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We present a numerical method to compute expectations of functionals of a
piecewise deterministic Markov process. We discuss time dependent functionals
as well as deterministic time horizon problems. Our approach is based on the
quantization of an underlying discrete-time Markov chain. We obtain bounds
for the rate of convergence of the algorithm. The approximation we propose is
easily computable and is flexible with respect to some of the parameters defining
the problem. An example illustrates the paper.

1. Introduction 63
2. Definitions and assumptions 67
3. Expectation 71
4. Approximation scheme 74
5. Time-dependent functionals 78
6. Numerical results 89
7. Conclusion 97
Appendix A. Lipschitz continuity of F, G and v, 97
Appendix B. Relaxed assumption on the running cost function 101
Appendix C. Proof of Theorem 4.5 103
Acknowledgements 103
References 104

1. Introduction

The aim of this paper is to propose a practical numerical method to approximate
some expectations related to a piecewise deterministic Markov process thanks to
the quantization of a discrete-time Markov chain naturally embedded within the
continuous-time process.

Piecewise deterministic Markov processes (PDMP’s) have been introduced by
M. H. A. Davis in [5] as a general class of stochastic models. PDMP’s are a
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family of Markov processes involving deterministic motion punctuated by random
jumps. The motion depends on three local characteristics namely the flow ®, the
jump rate A and the transition measure Q, which specifies the postjump location.
Starting from the point x, the motion of the process follows the flow ®(x, ¢) until
the first jump time 77, which occurs either spontaneously in a Poisson-like fashion
with rate A(P(x, 7)) or when the flow ®(x,¢) hits the boundary of the state space.
In either case, the location of the process at the jump time 77 is selected by the
transition measure Q(®(x, 7T7),-) and the motion restarts from this new point X7,
denoted by Z{. We define similarly the time S, until the next jump, 75 = 77 + 53
with the next postjump location defined by Z, = X7, and so on. Thus, associated
to the PDMP we have the discrete-time Markov chain (Z, S,)nen, given by the
postjump locations and the interjump times. A suitable choice of the state space
and the local characteristics ®, A and Q provides stochastic models covering a
great number of problems of operations research as described in [5, Section 33].
We are interested in the approximation of expectations of the form

TN N
E, [/0 [(Xy)dt + Z C(XT]._)IL{XTJ,—EE)E}:|

ji=1

where (X;);>¢ is a PDMP and / and ¢ are some nonnegative, real-valued, bounded
functions and dE is the boundary of the domain. Such expectations are discussed
by M. H. A. Davis in [5, Chapter 3]. They often appear as cost or reward functions
in optimization problems. The first term is referred to as the running cost while
the second may be called the boundary jump cost. Besides, they are quite general
since Davis shows how a “wide variety of apparently different functionals” can be
obtained from the above specific form. For example, this wide variety includes
quantities such as a mean exit time and even, for any fixed # > 0, the distribution
of X; (that is, Ex[1r(X;)] where F is a measurable set).

There are surprisingly few works in the literature devoted to the actual computa-
tion of such expectations, using other means than direct Monte Carlo simulations.
Davis showed that these expectations satisfy integrodifferential equations. How-
ever, the set of partial differential equations that is obtained is unusual. Roughly
speaking, these differential equations are basically transport equations with a non-
constant velocity and they are coupled by the boundary conditions and by some
integral terms involving kernels that are derived from the properties of the underly-
ing stochastic process. The main difficulty comes from the fact that the domains on
which the equations have to be solved vary from one equation to another making
their numerical resolution highly problem specific. Another similar approach has
been recently investigated in [4; 7]. It is based on a discretization of the Chapman
Kolmogorov equations satisfied by the distribution of the process (X;);>o. The
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authors propose an approximation of such expectations based on finite volume
methods. Unfortunately, their method is only valid if there are no jumps at the
boundary. Our approach is completely different and does not rely on differential
equations, but on the fact that such expectations can be computed by iterating
an integral operator G. This operator only involves the embedded Markov chain
(Zn, Sn)nen and conditional expectations. It is therefore natural to propose a com-
putational method based on the quantization of this Markov chain, following the
same idea as [6].

There exists an extensive literature on quantization methods for random vari-
ables and processes. The interested reader may for instance consult [8], [9] and
the references within. Quantization methods have been developed recently in nu-
merical probability or optimal stochastic control with applications in finance (see
[1; 2; 9], for instance). The quantization of a random variable X consists in finding
a finite grid such that the projection X of X on this grid minimizes some L? norm
of the difference X — X.. Roughly speaking, such a grid will have more points in the
areas of high density of X. As explained for instance in [9, Section 3], under some
Lipschitz-continuity conditions, bounds for the rate of convergence of functionals
of the quantized process towards the original process are available.

In the present work, we develop a numerical method to compute expectations
of functionals of the above form where the cost functions / and ¢ satisfy some
Lipschitz-continuity conditions. We first recall the results presented by Davis ac-
cording to whom, the above expectation may be computed by iterating an operator
denoted by G. Consequently, it appears natural to follow the idea developed in [6]
namely to express the operator G in terms of the underlying discrete-time Markov
chain (Z,, Sn)nen and to replace it by its quantized approximation. Moreover, in
order to prove the convergence of our algorithm, we replace the indicator function
1y x,— ek} contained within the functional by some Lipschitz continuous approx-
imatijon. Bounds for the rate of convergence are then obtained. However, and this
is the main contribution of this paper, we then tackle two important aspects that
had not been investigated in [6].

The first aspect consists in allowing ¢ and / to be time-dependent functions,
although still Lipschitz continuous, so that we may compute expectations of the
form

TN N
Ex|:/ l(Xt,t)df+ZC(XT].—,7})11{XT,—eaE}]-
0 = j

This important generalization has huge applicative consequences. For instance, it
allows discounted cost or reward functions such as /(x, ) = e %//(x) and ¢(x, ) =
e~ ¢(x) where § is some interest rate. To compute the above expectation, our
strategy consists in considering, as suggested by Davis in [5], the time-augmented
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process X; = (X¢,t). Therefore, a natural way to deal with the time-dependent
problem is to apply our previous approximation scheme to the time-augmented
process (X~ +)¢>0. However, it is far from obvious, that the assumptions required
by our numerical method still hold for this new PDMP ()? £)>0-

The second important generalization is to consider the deterministic time hori-
zon problem. Indeed, it seems crucial, regarding the applications, to be able to
approximate

Iy
E[ JNCRIEDS c(XTf—,Tf)ﬂ{XTeaE}]
0 f
Tr<tr

for some fixed 7¢ > 0 regardless of how many jumps occur before this determin-
istic time. To compute this quantity, we start by choosing a time N such that
P (Ty < tr) be small so that the previous expectation boils down to

Tn N
E |:/0 I(Xt, 1)Ly <eydt + Z (X1, E)E{XT]._GaE}]]‘{TjStf}]‘

j=1

At first sight, this functional seems to be of the previous form. Yet, one must recall
that Lipschitz continuity conditions have been made concerning the cost functions
so that the indicator functions 1<,y prevent a direct application of the earlier
results. We deal with the two indicator functions in two different ways. On the one
hand, we prove that it is possible to relax the regularity condition on the running
cost function so that our algorithm still converges in spite of the first indicator
function. On the other hand, since the same reasoning cannot be applied to the
indicator function within the boundary jump cost term, we bound it between two
Lipschitz continuous functions. This provides bounds for the expectation of the
deterministic time horizon functional.

An important advantage of our method is that it is flexible. Indeed, as pointed
out in [1], a quantization based method is “obstacle free” which means, in our case,
that it produces, once and for all, a discretization of the process independently of
the functions / and ¢ since the quantization grids merely depend on the dynamics
of the process. They are only computed once, stored off-line and may therefore
serve many purposes. Once they have been obtained, we are able to approximate
very easily and quickly any of the expectations described earlier. This flexibility
is definitely an important advantage of our scheme over standard methods such
as Monte Carlo simulations since, with such methods, we would have to run the
whole algorithm for each expectation we want to compute. This point is illustrated
in Section 6 where we easily solve an optimization problem that would be very
laboriously handled by Monte Carlo simulations.
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The paper is organized as follows. We first recall, in Section 2, the definition
of a PDMP and state our assumptions. In Section 3, we introduce the recursive
method to compute the expectation. Section 4 presents the approximation scheme
and a bound for the rate of convergence. The main contribution of the paper lies in
Section 5, which contains generalizations to time-dependent parameters and deter-
ministic time-horizon problems. The paper is illustrated by a numerical example
in Section 6; a conclusion (Section 7) is followed by some appendixes containing
technical results.

2. Definitions and assumptions

For all metric space E, we denote by B(E) its Borel o-field and B(FE) the set of
real-valued, bounded and measurable functions defined on E. For a,b € R, set
aAb =min(a,b), avb=max(a,b),andat =a V0.

Definition of a PDMP. In this first section, let us define a piecewise deterministic
Markov process and introduce some general assumptions. Let M be a finite set
called the set of the modes that will represent the different regimes of evolution of
the PDMP. For each m € M, the process evolves in E,,, an open subset of RY. Let

E={(m,{),me M€ Ep}.

This is the state space of the process (X;);ecp+ = (¢, 8r)ep+. Let OF be its
boundary and E its closure and for any subset Y of E, Y ¢ denotes its complement.

A PDMP is defined by its local characteristics (D, Anys Om)me -

e Foreachme M, ®,, : RY x R — R4 is a continuous function called the flow
in mode m. For all 1 € R, ®,,,( -, ¢) is an homeomorphism and ¢ — &, (-, 1)
is a semigroup; i.e., for all { € R4, D, t+5) = Dy (D(E, 5),¢). Forall
x = (m, {) € E, define the deterministic exit time from E:

t*(x) = inf {7 > 0 such that ®,,({. 1) € 0E,}.

