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PHILLIP COLELLA AND ELI ATELJEVICH

We present an algorithm to produce the necessary geometric information for finite
volume calculations in the context of Cartesian grids with embedded boundaries.
Given an order of accuracy for the overall calculation, we show what accuracy is
required for each of the geometric quantities and we demonstrate how to calculate
the moments using the divergence theorem. We demonstrate that, for a known
flux, these moments can be used to create a flux divergence of the expected order.

1. Introduction

This work is motivated by the desire to solve partial differential equations (PDEs)
conservatively in the context of complex geometries. As an example, consider
Poisson’s equation. Given a charge density p, Poisson’s equation can be written as

V-(Vo)=p ey

for the potential ¢. If we integrate this equation over a control volume €2 and apply
the divergence theorem, this becomes

/ V¢-ﬁdA=/,odV,
Q2 Q

where 7 is the outward-facing unit normal to the surface. Our volumes are Cartesian
cells cut by an embedded boundary. Refer to Figure 1 for an illustration. We refer
to the unshaded region as the “volume”. The boundaries of the volume aligned to
coordinate directions that connect to other volumes we refer to as “faces”. We refer
to the section of the embedded boundary that cuts the volume as the “EB face”.
Formally, the underlying description of space is given by rectangular control
volumes on a Cartesian mesh Y; = [(i — %u)h, i+ %u)h], i € ZP, where D
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Figure 1. Illustration of cut cell notation. The shaded region is outside the solution domain.
The volume v is connected to other volumes via the faces aligned with the coordinate
planes. The EB face is formed by the intersection of the embedded boundary and the cell.

is the dimensionality of the problem, % is the mesh spacing, and u is the vector
whose entries are all one (note we use bold font u = (uy,...,uq,...,up) to
indicate a vector quantity). Given an irregular domain €2, we obtain control volumes
Vi =7; N2 and faces A; 4+ = Ajie,/2, Which are the intersection of the boundary
of dV; with the coordinate planes {x : x; = (iy £ %)h} (ey4 1s the unit vector in
the d direction). We also define A ; to be the intersection of the boundary of the
irregular domain with the Cartesian control volume: Ap ; = 02N Y;. From here
on, the subscript i is implied as the analysis applies to any given volume V;.

Given a flux F (in the case of the Poisson equation (1), F = V¢), we can rewrite
the volume integral of the divergence of F as an integral over each face in the
volume:

D

/v-mzv:Z(/ FddA—[ FddA+/ Fdnd(x)dA>, )
14 d=1 Agt Ag- Ap

where we define n4(x) to be the d-th component of the outward-facing unit normal to

the EB face. The accuracy with which one computes the integrals above will depend

on the accuracy of the geometric description of the volume and its associated faces.
Throughout this paper, we use the following compact “multi-index” notation:

D
(@ —5)? = [(xa — %)™,

d=1
D
p!=]]ra"
d=1

Given a point in space ¥ and a D-dimensional integer vector p, we define m? (x)
to be the p-th moment of the volume V relative to the point x:

mg(fc)zf(x—f)l’ dv. 3)
1%
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Clearly, the volume of the cut cell |V | = m?%, where z is the zero vector. We define
the face moments m s 4 (%) to be the p-th moments (relative to the point x) of the
faces Ag+:

mh ()= x-xPdA. “4)
Ag+
We define two moments corresponding to the embedded boundary face Ap:

mb(x)= [ (x—x)PdA, 5)
Ap

my (%) = : (x —X)Png(x)dA. (6)

Note that (6) includes the normal to the embedded boundary face.
Given a sufficiently smooth function v, we can approximate i in the neighbor-
hood of x using a multidimensional Taylor expansion:

1
y@ =) —vP®E -5+ 009 @)
lgl<Q *

with the multi-index partial derivative notation

041 04p
@99y = — ... 4. 8
v V=T T ()

We express averages over volumes as

1
V-F)y = — V-F)dV.
(V. F)y |V|/V( )

We define the volume fraction « to be fraction of the volume of the cell inside the
solution domain so that
Kk =h"P\V|=h"Pm?. 9)

