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In this paper, finite volume numerical schemes are developed for hyperbolic
systems of conservation laws with source terms. The systems under consideration
degenerate into parabolic systems in large times when the source terms become
stiff. In this framework, it is crucial that the numerical schemes are asymptotic-
preserving, i.e., that they degenerate accordingly. Here, an asymptotic-preserving
numerical scheme is proposed for any system within the aforementioned class on
2D unstructured meshes.

This scheme is proved to be consistent and stable under a suitable CFL condi-
tion. Moreover, we show that it is also possible to prove that it preserves the set
of (physically) admissible states under a geometric property on the mesh. Finally,
numerical examples are given to illustrate its behavior.

Introduction

The objective of this paper is to build a suitable numerical scheme for hyperbolic
systems of conservation laws which can be written in the following form:

∂t U + div(F(U))= γ (U)(R(U)−U), (t, x) ∈ R+×R2. (1)

Here, the Jacobian of the flux F is assumed to be diagonalizable in R. The set of
admissible states is denoted A. Moreover, R is a smooth function of U such that
for all U ∈A, R(U) ∈A. Finally, γ (U) is a positive real function which represents
the stiffness of the source term.

The system (1) is assumed to fulfill the properties required in [6] so that it
degenerates in long time and when the source term becomes stiff, more precisely
when γ (U)t→∞, into a parabolic system.
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There are numerous examples of such systems and two of them will be used
throughout this article as illustrations, namely the isentropic Euler equations with
friction and the M1 model for radiative transfer:

Isentropic Euler with friction:

U =

 ρ

ρu
ρv

 , F(U)=

 ρu ρv

ρu2
+ p(ρ) ρuv
ρuv ρv2

+ p(ρ)

 ,
γ (U)= κ(ρ), R(U)=

ρ0
0

 , (2)

where p is a smooth function such that p′(ρ) > 0. The set of admissible
states is

A= {U = (ρ, ρu, ρv)> ∈ R3
| ρ > 0}. (3)

The diffusion limit whenever κ(ρ)t→∞ is (see [8] for instance):

∂tρ− div
(

1
κ(ρ)
∇ p(ρ)

)
= 0. (4)

M1 model for radiative transfer (see [22] for the derivation of the model and [7]
for the present form):

U =


E

Fx
Fy
T

 , F(U)=


Fx Fy

c2 Pxx c2 Pxy
c2 Pyx c2 Pyy

0 0

 ,

γ (U)= cσm(U), R(U)=



σ(U)aT 4
+σ1(U)

σm(U)
σ1(U)Fx
σm(U)
σ1(U)Fy
σm(U)

σ (U)E+σ2(U)ρCvT
ρCvσm(U)


,

(5)

where

P = E
(

1−χ
2

Id +
3χ − 1

2
F ⊗ F
‖F‖2

)
,

χ = χ

(
ξ =
‖F‖
cE

)
=

3+ 4ξ 2

5+ 2
√

4− 3ξ 2
, F = (Fx, Fy)>,
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and

σm = σm(U)= σ(U)max
(

1,
aT 3

ρCv

)
,

σ1(U)= σm(U)− σ(U),

σ2(U)= σm(U)− σ(U)
aT 3

ρCv
,

The set of admissible states is

A= {U = (E, Fx , Fy, T )> ∈ R4
| E > 0, T > 0, ‖F‖ ≤ cE}. (6)

When σm(U)t→∞, the M1 model degenerates into the so-called equilibrium
diffusion equation:

∂t(ρCvT + aT 4)− div
(

c
3σ
∇aT 4

)
= 0. (7)

The main difficulty when designing a numerical scheme for such systems is to
enforce the correct degeneracy in the diffusion limit. In other words, the limit of
the scheme when γ (U)t →∞ shall be a consistent approximation of the limit
diffusion equation (see [28]). Obviously, this property is generally not fulfilled by
numerical schemes hence the design of asymptotic-preserving (AP) schemes has
been an important issue during the last decade.

For 1D applications, several asymptotic-preserving schemes were proposed in
this context. The most explored way to do so is to use a modified HLL scheme
[26] and cleverly control the numerical diffusion in the spirit of the work of Gosse
and Toscani for the telegraph equations [25]. This technique has been widely used
for the M1 model for radiative transfer and Euler equations with friction (see for
instance [11; 12; 5; 14]) and extended to general cases [7]. Other techniques have
also been used, such as [9; 15] in the framework of Euler equations with friction, or
[3] where the knowledge of the convergence rates towards equilibrium is extensively
used.