We use here and throughout the convention inf @ = +o0.

e For all m € M, the jump rate A,, : E,, — R is measurable, and for all
(m, ¢) € E, there exists € > 0 such that

/6 Do (B (£,1)) dt < +00.
0

e Forall m € M, Q,, is a Markov kernel on (B(E), E ) that satisfies

Om(&{m,0)})=1 forall ¢ e E,,.
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From these characteristics, it can be shown (see [5]) that there exists a filtered
probability space (2, %, %, (Px)xecEg) on which a process (X;);cg+ is defined.
Its motion, starting from a point x € E, may be constructed as follows. Let 7 be
a nonnegative random variable with survival function

e~ A if 0 <1 < 1*(x),

Px(Ti>1) = {o if 1> 1*(x),

where for x = (m,{) € E and t € [0,1*(x)],

t
Ax.1) = /0 o (P (2.)) ds.

One then chooses an E-valued random variable Z; according to the distribution
Om(®, (¢, T1),-). The trajectory of X; for ¢t < T is

e A ift =1T.

Starting from the point X7, = Z, one then selects in a similar way S, = 75, — T
the time between 77 and the next jump, Z, the next postjump location and so on.
Davis shows, in [5], that the process so defined is a strong Markov process (X);>¢
with jump times (7y),en (With Ty = 0). The process (Oy)nen = (Zn, Sn)nen
where Z, = X, is the postjump location and S, = T, — T;,—; (with §g = 0) is
the n-th interjump time is clearly a discrete-time Markov chain.

The following assumption about the jump-times is standard (see [5, Section 24],
for example):

Assumption 2.1. For all (x,7) € E xRT, Ex[Y 1y7, <n] < +o0.

It implies in particular that 7 goes to infinity a.s. when k goes to infinity.

Notation and assumptions. For notational convenience, any function / defined on
E will be identified with its component functions /,, defined on E,. Thus, one
may write

h(x) = hy (&) when x = (m, ) € E.
We also define a generalized flow ® : E x RT™ — E such that
d(x,1) = (m, Dpy(¢,t)) when x = (m,¢) € E.
Define on E the following distance, for x = (m, ) and x’ = (m’,{’) € E:

" '
|x—x’|={+oo iftm#m 0

| —C'| otherwise.
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For any function w in B(E), introduce the notation
0w = [ WO, o= sup (o]
E xeE

and for any Lipschitz continuous function w in B(E), denote by [w], or if there
is no ambiguity by [w], its Lipschitz constant:

W = s =00
x#y€eE lx =yl

’

with the convention 1_ 0.

00
Remark 2.2. For w € B(E) and from the definition of the distance on E, one has
[w] = maxpepr[wWm].

Definition 2.3. Denote by L (E) the set of functions w € B(E) that are Lipschitz
continuous along the flow; i.e., the real-valued, bounded, measurable functions
defined on E and satisfying the following conditions:

e For all x € E, the map w(P(x,-)) : [0,2*(x)) — R is continuous, and the
limit lim;_, s+ () w(P(x, 7)) exists and is denoted by w(CD(x, l*(x))).

 There exists [w]fs € Rt such that for all x, y € E and ¢ € [0, t*(x) At*(D)],
one has

|w(@(x,1) = w(®(y, )| < [wIf |x = yl.
e There exists [w]f € R such that for all x € E and ¢, u € [0,1*(x)], one has
[w(@(x, 1)) — w(P(x,u))| < [wl5 |t —ul.
o There exists [w]E € RT such that for all x, y € E, one has
|w(D(x,1*(x)) = w(@(, t* ()] = [w]f]x = yl.

Denote by L (0F) the set of real-valued, bounded, measurable functions de-
fined on JF satisfying the following condition:

e There exists [w]?F € R such that for all x, y € E, one has

|w(@(x,1*(x)) = w(@(y,1*(1)))] = [w]iF|x -y,

Remark 2.4. When there is no ambiguity, we will use the notation [w]; instead of
[w]lE for i € {1, 2, %} and [w]« instead of [w]‘zE

Remark 2.5. In Definition 2.3, we used the generalized flow for notational conve-
nience. For instance, the definition of [w]; is equivalent to the following: for all
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m € M, there exists [wy,]; € RT such that for all £, ¢’ € E, and £ € [0, t*(m, {) A
t*(m,{’)], one has

}u)m(CDm(C,t)) — Wi (Pm (¢, t))‘ < [wmh ¢ =]
Let [w]; = maxpep[wml;-

Definition 2.6. For all u > 0, denote by L%(E) the set of functions w € B(FE)
Lipschitz continuous along the flow until time u; i.e., the real-valued, bounded,
measurable functions defined on E and satisfying the following conditions:

e Forall x € E, the map w(®(x,-)):[0, 1*(x) Au) — R is continuous. If *(x) <
u, then lim;_, s+ () w(P(x, 7)) exists and is denoted by w(CD(x, t*(x))).

e There exists [w]f’“ €R* such that forall x, y € E and ¢ €[0, t* (x) At*(p) Au],
one has

[w(@(x, 1)) — w(S(y,0))| < [w]F*|x - .

e There exists [w]ZE’” € R* such that for all x € E and ¢,¢' € [0, ¢*(x) Au], one
has

|w(@(x, 1) = w(@Cx, )| < [wly |t = 1.

e There exists [w]*E” € RT such that forall x, y € E, if t*(x) <w and t*(y) <u,
one has

(@, 1*(x)) = w(@(y, * ()| < [l “|x = yl.

Remark 2.7. For all u < 1/, one has LY (E) C L¥(E) with [w]F" < [w]F*
where i € {1, 2, x}.

Remark 2.8. Definitions 2.3 and 2.6 correspond respectively to the Lipschitz and
local Lipschitz continuity along the flow that is, along the trajectories of the process.
They can be replaced by (local) Lipschitz assumptions on the flow @, * and w in
the classical sense.

We will require the following assumptions.

Assumption 2.9. The jump rate A is bounded and there exists [A]; € RT such that
forall x, y € E and ¢ € [0,1*(x) At*(y)], one has

[M@(x, 1)) = M(@(y. )] = [Milx =yl

Assumption 2.10. The deterministic exit time from E, denoted by ¢*, is assumed
to be bounded and Lipschitz continuous on E.

Remark 2.11. Since the deterministic exit time ¢* is bounded by C;+, one may
notice that L¥(E) for u > Gy is no other than L (E).
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Remark 2.12. In most practical applications, the physical properties of the system
ensure that either * is bounded, or the problem has a natural finite deterministic
time horizon ¢. In the latter case, there is no loss of generality in considering that
t* is bounded by this deterministic time horizon. This leads to replacing C;+ by .
An example of such a situation is presented in an industrial example in Section 6.2.

Assumption 2.13. The Markov kernel Q is Lipschitz in the following sense: there
exists [Q] € RT such that for all u > 0 and for all function w € L¥(E), one has

(1) forall x,y € E and ¢ € [0,1*(x) At*(¥) Au),

|Qw(®(x.1)) — Qu(D(y.1)| < [QIw] " |x — y.
(2) for all x, y € E such that t*(x) v t*(y) < u,

|Qw(®(x, 1*(x))) — Qu(P(y, t*(1)))| < [QI([wIE™" + [w]F*)|x — yl.

Remark 2.14. Assumption 2.13 is slightly more restrictive that its counterpart in
[6] (Assumption 2.5), because of the introduction of the state space L% (E). This is
to ensure that the time-augmented process still satisfies a similar assumption; see
Section 5.1.

3. Expectation

From now on, we will assume that Zy = x a.s. for some x € E. For all fixed N € N*,
we intend to numerically approximate the quantity

TN N
JN(z,c)(x)=Ex[ [ l(Xt)dr+Zc(xrj—)n{XTeraE}}, @

Jj=1

where [ € B(FE), ¢ € B(OE) and X~ is the left limit of X}. Thus, XTj— is the j-th
prejump location. Since the boundary jumps occur exactly at the deterministic exit
times from E, one has,

T~ N
JN(Z, c)(x) =E, |:/(; I(Xt) dt + Z C((I)(Zj_l, t*(zj—l)))]l{Sj=t*(Zj_1)}]'
j=1
In many applications, Jy (/, ¢)(x) appears as a cost or a reward function. The first
term, that depends on /, is called the running cost and the second one, that depends
on ¢, is the boundary jump cost.

The rest of this section is devoted to formulating the expectation above in a way
that will allow us to derive a numerical computation method. The Lipschitz con-
tinuity property will be a crucial point when it comes to proving the convergence
of our approximation scheme. For this reason, the first step of our approxima-
tion is to replace the indicator function in Jx (/, ¢)(x) by a Lipschitz continuous
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function. Then we present a recursive method yielding the required expectation.
This recursive formulation will be the basis of our numerical method.

3.1. Lipschitz continuity. We introduce a regularity assumption on / and c.
Assumption 3.1. We assume that/ € L.(F) and ¢ € L.(0E).

Moreover, we replace the indicator function in Jx (/, ¢)(x) by a Lipschitz con-
tinuous function SA, with 4 > 0. Let then

Tn N
Tn(.e)(x) = Ex [ /0 I(X)di+ ) e(D(Zj—1,15(Zj-1))84(Zj -1, S,-)},

=1

where 84 is a triangular approximation of the indicator function. It is defined on
E xR by

A(t— (z*(x)— %)) fort € [t*(x)— %; t*(x)],

84(x,1) = _A(z—(z*(x)+%)> forte[t*(x); t*(x)+%],

0 otherwise.

For all x € E, the function §4(x,7) goes to Tgt=s+(x)} When A goes to in-
finity. The following proposition proves the convergence of J ]‘V‘I (/, c)(x) towards
Jn (1, c)(x) with an error bound.

Proposition 3.2. Forallx e E,A>0, N e N*,l € L.(E) and ¢ € L.(0E), one
has

TR ) — Iy o))| <= X<

Proof. For all x € E, one has

[T, o) (x) = In, ) (x)]
N

= Ex[zc(qD(Zj—l’l*(Zj—l)))(SA(Zj—l’Sj)_]l{Sj:f*(Zi—l)})jH
=
N
<C. Z Ex[164(Z;_1.S)) — Lgs,=+(z;_ 3]
j=1

N
<Ce Y Ex[E[I8(Zj-1.S) — Lis;=rvz,_ 3] | Zj-1]]-
=1

We recall that the conditional law of S; with respect to Z;_; has density

s — k(dD(Zj_l,s))e_A(Zf—l’s)
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on [0;¢*(Z;_1)) and puts the weight e~ MZj—1:17(Zj-1) on the point t*"(Zj-1).
We also recall that A is bounded thanks to Assumption 2.9. Finally, one has

TR ) (x) = In(L. ) ()]

N t*(Zj-1)
=Ce ) Ex [/ SA(Zj_l,s)A(cb(zj_l,S))e—A(zj_l,s)dS}
j=1 "(Zji—)—%
- NCCC;L.
- A
Hence the result. O

Consequently to this proposition, we consider, from now on, the approximation
of J ﬁ (I, c)(x) for some fixed A, large enough to ensure that the previous error is
as small as required. The suitable choice of A will be discussed in Section 4.2.