Given a flux function F, the k-weighted divergence of the flux is defined to be
the volume average of the divergence multiplied by «:

1
K(V-F)V:h—D/VV-FdV
D

1
= h_D[;(_/;;H Fd(x)dA_/Ad Fy(x) dA+/AB Fd(x)nd(x)dA). (10)

We weigh the conservative divergence this way to avoid small-x numerical instabil-
ities. For example, implicit algorithms for Poisson’s equation (1) solve the discrete
system

k(V-Vo)y =r{p)v
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for ¢ [9; 17], which avoids very large negative eigenvalues from terms with « !
Since « is only a diagonal scaling, the accuracy of the method is primarily dependent
on the accuracy of the discretization of (V - V).

Explicit algorithms for hyperbolic systems with flux F may use a hybrid operator
that is a linear combination of a conservative discretization for «(V - F) and a
nonconservative (not in flux-divergence form) but stable approximation of V - F
to advance the solution. The loss of conservation for this hybrid operator can
be calculated and redistributed to neighboring cells so that the overall scheme is
globally conservative [2; 6; 3; 8; 14; 13]. Suppose we have KDC(F), an O(h")
conservative discretization of «V - F. Suppose we also have DNC(F), an O(h")
nonconservative discretization of V- F, 1.e.,

DNC(F)=V.-F+0(@"),

kDC(F)=«V-F+ 0(h").
The hybrid operator D (F) is given by

DY (F) =k DE(F) — (1 —k)DNC(F)
=V.-F+0h"),
and the resulting loss of conservation in each cell is given by
8§ =k DE(F) — k D(F)
= k(1 —k)(D°(F) — DNC(F)) = O(h"),

where for stability arguments § must be redistributed in a x-weighted way [3; 8].
This is of the order of the truncation error so that the accuracy of the method only
depends on the accuracy of the two discretizations of the flux divergence. We wish
to investigate what accuracy is necessary for the moment calculations to achieve a
given order of accuracy in x DE(F).

Embedded boundaries have been used in a wide variety of applications, and
several different grid generation techniques have emerged. In an early paper in the
field, Pember et al. [16] use a piecewise-planar approximation for grid generation for
solutions of inviscid, polytropic gas dynamics. Aftosmis et al. [1] use triangulation
to generate grids for a wide variety of extremely complex geometries; their software
is still widely used. Singh et al. [18] use triangulation to reconstruct moving
boundaries. The embedded boundary algorithms in [3; 8; 14; 13] use a second-
order, implicit function—based approach. Miller et al. [12] use a time-dependent,
second-order implicit function approach to cut four-dimensional cells to generate
moving geometries. Sussman and Puckett [19] use piecewise-planar volume of
fluid reconstruction in their incompressible flow algorithm. Nourgaliev et al. [15]
and Marella et al. [11] use a piecewise-linear reconstruction in their sharp interface
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methods. All these algorithms use piecewise-planar approximations to the cutting
surface to generate geometric information. These algorithms are first order in D (F)
(second-order fluxes), so second-order geometric information is accurate enough
for their purposes. In the graphics and computational geometry community, there
has been a substantial amount of work done in geometric moment computation
using the divergence theorem. Yang et al. [20] use the divergence theorem to
compute geometric moments for image analysis. Gonzalez-Ochoa et al. [7] have
a fast divergence theorem—based moment algorithm specialized for surfaces that
are described as polynomials. These algorithms are highly focused on reducing
computational complexity, and though their accuracy is measured for a particular
refinement, no concern is given to the algorithms’ convergence rate with grid
refinement. The current work is intended to be a careful exploration of the required
accuracy for geometric moments in the context of embedded boundary calculations
using higher-order finite volume methods.