The situation is much more difficult for 2D applications however. While it is quite
straightforward in the case of Cartesian grids (see [4] for example), the situation
is far more complex on unstructured grids. One of the reasons is that the classical
two-point flux scheme (or FV4 [24]) which is the target of many AP schemes is
not consistent anymore. The only exception is the MPFA-based AP scheme for
Friedrich systems developed in [13].

Our goal is therefore to propose an AP finite volume scheme for any system of
the form (1). This scheme is a natural extension of the 1D scheme proposed in
[7]. It will be proved to be consistent and stable under a natural unrestrictive CFL
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condition. Moreover, it is also possible to enforce the preservation of the set of
admissible states provided a geometric property is satisfied by the mesh.

The rest of the paper is organized as follows. First the notation used throughout
the paper is presented. Then, the scheme is introduced in the case where the
mesh is admissible. This additional property indeed allows us to simplify several
expressions. In this case, the scheme is proved to be consistent and to preserve the
set of admissible states under a natural CFL condition. We explain how the AP
property can be enforced.

Then, the scheme is extended for general meshes. Once again, it is proved
to be consistent and AP. Since the target scheme in the diffusive regime is the
diamond scheme [17] — which does not preserve the maximum principle — it does
not preserve the set of admissible states on general meshes. However, we show that
this feature can be recovered under some geometric constraint on the mesh.

Finally, the scheme is benchmarked on numerical examples and a few words on
the optimization and parallelization of the code conclude this work.

Notation

Since we intend to provide a finite volume scheme which may be used in either
cell-centered or vertex-centered (or cell-vertex) contexts, we will use the following
nomenclature:

• The primary mesh M is the set of all control volumes (or cells) effectively
used in the scheme. As a consequence, the primary mesh is the primal mesh
in the context of cell-centered schemes and the dual mesh in the context of
vertex-centered schemes.

• The secondary mesh is a set of control volumes defined around the nodes of the
primary mesh. Practically, the secondary mesh is the dual mesh in the context
of cell-centered schemes and the primal mesh in the context of vertex-centered
schemes.

For the sake of clarity in the following, the primary mesh is simply called the mesh
whenever no confusion is possible.

The notation used throughout this paper is summarized in Figure 1:

• NK is the number of nodes (and interfaces) of the cell K ∈M.

• xK is the centroid of the cell K .

• The nodes of the cell K are locally denoted {Ai }i=1...NK with the convention
A0 = ANK and ANK+1 = A1.

• The neighboring cells of the cell K (i.e., cells that share an edge with K ) are
locally numbered from 1 to NK such that K ∩ L i = [Ai Ai+1]. Their centroids
are locally denoted {xi }i=1...NK .
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xK

A1

A2

A3

A4

x4

x1

x2

x3

Di

τi

ni

xK

xi

Ai

Ai+1

Figure 1. Local mesh notation. Left: one cell and the local notation. Right: the diamond
cell associated with the i-th interface of the cell K ∈M.

• d K
i := ‖xK xi‖.

• ei := ‖Ai Ai+1‖ is the length of the i-th interface of the cell K .

• The unit outward normal to the i-th interface of the cell K is denoted ni .

• The unit normal to xK xi is denoted τi . As a convention, it is chosen such that
(ni ∧ τi ).Oz > 0.

• The characteristic length r K is defined by r K
:= |K |/pk where pk =

∑
i ei is

the perimeter of K . Let us remark that for example, r K
= h/4 in a square cell

of size h.

For the sake of clarity, we recall that

F ·
(

nx

ny

)
=
(
Fx Fy

)
·

(
nx

ny

)
= nx Fx + ny Fy .

1. An AP scheme on admissible meshes

In this section, the scheme is introduced on admissible meshes (see definition
below). This property indeed allows us to simplify the notation and to prove the
preservation of admissible states. The extension to general meshes is described in
the next section. Let us mention that this scheme is explicit but an implicit version
can be obtained straightforwardly using the same technique.

Definition. The mesh is said to be admissible if

xK xi · Ai Ai+1 = 0 for all K and all i ∈ [1, NK ],

i.e., if all interfaces are orthogonal to the lines which join the centroids of the cells.
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Obviously, the property required for a mesh to be admissible restricts the gener-
ality of this class of meshes. However, it includes Cartesian grids and it is possible
to consider unstructured admissible meshes for reasonable geometries. For instance,
a mesh consisting of triangles in which the centroids are the circumcenters is often
a valid possibility.