3.2. Recursive formulation. Davis shows in [5, Section 32] that the expectation
J ]G (I, ¢)(x) we are interested in is obtained by merely iterating an operator that
we will denote by G. The rest of this section is dedicated to presenting this method
from which we will derive our approximation scheme in Section 4.

Definition 3.3. Introduce the functions L, C and F defined for all x € E and
t €[0;1*(x)] by

L(x,t) = /Ot 1(®(x.s))ds,
C(x,t) = c((I)(x,t*(x)))SA(x, 1),
F(x,t) = L(x,t)+ C(x,1),
along with the operator G: B(E) — B(E) given by
Gw(x)= Ex[F(x, S1) + w(Zl)].
Definition 3.4. Define the sequence of functions (vg)o<k<n in B(E) by
UN(X) =0, vE(x) = Gug1(x).

Davis then shows in [5, Equation 32.33] that, for all k € {0,..., N},

Ty k
Nk (x) = Ex [ fo I(Xp)di+) c(d><zj_1,z*(zj_l»)aA(zj_l,S;)]

Jj=1

Thus, the quantity J 1(,1 (I, ¢)(x) we intend to approximate is none other than v (x).
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Notice that, thanks to the Markov property of the chain (Z,, S;)nen, One has
forallk €{0,..., N — 1},

Gw(x) = E[F(Zi., Sk+1) + w(Zg41)| Zi = x]. (3)
Hence, for all k € {0, ..., N}, let Vi, = vi(Z}) so that one has
VN =0, Vi=E[F(Zk.Sk+1)+ Vit1|Zk]-
This backward recursion provides the required quantity
Vo = JR, o)(x).

Hence, we need to approximate the sequence of random variables (Vg )o<x<n-
This sequence satisfies a recursion that only depends on the chain (Z, Sg)o<k<n-
Therefore, it appears natural to propose an approximation scheme based on a dis-
cretization of this chain (Zg, Sk)o<k<n called quantization, similarly to the ideas
developed in [6] and [3].

4. Approximation scheme

Let us now turn to the approximation scheme itself. We explained in the previous
section how the expectation we are interested in stems from the iteration of the
operator G that only depends on the discrete-time Markov chain (Z, Sg)o<k<N-
The first step of our numerical method is therefore to discretize this chain in order
to approximate the operator G.

4.1. Quantization of the chain (Zy, , S ) <N - Our approximation method is based
on the quantization of the underlying discrete time Markov chain (O )r<y =
(Zk, Sk)r<n- This quantization consists in finding an optimally designed dis-
cretization of the process to provide for each step k the best possible approximation
of ® by a random variable @k which state space has a finite and fixed number
of points. Here, optimal means that the distance between ®; and @k in a suitably
chosen L? norm is minimal. For details on the quantization methods, we mainly
refer to [9] but the interested reader can also consult [1], [2] and the references
therein.

More precisely, consider X an R?-valued random variable such that || X[, < co
and let K be a fixed integer. The optimal L ,-quantization of the random variable
X consists in finding the best possible L ,-approximation of X by a random vector
Xe {x1,...,xX} taking at most K values: This procedure consists of two steps:

(1) Find a finite weighted grid ' ¢ R? with I" = {x!,... xX}.

(2) Set X = XT where XT = projr (X') with projp denotes the closest neighbor
projection on I'.
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The asymptotic properties of the L,-quantization are given by the following
result; see [9], for example.

Theorem 4.1. If E[| X |?17] < 400 for some n > 0 then one has

K—o0

lim Kp/q|m1n X — X712 :Jp,q/|h|q/(q+1’)(u) du,
=<

where the law of X is Py (du) = h(u)Aq(du) +v withv L Ay, Jp 4 a constant and
Agq the Lebesgue measure in RY.

Remark that X needs to have finite moments up to the order p 4+ 1 to ensure
the above convergence. In this work, we used the CLVQ quantization algorithm
described in [1], Section 3.

There exists a similar procedure for the optimal quantization of a Markov chain
{ X% }xen- There are two approaches to provide the quantized approximation of a
Markov chain. The first one, based on the quantization at each time k of the random
variable X} is called the marginal quantization. The second one that enhances the
preservation of the Markov property is called Markovian quantization. Remark
that for the latter, the quantized Markov process is not homogeneous. These two
methods are described in details in [9, Section 3]. In this work, we used the mar-
ginal quantization approach for simplicity reasons.

The quantization algorithm provides for each time step 0 <k < N a finite grid
Iy of E xR* as well as the transition matrices (Qk)osksN—l from I'y to I'x 1.
Let p > 1 such that for all kK < N, Z; and Sj have finite moments at least up
to order p and let projr, be the closest-neighbor projection from £ X R* onto
Fk (for the distance associated to norm p). The quantized process (@k) k<N =
(Z ks Sk) k<n takes values for each k in the finite grid I'y of E x R and is defined
by

(Zk. Sk) = projr, (Zk, Sk)- )

Moreover, we also denote by FZ and FS respectively, the projections of ['; on
E and RT.

Some important remarks must be made concerning the quantization. On the one
hand, the optimal quantization has nice convergence properties stated by Theorem
4.1. Indeed, the L?-quantization error |®f — @k |, goes to zero when the number
of points in the grids goes to infinity. However, on the other hand, the Markov
property is not maintained by the algorithm and the quantized process is generally
not Markovian. Although the quantized process can be easily transformed into a
Markov chain (see [9]), this chain will not be homogeneous. It must be pointed
out that the quantized process (@k) ken depends on the starting point ® of the
process.
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In practice, we begin with the computation of the quantization grids which
merely requires to be able to simulate the process. This step is quite time-consuming,
especially when the number of points in the quantization grids is large. However,
the grids are only computed once and for all and may be stored off-line. What is
more, they only depend on the dynamics of the process, not on the cost functions
[ and c¢. Hence, the same grids may be used to compute different expectations
of functionals as long as they are related to the same process. Our schemes are
then based on the following simple idea: we replace the process by its quantized
approximation within the operator G. The approximation is thus obtained in a very
simple way since the quantized process has finite state space.

4.2. Approximation of the expectation and rate of convergence. We now use the
quantization of the process (O)x<n = (Zk, Sk)x<n- In order to approximate
the random variables (Vi )r<n, we introduce a quantized version of the operator
G. Notice that the quantized process is no longer an homogeneous Markov chain
so that we have different operators for each time step k. Their definitions naturally
stem from a remark made in the previous section: recall that for all k € {1,..., N}
and x € E,

Gw(x) = E[F(Zg—1.Sk) + w(Zy) | Zk—1 = x].

Definition 4.2. Forall k € {1,...,N},w € B(T#)and z e TZ_, let

@kw(z) = E[F(Z, §k) + w(Zk) ‘ 2k—1 = Z].
Introduce also the functions (0x)o<x<n by
dn(z)=0 forall z € T'%,
Ui (z) = Gk+1ﬁk+1(2) forallk €{0,...,N—1}and z € sz.'
Finally, for all k € {0, ..., N}, let
Vic = 0i(Zp).

Remark 4.3. The conditional expectation in @kw(z) is a finite sum. Thus, the
numerical computation of the sequence (V) will be easily performed as soon as
the quantized process (O )r<n has been obtained.

Remark 4.4. We have assumed that Zy = x a.s. Thus, the quantization algorithm
provides that Zy = x a.s. too. Consequently, the random variable V = 09(Z)) is,
in fact, deterministic.

The following theorem states the convergence of 170 towards Vo = J ]G (I,c)(x)
and provides a bound for the rate of convergence.
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Theorem 4.5. Forallk €{0,..., N}, one has vy € L.(E). Moreover, the approx-
imation error satisfies

|IN(, ) (x) = Vol <en(l,c, X, A),

where
N-1
en(le. X A)=)" (2[vk+1]||Zk+1—Zk+1 lp + Lor] + [FI) I Zr—Zklp
k=0
. NC.C,
+1FLlSks1=Sk1llp) + =
with
[Fli = Ce=[l]h +[c]« + Al1]«Ce,
[F], =G + AC..

Cy, <n(Ci+Cy+C),

[ali <€ 4 (K(A, vy—1) +nCr=[A]1 (C+ Cp + Ce)) + Coxll]s

[valz < €€ Cr(Cx C1Cy +2C) + C3.Ce + (20— 1)y (Ci+ Cp + Ce)) + C,
[vn)se =< [val1 + [t*][vnl2,

[Un] S K(Av vn—l)’
andforallwe L (E), K(A,w)= E|+ E, A+ Es[w]; + E4Cy +[0][w]«, where

E; = 2[1];Cpx + Cr([t*]+ 2CA M) + [cls(1 + Ci= Cy)
+ Ce (2[M]1 Cex + CLCAA]y +2[2%]Cy).

E; = Cc GGy 17],

E; =1+ CxGy)|[0],

E4 =2G[t"] + Crx[A1 2+ Ci= Cy).

The choice of A. Proposition 3.2 suggests that 4 should be as large as possible.
However, the constants [F]q, [F], and [v,] that appear in the bound of the approx-
imation error proposed by the above Theorem 4.5 grow linearly with 4. Thus,
in order to control this error, it is necessary that the order of magnitude of the
quantization error || ®y — @k | p be at most 1/A4.

