order in u.
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Proof Let L0c be the graph of the differential of cr2
ƒ

. Since the differential of cr2
ƒ
.u/

vanishes on ƒ, Lc and L0c have the same boundary. To show that the 1–forms that
define them agree to first order in u, it suffices to show that their tangent spaces agree
on the boundary. However, TNp decomposes as an orthogonal direct sum TM ˚C,
and it is clear that

TLc D Tƒ˚R �f !

�
@

@x
C 2c

@

@y

�
I

so it remains to compute TL0c . To do this, we observe that rƒ vanishes on ƒ, and that
since TM is closed under J , and J is compatible with ! , its orthogonal complement
is also closed under J . We may therefore ignore the directions corresponding to Tƒ

in our computation. Now the orthogonal complement of Tƒ in TL0 is spanned by
f ! @
@x

, so the component of the tangent space of TL0c which lies in the orthogonal
complement to Tƒ is spanned by

(4–7) f ! @

@x
Crf ! @

@x
.2crƒ.u/J grad rƒ.u// :

Consider the vector field

Z D J

�
grad rƒ� jdfRjf

! @

@x

�
:

We know that this vector field vanishes at ƒ. In addition, we know that the vector field
Jf ! @

@x
D f ! @

@y
is the lift of a geodesic flow in the base. We conclude that on ƒ the

second term can be computed as follows:

rf ! @
@x
.rƒ.u/J grad rƒ.u//Drf ! @

@x

�
rƒ.u/jdfRjJf

! @

@x
C rƒ.u/Z

�
Drf ! @

@x

�
rƒ.u/jdfRjf

! @

@y

�
C rƒ.u/rf ! @

@x
Z

Cf ! @

@x
.rƒ.u//Z

Since rƒ and Z vanish on ƒ, it remains to compute that:

rf ! @
@x

�
rƒ.u/jdfRjf

! @

@y

�
D f ! @

@x
.jdfRjrƒ.u//

@

@y

D

�
rƒ.u/f

! @

@x
.jdfRj/CjdfRjf

! @

@x
.rƒ.u//

�
f ! @

@y

D grad rƒ.u/.rƒ.u//f
! @

@y

D f ! @

@y
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In the last line, we’ve used the fact that the restriction gradient of rƒ to ƒ has unit
norm. Plugging this back in Equation (4–7) completes the proof of the lemma.

4.3 The zero-section

In this section, we construct an admissible Lagrangian submanifold of .C?/n with
boundary on Mt;1 , which will be the first step of future constructions. The construction
can be done for any Laurent polynomial f . However, we will specialize to the situation
where we’re considering the mirror W of a smooth toric variety. In particular,

Wt;1 D�1C
X

0¤˛2A

t��.˛/.1��˛.z//z
˛:

Consider the � log.t/ neighbourhood of the n� 2 skeleton of the polytope Qt D C0;t .
The intersection of the amoeba of Wt;1 with a neighbourhood of Qt agrees with the
boundary of Qt outside this neighbourhood of the n� 2 skeleton.

Recall that by thinking of .C?/n as the cotangent bundle of Rn modulo the lattice Zn ,
we identified a natural zero-section. One might equivalently think of the inclusion of
.RC/n into .C?/n .

Lemma 4.16 Near the component of the complement of the amoeba corresponding
to the origin, the zero section intersects Mt;1 in a smooth Lagrangian sphere of Mt;1 .
This Lagrangian sphere is the boundary of a compact subset of the zero section which
is diffeomorphic to the n–ball.

Remark 4.17 It is easy to see that the zero section does intersect the zero level set of
the linear function

�1C

nX
iD1

t��.i/zi

in a smooth Lagrangian submanifold. Hence, by the multiplicative change of coordi-
nates, the same holds for

g.z/D�1C
X

0¤˛2�

t��.˛/z˛

whenever � is a minimal simplex.