On admissible meshes, we propose to consider the following scheme:

Un+1
K = Un

K −
1t
|K |

NK∑
i=1

eiα
K
i Fn

K ,i · ni +
1t
|K |

NK∑
i=1

eiα
K
i F(Un

K ) · ni

+
1t
|K |

NK∑
i=1

ei bK
i (1−α

K
i )(R(U

n
K )−Un

K ), (8)

where αK
i is defined by

αK
i =

bK
i

bK
i + γ

K
i r K

, (9)

and the numerical flux is given by

F n
K ,i =

1
2(F(U

n
K )+ F(Un

i ))−
1
2 bK

i (U
n
i −Un

K ), (10)

where bK
i > 0 is a parameter larger that all characteristic speeds to be defined

depending on the form of (1). This scheme is designed to keep the numerical
diffusion in the normal direction to the interfaces in order to stay consistent in the
diffusion limit. It is also designed to be a convex combination of 1D schemes that
enter the formalism of [7]. As we will see in the proofs, this feature allows it to
automatically inherit the preservation of admissible states under a suitable CFL
condition.

Remark. For the M1-model, since the physical flux is equal to zero in the last
equation (therefore, the temperature T is only coupled through the source term),
the corresponding component of the numerical flux is also set to zero.

Theorem 1.1. Assume that γ K
i = γ > 0 is a constant. Then the scheme (8)–(10) is

consistent with (1).

Proof. Let us consider a sequence of regular meshes such that

lim
ηK→0

r K
= 0,

where ηK is the radius of the largest circle inside the cell K . This immediately
implies that

lim
ηK→0

αK
i = 1.
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Moreover, the divergence formula gives∑
i=1,NK

ei F(Un
K ) · ni = 0.

Therefore, the first two terms of (8) are consistent with the hyperbolic part of (1).
Now, the third term is consistent with the source term. Indeed,

(1−αK
k )=

γ r K

bK
i + γ r K

,

so

1
|K |

NK∑
i=1

ei bK
i (1−α

K
i )(R(U

n
K )−Un

K )=
1
|K |

NK∑
i=1

ei bK
i
γ r K (R(Un

K )−Un
K )

bK
i + γ r K

,

which tends to γ (R(Un
K )−Un

K ) when ηK → 0.
Finally, the scheme (8)–(10) is consistent with (1). �

Remark. This consistency result may be extended to include the case of noncon-
stant γ . Indeed, γ only appears in the scheme inside αK

i . When γ is not constant,
one can perform a Taylor expansion of αK

i and the above proof is still valid up to
high order terms which tend to zero with ηK .

Theorem 1.2. The scheme preserves the set of admissible states as soon as the
following CFL condition holds:

max
K ,i

bK
i
1t
|K |

pK ≤ 1. (11)

Proof. To prove this result, we establish that the scheme (8)–(10) can be written as
a convex combination of 1D schemes. These 1D schemes are nothing but the ones
proposed in [7] with a Rusanov flux for the hyperbolic part.

Let Un+1
K ,i be an intermediate state given by such a 1D scheme in the normal

direction to the interface Ai Ai+1 and considering a space length r K . It is therefore
given by

Un+1
K ,i =Un

K ,i −
1t
r K (α

K
i F n

K ,i ·ni −α
K
K F n

K ,K ·ni )−
1t
r K (α

K
i −α

K
K )F(U

n
K ) ·ni

+
bK

i 1t
r K

(
(1−αK

i )+ (1−α
K
K )
)
(R(Un

K )−Un
K ), (12)

where αK
i is given by (9) and αK

K = 1.
According to [7], such a scheme preserves the convex set of admissible states A

under the CFL condition

max
K ,i

(
bK

i
1t
r K

)
≤

1
2
. (13)
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Now, we set

ωK ,i :=
ei
pK
,

so that ωK ,i is positive and

NK∑
i=1

ωK ,i = 1.

Equipped with this choice, we consider the following convex combination of the
1D schemes (12):

NK∑
i=1

ωK ,i Un+1
K ,i =

NK∑
i=1

ωK ,i Un
K ,i −

NK∑
i=1

ωK ,i
1t
r K (α

K
i F n

K ,i · ni −α
K
K F n

K ,K · ni )

−

NK∑
i=1

ωK ,i
1t
r K (α

K
i −α

K
K )F(U

n
K ) · ni

+

NK∑
i=1

ωK ,i
bK

i 1t
r K

(
(1−αK

i )+ (1−α
K
K )
)
(R(Un

K )−Un
K ).

