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The parareal algorithm introduced in 2001 by Lions, Maday, and Turinici is
an iterative method for the parallelization of the numerical solution of ordinary
differential equations or partial differential equations discretized in the temporal
direction. The temporal interval of interest is partitioned into successive domains
which are assigned to separate processor units. Each iteration of the parareal
algorithm consists of a high accuracy solution procedure performed in parallel
on each domain using approximate initial conditions and a serial step which
propagates a correction to the initial conditions through the entire time interval.
The original method is designed to use classical single-step numerical methods
for both of these steps. This paper investigates a variant of the parareal algorithm
first outlined by Minion and Williams in 2008 that utilizes a deferred correction
strategy within the parareal iterations. Here, the connections between parareal,
parallel deferred corrections, and a hybrid parareal-spectral deferred correction
method are further explored. The parallel speedup and efficiency of the hybrid
methods are analyzed, and numerical results for ODEs and discretized PDEs are
presented to demonstrate the performance of the hybrid approach.

1. Introduction

The prospect of parallelizing the numerical solution of ordinary differential equations
(ODEs) in the temporal direction has been the topic of research dating back at
least to the early work of Nievergelt [55] and Miranker and Liniger [54]. These
early papers as well as the methods described here employ multiple processing
units to compute the solution over multiple time intervals in parallel. Hence, in the
classification used in [13], for example, these methods are categorized as employing
parallelization across the steps as opposed to across the method or across the
problem.

Examples of approaches to parallelization across the method include the compu-
tation of intermediate or stage values in Runge—Kutta and general linear methods
simultaneously on multiple processors [38; 14]. These attempts to parallelize can
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only be efficient when the number of processors being used is no larger than the
number of stage values and hence typically yield modest parallel speedup.

Methods that utilize parallelization across the problem rely on a splitting of
the problem into subproblems that can be computed in parallel and an iterative
procedure for coupling the subproblems so that the overall method converges to
the solution of the full problem. A well known class of methods in this style is the
parallel waveform-relaxation schemes [25; 61; 18]. Despite efforts to accelerate the
rate of convergence of wave-form relaxation methods [29; 34], convergence can
still be slow, especially for stiff problems.

In addition to the methods in [55; 54], methods based on multiple shooting [40]
also employ parallelization across the steps. In 2001, a new approach similar in
spirit to multiple shooting was introduced in [45]. The so called parareal method
is appropriate for larger numbers of processors and has sparked many new papers
devoted to the subject of time parallelization. The parareal method has been further
analyzed and refined [47; 22; 7; 60; 49; 30; 28; 62; 48; 32; 27; 9] and implemented
for different types of applications [8; 23; 46]. This paper details a new variant of the
parareal method first outlined in [53] that utilizes an iterative ODE method based on
deferred corrections within the parareal iteration. As outlined below, this approach
can either be thought of as a way to parallelize a deferred correction approach to
solving ODE:s or as a way to increase the efficiency of the parareal algorithm by
removing the requirement to solve the subproblems on each processor during each
iteration with a full accuracy solver.

One of the justifications of the use of parareal methods is the scenario where a
specific computation must be completed in a fixed amount of time and sufficient
computational resources are available. In the context of the numerical solution of
time dependent PDEs, although parallelization of methods in the spatial dimensions
has seen a tremendous amount of successful research, for a fixed problem size,
spatial parallel speedup will eventually saturate as more processors are employed.
If additional processors are available, then additional parallelization in the temporal
direction could reduce the overall parallel computational cost. The name parareal
in fact is derived from parallel and real time and encapsulates the desire to complete
a computation of a specific size faster in real time. This is in contrast to the
common practice of reporting spatial parallel efficiency or speedup in the context of
increasing problem size as the number of processors are increased. The current work
is motivated by the desire to develop efficient methods for time-space parallelization
for PDEs.