The convergence of the approximation scheme can be derived from Theorem 4.5.
Indeed, on the one hand, one must remind that Vy = J ]‘é, (1, ¢)(x) is the expectation
we intended to approximate and on the other hand, ||®; — @k |, may become
arbitrarily small when the number of points in the quantization grids goes to infinity
(see [9], for example). An outline of the proof is presented in Appendix C.
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5. Time-dependent functionals

We now turn to the main contribution of this paper and present two generaliza-
tions of the previous problem. On the one hand, we will consider time-dependent
functionals of the form

TN N
Ex|:/ I(X;.1) dl+ZC(XT/.—,Tj)1{XT.—eaE}]
0 j=1 4

where / and ¢ are Lipschitz continuous functions. On the other hand, we wish to
replace the random time horizon 77 by a deterministic one, denoted by #y:

tr
Ex|:/ (X, t)dt+ ) C(XTj—,Tj)Jl{XT,—eaE}]-
0 J
T;<tr

We will reason as follows. As suggested by Davis in [5], we will introduce a trans-
formation ()? t)¢>0 of the initial process (X;);>¢ by including the time variable
into the state space: ()? 1) = (Xz,1). Indeed, we will see that both the expectation
of the time-dependent functional and the one with deterministic time horizon are
no other than expectations of time invariant functionals for the time-augmented
process (X~ t)t>0. We therefore intend to apply the previously exposed approxima-
tion scheme to this new PDMP. However, it is far from obvious that the Lipschitz
continuity assumptions 2.9, 2.13 and 2.10 still hold for this new process.

Thus, the rest of this section is organized as follows. First, we recall the precise
definition of the time-augmented process and prove that it satisfies the Lipschitz
continuity assumptions required by our approximation scheme. Then, we will see
that the time-dependent functional case corresponds to a time invariant functional
for the new transformed process and may therefore be obtained thanks to the earlier
method. Finally, we consider the deterministic time horizon problem that features
an additional hurdle namely the presence of non-Lipschitz continuous indicator
functions.

5.1. The time-augmented process. Davis suggests, in [5, Section 31], that the case
of the time-dependent functionals may be treated by introducing the time variable
within the state space. Thus, it will be possible to apply our previous numerical
method to the time-augmented process. However, and this is what we discuss in
this section, it is necessary to check whether the Lipschitz continuity assumptions
still hold. We first recall the definition of the time-augmented process given by
Davis.

Definition 5.1. Introduce the new state space

E=ExRt
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equipped with the norm defined by: for all & = (x,¢), &’ = (x',¢') € E, let
E—&l=Ix x|+t 1| &)
where the norm on FE is given by (1). On this state space, we define the process
X; = (X1, 1).

The local characteristics of the PDMP (f t)t>0, denoted by ()1, Q &D), are given
forall £ = (x,¢) € E by

&) = 1),
D, 5) = (B(x,s), 1 +5) fors <r*(x),
O(E, Ax{t}) = Q(x,4) forall 4 €B(E).

Moreover, we naturally define for all £ = (x,?) € E
7*(£) = inf{s > 0 such that (&, s) € IE} = 1*(x)

Clearly, Assumptions 2.9 and 2.10 still hold with [A]; = [A]; and [/*] = [¢*].
However, proving Assumption 2.13 is more intricate. We start with the following
lemma.

Lemma 5.2, Let u,t > 0 and w € L‘C‘(E). Denote by w; the function of B(E)
defined by wy = w(-,t). One has then w; € L' (E) with

E.t E,
[wt]l e = [w]l uv

E,t E, E,
[wt]z i = [w]l “ + [w]z u’

[ E M < (1 + D) E

Proof. Letu,t > 0 and w € LZ(E). For x,x’ € E and s <t*(x) At*(x") At Au,
one has

‘wt(CD(x, §)) —we (D(x, s))} = }w(&D((x, t—s), s)) — w(&D((x/, t—s), s))‘
We now use the fact that w € L?(E ) which yields since s < u

we (@)~ we (@ )| < W (oot ) = (ot = )| = [w] P |x ).

Hence, [wt]f’mu < [w]f’”, and similarly one obtains [wt]f’m” < [w]f’” + [w]f’”.
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On the other hand, for x, x” € E such that 1*(x) v t*(x’) <t A u, one has
[ (PCx, 17(x))) — w (P, ¥ (X)) |
= |w(((x, 1 —1*(x)), 1*(x))) = w(D((x', 1 = 1* (X)), 1* (")) |
— ‘w(cf((x,t—t*(x)),f*(x,t—t*(x))))
—w(®((x, £ —1* (X)), T* (X, 1 —1*(x"))))

El

moreover since w € L¥(E) and 7*(x, 1 —t*(x)) vV i*(x’.t —t*(x")) < u one has

| (@ Cx, 1% () — we (DO, 1* ()| < WwIE| (e, 1 — 1% () = (1 —1*()).

We conclude thanks to the Lipschitz continuity assumption 2.10 on ¢*, which
tAL
<

yields |(x, 1 —1*(x))—(x', 1 =t*(x"))| < (14[*])|x —x|. One obtains [w B <
[w]£* (1 4 [t*]) and w, € LIM(E). O

The next proposition proves that Assumption 2.13 holds for the time-augmented
process (X);>o.

Proposition 5.3. Let w € LZ(E ).
(1) Forall,& € E and s €[0,7%(§) AT*(E') Aul,

|Ow(®E.5) - Ow(BE.9)| < (01v DIwlEE -&.
(2) Forall &, & € E such that T* (&) v i*(§') < u,
| OQw(®(E.7%(§) — Qw(®(E.7*(§))] i i
< Qv DA + [ ([wls ™ + [wl )€ €.
In other words, Assumption 2.13 is satisfied with [0] = (O] v 1)(1 + [t*]).

Proof. As in the previous lemma, for all # > 0, we will denote by w; the function
of B(E) defined by w; = w(-,t). For § = (x,t) € E and w € LZ(E), one has,
by the definition of Q,

Oue)= [ we0(x.0.48) = [ wino(x.dz) = 0w, ©)

We may now check the regularity assumption on Q Let & = (x,1) and g =
(x',t') € E. Let s € [0;1*(§) At*(£") A u]. Thanks to the definition of ® and (6)
one has

|Ow(P(E. ) — Qw(D(E. )| = | Qw(P(x.5). 1 +5) — Qw(P(x'.5).1' +5)]
= | th-i‘S(q)(x’ S)) - th/-f‘s(q)(x,? S))‘
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We split this into the sum of two differences:

| QWi (B(x.5)) — Qupr 5 (D(x'. 5))|
< [ Qi s (P(x.5)) = Qi (B, )| + | Q(Wrs — wr45) (B, 5))] -

On the one hand, we recall that thanks to Lemma 5.2, w;ys € L 2’“)“‘ (E), so
that, since s < (¢ + 5) A u, we may use the Lipschitz continuity assumption 2.13
on Q and the first term is bounded as follows:

| Qits(D(x,9)) = Qi (P, 9))| < [Q[wis]f M x = ¥,

Lemma 5.2 also provides [wt+s]f’(t+s)m < [w]f" On the other hand, and more

basically, the second term in the equation above satisfies

|Q Wity — weras) (D, 8))| < [w]FH)e —1).

We obtain

0w (B, ) — Ow(BE. )| < (0] v DIw]F*[g — ¢/

We reason similarly to bound !Qw(é(é, *(£))) — Qw(&v)(é/, t*(?)))!, where
£=(x,t)and & = (x, 1) € E are such that 7* (&) v7*(¢’) < u. Equation (6) yields

|Qw(D(E, 7*(£))) — Ow(D(E . 7*(E'))|
= ‘th-l—t*(x)(cb(xv Z*(x))) - th’+t*(x’)(q>(x/’ l*(x/)))| )

which we now split as follows:

| QW () (P(X, 17 (X)) = Qyr () (P, 17 (1))
< QW) (P, 1¥())) — Qg () (P(x, 15 (X)) |
+ }(th+t*(x) - th/+t*(x/))(‘b(x/, t*(x/)))‘ .
Thanks to Lemma 5.2, w;4,#(x) € LU DN (BY We assume, without loss of
generality, that £*(x) > 1*(x’), so t*(x) vV *(x’) < (t + t*(x)) A u. Therefore,
the first term in the above equation is bounded, thanks to the Lipschitz continuity
assumption 2.13 on Q and Lemma 5.2, by

E, E,
[01((1 + [ DIwIE ™ + [l ) x — ).
It is more straightfoward to obtain a bound for the second term, of the form

[l e = 4+ ()= £ (] = [l (1 =)+ e = ).
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We obtain

| Qw(®(E.7%() — Qw(®(E.7* ()]
<[QI+ [ DIwIE“ x — x| + [w] B (Q1]x — x| + 1t — '] + [*]}x — ')
< ([01V 1)(1 + [ (I + [w]E) g &,

Hence the result. O

Consequently, we may apply our numerical method to the time- augmented pro-
cess (X,)t>0 In other words, for / € L (E) celL (8E) and £ € E, our approxi-
mation scheme may be used to compute

~ In N
Ivto©=e| [T Y @, ar| O
j=1 ’

We will now see that the time-dependent functional and the deterministic time
horizon problems boil down to computing such quantities Jy (/, ¢)(&) for suitably
chosen functions / and c.

5.2. Lipschitz continuous cost functions. We first consider the time-dependent
functional problem with Lipschitz continuous cost functions. Thus, let then / €
L.(E),ce L.(0F) and x € E, we wish to compute

N N
E, [ / I(Xp,t)dt+ ) e(Xry, Tj)ﬂ{XT.-eaE}].
0 . J
=1
It is straightforward to show that this quantity may be expressed using the time-
augmented process starting from the point &y = (x, 0). Indeed, one has

~ Tn N
Tt o = Ex| [ 106 0dr+ Y et Tt e |

Jj=1

where J (7, ¢)(&p) is given by (7). Although they are time-dependent, the cost
functions / and ¢ are seen, in the left-hand side term, as time invariant functions of
the time-augmented process. The expectation of the time-dependent functional is
therefore obtained by computing the expectation of a time invariant functional for
the transformed PDMP thanks to the approximation scheme described in Section 4.
This is what expresses the following theorem, which proof stems from the previous
discussion.