Proof We use the polyhedral decomposition provided by the tropical limit, and prove
the result for Mt;1 . Consider a point z such that Log.z/ 2O L� . If � is a k –simplex,
we know that all but kC 1 terms in

Wt;1 D�1C
X

0¤˛2A

t��.˛/.1��˛.z//z
˛
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are zero. It suffices therefore to check the result for a simplex as in the previous remark.
So consider

gk;s.z/D�1C
X

0¤˛2�

t��.˛/.1� s�˛.z//z
˛

which we think of as a 1–parameter family of functions defined on a domain where
gk;1 agrees with Wt;1 . By the previous remark, it will be sufficient to show that reality
is preserved by our flow, which reduces to showing that the vector field which defines
the flow is tangent to .RC/n on the intersection of .RC/n with the zero level set. Using
the result of Lemma 4.10, and the expression of the symplectic form on .C?/n in
standard coordinates, we are reduced to showing that

g�k;s.!
#
0

@gk;s

@s
/D

nX
iD1

hi.z/dyi

for some real functions hi . Since gk;s restricts to a real function on the intersection of
.RC/n with the zero level set, the restriction of @gk;s

@s
to this intersection is some real

multiple of @
@x

, hence !#
0

@gk;s

@s
is some real multiple of dy . The result would therefore

follow from showing that for all 1� i � n, the following derivative of the imaginary
part is zero:

@ Im.gk;s/

@xi
D 0

But in fact, the function Im.gk;s/ itself vanishes on the real locus, so this establishes
that the flow maps the positive real locus of gk;0 into the positive real locus of gk;1 .
Since we can also use the reverse flow, this map gives a diffeomorphism between the
two sets.

To see that the result is simply an n–ball with boundary, we note that the boundary
of the component of the complement of the amoeba corresponding to the origin is a
polytope which is itself homeomorphic to a sphere which bounds L1 . It is clear from
the local model that L1 is star-shaped about the origin, so it must be diffeomorphic to
the standard ball.

We will denote this Lagrangian ball with boundary on Mt;1 by log.t/L.

Remark 4.18 Note that the results of the previous section allow us to conclude that
any construction which is performed for admissible Lagrangians with respect to Wt;1

can be “pulled back” to the original complex hypersurface M . Hereafter, we will
change our notation and write M for the image of Mt;1 under the diffeomorphism of
.C?/n induced by the diffeomorphism of the base

u!
u

log.t/
:
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This induces the rescaling of the symplectic form which appears in the statement of
Proposition 4.9. But rescaling preserves symplectic and Lagrangian submanifolds, so
our constructions are insensitive to it. In particular, we produce a Lagrangian ball L
with boundary on M .

We will also use W for the pull back of Wt;1 under the above “conformal” symplecto-
morphism. We will still perform most computations using the coordinates zi on .C?/n

as a subset of Cn . Strictly speaking, these differ by a “rescaling” from the coordinates
used in the previous section. These coordinates come with a natural complex structure
which will use.

There are two reasons that allow us to use this integrable almost complex structure.
The first reason is that we proved in Section 3.5 that the holomorphic triangles that we
will be considering are already regular. This means that there is no issue in the interior.
More problematic is the fact that we will also be considering the distance function with
respect to the usual metric in order to approximate parallel transport as in Lemma 4.15.
However, it is easy to see from the remark following Lemma 4.13 that we can choose
the usual complex structure to be C 1 –close near M to an admissible almost complex
structure J . This implies that the distance function with respect to the usual metric
yields a C 1 –close approximation to parallel transport with respect to J , which is all
we will need.

5 The admissible Lagrangians L.j /

5.1 Desiderata

Consider the symplectic hypersurface M with amoeba A. By Lemma 4.6, A is
�–close to the polyhedral complex …. If we focus only on Q, we know that the
amoeba agrees with the polyhedral complex away from an � neighbourhood of its
n� 2 skeleton. In the next two sections, we will construct a Hamiltonian function H

which should be thought of as a modification of H1 and whose time–1 flow preserves
M . But first, we would like to describe the properties that H must satisfy, and show
that all possible choices of H , up to admissible Hamiltonian isotopy, are equivalent.