Since
ωK ,i

r K =
ei

|K |
,

this convex combination is nothing but the scheme (8), i.e.,

Un+1
K ,i =

NK∑
i=1

ωK ,i Un+1
K ,i ,

and the choice of r K implies that the CFL condition (13) becomes the condition (11).
Therefore, if all Un

K ∈ A, this condition ensures that all Un+1
K ,i ∈ A and therefore

Un+1
K ∈A since A is convex. �

At this point, the scheme still doesn’t preserve the asymptotic. Hopefully, this
property may be easily recovered in the same way it was enforced in [7]. Indeed,
as mentioned in [7], for any γ such that γ + γ > 0 the scheme (8) may be applied
to the system

∂t U + div(F(U))= (γ + γ )(R(U)−U), (14)

where

R(U)=
γ R(U)+ γU

γ + γ
. (15)
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In fact, this system is equivalent to (1) but using the scheme (8) on it allows one to
consider γ as a free parameter which can be used to recover the asymptotic limit.

The asymptotic limit of the scheme (8) is formally obtained by performing a
Chapmann–Enskog expansion. A small parameter ε is introduced and the following
rescalings are made:

1t←
1t
ε
, γ ←

γ

ε
.

Therefore we have

αK
i ←

εbK
i

εbK
i + (γ

K
i + γ

K
i )r K

, and 1−αK
i ←

(γ K
i + γ

K
i )r

K

εbK
i + (γ

K
i + γ

K
i )r K

.

Using these rescalings in (8), an identification gives:
terms in ε−1:

R(Un
K )= Un

K , (16)

terms in ε0:

Un+1
K =Un

K−
1t
|K |

NK∑
i=1

ei
bK

i

(γ K
i + γ

K
i )r K

[F(Un
K )·ni−F(Un

K )·ni ]
∣∣R(Un

K )=Un
K
. (17)

The parameters γ K
i are then fixed by imposing a given scheme for the diffusion

limit. As examples, we propose two corrections that allow us to recover the classical
two-point flux scheme in the asymptotic regimes of the M1 model for radiative
transfer and Euler system with friction.

Remark. Let us underline that the Chapmann–Enskog expansion is nothing but
a tool to obtain the correct asymptotic limit in the diffusion regime. It has to be
handled with care for other purposes since it assumes that both γ and 1t are large
(with the same order in ε), while the degeneracy is indeed governed by γ t (see for
instance [8]).

However, techniques that avoid rescalings which can be used in the continuous
case (for instance [8]) cannot be extended to the discrete level.

AP correction for the M1 model. In the case of the M1 model for radiative transfer
(5) bK

i = c and the equilibrium (16) gives Fx = Fy = 0 and E = aT 4. The sum of
the first and fourth equations of (17) hence becomes

(ρCv+aT 4)n+1
K = (ρCvT+aT 4)nK+

1t
|K |

NK∑
i=1

cei

2(σ K
m,i + σ

K
i )r K

(
(aT 4)ni −(aT 4)nK

)
.

This scheme is not consistent in general with the equilibrium diffusion equation (7),
but it is possible to choose σ in order to recover the consistency in the diffusive
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limit. For example, if we take

(σ K
m,i + σ

K
i )= σ

K
m,i

3|Di |

2r K ei
> 0, (18)

then the limit scheme in the diffusion regime is

(ρCvT + aT 4)n+1
K

= (ρCvT + aT 4)nK +
1t
|K |

NK∑
i=1

ce2
i

3σ K
i |Di |

(
(aT 4)ni − (aT 4)nK

)
, (19)

which is nothing but the classic FV4 scheme (see [24]) for the diffusion equation (7)
on admissible meshes.

AP correction for Euler equations with friction. Now we consider the case of
Euler equations with friction (2). In this case, the equilibrium (16) gives ρu=ρv=0,
and the first equation of (17) hence becomes

ρn+1
K = ρn

K +
1t
|K |

NK∑
i=1

ei
(bK

i )
2

2(κK
i + κ

K
i )r K

(ρn
i − ρ

n
K ).

Once again, this scheme is not consistent in general with the limit diffusive regime
(4), however it is also possible to choose κ in order to recover the consistency in
this limit. For instance if we take

(κK
i + κ

K
i )=


2κK

i
(bK

i )
2
|Di |

r K ei

ρn
i − ρ

n
K

p(ρn
i )− p(ρn

K )
if ρn

i 6= ρ
n
K ,

2κK
i
(bK

i )
2
|Di |

r K ei p′(ρn
K )

otherwise,
(20)

then the limit scheme in the diffusion regime is

ρn+1
K = ρn

K +
1t
|K |

NK∑
i=1

e2
i

κK
i |Di |

(
p(ρn

i )− p(ρn
K )
)
, (21)

which is consistent with the diffusion equation (4) on admissible meshes since it is
once again nothing but the FV4 scheme in this context.