Theorem 5.4. Let/ € LC(E )Yand c € LC(BE ) and apply the approximation scheme
described in Section 4 to the time-augmented process (X;)¢>o, one has then
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TN N ~ _
E, [ / I(Xp,0)di+ ) e(Xr-, T;)ﬂ{XTJ__eaE}} —Vo| sen(l e, X, 4),
0

j=1

where we denote by en (I, c, X, A) the bound of the approximation error provided
by Theorem 4.5 when our approximation scheme is applied with cost functions [
and c to the time-augmented process (Xt)>o-

Remark 5.5. The quantity ex (/, c, X, A) is computed with respect to the process
(X7)s>0 instead of (X};);>¢, as presented in Theorem 4.5, so that

N—1 - -
en(l,e, X, A) = Z (2[Uk+1]E||Zk+1 —Zi+1llp
k=0 - ~
+ Lokl + [FIy + IFI A Ze = Zielp
NCCC}\,

+ (FYy + AP ISicet = Sk lp) + =

where (Z s §k) ren denotes the sequence of the postjump locations and the inter-
jump times of the time-augmented process (X;);>0, and where

[F], = Cr[E +[c)E,
[F]/ = [*]Ce.

[Fl, =G,
[F]lzl = Ce,
Cy, = n(Ct*Cl + Cc),

[o]E < € (R (A, vpey) + nCre M1 (Cr=Cy + Co)) + CoelI1E,
[onlE < € Cr(Ce €1 Oy, +2C) + CCe + (21— DA (Cre G + Co)) + G
alE < [walE + [ N[walE,
alf < (4, vam),
and for all w € L.(E) we have
R(A,w) = Ey + Ex A + Es[w]f + E4Cy +[D)wiE,
where
[0] = ([Q]V (1 +[*],
By =2ECpe + G ([t*] + 2C2 M) + [E (1 + € Cy)
+ Ce(2[A)i G« + CLCAM + 2[t¥]Cy).
Ey = C.CrCy[t™],
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E3=(1+CCIO],
E4 =2C[t*]+ Ci+[A]1 24 Ci+Cy).

5.3. Deterministic time horizon. In the context of applications, it seems relevant
to consider a deterministic time horizon 7. For instance, one may want to estimate
a mean cost over a given period no matter how many jumps occur during this period.
Actually, we will choose a time horizon of the form ¢ A Ty with N large enough
to ensure the N-th jump will occur after time 7y with high probability: in other
words, that P (Ty < tr) be close to zero. For a discussion concerning the choice
of such NV, and in particular a theoretical bound of the probability Px(Tn < fr),
we refer to [3]. Simply notice that in practice, this probability may be estimated
through Monte Carlo simulations. We thus intend to approximate the following
quantity for / € LC(E), cE LC(BE) and x € E:

TN/\tf
Ex[/ [(X¢,t)dt + E C(XTj—»Y})]l{XT,eaE}]
0 J
Tj<tr

Tn N
= Ex[/o I(Xt, 1)L <qpydt + Z (X7, Tj)Jl{XTj—eaE}Jl{Tjszf}]-
j=1

The natural approach would consist in killing the process at time #y as Davis sug-
gests in [5, Section 31], and applying our method to the new process. However,
the killed process will not necessarily fulfill our Lipschitz continuity assumptions
because of the discontinuity introduced at time #y.

A second idea would then be to use the previous results, to consider the time-
augmented process, and to define i(x, t)=I(x, Z)IL{,Stf} and ¢(x,t)=c(x, l)]l{,ftf}.
However, a similar problem appears. Indeed, such functions [ and ¢ are not Lips-
chitz continuous and our numerical method requires this assumption. In the rest of
this section, we will see how to overcome this drawback. On the one hand, we prove
that the Lipschitz continuity condition on / may be relaxed so that our numerical
method may be used directly to approximate IN (i ,c¢) for any c € Lc(aﬁ ). On the
other hand, in the general case, we will deal with the non-Lipschitz continuity of
¢ by bounding it between two Lipschitz continuous functions.

5.3.1. Direct estimation of the running cost term. Let us explain how the Lips-
chitz continuity condition on the running cost function may be relaxed so that
Theorem 4.5, stating the convergence of our approximation scheme, remains true
when the running cost function is i(x, 1) = I(x,0) 1<y With [ € LC(E) and
the boundary jump cost function is ¢ € Lc(8E ) (although with slightly different
constants in the bound of the convergence rate). Indeed, the running cost function
I appears inside an integral that will have a regularizing effect allowing us to derive
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the required Lipschitz property of the functional in spite of the discontinuity of I.
Details are provided in Appendix B.

Consequently, our approximation scheme may be used to compute In(,c)(E)
for any & € E. We recall that J; n is defined by (7) and that for all x € E, one has

. T~ Nty N
In(,c)(x,0)=E, [/ [(X;,t)dt + Z c(X7r, Tj)ll{XTjeaE}]-
0 .
j=1
We now turn to the indicator function 1¢7; <;.} required within the boundary jump
cost term.

5.3.2. Bounds of the boundary jump cost term. We explained how the Lipschitz
continuity condition on / may be relaxed. However, when it comes to ¢, this con-
dition cannot be avoided and our numerical method cannot be used directly with
¢(x,1) = c(x,1)L{s<s,}. We overcome this drawback by using Lipschitz continuous
approximations of the indicator function. Indeed, for B > 0, we introduce the real-
valued functions # g and u# p defined on R by

1 ift <ty —1/B,
up(t) = ¢ —=B(t—ty) iftp—1/B=<t<ty,
0 it <t,

1 if 1 <1y,
up(t)=q—B(t—tp)+1 ifty<t<ty+1/B,
0 if iy +1/B <t.

The following lemma is straightforward.

Lemma 5.6. Forallt > 0, limp_, y 5o up(t) = ]l[();tf)(l) and limp_, o, up(t) =
Ljo;r,(?). Furthermore, for all B > 0, up and up are Lipschitz continuous with

Lipschitz constant B. Moreover, <1and

up =1y, = up.
Thus, define for / € L.(E)
I(x,1) = 1(x, 1)Ly < ®)
and for ¢ € LC(BE) and for all B > 0,
cp(x,t) =c(x,t)up(t) and  cp(x,t) =c(x,0)up(t). ©)
We now check that these functions satisfy our Lipschitz continuity conditions.

Proposition 5.7. The functions cg and cg belong to Lc(aﬁ) with [cBl«. [CB]x =
[C]* + BCc(1v [[*])
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Proof. We prove the result for c¢p, the other case being similar. For all £ =
(x,1),& = (x',t') € E, one has

B (PE.1*(€) —cp(DE . 1* ()|
= |e(PE. *€))up(t + &) — c(PE . *E)))up(’ +*E))]
[clul& —&'| + Celup(t + *(&) —up(t’ +*())]
<[cl«l& —&'| + CeB(|t — /| +[*]}x — x])
< ([el« + CeBA VD)6 =&

Hence the result. O

A

Therefore, the functions ¢ g and ¢p are acceptable boundary jump cost functions
and we may bound the deterministic horizon expectation by

IN(,cB)(x,0) < Ex [/0 (X)L <gydt + Z C(XTj—)Jl{XTj—eaE}]l{Tj szf}}

j=1
< Jn(l.ép)(x.0).
The following proposition provides the convergence of the bounds.

Proposition 5.8. Forall x € E, one has
lim Jyn(,cp)(x.0)
B—>+o00

= lim Jn(l.Zp)(x.0)
B—+o00

TNAff N
= EX [/0 Z(Xt’ Z) dl + Z C(XTji’ Y})E{XTJ—GBE}]]‘{T,SII"}]

j=1

Convergence holds for every ty > 0 in the case of fN(i, ¢g)(x,0) but only for
almost every ty > 0 with respect to the Lebesgue measure on R in the case of

In(.cp)(x.0).
Proof. Let x € E. We first consider IN (l~, cp)(x,0).

N N

Ex [2} Xz, T))Lixr - eoEy LT <o) — Zl cp(X77. T,-)Jl{XTj_eaE}] ‘
J= J=

N
<Ey [Z e (X1 T))| L7y <4y — L_‘B(Tj)q
j=1
N N |
G [$ 5y ey 25 (o 3) ).
=1

j=1
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where ¢; is the distribution function of 7j. For all j < N, the summand in this
last expression goes to 0 as B — +00, since ¢; is right-continuous; this shows the
required convergence.

We now turn to the case of Jy (I~ ,cp)(x,0). Similar computations yield

N N
Ex [Z (X1 T Lixr— ey Ler; =1 — > cB(XT;. Tj)]l{XTj—eaE}] '

j=1 /=
N
<C ) (<0j(ff) R (tf - %))
j=1

One cannot conclude as in the previous case, since ¢; need not be left-continuous.
We therefore assume that 77 is not an atom of any of the laws of the random
variables 7. Then, for all j < N, the summand on the right-hand side tends
to 0 as B — +o0, and the result follows. Indeed, the set of the atoms of 7 is at
most countable, so the convergence holds for almost every 7 with respect to the
Lebesgue measure on R. O

5.3.3. Bounds in the general case. The previous results show that the deterministic
horizon expectation may be bounded by applying our numerical method with / and
successively ¢p and cp. In other words, we have shown:

Theorem 5.9. Let [ € LC(E) and ¢ € LC(BE). Let (Vi,B)o<k<nN (respectively
(I7k B)o<k<N) be the sequence of random variables (Vi )o<x<n described in
Section 4 when applying our approximation scheme to the time-augmented pro-
cess (X t)¢>0 With cost functions I and ¢ cp (respectively cg) defined by (8) and (9).
The bounds of the approximation error provided by Theorem 4.5 are respectively
denoted by

en(l.cp. X, A, B) and en(l.¢p. X, A, B).
One has then

Vos—en(l,cp X, A, B)

TN/\tf N
<E, [/0 I(Xy,0)dt + Z (X1~ Tj)]l{XTJ.—EBE}]l{TjSIf}}
j=1
= ‘70’3 +en(l,cp, )?, A, B).

Remark 5.10. In the previous theorem, the quantity enx(/, cp, X, A, B) (and sim-
ilarly en (I, ¢p, X, A, B)) is computed with respect to the process (X;);>¢ instead
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of (X}¢)s>¢ as presented in Theorem 4.5 so that one has

en(l,cp, X, A, B)

N-—1 _ .
= 3 (21151 Zis1 = Zitalp
k=0 ~ P
+ (2lve)® +[FY, +[FYA+[F B\ Zi — Zi | »
NCcC)\‘

(P + FB At = Sesalp) + =,

where (Z k> §k)keN denotes the sequence of the postjump locations and the inter-
jump times of the time-augmented process (X;);>o and with

[FI = Ce(1v[r*)),
ol < eCCr (R (A, B.vy_y) +nCre D1 (Cre Gt + Co)) + Cr=[11E,
walE < R(A. B.vy_1),

and for all w € L.(E) we have

K(A, B,w) = E{ + E} B+ E2A + Es[w]f + E4Cy +[0][w]¥,

where B 5
E} =2011{ G+ + C(I*]+ 2CA ) +[c]E (1 + G+ Cy)

+Ce (21 Cor + GUCADL +2[71Cy).
EY = Cc(IV[*)(1 + Cr=Cy)
The other constants remain unchanged; see Remark 5.5 for their expressions.