Continuing with the change in notation introduced in the last section, we have a cover
O� of Rn indexed by the faces � of … such that each O� is a neighbourhood of a
large open subset of � . Recall that we have been using the Euclidean metric on Rn to
identify each cotangent fibre with a copy of Rn ; let � denote this cotangent fibration.

Definition 5.1 A Lagrangian submanifold ƒ of M is a boundary for L.1/ if ƒ lifts
to a submanifold zƒ� T Rn such the following properties are satisfied:

Geometry & Topology, Volume 10 (2006)



1144 M Abouzaid

� zƒ is a section of T Rnj@L , and

� if z 2 zƒ and �.z/ 2 @L \O� then z lies in the affine subspace supporting
�2�� , and

� zƒ is the restriction to L of an exact section of T �Rn .

Note that the last condition is vacuous if n> 2 since H 1.@L/ vanishes in this case.

Lemma 5.2 Given ƒ, a boundary for L.1/, and a vector v in the left half plane,
there exists an admissible Lagrangian L.1/ which is an exact section of T RnjL with
boundary equal to ƒ and whose image under W agrees near the origin with a curve

 whose tangent vector at the origin is v . Furthermore, any two such Lagrangians,
for (possibly) different tangent vectors at the origin, are isotopic through admissible
Lagrangians.

Proof To prove the first statement, we prove that the parallel transport of ƒ along
a short curve 
 with tangent vector v at the origin yields a section of T RnjU where
U is a 1–sided neighbourhood of @L in L. As usual, we consider the problem on
each element of the cover O� . Note that the condition that zƒ lies in the hyperplane
that supports �2�� implies that zƒ is locally the product of a section of T� with the
zero section of a transverse symplectic slice. By Lemma 4.4 we know that in O� the
function W is independent of the directions corresponding to � , so parallel transport
only depends on the directions which lie in the transverse slice, which we may locally
identify with a lower dimensional torus.

Claim If Lv is the parallel transport of the zero-section along a sufficiently short
curve 
 starting at 0 with tangent vector v in the left half-plane, then � projects Lv
homeomorphically onto a neighbourhood of the boundary of L.

Proof of Claim In the proof of Lemma 4.16 we noticed that Wt;1 takes negative real
values on L. In particular, this implies that L is the parallel transport of its boundary
along the negative real axis. The result now follows immediately from the proof of
Lemma 4.15.

Constructing a Lagrangian Lv.1/ as the parallel transport of ƒ along such a curve 

yields locally a section T RnjL . Our third condition on ƒ guarantees that this section
is exact, hence any extension of the function that defines it will yield the desired section
of T �RnjL .

To prove uniqueness, we observe that any Lagrangian L.1/ is the graph of the differen-
tial of a function H with prescribed derivatives at the boundary. The linear interpolation
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between two such functions H and H 0 defines an isotopy which may not preserve
admissibility. But choosing a sufficiently fine cover of the interval Œ0; 1� as in Lemma
2.13 allows us to modify this isotopy to one in which admissibility is preserved.

This means that we can unambiguously define L.1/ƒ to be an admissible exact section
of T �RnjL whose boundary is ƒ. We would like to eliminate the dependence on ƒ.
Recall from Lemma 4.4 that W is independent of the directions corresponding to the
tangent space of � . In particular, the proof of the previous lemma together with the
convexity of the faces of � imply that we can use interpolation as in Lemma 2.13 to
prove the following:

Lemma 5.3 If ƒ and ƒ0 are boundaries for O.1/, then L.1/ƒ and L.1/ƒ0 are
isotopic through admissible Lagrangians.

So we can define admissible Lagrangian submanifolds L.1/ which are well defined
up to Hamiltonian isotopy. In the next sections, we will produce an explicit model for
L.1/ that will allow us to compute its Floer cohomology groups. We also note that
this construction naturally extends to the construction of Lagrangians L.j /, for any
integer j , whose lifts lie in �2�j� in every set O� .