2. Accuracy of the discrete divergence

Given an order of accuracy Q, suppose we can approximate F to O (h9). If we
expand F in (2) using (7), we get

D
f(V-F)dV: > Z%Féq)(fc)( (x—%)1dA— [ (x—-%)TdA
14 Agy

lgl<Q d=1 "~
+/ (x—ic)qnd(x)dA) + OhetP-1y,
Ap

The accuracy of the expression is O (h2+P~1) because it is an O (h<) Taylor series
integrated over an area of order hP-1, Using our moment definitions ((4) and (6)),

D
(R .
/(V-F)a’V: Yo D = EP @ (mh, —mh_+mb )+ 0RCTPTh. ()
V .
lql<Q d=1

Now suppose we can discretize each moment to O (h%). We define our discrete
moments as

Mg:/V(x—)'c)qu+0(hR):m‘5+O(hR), (12)
M= [ -pda+on®) =, + 00", (13)
M}, = ’ (x —X)ngdA+Oh®)=mY ,+ 0h"), (14)
Mi=| (x—-x%)1dA+O0h®) =mh+0n"). (15)

Ap
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We take these moment definitions and put them into (11) to get our discrete, «-
weighted average divergence of the flux:

D
! U@ =y (g g q
KD(F)i =5 > Equ *)(M], —M]_+M} )
lgl<Qd=1 7"
=«k(V-F)y+0h%H+0mR"D). (16)
The first error term is from (11), and the second is from (13) and (14); both have
been divided by the full cell volume, #”. So if one desires a weighted divergence of

accuracy O (h"), one needs fluxes approximated to accuracy O (h<) and moments
approximated to accuracy O (hR), where

Q=P+1,
R=P+D.

(17)

3. Algorithm

Consider a volume V at cell i (see Figure 1), and let X be some point in cell i. We
may choose X as the origin of our coordinate system so that ||x — x| = O (h) for
any point x in V. In the following derivation, we will set x = 0 without loss of
generality.

In (2), if we choose F = x%e,, we get D equations of the form

qd/xq_eddV=/ quA—/ quA—i—/ xingdA.
Vv Aa’+ Aa', AB

Recall that the normal to the embedded boundary is a function of space n(x), so
we assume that we can expand this last integral using a Taylor series of n about
X = 0 to an appropriate order of accuracy S:

1

/ xing(x)dA= " ;asnd(O)mg“JrO(h‘q'w*s*l). (18)

Ap .
Is|<S

The advantage of this expansion is that m g does not include n;(x) in the integrand.
Combining and moving the first term of the Taylor series to the left-hand side,
we have

gam?= —nq(0)m%
1
=ml, —mi_+ ;asnd(O)mj’;s+0(h"1'+D+S*1). (19)
O<|s|<S =~

Note that, for higher-order moments, we need fewer terms in the Taylor series
for the normal to obtain a truncation error of O (k%) because the truncation error
depends on |q| + S. In particular, if |g| = Q, (17) shows that we only need S =0,
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0. Compute all derivatives of the normal, 9*n, (see Section 3.2).

1. Compute one-dimensional moments M 3/,1 using root-finding and integration.
2. Irregular one-dimensional moments M 73,1 are Zero.

3. Loop through other dimensions as follows:

for (D =2, 3)
for (Igl={Q,0—1,...,0}
Set p:
and +s
P:MZ+,D—1 d p1t Z | MgD

1<|s|<S
Solve for ML 7% and M2 .: !
V.D B.D

qaMy, = naM} 5 =p.

end loop over moments
end loop over dimensions

Figure 2. Outline of the moment algorithm. The second subscript of the moments refers
to dimensionality (M Up 5 refers to the three-dimensional MP  for example).

and the third term on the right-hand side drops out. Also, notice that mZ, 4 and mfi_
are integrals of lower dimension.

We drop the truncation error term in (19) and define the approximate moments
(MY, etc.) using the set of equations

_ 1 N
qaMI~* —ngO)ME =Ml —MI_+ Y Easnd(O)Mg S (20)