Furthermore, it is important to stress the fact that applying twice our numerical
method does not increase significantly the computing time. Indeed, the computa-
tion of the quantization grids is, by far, the most costly step. These grids, that only
depend on the dynamics of the process, may be stored off-line and used for the
approximation of both bounds.

The choice of B. We now discuss the choice of the parameter B, the discussion is
quite similar to the one concerning the choice of 4 in Section 4.2. Proposition 5.8
suggests that B should be chosen as large as possible. However, choosing a large
value for B will lead to large Lipschitz constants that will decrease the sharpness
of the bounds ex (/, cp, X )and en(/, Cp, X) for the approximation error provided
by Theorem 4.5. Indeed, it is easy to check that [v,] grows linearly with B (see
the precise expressions of the Lipschitz constants above). Thus, in order to control
the error proposed by Theorem 4.5, it is necessary that the order of magnitude of
the quantization error ||®, — Oy | be at most 1/B.
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6. Numerical results

6.1. A repair workshop model. We now present a repair workshop model adapted
from [5, Section 21].

In a factory, a machine produces goods which daily value is r (x), where x €[0; 1]
represents a parameter of evolution of the machine, a setting chosen by the operator.
For instance, x may be some load or some pace imposed on the machine. This ma-
chine, initially working, may break down with an age-dependent hazard rate A(¢)
and is then sent to the workshop for repair. Besides, the factory’s management has
decided that, whenever the machine has worked for a whole year without requiring
repair, it is sent to the workshop for maintenance. The daily cost of maintenance is
q(x), while the daily cost of a repairs is p(x), with reasonably p(x) > g(x). We
assume that after a repair or maintenance, both lasting a fixed time s, the machine
is totally repaired and is not worn down.

We therefore consider three modes: the machine is working (m = 1), being
repaired (m = 2), or undergoing maintenance (m = 3). The state of the process at
time ¢ will be denoted by X; = (m;, {;,t), where {; is the time since the last change
of mode. (This component is required since the hazard rate A is age-dependent.)
The state space is E = ({1} x[0; 365]xR™") U ({2} x[0; s]xRT) U ({3} x[0; s]xRT).
In each mode, the flow is @, ((§ ,1), u) = (¢ 4+ u,t + u). Concerning the transition
kernel, one sees from the previous discussion that, for instance, from the point
(1,¢,¢), the process can jump to the point (2,0,¢) if { < 365 and the jump is
forced to (3, 0,¢) if { = 365. Figure 1 presents the state space and an example of
trajectory of the process.

> >

m=1 365 m=2 ! m=3 7

Figure 1. An example trajectory. The process starts from the point Z in mode m = 1
(machine in service). The machine may be sent to the workshop for repairs (m = 2) or
for maintenance (m = 3).
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Our aim is to find the value of the setting x that maximizes the expected total
benefits B(x), that is, the discounted value (for an interest rate p) of production
minus maintenance and reparation costs over a period 7y = 5 years:

B* = sup B(x),

x€[0;1]
where

7
B(x) = E(1,0,0) [/0 e P (r () Lgm, =13 — P(X) L, =23 — (X)L, =33) dl]-

We will use the following values r(x) = x, p(x) = 100x2, g(x) = 5, s = 7 days,
0.03

P = Fe5 and A represents a Weibull distribution with parameters o« = 2 et f = 600.

Our assumptions clearly hold so that we may run our numerical method. We
first need to find N € N such that P 9,0)(Tny < fr) be small. Monte Carlo
simulations lead to the value N = 18. For a fixed x € [0; 1], we will therefore
compute J~N(l~, 0)(1,0,0) where l~(m, L) = e_pt(r(x)]l{m=1} — p(X)gp=2y —
q(x)]l{m:3})]l{,§tf}. Finally, notice that we could have chosen r, p and ¢ slightly
more generally by allowing them to be time-dependent.

It is important to stress the fact that, once the Markov chain associated to the
process is quantized, we will be able to compute the approximation of B(x) almost
instantly for any x € [0; 1] because the same grids are used for every computation.
Thanks to this flexibility, we are able to draw the function x — B(x) and, thus,
to solve the above optimization problem very easily. This is a very important
advantage of our method. Indeed, if we computed B(x) through standard methods
such as Monte Carlo simulations, we would have to repeat the whole algorithm
again and again for each value of x and solving the optimization problem would
be intractable.

The following figure represents the approximation of the function B computed
on a constant step grid of [0; 1] with step 1072, This leads to the solution of the
earlier optimization problem. Indeed, we obtain B* = B(x*) = 537.84 where
x* = 0.78 is the value of the setting x that maximizes the benefits of the factory.

Now let x = 0.78. The following table presents the values of I7N, which are the
approximations of B(x), for different number of points in the quantization grids.
A reference value Byonte Carlo = 537.69 is obtained via the Monte Carlo method
(108 simulations).

Points in the quantization grids I7N relative error to 537.69

20 points 542.14 0.83%
50 points 539.57 0.35%
100 points 538.24 0.10%

500 points 537.84 0.03%
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Figure 2. The function B drawn with 500 points in the quantization grids.

From a computational time point of view, we have already explained that the
computation of large quantization grids is, by far, the most costly step since it may
take up to several hours whereas the approximation of the expectation that follows
is then almost instantaneous. However, we may notice, in the above table, that
grids containing only 50 points yield a quite accurate result with merely 0.35%
error. Such grids only require a few minutes to be designed.

Remark 6.1. We already noticed that the same grids may serve several purposes.
For instance, we may also have been interested in the computation of the mean
time spent by the machine in the workshop by taking /(m, , 1) = 123}

6.2. A corrosion model. We consider here a corrosion model for an aluminum
metallic structure. This example was provided by Astrium. It concerns a small
structure within a strategic ballistic missile. The missile is stored successively in
three different environments which are more or less corrosive. It is made to have
potentially large storage durations. The requirement for security is very strong.
The mechanical stress exerted on the structure depends in part on its thickness. A
loss of thickness will cause an overconstraint and therefore increase the risk of
rupture. It is thus crucial to study the evolution of the thickness of the structure
over time.

Let us describe more precisely the usage profile of the missile. It is stored
successively in three different environments: the workshop (m = 1), the submarine
in operation (m = 2) and the submarine in dry-dock (71 = 3). This is because the
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structure must be equipped and used in a given order. Then it goes back to the work-
shop and so on. The missile stays in each environment during a random duration
with exponential distribution. Its parameter A,, depends on the environment. The
degradation law for the thickness loss then depends on the environment through
two parameters, a deterministic transition period 71, and a random corrosion rate
p uniformly distributed within a given range. Typically, the workshop and dry-
dock are the most corrosive environments but the time spent in operation is more
important. The randomness of the corrosion rate accounts for small variations and
uncertainties in the corrosiveness of each environment.
In each environment m € {1;2; 3}, the thickness loss d,, evolves in time as

A (p.$) = p(s + nm(e™*/ M) — 1)), (10)
Here are the numerical values of the parameters of the corrosion model:

environment 1 environment 2 environment 3
Am (A1) (17520)~! (131400)~! (8760)~!
Nm (h) 30000 200000 40000
p(mm/h) [107%,107°] [1077,107¢] [107%,1077]

Initially, the structure is in environment 2 = 1 and the thickness loss is null.
One draws the corrosion rate po uniformly distributed in the interval [1076, 1073]
and the time of the first change of environment 77 exponentially distributed with
parameter A; = (17520)~! hours™!. The corrosion starts according to (10) so that,
for all 0 <¢ < T}, the loss of thickness is d1 (g, ¢). The structure then moves to
environment 2 and the process restarts similarly: a new corrosion rate pr, is drawn
according to an uniform law on [10~7, 107], the time of the second jump 7 is
drawn so that T, — T} is exponentially distributed with parameter A, = (131400)~!
hours™! and for T} <t < T, the loss of thickness is d; (pg, T1) + d> (o1t —=T1)
and so on.

At each change of environment, a new corrosion rate p is drawn according to a
uniform law on the corresponding interval. The thickness loss, however, evolves
continuously.

We are interested in computing the mean loss of thickness in environment 2 until
a given time 7y = 18 years.

Modeling by PDMP.

The state space E. The loss of thickness will be modeled by a PDMP whose modes
are the different environments. Let then M = {1, 2, 3}. The PDMP (X});>¢ will
contain the following components: the mode m € M, the loss of thickness d, the
time since the last jump s (this is to ensure that the Markov property is satisfied),
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the corrosion rate p and the time ¢ (since we consider the time-augmented process).
Clearly, one has always s < ¢, so we can reasonably consider the state space

E={(m,d,s,p.t) € M xRt xRT x[1077;107°] x R" such that s < r}.

The flow ®. The flow is given for all # > 0 by

m m

d d+du(p,s+u)—dm(p,s)
D s |.u)= s+ u

p p

t t+u

The transition kernel Q. Let us now study the jumps of this process. When the
process jumps from a point x = (m, d, s, p,t) € E, m becomes m + 1 modulo 3
(denoted m + 1[3]), d and ¢ remain unchanged, s becomes 0. Only p is randomly
drawn, according to a uniform law on an interval [Pmin; Pmax] that depends on the
new mode. One has then for w € B(E), x = (m,d, s, p,t) € E,and u > 0,

m cm
d d+dpm(p,s+u)=dm(p, s)
Qw(®(| s |.w) =Quw s+u
P p
! 1+u
m + 1[3]
1 Pmax d+dm(/0’s+u)—dm(,0,s)
- —/ w 0 dp. (11)
Pmax — Pmin J ppin F;
t+u

The cost function [. The function / € B(E) will be the cost function to compute
the mean loss of thickness in mode 2. It is defined as follows: for all x =
(m,d,s,p,t) € Eand u >0,
d
@ 1)) = p(1 — S )1y = (o5 1)1y (12)

One then defines l~(CI>(x, u)) = H(@(x, u))Lis+y<sy» so that

u _ u/\(tf—t)+
L(x,u) = /0 [(@(x,u"))du’ = /0 H(@(x,u')) du’

= (dm(lo’s +un (Zf _t)+) _dm(/)’s))jl{m=2}a
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that is indeed the thickness lost in mode 2 from the point x = (m, d, s, p, t) during
atime u A (ff — nt.