5.2 A boundary for L.1/

In this section, we will construct a boundary for L.1/. First, we must choose an
appropriate cover of a neighbourhood of …. Given � a facet of …, Let U� be its
�–neighbourhood and V� its 2� neighbourhood. If we then consider the n�2 skeleton,
there exists a constant, cn�2 such that every point in the 2� neighbourhood of …, but
which is distance more than cn�2� from the n� 2 skeleton is closest to a unique facet
of …. The value of cn�2 is independent of � , and is related to the “angles” between
the facets near their intersections. Given a face � in the n� 2 skeleton, let U� be the
cn�2� neighbourhood of � , and V� the 2cn�2� neighbourhood of � .

Repeating this process inductively, we obtain constants ci � 1 for each i � n � 1

independent of � , and define U� to be the ci� neighbourhood of � , and V� its 2ci�

neighbourhood for i D dim.�/. Let

Ui D

[
dim.�/Di

U�

Vi D

[
dim.�/Di

V� :

The main property satisfied by this cover is the following:
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Figure 7: The sets U0 , V0 , U1 and V1 for the hyperplane in .C?/2 shown
in progressively darker shades of gray

Lemma 5.4 Every point of Vi �Ui�1 is closest to a unique face of dimension i .

In the interior of each i –face � , we identify the normal bundle of � with a neighbour-
hood, and define a self map  � of this bundle which is radial, collapses U� to � , and
is the identity away from V� . We would like to take the composition of all  � over
the n� 2 skeleton, to obtain a self map of Rn . There are two issues with this:

�  � does not extend continuously to Rn because � has non-empty boundary (if
dim.�/¤ 0).

� The supports of  � for different faces are not disjoint.

We resolve both of these issues by defining  i to be the composition of  � for � a
face of dimension i in an arbitrary order, and defining  to be the composition

 D  0 ı 1 ı � � � ı n�1:

The key point is that the set where  i is not continuous, or depends on the order
chosen, lies entirely within Ui�1 , which is collapsed by the next map ( i�1 ) to the
i � 1 skeleton. It should therefore be clear from the construction that  is a well
defined smooth self map of Rn which does not depend on the order of compositions
chosen for  � . Further, we have the following:

Lemma 5.5 The map  can be chosen to satisfy the following additional properties:

�  preserves the i –skeleton of …. In particular, it maps every face to itself.

�  maps every point p 2 Ui to the nearest i –face of …. If p 2 Ui �Vi�1 then
 .p/ is the nearest point on the nearest i –face.

�  maps the amoeba A to the tropical amoeba ….
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�  can be chosen to satisfy the condition that its derivative is bounded indepen-
dently of � . Specifically, given any tangent vector v at u,

j �.u/.v/j< 4n
jvj:

Proof The first two properties are immediate from the construction, so we only prove
the other two. Note that we have O� � U� . In particular, since the localization of the
tropical amoeba lies entirely in [�O� ,  maps the localization of the tropical amoeba
to the tropical amoeba. Finally, since each  � collapses a neighbourhood of radius
ci� , and is the identity outside a neighbourhood of radius 2ci� , its differential can
be chosen to expand lengths of vectors by a factor less than 4. The result follows by
observing that in a neighbourhood of any point p ,  can be written as the composition
of at most n maps corresponding to the faces of each dimension which are closest to
p .

Consider the Hamiltonian function given by

H @.u/D�2�
D
u�

 .u/

2
;  .u/

E
��ah .u/;  .u/i

on the set L\[iUi , and define ƒ to be the graph of dH @j@L . To keep the notation
simpler, we do not make the dependence on a explicit.

Lemma 5.6 ƒ is a boundary for L.1/.

Proof Let us first set aD 0. We compute that for any tangent vector v ,

dH @.u/.v/D�2�
D
v�

 �.u/.v/

2
;  .u/

E
� 2�

D
u�

 .u/

2
;  �.u/.v/

E
D hv;�2� .u/i � 2�hu� .u/;  �.u/.v/i:

The only condition we need to check is that if u 2 O� , this co-vector lies in the
hyperplane supporting �2�� after passing to the tangent space. By the previous
lemma,  .u/ lies in � , so this is already true of the first term. We must prove that the
second term lies in the tangent space of � . In particular, it suffices to show that the
corresponding 1–form annihilates every tangent vector normal to � . But in U� ,  �
collapses the directions orthogonal to � so this is indeed true.