1<|s|<S

If the moments on the left are treated as unknowns and the moments on the right
are treated as known, then this set of equations forms a system of linear equations
for a fixed |q|. The key to the algorithm is to compute the moments in an order that
assures the quantities on the right are known. In particular, we compute the moments
in lower dimensions first and use them as known quantities in the equation for higher
dimension. For a given dimension, we generate moments in order of decreasing |q|
starting with |g| = Q. Because the third term on the right-hand side of (20) depends
on moments with orders |q|+1, ..., Q, the procedure guarantees that term is known.
The algorithm can also be described as a recursion as shown by Ligocki et al. [10]
(the conference paper associated with this work). Figure 2 shows an outline of the
algorithm. The number of unknowns is Nj4_1 + Nj4|, where N4 is the number of
monomials of degree |g|. (One can think of N}, as the length of the |g|-th row of
the Pascal’s triangle formed by the moments.) The number of equations is DN4|.
Since Nj4i—1 < Njq), this is an overdetermined system that can be solved using least
squares. The normal and all its derivatives are computed as shown in Section 3.2.
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Figure 3. Illustration of an under-resolved geometry. When the curvature of the implicit
function is too great to be resolved, we refine locally and sum the finer moments to compute
the under-resolved cell’s moments.

3.1. Under-resolved geometry. Note that the above algorithm can fail in the case
of an under-resolved geometry. If the curvature of the implicit function is too high,
the situation shown in Figure 3 can result. To resolve this, we refine the grid locally
until the implicit function is resolved. We use the divergence of the normal as a
measure for under-resolution. Given a tolerance ¢, if D(n) > € at volume v and
the set of finer volumes § = {v ¢} that compose the volume v, we get the equation

m, = E my,.

vyre S
If the geometry is not smooth enough to be resolved, a maximum level of resolution
is defined. This paper is primarily concerned with convergence rates. Convergence

tests require smooth, resolved geometries, so none of the geometries presented in
this paper need this refinement.

3.2. Calculation of derivatives of the normal using an implicit function. Our
geometry is defined as the zero set of an implicit function 1 (x), the zero level set
of which is the embedded boundary. The normal 7 of the embedded boundary is
defined as

n=—,
L
where L = |V/|. For the d-th component of the normal, the multi-index product
rule can be used for higher partial derivatives p of the quantity ¥ ¢/ = Lng:

w(P‘H«'d) — 3Pw(¢‘d)
= 0P (Lny)

- Z(fl’)al’—qqud.
q<p
Note that the left-hand side is a known value from the implicit function. On the

right-hand side, we have unknown derivatives of L and n;. We can rewrite to
express the highest normal derivative as

LoPng=yPred — %" (fl’)al’—qLaqnd.
q<p. 9#p
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Next, we will evaluate the derivatives of L. To find a recursion formula, we first
apply the chain rule to d L

09 L2 =0y (y)?,
d
2L8° L= 2yl lete),
T e
i Yried i
3¢ L = (eq+e")
2

— anw(ed—ke )|
d

Looking at the right-hand side, we have calculated a derivative 3¢ L from ng and
known derivatives of 1. Extending to the case of p > e, we have

BPL = 5P (9 yr) @b
_ apfei Z ndw(edJrei) (22)
d
=32 (f)ornapr ey, whereq=p-e. @3
d r=q

Again, this expresses higher-order derivatives of L in terms of lower-order deriva-
tives of n,y and known derivatives of . The choice of e’ is arbitrary but is such
that all the 0"n, have already been computed. To calculate all the powers needed
in (23), we can choose e’ = e,, calculate the required derivatives for d = 0 first,
then add those with derivatives in d = 1, etc. This guarantees that the requested
derivatives will have already been calculated in the recursion.

4. Results

4.1. Geometric description. Our convergence tests are calculated using a geometry
of an ellipsoid (or an ellipse in two dimensions) centered in a unit domain. The
implicit function, ¥ (x), that defines the ellipsoid is given by

D ixq— X0.d\%2
¥ () ;( o) R
where x is put at the center of the domain. The stretching constant A = {1, 2, 3}
in three dimensions (A = {1, 2} in two dimensions). The constant, R = 0.15, sets
the unexpanded radius of the ellipsoid. The surface of the ellipsoid is described by
the surface where ¥ (x) = 0.
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Variable e2h w el Variable e2h w el