The assumptions. Assumptions 2.1 and 2.9 are clearly satisfied. It is easy to check,
from (12), that / € L.(E), so Assumption 3.1 holds.

We now turn to Assumption 2.13 and we will see that, although it does not hold
for any function w € LY (E), it holds for a sufficiently big subclass of functions.
We first need to make a remark. Recall that for all x = (m,d, s, p,t) € E and
forall k € {0,..., N}, one has vy_z(x) = Exbigl[fOT" H(®Cx, ) Ly qussyydu].

Therefore, for all k£ € {0, ..., N} the function v as well as the function I satisfy
x=(m,d,s,p,t)€ Eandt >ty = w(x)=0. (13)

The next step consists in proving that Assumption 2.13, although it is not sat-
isfied for any function w € L?(E), holds for any function w € L?(E) that also
satisfies condition (13). This is done in Lemma 6.2 and it is sufficient because
in the proof of the theorem that ensures the convergence of our approximation
scheme, Assumption 2.13 is only used with the functions (vg)keo,..., N} that do
satisfy condition (13).

Lemma 6.2. There exists [Q] € R such that for all v > 0 and w € LY(E) that
satisfies condition (13), one has for all x, x' € E and 0 <u < v,

|Ow(®(x. 1)) — Qu(®(x", 1)) | < [Q][w]f"|x —x|.

Proof. Let x = (m,d,s, p,t)and x' = (m’,d’,s’, p’,t") € E with for instance r <1’
First we may choose m = m’; otherwise, |x — x’| = 400 and there is nothing to
prove. Now, we are facing three different cases:

o If iy <t +u =<1 +u, then one has Qu(®P(x, u)) = Qw(P(x’,u)) = 0 because
w satisfies condition (13) and there is nothing to prove.

o If t +u <ty <t' 4 u, notice that

Qw(d(x",u)) = Quw(®((m'. d'.s", p' tr),u)) =0

(this stems from condition (13)), so that we are reduced to the following case.

.....

e We assume fromnowonthat t +u <t' 4+ u < tr. We now intend to bound
|Qw(®(x,u)) — Qu(P(x",u))]|. It is clear from (11) that we only need to prove
that the function (p, s) — dm(p, 5), defined by (10), is Lipschitz continuous with
respect to both its variables on the set [1077; 107°] x [0; tr]. Indeed, we have s < ¢
and s’ <t so that s,s", s +u,s" +u < tr. Standard computations yield

|dm(p.5) = dm(p'. )| < slp—p'| + 30/ ls=5'| < trlp—p'| + 3107 %[5 — 5.

Hence the result. O



NUMERICAL EXPECTATIONS OF PIECEWISE DETERMINISTIC MARKOV PROCESSES 95

Assumption 2.10 is not satisfied because in our corrosion model, one has t*(x) =
+oo for all x € E. Besides, we may notice that the previous proof would have
been more straightforward if #* had been bounded. Indeed in that case, we would
have had s, s, s +u, s’ +u < Cy+ and the introduction of condition (13) would have
been unnecessary. Nevertheless, we have been able to overcome the drawback of
having ¢* unbounded by noticing that somehow the deterministic time horizon ¢
plays the part of the missing C;=. This is the meaning of condition (13): roughly
speaking, we do not consider what happens beyond 7.

More generally, we will now see that in our deterministic time horizon problem,
the boundedness of #* may be dropped and our results remain true replacing Cy
by #¢. This is clear in the case of Proposition A.2 because the function [ satisfies
the condition (13). Proposition A.7 remains also true replacing Cy= by #¢. Indeed,
on the one hand, it is clear that L(x,u) < tC;. On the other hand, when com-
puting |v, (®(x, u)) — vy (®(x’, u’))|, we are facing three cases, as in the proof of
Lemma 6.2:

o If tf <u < ', one has
un(P(x, u)) = va(D(x",u)) =0,
by condition (13).
o If u <ty <u', one has
|0 (@x, 1)) = va (P(x", ")) | = [va (P (x, u)) — va(D(x', 17))

since vy, (P(x’, u")) = vy(P(x', 1)) = 0 (condition (13) once again), so that we
are reduced to the next case.

’

o If u < u’ <tf, the computations remain unchanged and ¢ replaces C;+ as a
bound for u and u’.

Numerical results. The table below presents the values of the loss of thickness in
environment 2 obtained through our approximation scheme with quantization grids
of varying fineness, as well as the relative deviation with respect to the Monte Carlo
value of 0.036755, obtained with 10 simulations.

Quantization grids 170 error Quantization grids 170 error
20 points 0.038386 4.43% 2000 points 0.037041 0.77%

50 points 0.037804 2.85% 4000 points 0.037007 0.69%

100 points 0.037525 2.09% 6000 points 0.036973 0.57%

200 points 0.037421 1.81% 8000 points 0.036944 0.49%

500 points 0.037264 1.38% 10000 points 0.036911 0.40%
1000 points 0.037160 1.10% 12000 points 0.036897 0.36%




96 ADRIEN BRANDEJSKY

2
10

, BENOITE DE SAPORTA AND FRANCOIS DUFOUR

3
10

10

1

10

2

T
10

3

5

10

Figure 3. Log-log plot of error when approximating the loss of thickness in environ-

ment 2 versus number of points in the quantization grids. The empirical convergence rate,

estimated through a regression model, is —0.35.

Figure 3 presents respectively the empirical convergence rate. The convergence
rate, estimated through a regression model is —0.35. This is roughly the same
order of magnitude as the rate of convergence of the optimal quantizer (see for
instance [9]) since here the dimension is 3 (indeed, m is deterministic and s = 0
immediately after a jump so that we only quantize the variables p, d and ?).

Finally, we show here the CPU time to compute the expectations from the quan-
tization grids (computations are run with Matlab R2010b on a MacBook Pro 2.66
GHz i7 processor). The CPU time for 108 Monte Carlo simulations was approxi-
mately 16000 s. It can be seen that, once the quantization grids are obtained, our
approximation scheme performs very fast.

Quantization grids

CPU time (s)

Quantization grids

CPU time (s)

20 points
50 points
100 points
200 points
500 points
1000 points

0.0059
0.0085
0.014
0.034
0.12
0.37

2000 points
4000 points
6000 points
8000 points
10000 points
12000 points

1.5

5.6
13
24
35
54
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7. Conclusion

We have presented an efficient and easy to implement numerical method to approxi-
mate expectations of functionals of piecewise deterministic Markov processes. We
proved the convergence of our algorithm with bounds for the rate of convergence.

Although our method concerns time invariant functionals, we proved that we
are able to tackle time-dependent problems such as Lipschitz continuous time-
dependent functionals or deterministic time horizon expectations. Indeed, we proved
that, thanks to the introduction of the time-augmented process, time-dependent
problems may be seen, paradoxically, as special cases of the time invariant situa-
tion.

Our method is easy to implement because it merely requires to be able to simu-
late the process. Furthermore, although the computation of the quantization grids
may be quite time-consuming, it may be performed preliminarily because the grids
only depend on the dynamics of the process and not on the cost functions / and c.
Therefore, they may be stored off-line and serve several purposes. As illustrated by
the examples presented in Section 6, storing the grids provides to our approxima-
tion scheme efficiency and flexibility. Indeed, the computation of the expectation
can be performed very quickly once the grids are available. Thus, if one decides for
instance to modify the functional, the same grids may be used so that the new result
is obtained very quickly. This flexibility is an important advantage over standard
Monte Carlo simulations.

Appendix A. Lipschitz continuity of F, G and v,

The first lemma and the first proposition of this section present mainly the Lipschitz
continuity of the functions §4 and F. They are stated without proof because they
are quite straightforward.

Lemma A.1. The function §4 is Lipschitz continuous with respect to both its vari-
ables; i.e.,forall x, y € E and u, t € R, one has

164 (e, 1) =84 (y, 1)) < Al*]lx = ),
164(x, 1) =84 (x,u)| < Alt —ul,
Moreover, one has for all x € E and t,s > 0 such that t + s < t*(x),
§A(D(x,5), 1) =84(x.t + ).

Proposition A.2. The function F introduced in Definition 3.3, is Lipschitz continu-
ous with respect to both its variables. For all x, y € E and u, v €[0;t*(x) At*(p)],
one has

|F(x,u) = F(y,v)| < [Flilx = y| + [Fl2|u —v],
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with
[Fli = Cex[l]; +[c]s + A[t*]Ce,  [F]2 = C; + AC...

The next two lemmas are adapted from [6], the second one being a special case
of Lemma A.1 there. Thus, they are stated without proof.