To address the case a¤ 0, we observe that the term depending on a has differential

v 7! �2�ah �.u/.v/;  .u/i

which, again, corresponds to a term in the tangent space of � .
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5.3 Parallel transport of ƒ

As in the proof of Lemma 5.2, we begin the construction of L.1/ by parallel transport
of the boundary along a curve 
 � C starting at the origin and moving in the left
half plane. We proved that this parallel transport can be expressed locally as an exact
section over L. Recall that in order to compute

HF�.L;L.1//

we need to ensure that W .L.1// agrees with a curve 
 near the origin, and that the
angle between the negative x–axis and 
 is between 0 and �

2
. In particular, we

would be considering c > 0 in the notation of Lemma 4.15. Let us write Lc.1/ for a
Lagrangian that satisfies this condition of being a parallel transport of ƒ along a line
of slope 2c at the origin.

Lemma 5.7 The graph of dH @ agrees with L0.1/ near ƒ.

Proof We only need to prove that the image under W of the graph of dH @ near @L is
the negative real axis. By construction, dH @ lies in the hyperplane supporting �2�� ,
so we may think of it as the product of the zero section of .C?/ L� with a non-trivial
section of T� . Since in O� , W only depends on the directions transverse to � , it
suffices to prove that the zero-section L is the parallel transport of its restriction to the
boundary along the negative real axis. We already observed this in the proof of Lemma
5.2.

The graph of the differential of

H @
c .u/D�2�

�D
u�

 .u/

2
;  .u/

E
C

a

2
h .u/;  .u/i

�
C cr2

ƒ.u/

is therefore C 1 –close to an admissible Lagrangian by Lemma 4.15. In particular, using
Lemma 2.2, we can construct an admissible Lagrangian Lc.1/ that is C 1 –close to this
graph near ƒ, and that agrees with it away from an arbitrarily small neighbourhood of
ƒ. In practice, this means that we can think of the graph of dH @

c as being admissible.

We will interpolate between Lc.1/ and the linear Lagrangians L1.1/ constructed
in Section 3.3. We will only do the harder case where c > 0 which corresponds to
choosing a model of L.1/ such that L and L.1/ are a positively oriented pair.

Let ı be an arbitrarily small positive number. We assume that the origin is contained in
the interior of Q. Choose �0>0 such that .1C�0/Q is contained in a 2ı neighbourhood
of Q. Note that .1C �0/@Q lies entirely outside of Q. Further, given any face �
of @Q, .1C �0/� lies in the interior of 2� �Q. Choose � > 0 and go through the
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constructions of the previous sections so that .1C �0/U� also lies in the interior of
2� �Q. Note that we can choose � < �0 < ı .

There exists a number 0 < b < 1
2

such that rƒ has no critical points in the b�

neighbourhood of ƒ. Let g be a non-negative cutoff function satisfying the following
conditions:

g.u/D 0, rƒ.u/� b�

g.u/D 1, rƒ.u/� �

jdg.u/j �
2

�

Consider the Hamiltonian Hc given by the formula

� .1�g.u//
�
�h2u� .u/;  .u/iC .�0C 5��0/�h .u/;  .u/i � cr2

ƒ.u/
�

�g.u/�.1C �0/hu;ui:

Note that for rƒ.u/ < b� , this function is just H @
c for aD �0C 5��0 . In particular, the

corresponding Lagrangian is C 1 –close to Lc.1/. Since the images of Lc.1/ and L
under W do not intersect, it is clear that the Lagrangian corresponding to Hc does not
intersect L in this region. Let us abuse notation and write Lc.1/ for the graph of the
function Hc . When rƒ.u/� � , the Hamiltonian is

��.1C �0/hu;ui

and the intersection points between L and L.1/c in this region are exactly the 1
1C�0

integral points of Q.