As discussed in detail in Section 3, it has become standard to describe the
parareal algorithm in terms of two computational methods to approximate the
temporal evolution of the equation over a fixed time interval. A fine, or accurate,
method (denoted here by &) computes an accurate (and hence more computationally
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expensive) approximation to the solution. A coarse or less accurate method (denoted
here by 9) is also defined, and is used in a serial fashion to propagate a correction
through the time domain. We will refer to % and & as the coarse and fine propagators
respectively. The parareal method alternates between the parallel application of &
on multiple time domains using approximate initial conditions and a serial sweep
using 4 that propagates a correction to the initial conditions throughout the time
interval. Upon convergence, the accuracy of the parareal method is limited by what
one would obtain if the & method was used in serial on each subdomain. Hence, as
explained in detail in Section 5, in order for the parareal method to achieve parallel
efficiency, % must be less expensive than &. The reduced computational cost of %4
can be achieved by using a coarser time step for % than for %, or a less expensive
numerical method, or both. As has been pointed out [8; 7; 23; 26], for PDEs, it is
also possible to use a coarser spatial discretization for . The parareal algorithm
can, in principle, use any self-starting ODE method for % and % and hence can be
used in a “black box” fashion.

As detailed in Section 5, the parallel efficiency of parareal is limited by the fact
that during each iteration, the parallel application of & has the same computational
cost as the serial algorithm applied to the subdomain. Hence, a significant parallel
speed up (the ratio of serial to parallel cost) can only be achieved if the number of
iterations required to converge to the serial solution to a given tolerance is signifi-
cantly smaller than the number of subdomains. Similarly, the parallel efficiency
(speedup divided by the number of processors), is bounded above by the reciprocal
of the number of iterations regardless of the cost of . In most instances, the total
computational cost of the parareal algorithm is dominated by the cost of the %.

In [53], a new variant of the parareal method is presented that uses an iterative
method for solving ODEs for the coarse and fine propagators rather than traditional
methods like Runge—Kutta (RK) that are typically used in the literature. The key
observation in [53] is that the & propagator in traditional parareal approaches makes
no use of the previously computed solution on the same interval (a recent alternative
approach to reusing information appears in [28]). It is shown how the use of an
iterative method can be combined with parareal to improve the solution from the
previous parareal iteration rather than computing a solution from scratch. The result
is that the % propagator becomes much cheaper than a full accuracy solution on the
interval, and in fact the dominant cost in the numerical tests in [53] becomes the ¢
propagator.

The numerical method in [53] is based on the method of spectral deferred
corrections (SDC) [21]. Since SDC methods converge to the solution of the Gaussian
collocation formula, very accurate solutions can be obtained using a modest number
of SDC substeps per time step. This accuracy is offset by the relatively high
computational cost of SDC methods per time step. However, when one compares
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the computational cost for a given (sufficiently small) error tolerance, SDC methods
have been shown to compare favorably to RK schemes. This is especially true in the
case of problems for which semi-implicit or implicit-explicit (IMEX) methods are
appropriate since very higher-order IMEX RK methods have not been developed
whereas IMEX SDC methods with arbitrarily high formal order of accuracy are
easily constructed [51]. One main point of this paper is that the relatively high cost
per time step of SDC methods can be effectively amortized when SDC methods are
combined with the parareal algorithm since only one (or a few) SDC iterations are
done during each parareal iteration. This means that the cost of the & propagator
is similar to that of a modest number of steps of a low-order method rather than
many steps of a higher-order method. Differences between the hybrid parareal/SDC
approach and recent parallel deferred correction methods [33; 16] are discussed in
Section 4.1.

The preliminary numerical results included in Section 6 suggest that the use of a
single SDC iteration in lieu of a full-accuracy & propagator does not significantly
affect the convergence behavior of the parareal iteration. Rather, the accuracy of
% determines the rate of convergence (as was proven for the parareal method in
[27]). Since using a single SDC iteration is markedly less expensive than a higher-
order RK method with finer time steps, the dominant cost of the parareal/SDC
hybrid method when many processors are used becomes the serial procedure for
initializing the solution on each processor (typically done with ). Hence for PDEs,
the possibility of reducing the cost of 9§ by using a coarser spatial discretization
(already proposed in [8; 7; 23; 26]) is very attractive. This idea will be pursued in a
sequel to this paper.