Remark. It is required for the hyperbolicity of the system that p be an increasing
function of ρ. Therefore, the choice (20) provides positive values for (κK

i + κ
K
i ),

as required in robustness theorems.

2. Extension to more general meshes

When the mesh is not admissible, there is an additional difficulty since the classical
two-point finite volume scheme (also known as FV4 [24]) is not consistent with the
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diffusion equation anymore. The target scheme in the diffusive limit must therefore
properly take into account the whole gradient. For the sake of consistency and
simplicity, we choose to use the same gradient discretization in the hyperbolic part.
Among the possible choices available in the literature, we adopt the diamond scheme
strategy [17], but other strategies could be considered such as DDFV schemes [27;
18] (see also [1; 2; 10; 16]) or hybrid strategies (see [19; 20; 23] and references
therein).

With the diamond scheme to approximate the gradients, it is possible to propose
a natural extension of the scheme for admissible meshes (8)–(10) into the following
generalized scheme:

Un+1
K = Un

i +
1t
|K |

NK∑
i=1

eiα
n
K ,iF

n
K ,i · ni +

1t
|K |

NK∑
i=1

eiα
n
K ,i F(Un

K ) · ni

+
1t
|K |

NK∑
i=1

ei (1−αn
K ,i )b

K
i (R(U

n
K )−Un

K ), (22)

where
F n

K ,i =
1
2(F(U

n
K )+ F(Un

i ))−
1
2 bK

i θ
K
i ∇

K
i Un

K · ni (23)

with θK
i a positive parameter to be specified later and

∇
K
i Un

K · ni =
Un

i −Un
K

2|Di |
ei +

Un
Ai+1
−Un

Ai

2|Di |
d K

i ni · τi , (24)

Un
Ai

being the value of the solution at the node Ai (see Figure 1). This value is
obtained as a mean value of the solution in the cells which share Ai as a node (see
[17]).

With this definition, we immediately see that the scheme for admissible meshes
(8)–(10) is recovered if θK

i = 2|Di |/ei .

Theorem 2.1. Assume that γ K
i = γ > 0 is a constant and θK

i → 0 when ηK → 0.
Then the scheme (22)–(23) is consistent with (1).

Proof. As was pointed in the introduction of the scheme (22)–(23), the only
difference compared to the scheme designed for admissible meshes (8)–(10) lies
in the definition of the discrete gradient in the numerical flux. But if θK

i → 0, this
difference between the two schemes converges to zero when ηK→ 0. Therefore, the
arguments in the proof of Theorem 1.1 can still be applied to obtain the consistency.

�

The preservation of the set of admissible states A is all the more difficult since
most finite volume schemes for parabolic problems do not preserve the maximum
principle. Only a few examples ensure this property [29; 21]. It is therefore expected
that the extension of Theorem 1.2 either does not hold for nonadmissible meshes
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or is very difficult to prove. Interestingly, it is sometimes possible to recover the
maximum principle under some geometric condition on the mesh.

Definition. The mesh is said to be δ-admissible if there exists a constant δ > 0
such that the following property holds:

∀K ∈M, ∀i ∈ [1, NK ], 1+
ei−1d K

i−1

e2
i

|Di |

3|Di − 1|
−

ei+1d K
i+1

e2
i

|Di |

3|Di + 1|
> δ,

where

d K
i = d K

i ni · τi .

Remark. With this definition, an admissible mesh is δ-admissible for all δ≤ 1 since
all d K

i are then equal to 0. While not all meshes are δ-admissible, this condition
turned out to be satisfied by most of the meshes we tested that were generated with
reasonable constraints on the angles.

Equipped with this definition, we can obtain a generalization of Theorem 1.2 for
the scheme (22)–(23) applied on a δ-admissible mesh where the secondary mesh is
made of triangles (e.g., vertex-centered schemes of a triangular mesh).