Lemma 5.8 dHc takes no 2� –integral values in the region where b� � rƒ.u/� � .

Proof Since it suffices to prove non-integrality of some coefficient, we use the cover
O� and consider only the factor transverse to � . In other words we may assume, after
possibly reducing to a factor, that u lies in the � neighbourhood of a vertex u0 of
Q. Note that this means that  .u/D u0 , and that the differential of  vanishes. We
compute that in this case, dHc equals

� 2�u0Cg.u/
�
2�u0� 2�.1C �0/u

�
C .1�g.u//2crƒ.u/drƒ.u/

C

�
�h2u�u0;u0iC .�

0
C 5��0/�hu0;u0i � cr2

ƒ.u/� .1C �
0/�hu;ui

�
dg.u/:

Since �2�u0 is an integral vector it suffices to show that the remaining terms do not
add up to 0, and have norm much less that 1. The main observation is the following:
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Claim The inner product of any of the vectors dg , drƒ or u0� .1C �
0/u with u0 is

non-positive.

Proof For the last vector, this follows from the choices made about �0 and � at the
beginning of this section. In particular, we can choose � much smaller than �0 , so this
vector is well approximated by ��0u0 . Since dg can be chosen approximately parallel
to drƒ , we will simply prove the claim for this last vector. But the gradient of drƒ is
a scalar multiple of the normal vector at the nearest point in ƒ. On the other hand, it
is easy to compute that the negative of the gradient of the Laurent polynomial

Wt .z/D�1C
X

t

t��.˛/z˛

satisfies this condition on ƒ (this is simply the statement that W decreases as we
move towards the interior of L). Since the cutoff functions were chosen C 1 –small
with respect to Wt , this result is unaffected by the presence of �˛ . We can then rescale
by log.t/ to work with our new conventions.

Each of these vectors appears in the expression of dHc . Since the terms that they
correspond to cannot all vanish at the same time, it suffices to show that the coefficients
of each of these term is non-negative and bounded. It is clear that the first two
coefficients are indeed non-negative, and we have the boundsˇ̌

g.u/.2�u0� 2�.1C �0/u/
ˇ̌
� 2�ıˇ̌

.1�g.u//2crƒ.u/drƒ.u/
ˇ̌
� 2c�:

In the second bound, we used the fact that jdrƒj � 1. It remains, therefore, to consider
the coefficient of the last term. We re-write it as

�0�
�
.1C 5�/hu0;u0i � hu;ui

�
��

�
hu;ui � 2hu;u0iC hu0;u0i

�
� cr2

ƒ.u/;

which simplifies to

5��0�hu0;u0iC �
0�hu0�u;u0Cui ��hu�u0;u�u0i � cr2

ƒ.u/:

Note that the norm of the first term is 5���0ju0j
2 . The other terms are bounded above

by 3���0ju0j, ��2 , and 4c�2 . In particular, since u0 is an integral vector, and � < �0 ,
the sum of the terms is bounded above by 10���0ju0j

2 so long that c is not too large. It
is also strictly positive since the first term dominates, so we conclude that the differential
of our function does not attain the value �2�u0 in the desired neighbourhood of u0 .

Since the norm of dg is by assumption less than 2
�

, we conclude that the term corre-
sponds to dg has norm bounded by 20��0ju0j

2 . We can choose �0 small enough to
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ensure that this bound is much less than 1, so that dHc is a bounded distance away
from �2�u0 as desired.

The reason for the careful choices that we have made in the above paragraphs is as
follows: in order to interpolate between the differentials of two functions using cutoff
functions without creating new critical points, we must know not only that the values
of the differentials are close to each other, but also that the values of the functions are
close. This is exactly the reason why we need the comical choice of

.�0C 5��0/h .u/;  .u/i

as a term in our Hamiltonian.