Lemma A.3. Forh € L.(E), (x,y) € E?,andt <t*(x) At*(p)

) ()
/ h(CI)(x, s))e—A(x,S)dS _ / h(CD(y, S))e_A(y’s)ds
t t

< (Cexlhly + (CAAL +[*DCh)lx — yl.
Lemma Ad4. Forhe L.(0E)U L.(E)and x,y € E, one has

e_A(x’t*(x))h((I)(x, l*(x))) _ e_A(y’t*(y))h(q)(y, [*(y)))‘
< (A« + Ca(Crx[A]1 +[71CR)) 1x =y

The following notation will be convenient later on. For w € L.(E), x € E and
t €10;1*(x)], we define

Grw(x) = Ex[(F(x, 1) +w(Z1))1(s,>n]
= Ex[(L(x,S1)+ C(x. S1) + w(Z1)) s, 21]-

In particular, Gy = G. Since we know the law of (Z, S}), it can be shown that
Grw(x) = T1(x) + Ta(x) + T3(x) + Ta(x) + Ts(x), (14)
with
t
T (x) = e~ A / o®(x,s)ds,
1*(x) ’
T)(x) = / lo®(x,s)e 29 gy,
t *(x)
Y3(x) = co®(x,1*(x)) f §4(x, 5)h o @(x, s)e AX9) g,
1*(x) t
Y4(x) = / (AQw) o ®(x, $)e A9 g,
t
Ts(x) = e 2D (Qu 4 ¢) 0 D(x, 1*(x)).
Proposition A.5. For w € L.(E), (x,y) € E? and t € [0;t*(x) At*(y)], one has

|Giw(x) = Grw(y)| < K(4,w)|x —yl,
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where K(A,w) = E1 + E, A+ E3[w]1 + E4Cy + [Q][w]*, with
Ey =201 G + G ([t*]+ 2CA 1) + [cle (1 + G+ Cy)
+ Ce (2R Crx + CLCAM + 271Gy,
E2 = CCCI*CA,[Z*]a
E; =(1+C=G)[Q],
E,= ZCX[Z*] + Ct*[)\]l (2 + Cy= CA)
Proof. Let w € L.(E), (x,y) € E? and 1 € [0;1*(x) At*()]. In view of (14), we

naturally split |G;w(x) — Gyw(y)| into the sum of five differences.
The first one, | Y1 (x) — Y1(»)], is bounded by

T1(xX) =1 (0)] < Cpx Gyl AXD _=ALND
1 1(y =Cy

t

+/ (lo®(x,5)—1o®(y,s))ds
0

< (CACIA + Ce[1T1) Ix — .

The differences | Y5 (x) — Y2 ()| and | Y4(x) — Y4(»)| can be bounded thanks
to Lemma A.3, with successively 4 =/ and i = AQw. Notice that Cj g,y < C Cy
and [AQu]; = Gi[Q][w] + CulA]r-

For the difference of the Y5 terms, we use Lemma A.4 with 7 = Qw + ¢. Notice
that Coy+c < Cw + Cc and that [Qw + ¢« < [Q]([w]« + [w]1) + [c]+.

Finally, to bound |Y5(x) — Y3())|, we assume without loss of generality that
t*(x) <t*(y) and we have

173 () = Y3(»)

1 (x)
<C. / 164 (x, )k 0 B(x,5)e A 54 () )L o (p,s)e 20| ds
t
*(») 4 A
+Cc/ o ‘8 (y,)Ao®@(y,s)e” (y’s)‘ds+[c]*C,*Ck|x—y|
t*(x
¥ (x)
< Cc/ (Ca]84(x, 5) =84, )| + M |x— |+ Cy [e A& — = AD9) g
t
+ Ce[t*]Cy|x =y | + [c]«Cex Ca|x =y
< (CeCr (CLA[*T+ M1 + CrCrx[AM1) + Celt ]Gy + ]« Cr= Cr ) [x =y .
The result follows. O

The next lemma is stated without proof, as it is very close to [5, Lemma 51.7].

Lemma A.6. Forall x € E andt € [0;t*(x)], one has

t
v (D(x, 1)) = 2D G, (x) — f [ o ®(x,s)ds.
0
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Proposition A.7. Foralln € {0,1,..., N}, one has v, € L.(E) and

Cy, =n(Ci+C;+Ce),

[Val1 < €€ (K(A,vam1) + nC[A (CrxCy + Co)) + Cr[1]s,

[Vala < €€ 3 (Cr+ C Ch +2C) + CoCe + 2n — 1)Co.(CCp + Co)) + €,
[vals < [valt + [¥][val2-

[vn] =< K(A4,v,-1),

Proof. Recall that for x € E, one has from Definition 3.3
Un(X) = Gup—1(x) = Ex[L(x, S)]+ Ex [C(x, S)]+ Ex[va—1(Z1)].

Thus, Cy,, < C+Cp +Ce + Cy,,_, < n(c,*Cl + Cc) by induction.

Let us now turn to [v,];. Lemma A.6 yields

[V (®(x, 1)) — v (®(p, 1))
t
<12 G v, (x) —eA0D G v,y ()] + /0 [lo®(x,5)—10®(y.s)|ds

= eA(x’t)‘Gtvn—l (x) = Grvp—1 (y){ + |Gtvn—l (y)‘ |eA(x,t) - eA(y,t)‘
+ Ce=[l]1|x = yl.

The result follows using Proposition A.5 and noticing that

A(x,1) = C Gy,
|Grop—1(V)| = C+Cp + Ce + Copy = n(Ce=Cp + Ce),
[eACD — RO < GO Cpn A1y = .

We now turn to [v,],. For x € E and s, ¢ € [0,*(x)] with s <¢, one has

[on(@(x. 1)) — Un (B(x. 5))| < A0 Gy (¥) — Gty (¥)|
+ ‘Gsvn_l(x)‘ {eA(x’t) —eA(x’s)| + Cylt —s).
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Moreover, from (14), one has
|G 1 (%) = Gyvp1 (%)
< Ex[IF(x, 81) 4 va—1(Z1)| L=<, <1}

<

t N
e~ A / I(@(x, u)) du — e 29 / I(®(x,u)) du
0 0

t
+ / [1(@(x. u))e™ 0] du
N
t
+ ‘COCD(X,[*(X)){/ ‘(SA(X, l/l))\, o q)(x’u)e—A(x,u)‘ du
N

t
+/ ’(kan_l) o @(x,u)e_A(x’”)} du
N

< (CiCyle™ A0 — =AM 4 )2 —5]) + (Cyt — 51)
+ (CeColt = 5) + (Cr.Co,_, |1 = 5])

and
|€A(x’t) _eA(x,s)| < BCZ*CACA|I —Sl.

Finally, the bound for [v,] is a direct consequence from Proposition A.5. O

Appendix B. Relaxed assumption on the running cost function

In this section, we consider the approximation applied to the time-augmented
process so that the local characteristics are ®, A and Q defined in Section 5.1.
Moreover, we consider a function / € LC(E ) and we define [ e B(E ) by

forall £ = (x,1) € E, I(§) = 1(x.1)L<y3-

We intend to prove that the convergence of our approximation scheme, stated by
Theorem 4.5, remains true if we choose / as the running cost function even though
it does not fulfill the required Lipschitz conditions, i.e., I g LC(E ). Indeed, the
Lipschitz continuity of / is used four times in the proof of the theorem, once in
Proposition A.2, twice in Proposition A.5 (when bounding the difference of the Y
terms and the one of the Y, ones) and once in Proposition A.7 (when bounding
[vn]1). In each case, the Lipschitz continuity of the running cost function / is used
to bound a term of the form

s

/ [0 @, u)—1o®(E  u)| du (15)
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for £, & € E and s, s’ €[0;7*(§) AT*(£")], or of the form
PONE) | - o -~
/ 10 @&, u)e ™) — o @(E, u)e ™| du (16)
N

for&, & € E and s € [0;7*(§) A7*(§')] and where we use the natural notation
A, u)= f: AP (&, v)) dv. Concerning this second form, Equation (16), notice
that

PEOAFE) _ o -
[ 70 B(&,upe™ W —To B, upe €| du
N

PENTE) L
5/ |lo @&, u)—10®(E u)|du
S

FEOAE) -
e [ R €0 _~KE0)| g
N

PO E) . 2 )
</ 7o &, u)—ToB(E w)| du+ CCARIE~E.
N

so that, to ensure that Theorem 4.5 remains true with [ as the running cost function,
it is sufficient to be able to bound terms of the form (15). This is done in the
following lemma.

Lemma B.1. For & = (x,1),& = (x',¢') € E and s € [0;7* (&) AT*(£")], one has

r

Proof Let & = (x,1),& = (x', ') € E and s € [0: 7* (&) AT*(£")]. One has

To (. u)—To (&' w)| du < (Crollly + )l — ).

s ~ ~ ~ ~
[\locb(g,u)—loqxg’,u)\du
0
S
< [ 1o @6 Wiz —1 o BE 01 sz di
N )
< [ NrodEw—108E. | du+Cr [ [z —1osuzn| du

The left-hand side term is bounded by Cy+[/];|&§ — &’| since [ € L.(E). For the
right-hand side term, assume without loss of generality that z <¢’, one has

Lgqusty — Yousey| = [Lr—ty<uy — Lt <y | = Lge—tp <u<r'—iy3-

so that the right-hand side term is bounded by C;|t —t'| < C;|& — &’|. The result
follows. O
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Theorem 4.5 remains true if we choose / as the running cost function. One only
needs to slightly modify the Lipschitz constants given in propositions A.2, A.5 and
A.7. The terms Cy=[l]; have to be replaced by Cy=[[]; + ;.

Appendix C. Proof of Theorem 4.5

The Lipschitz continuity of the functions vy is proved by Proposition A.7. Now
let A > 0 and notice that

1IN, ) (x) = Vol < [In (T, e)(x) = Vol + Vo — Val.

Proposition 3.2 says that |Jy (/, ¢)(x) — Vo| £ NC.Cy /A since Vy = J]‘é(l, c)(x).
We now have to bound |V — I7o|.

Some of the arguments of the proof are similar to the ones used in Theorem 5.1
from [6], thus we will not develop the details of the proof. Recall that || Vy —
I7N |p =0andlet k €{0,..., N —1}. In order to bound the approximation error,
let us split it into three terms ||V, — I7k||p <E;+ E, + Ej, where

E1 = v (Zk) —vi(Zi)l p.
Er = Gvg41(Zk) — Grg1vk+1(Z1 )l ps
B3 = |Gr+1Vk+1(Zk) = G109k +1(Zi) |lp-

The theorem is then a direct consequence from the three following lemmas, stated
without proof, that provide bounds for each of these three terms.

Lemma C.1. The first term, 21, is bounded by
|0k (Zi) = v (Zi) p = [0l Zi = Zilp-

Lemma C.2. The second term, & ,, is bounded by
|Gvk+1(Zi) = G 1vi41(Zi) Hp

<[kl Zis1 = Zieslp + (e +IFI) | Zik = Zillp +[FL2 0 Sk 1 = Sk -
Lemma C.3. The third term, E3, is bounded by
|Gret1vk41(Zk) = Greg1 Dhe1 (Zi) Hp

< et 111 Zks1 = Zis1 lp + Wi = Vi -
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