Theorem 2.2. Assume that the mesh is δ-admissible and that the secondary mesh is
made of triangles. Let us also assume that αK

i is constant inside each cell K ∈M
(αK

i = α
K ) and set θK

i = 2|Di |/δei .
Then, the scheme (22)–(23) preserves the set of admissible states A as long as

the following CFL condition holds:

max
K∈A,i≤NK

{bK
i θ

K
i δ

K
i }
1t
|K |

pK ≤
1
2
. (25)

Proof. We consider here secondary meshes made of triangles. This characteristic
allows us to give a simple expression from the extrapolated solution at the vertices
of the primary mesh (see Figure 1):

UAi =
1
3(UK +Ui +Ui−1).

Then, from the expression of the numerical flux (23), we obtain

NK∑
i=1

eiF n
K ,i · ni =

1
2

NK∑
i=1

ei (F(Un
K )+ F(Un

i )) · ni

−
1
2

NK∑
i=1

ei bK
i θ

K
i

(
Un

i −Un
K

2|Di |
ei +

Un
i+1−Un

K +Un
K −Un

i−1

6|Di |
d K

i

)
.
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Then, summing by parts to reorganize the terms Un
i±1−Un

K into Un
i −Un

K we get

NK∑
i=1

eiF n
K ,i · ni =

1
2

NK∑
i=1

ei (F(Un
K )+ F(Un

i )) · ni −
1
2

NK∑
i=1

ei bK
i θ

K
i δ

K
i (U

n
i −Un

K ),

where

δk
i =

ei

2|Di |
+

ei−1

ei

d K
i−1

6|Di − 1|
−

ei+1

ei

d K
i+1

6|Di + 1|
.

With the choice θK
i = 2|Di |/δei and since the mesh is δ-admissible, we have

θK
i δ

K
i ≥ 1 for all K ∈M and all i ∈ [1, NK ]. Moreover, the numerical flux can be

expressed as

F n
K ,i · ni =

1
2(F(U

n
K )+ F(Un

i )) · ni −
1
2 bK

i θ
K δK

i (U
n
i −Un

K ).

Hence the scheme (22)–(23) can be recast as a convex combination of 1D schemes
as in the proof of Theorem 1.2. These 1D schemes are Rusanov schemes with a
speed of bK

i θ
K
i d K

i ≥ bK
i from which the CFL condition follows:

max
K∈A,i≤NK

{bK
i θ

K
i δ

K
i }
1t
|K |

pK ≤
1
2
. �

Remark. We have several comments concerning this theorem:
• The choice of θK

i tends to 0 when ηK → 0 as it was requested for the sake of
consistency.

• A similar theorem may be obtained on more general meshes. However, the
geometric condition (equivalent to the definition of δ-admissible meshes above)
quickly becomes cumbersome.

• The main restriction is to consider αK
i that are constant per cell. As one can

guess from the αK
i chosen to obtain AP schemes in the previous section, it is

not always possible to select a correction γ K
i such that γ K

i +γ
K

i > 0 and does
not depend on i .

• Other choices of θK
i allow one to recover the same result. For instance, one

can consider θK
i =maxi≤NK 2|Di |/2δ.

The scheme (22)–(23) is also not asymptotic preserving in general but the
procedure previously used can still be considered in order to recover this property.
Indeed, a formal Chapmann–Enskog expansion will lead to the same two relations
(16) and (17). Of course, in the last relation, the numerical flux is given by (23).
Now, the correction is once again illustrated in the example of the M1 model for
radiative transfer and Euler equations with friction. The objective is to recover an
extension of the schemes obtained in the diffusive limit in the case of admissible
meshes.
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AP correction for the M1 model. We first consider the M1 model for radiative
transfer (5). We recall that in this case bK

i = c and the equilibrium (16) gives
Fx = Fy = 0 and E = aT 4. The sum of the first and fourth equations of (17)–(23)
hence becomes

(ρCv + aT 4)n+1
K = (ρCvT + aT 4)nK +

1t
|K |

NK∑
i=1

c2ei

2(σ K
m,i + σ

K
i )r K

∇
K
i (aT 4)n.

Once again, this scheme is not consistent in general with the equilibrium diffusion
equation (7) but it is possible to choose σ in order to recover the consistency in the
diffusive limit. For example, if we take

(σ K
m,i + σ

K
i )= σ

K
m,i

3cθK
i

2r K > 0, (26)

then the limit scheme in the diffusion regime is

(ρCvT + aT 4)n+1
K = (ρCvT + aT 4)nK +

1t
|K |

NK∑
i=1

cei

3σ K
i
∇

K
i (aT 4)ni ,

which is consistent with the diffusion equation (7) and a clear extension of (19).
Moreover, if σ is a constant and θK

i = θ
K then σ K

i = σ
K and Theorem 2.2 can

be applied. In order to meet such a requirement, one may choose the form of θK
i

already mentioned earlier: θK
i =maxi≤NK

2|Di |

2δ
.