Corollary 5.9 For sufficiently small 0 < c , Lc.1/ is an admissible Lagrangian that
intersects the interior of L in the set

Q\
1

1C �0
Zn
ŠQ\Zn:

Further, Lc.1/ agrees with a linear Lagrangian away from an � neighbourhood of its
boundary.

If we want a model for L.1/ where the pair .L;L.1// is negatively oriented, then we
have to consider L�c.1/. However, following the above argument, we will find that
the coefficient of drƒ is negative in this case. This means that we may be creating
new intersection points if we try to interpolate between L�c.1/ and the graph of
.1C �0/hu;ui. We can easily fix this by using .1� �0/hu;ui instead. However, this
means that we must also use �.�0C 5�0�/ in our expression for H @

c . The rest of the
argument then carries through as desired and yields

Corollary 5.10 For sufficiently small 0< c , L�c.1/ is an admissible Lagrangian that
intersects the interior of L in the set

.Q� @Q/\Zn:

Further, L�c.1/ agrees with a linear Lagrangian away from an � neighbourhood of its
boundary.

Since the Lagrangians L˙c.1/ are equivalent up to admissible Hamiltonian isotopy for
any value of c by Lemma 5.2, we revert to our old notation and refer to either of them
as L.1/.

We can also use the same method to construct L.j / for all j . Recall that the first choice
we made is that of a constant 0 < ı , which allowed us to prove that no intersection
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point occurred in a neighbourhood of the boundary by bounding the norm of a certain
vector by constants dominated by ı . It was sufficient, in order to construct L.1/, for ı
to be much smaller than 1, since we simply had to avoid any lattice points that are not
in Q. However, in order to construct L.j /, we will have to avoid all elements of the
lattice 1

j
Zn . This means that we have to choose ı much smaller than 1

j
. We can then

use this to construct the Lagrangian boundary of L.j / using the function jH @ , then
carry through the rest of the steps of the preceding construction. If j in negative, we
must work with ��0 as explained above. We conclude the folowing:

Proposition 5.11 For every integer j 2Z, there exists an admissible Lagrangian L.j /
such that the pair .L;L.j // is positively oriented and their interior intersection points
are in bijective correspondence with

1

j
ZN
\Q

if j > 0 and with
1

j
ZN
\ .Q� @Q/

if j < 0. Further, all interior intersection points occur on the complement of a small
neighbourhood of the boundary. In this open set where the intersection points occur,
L.j / is given by the Hamiltonian

�j�.1C �0/hu;ui

for some small �0 .

5.4 Computing Floer groups and products

First we settle the issue of the Floer homology of L with itself.

Lemma 5.12 The only non-trivial Floer homology group of L with itself is

HFn.L;L/D C:

Proof We take a small Hamiltonian isotopy and compute the Floer homology of L
with its image L0 under the isotopy. Of course, this Hamiltonian isotopy must be chosen
so that L0 is admissible and the pair .L;L0/ is positively oriented. To achieve this, we
simply reproduce the arguments of the previous section and interpolate between the
graph of the differential of

�hu; �ui
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with � positive and the parallel transport of @L along some curve 
 0 which goes in the
third quadrant. The point is that � can be chosen so small that the differential of this
function does not take integral values on Q. Further, the positivity of � will guarantee
that we can interpolate between the graph of this Hamiltonian and the parallel transport
of the boundary in the direction of a “positive” curve 
 without creating any new
intersection points with L. The above quadratic function has a critical point of index
n at the origin, so we reach the desired conclusion. Note that this is consistent with
H�.D

n;Sn�1/.

We can reinterpret Proposition 5.11 as follows:

Lemma 5.13 The only non-vanishing Floer cohomology groups between L and L.j /
are given by

HF0.L;L.j //Š
M

p2Q\Zn

C � Œp� if 0� j and,

HFn.L;L.j //Š
M

p2.Q�@Q/\Zn

C � Œp� if j < 0.

Proof The fact that all intersections between L and L.j / occur in an open region
where L.j / is given by a linear Lagrangian allows us to compute the Floer cohomology
as in Section 3.4.

We can now discuss the cup product.