MO 3.405x 10712 7.08 2.525x 10714 PP 2719510710 6.92 2244 x 10712
MM 1330x 1071 630 1.688x 10715 M0 1.802x 10711 6.98 1.426x 10713
MF? 2.028x1071 7.00 1.582x 10710 M$? 2.684% 10712 697 2.143x 10714
MP? 2783x10°15 651 3.052x10°17 MO 1.495x 10713 7.06 1.122x 10715
M*FO 149010715 7.03 1141 x 10717 MY 4426 % 10714 7.00 3.466 x 10716
mMPD 9842510713 7.05 7.402x 10715 MDD 1.634x 10710 7.01 1.266 x 10713
MY 384451071 640 455010716 MY 1.931% 10713 529 4.945% 10715
MFD 604110715 7.02 4.655x 10717 MPD 1.952x 10713 6,97 1.561 x 10715
MPD 8.044x10710 6.61 8225x10°18  MPD 9.528% 10715 7.05 7.168 x 10717
mMP? 1826x10713 7.02 1.411x10°15  M? 6580 % 10713 6.94 5363 x 10715
MM 713210715 663 7.202x 10717 MG? 3.190% 10715 570 6.125% 10717
MF?  4375x10716 576 8.079x 10718 MG 1.459% 10714 7.06 1.094x 10716
MP? 6396x10715 575 1.185x 10710 MP 5994% 10713 7.06 4.493 % 10715
M 5.497x10716 6,13 7.872x 10718 MY 2.194% 10714 676 2.025x 10716
MPY 824210710 676 7.610x 10718 MPY 2.491x 10714 574 4.657x 10716

Table 1. Volume (left) and embedded boundary (right) moment convergence rates for
h = 1/128 using the L norm in two dimensions. The implicit function is an ellipse
described in Section 4.1.

4.2. Moment convergence tests. 'To test the convergence rate of the moments, we
use Richardson extrapolation, which means that the exact solution on a finer level
of refinement is used as an exact solution. Since we are dealing with integrals, the
coarsening operation is simple addition. Define A”~2" to be the operator to get the
exact solution on the coarse level from the fine solution. Given S, the set of fine
volumes that cover a coarse volume i,

Ah—)Zh(M)i — Z Mif-
ireSy

M, is defined to be our solution on a grid with resolution /. For an exact solution m®,
we use m$;, = A2 (M) and the error is given by

e =M"(@t) —m°(1). (24)
The order of convergence @ is estimated by
1 2h h
o — og(lle™[I/1l€™ D) 25)

log(2)
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Variable e2h w el Variable e2h w el
MO0 7744 510713 573 1461 x 10714 MPOD 332910717 7.54 1.789 x 1019
MY 6130 x 10715 675 5706 x 1017 MPED 157710715 7.87 6.745x 10718
MP%0 9836x 10716 7.89 4.153x 10718 m{ED 1173 % 10716 7.97 4.682 % 10719
M0 1006 x 10716 7.84 4.773x 10710 MZED 1.845% 10717 775 8.553 x 10720
M*00 593610717 7.98 2.356x 10710 MPED 1314% 10716 7.59 6.834 x 10719
MOLO 5449 x 10714 6.44 6.281x 10716 p{2D 1383 % 10717 772 6.545 x 10720
MY 113210715 777 5078 x 10718 MY 1338 % 10717 7.26 8.748 x 10720
ML 1761 x 10716 8.11 6.382x 10710 M P02 1036 x 10714 7.61 5.304 x 10~17
ML 3908 x 10717 7.87 1.672x 10710 M{0? 4254 % 10716 7.53 2.306 x 1018
M2 4901 x 10715 7.95 1.985x 10°17  m>%? 2390 x 10717 7.40 1.414 x 10719
M2 330110716 7.87 1.412x 10718 pO12 1772 % 10716 7.98 7.008 x 1019
MP?Y 3225510717 774 1.505x 10712 MEPD 1369 x 10717 8.02 5.263 x 10720
M0 4400 x 10716 770 2.114x 10718 %22 1307 x 10717 7.41 7.664 x 10720
M0 2666 x 10717 7.61 1.367x 10710 pP03 5003 % 10716 7.45 2.913 x 1018
MO0 2817 %1077 7.66 1.393x 10710 M0 2115%x 10717 7.52 1.156 x 10719
MO 1570 x 10714 7.04 1.196 x 10716 1D 1376 x 10717 7.67 6.749 x 10720
MO 2987510716 750 1.654 x 10°18  pr 0P 2250 %1017 7.43 1.310 % 10719
M"Y 3498 x 10710 7.96 1.408 x 10718

Table 2. Volume moment convergence rates for # = 1/128 using the Lo norm in three
dimensions. The implicit function is the ellipsoid described in Section 4.1.