AP correction for Euler equations with friction. If we consider Euler equations
with friction (2), the equilibrium (16) gives ρu = ρv = 0 and the first equation of
(17)–(23) hence becomes

ρn+1
K = ρn

K +
1t
|K |

NK∑
i=1

ei
(bK

i )
2θK

i

2(κK
i + κ

K
i )r K

∇
K
i ρ

n
· ni .

As previously, this scheme is not consistent in general with the limit diffusive
regime (4), however it is possible to choose κ in order to recover the consistency in
this limit. For instance if we take

(κK
i + κ

K
i )= 2κK

i
(bK

i )
2θK

i

r K

∇
K
i ρ

n
· ni

∇
K
i p(ρn) · ni

, (27)

then the limit scheme in the diffusion regime is

ρn+1
K = ρn

K +
1t
|K |

NK∑
i=1

ei

κK
i
∇

K
i p(ρn) · ni ,

which is consistent with the diffusion equation (4) and a direct extension of (21).
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Remark. The choice (27) also provides positive values for (κK
i + κ

K
i ) since p is

required to be an increasing function of ρ for the sake of hyperbolicity.
However, this choice generates an αK

i which is not constant per cell and therefore,
Theorem 2.2 cannot be applied here.

3. Numerical results

Validation tests. Validation tests are performed in this subsection in order to il-
lustrate the behavior of the scheme. All tests share this same setup: a Riemann
problem for the M1 model for radiative transfer is considered on the rectangular
domain [0, 5]× [0, 1], with

(E, Fx , Fy, T )>(0, x)=
{
(aT 4

L , c fx,LaT 4
L , 0, TL)

> if x < 1,
(aT 4

R, 0, 0, TR)
> otherwise.

In the following, TL = 10000, TR = 300 and fx,L = 0 unless otherwise specified
and ρCv = 10−2. We also recall that c = 3× 108.

All tests are performed at least with σ = 0 and σ = 1. Indeed, when σ = 0, the
model turns out to be a hyperbolic system and the preservation of admissible states
is expected to be more difficult than in the presence of the (regularizing) source
term.

The end times of the simulations are t = 2× 10−9 when σ = 0 and t = 1× 10−8

when σ = 1.
The approximate solutions are computed on two different meshes: a coarse one

(5152 triangles) and a fine one (132 006 triangles). Both are δ-admissible and their
optimal values of δ are δ1 = 1.095 for the coarse grid and δ2 = 5.599× 10−2 for
the fine one.

In practice, these meshes would be called “very coarse” and “coarse”, since there
are only respectively 35 and 160 cells in the x direction. These choices are made in
order to easily visualize the errors made by the schemes on the graphs.

Finally, the solutions are compared to reference solutions. When σ = 0, the
reference solution is the exact solution of the corresponding 1D Riemann problem
(see [30]). When σ 6= 0, the exact solution is not available so the reference solution
is given by the grid-converged 1D asymptotic-preserving scheme described in [7].

Figure 2 shows the computed solutions along x = 1
2 compared with the exact

solution in the case σ = 0. Here, the conservation of admissible states is enforced
by using θK

i =maxi≤NK 2|Di |/2δ where δ = δ1 on the coarse mesh and δ2 on the
fine one. The solution computed on the coarse grid is comparable to a 1D Rusanov
scheme with a similar number of cells. On the other hand, since δ2 � δ1, the
numerical diffusion of the scheme is much larger on the fine mesh than on the
coarse one. As a consequence, the approximation is better on the coarse grid in this
case.
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Figure 2. Exact and computed solutions along x = 1
2 with σ = 0. Top: E . Bottom: F .

Now, if we set δ = δ1 on the fine mesh, the quality of the approximation behaves
as expected, i.e., the approximation is better on the fine grid (see Figure 3). Here,
even if the condition required to preserve the set of admissible states is violated,
the setup is not stiff enough to beget unphysical values in the scheme.

The same conclusions can be drawn when σ =1 (see Figure 4), though the overall
quality of the scheme is better than when σ = 0. Indeed, the scheme is designed
to recover the diamond scheme in the limit, which is a better approximation of
the equilibrium diffusion equation than the Rusanov scheme for the hyperbolic
part. This is particularly true when θK

i is large. Therefore, the quality of the
approximation is expected to increase with σ .