Lemma 5.14 Identifying the generators of Floer homology groups with lattice points
as in Lemma 5.13, the product

HF�.L.l1/;L.l2//˝HF�.L.l2/;L.l3//!HF�.L.l1/;L.l3//

is the same as the product for the Floer homology groups of the Lagrangians L1.li/
which we used in Section 3.4. Concretely, for l1 � l2 � l3 , we have

Œp�˝ Œq� 7!

�
.l2� l1/pC .l3� l2/q

l3� l1

�
as in Lemma 3.20.

Proof First, we observe that we can choose the constant ı is the previous section so
that our models for L.li/ have all their interior intersection points in the open region
where these Lagrangians are linear. This means that all the computations of Section
3.4 hold. We now justify the perturbation arguments used in that section.
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It should be clear now that the Maslov index computation for triple intersections that
we performed is legitimate, even when the intersection point occurs at the boundary of
L1.li/, since in L.li/ these are now interior intersection points, and can be perturbed
to achieve transversality without affecting the admissibility condition. It remains to
address the situation where two of the three Lagrangians are equal. The most important
thing is to check that our generator of HF�.L;L/ acts as the identity. Say we are
trying to compute

HF�.L;L/˝HF�.L;L.j //!HF�.L;L.j //:

Now choose an intersection point Œq� between L and L.j /, and perturb L to a La-
grangian L0 as in Lemma 5.12. Note that we can ensure that the intersection point p

between L and L0 occurs near q . We claim that the cup product is given by

Œp�˝ Œq0�! Œq�

where Œq0� is the corresponding nearby intersection point between L0 and L.j /. In
effect, we have reduced everything to a Maslov index computation. The point is that
we can choose all these intersections to occur at the same point, and L0 to have slope
��. For sufficiently small �, the numbers .0; �; j / satisfy Conditions (3–4) or (3–5)
regardless of what the sign of j is. The usual obstruction in the first homology of the
torus fibre allows us to conclude that there can be no other holomorphic triangle.

5.5 Completing the argument

Let X be the toric variety of the Introduction with an ample line bundle O.1/. The
last section, together with Equation (1–1), allows us to conclude that if j � l , then

Hom�.O.j /;O.l//ŠHF�.L.j /;L.l//;

and that this isomorphism is compatible with cup product. This proves Theorem 1.1.

We now use Serre duality to compute the case j > l . To simplify the notation, we let
j D 0, so l < 0 and

Hom�.O;O.l//Š .Homn��.O;O.�l/˝ �//L:

Where � is the canonical bundle. Since the piecewise linear function which defines
� takes the value �1 on each primitive vertex of a 1–cone of �, [10, Section 4.3],
we see that our requirement that the interior of Q have an integral point (See Remark
3.10), is equivalent to the fact that the piecewise linear function defining O.�l/˝ � is
convex. Its sections are in fact given by integral points which satisfy

hvi ;yi � �.vi/� 1
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for every primitive vertex vi of the 1–cones of �. But these are exactly the interior
lattice points of �lQ. We have therefore proved that

Hom�.O.j /;O.l//ŠHF�.L.j /;L.l//

for all values of j and l . One may check that this isomorphism is indeed compatible
with the cup product (which, for negative powers is interpreted through Serre duality).
We check this for the case l > 0, j < �l by computing

Hom�.O;O.l//˝Hom�.O;O.j //! Hom�.O;O.l C j //:

Note that Serre duality suggests that we should reduce this computation to that of

Hom�.O;O.l//˝Hom�.O;O.�l � j /˝ �/L! Hom�.O;O.�j /˝ �/;

in which all Hom’s are concentrated in degree 0. The formula for the product is

Œp�˝ Œq�! ŒpC q�;

which then dualizes to

Œp�˝ Œr �LD
X

q2.lCj/.Q�@Q/\Zn3pCqDr

Œq�L;

where the summation in the right hand side is either empty or consists of a unique term.
The usual change of perspective from lattice points to .l C j /Q to 1

lCj
lattice points

of Q yields the isomorphism with the product on Floer cohomology.
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