We set P =35, so in two dimensions, we expect all the moments to converge to order
hP+P=7_Table 1 shows these two-dimensional results, and we show the expected
convergence, even using the L., norm. In three dimensions, we expect (with P =35)
the moments to all converge to O (h®). Tables 2 and 3 show these three-dimensional
results, and we show the expected convergence, also using the L., norm.

4.3. Flux divergence convergence tests. We use an analytic function as a flux
function F = Vi, where

D
¥ =[] cos@r(xa = x0.4)),
d=1
where x is the center of the domain. We set P = 4 and compute DX using (16). In
both two and three dimensions, we get the expected rates of convergence. Near the
embedded boundary, we get third-order convergence, and away from the irregular
boundary, we get fourth-order. Table 4 shows the O(3, 3.5, 4) rates that one would
expect in the L, L», and L| norms.
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Variable e2h (2] eh Variable e2h @ el
MPC0 168710710 444 7790 x 10712 MOV 8564 10716 820 2.906 x 10718
MP*Y 3121 % 10712 6.66 3.089x 10714 M 120010713 6.00 1.873 x 10713
MG 170510713 7.46 9.697x 10716 M1 D 520110715 8.10 1.896 x 10717
MG*Y 1612x 1071 7.94 6.575x 10717 MY 404310716 7.47 2285 10718
MO0 2.437x10715 8.02 9.407x 10718 M2D 9650 10715 722 6.470 x 10717
MO 104110711 497 3315x10713 MY>D 5686x 10710 8.06 2.132x 10718
MG 1111x 1071 632 1386 x 10715 M$>D 486110716 7.11 3.521x 10718
MGY 7297x 10715 7.93 2.997x 10717 M OP 382910713 7.54 2.057 x 10715
M"Y 4923 %1016 7.50 2561 x 10718 M 0P 1190 10714 7.96 4.786 x 10717
MP*0 5984 %1071 569 1.157x 10714 MGOP 112710715 8.13 4.031 x 107!8
MG*0 8115x 10715 7.41 477910717 MP? 500510715 7.82 2.606 x 10717
MG>Y 9.585x 10716 7.80 4.315x 10718 M 1P 410410716 7.85 1.778 x 10718
MP>0 24511071 6.54 2.637x 10716 M$3P 5064 10716 771 2.856 x 10718
M0 1,044 10715 7.87 4472x 10718 mMPOP 415010714 7.63 2.096 x 10716
MG 1.820x 10715 7.70 8776 x 10718 M"Y 153010715 771 7.299 x 10718
MPOD 9220510712 776 42511071 M$D 7425510716 7.76 3423 % 10718
MG 720710714 7.99 2.868x 10716 MOP 226310715 754 1216 x 10717
MG 1618 x 10714 7.80 7.266 x 10717

Table 3. Embedded boundary moment convergence rates for # = 1/128 using the Lo
norm in three dimensions. The implicit function is the ellipsoid described in Section 4.1.

5. Conclusions

Given a desired order of accuracy, we present analysis which shows the accuracy
required for the geometric moments in the context of Cartesian grids with embedded

D Norm e2h w el

2 Ls 8.839x107° 298 1.122x107°
2 L;  1512x1077 396 9.728 x 10~
2 L, 7424x1077 345 6.772x 1078
3 Lo 2287x1077 298 2.898x107°
3 Ly 2663x1077 398 1.685x 1078
3 L, 1.225x107% 349 1.094x 1077

Table 4. Convergence results for the error in the divergence of an analytical flux (DK (F))
(described in the text) in two and three dimensions for 7 = 1/128 (eh is the error for
h=1/128; €2" is the error for h = 1/64).
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boundaries. We demonstrate using convergence tests that our moments are calculated
to the expected order and that, for a known flux, these moments can be used to
create a flux divergence of the expected order. This work provides the foundation
for higher-order finite volume, embedded boundary methods.
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