Finally, the asymptotic-preserving property is clarified through a last validation ex-
ample. This time, we fix σ =1000 and t=2×10−9 and the results shown in Figure 5
are compared with a grid-converged 1D approximation of the equilibrium diffusion
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Figure 3. Reference and computed solutions along x = 1
2 with σ = 0 and δ = δ1.
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Figure 4. Reference and computed solutions along x = 1
2 with σ = 1. Top: optimal choice

of δ to enforce the preservation of A. Bottom: same choice of δ for both schemes.
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x

Figure 5. Reference and computed solutions with and without AP correction along x = 1
2

with σ = 1000. Top: E . Bottom: T .

equation. The tests are performed with and without the asymptotic-preserving
correction on the fine grid to see the impact of the asymptotic preservation. We
immediately see that with the AP correction, the scheme provides an approximation
which is nearly indistinguishable from the reference solution. On the other hand, as
expected, if the AP correction is turned off (i.e., γ K =0), there is a large discrepancy
between the computed and reference solutions.

Radiative flow in a channel. In this subsection, a test case involving the evolution
of radiation in a channel with multiple obstacles is performed. The setup is the
following (see Figure 6). The entry condition on the left side of the channel models
a beam of high energy (FL = cEL = c a× 1016) compared to the initial state of the
domain (F0 = 0, E0 = a× 104). The opacity σ is set to 1 and the M1 model for
radiative transfer is used. Moreover, 11 obstacles (with wall boundary conditions)
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Figure 6. Mesh used for the radiative flow in a channel.

are scattered in the channel. A vertex-centered approached was used on a mesh
consisting of 15348 cells refined near the obstacles.

Results for the energy E and Eddington’s factor χ at time t = 10−7 are shown
on Figure 7. Let us emphasize that this case is numerically very challenging and
that it is all the more critical to preserve the set of admissible states here since very
small numerical errors may yield negative values for E or values of F > cE , which
immediately cause the code to crash. Indeed, several values of θK

i were tested in
order to investigate the optimality of the conditions in Theorem 2.2 and even a
value 5% larger than the choice stated in the theorem produces inadmissible results.
In this sense, it seems that the condition of Theorem 2.2 is optimal.

Optimization and parallelization. Let us conclude this work with a few words on
the implementation of the scheme. First, in order to reduce the distance between a
given element of the mesh and its neighbors, a renumbering procedure should be
considered. We used a classic Reverse Cuthill–McKee procedure as preprocessing.
Since it greatly reduces the L2 data cache misses, a significant gain may be observed.
As an example, on the mesh used in the previous simulation, the code ran for 293 s
without the renumbering and 235 s when renumbering was activated. This time
included the Cuthill–McKee algorithm, so the gain is even better if another run is
made on the same mesh.

Figure 7. Radiative flow in a channel. Top: E . Bottom: χ .
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Figure 8. Scalability of the code.

Furthermore, since the scheme is explicit, the updates of the unknowns are
independent from one another. Therefore, it is quite straightforward to parallelize
the algorithm using OpenMP instructions (see http://openmp.org). On the one hand,
such a strategy isn’t suitable for massively parallel computations, but on the other
hand it is very efficient on shared memory units and hence well adapted to multicore
processors which are nowadays very common, even on personal computers. All
the computations described above were run on a hexacore biprocessor node and a
speed-up of 10 was obtained using all 12 cores of the machine. Figure 8 shows the
scalability of the code on an example.

Finally, as it is classical for finite volume schemes, a loop on the edges is used
(rather than on the elements for instance). In order to optimize the balance of work
asked of each thread, we used an edge-based domain decomposition. This choice
may save 20% or more time compared with an element domain decomposition
since the number of edges per element is not constant. Table 1 shows the impact of
such a choice on a representative example. Here, thread 6 has roughly 25% more
work to do than thread 11.

T
hr

ea
d elmt-based dec. edge-based dec.

T
hr

ea
d elmt-based dec. edge-based dec.

# elmts # edges # elmts # edges # elmts # edges # elmts # edges

0 5550 33879 5492 33303 6 5550 37032 4967 33301
1 5550 34713 5293 33303 7 5550 35200 5197 33304
2 5551 31906 5806 33301 8 5551 33475 5461 33300
3 5550 34391 5378 33300 9 5550 31999 5715 33305
4 5550 32865 5588 33304 10 5550 30538 6004 33299
5 5551 34282 5448 33299 11 5551 29338 6285 33299

Table 1. Impact of the domain decomposition strategy: element-based decomposition
versus edge-based decomposition.

http://openmp.org
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