2. Spectral deferred corrections

The spectral deferred correction method (SDC) is a variant of the traditional deferred
and defect correction methods for ODEs introduced in the 1960s [63; 57; 58; 19].
The original methods never gained the popularity of Runge—Kutta or linear multistep
methods, however, a series of papers beginning in 2000 has rekindled interest
in using such methods for large scale physical simulations. The SDC method
introduced in [21] couples a Picard integral formulation of the correction equation
with spectral integration rules to achieve stable explicit and implicit methods with
arbitrarily high formal order of accuracy.

SDC methods possess two characteristics that make them an attractive option
for the temporal integration of complex physical applications. First, SDC methods
with an arbitrarily high formal order of accuracy and good stability properties
can easily be constructed. Second, the SDC framework provides the flexibility to
apply different time-stepping procedures to different terms in an equation (as in
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operator splitting methods) while maintaining the high formal order of accuracy.
This second property has led to the development of semi- and multiimplicit methods
for equations with disparate time scales [50; 52; 10; 42]. Since SDC methods are
nonstandard, the original SDC method will be reviewed in the next section followed
by a brief discussion in Section 2.2 of the semi-implicit variants that are used in
the second numerical example in Section 6.2.

2.1. Original spectral deferred corrections. Consider the ODE initial value prob-
lem

u'(t) = f(t,u(@), te€l[0,T],
u(0) = uo,

where ug, u(t) € CV and f : R x C¥ — CV. This equation is equivalent to the
Picard integral equation

u(t) = o + f (e u(o)dr, (1)
0

and this latter form is used extensively in the discussion that follows.

As with traditional deferred correction methods, a single time step [, #,+1]
of size At = t,41 —t, is divided into a set of intermediate substeps by defining
t, =[t,....tj] with ¢, <t < --- < t; < t,41; however, for SDC methods,
t, corresponds to Gaussian quadrature nodes. The intermediate times in #, will
be denoted by the subscript j with j = 1...J, and numerical approximations
of quantities at time ¢; will likewise carry the subscript j. Beginning with the
initial condition for the time step U,.; &~ u(t,), a provisional approximation U? =
[U,?’ s oo U,?’ 7] is computed at the intermediate points using a standard numerical
method. The superscripts on numerical values (for example UY) denote here the
iteration number in the SDC procedure. The continuous counterpart of U,? can be
constructed by standard interpolation theory and is represented as U,? (t). Using
U,?(t), an integral equation similar to (1) for the error §(¢) = u(t) — U,?(t) is then
derived

5(1) = / [£ (0. YD) +5(0)) — £ (. U] dr + o), @
where
t
e(t) = U, +f f(r, Ul())dt — U(2). (3)

Note that €(7;) can be accurately and stably approximated using spectral integration
[31], since the provisional solution U O(t) is known at the Gaussian quadrature
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nodes. An update form of (2) is

Lj+1

S(tjy1) =8+ f - @ Ui @+8@)—f (1, Uy (o) ] drtetjpn—e(t)). ()

tj

In order to discretize (4), an approximation to the integral term in
b 0 0 0
et —eap= [ F@ UM -V + U )
L

must be constructed. This is done using spectral integration representing quadrature
at the nodes ¢,. The spectral quadrature approximation is denoted by
JH 0 E 0
S; ft, U,)~ f@, U, (v)dr, (6)

Ij

and the computation of the values S Jj *+ f(t,, UY) is a matrix-vector multiplication
using a precomputed integration matrix (see [35] for details).

A low-order method is then applied to approximate (2) at the points £, resulting
in a correction to the provisional solution. For example, an explicit time-stepping
scheme similar to the forward Euler method is

80, =80+ At f(t;. Uy 48N — ft;. Up )]
ji+1
+8T f . U = U + U 1 (D)
where At; =1;,1 —t; and again subscripts on numerical values denote approxima-
tions corresponding the 7;. Similarly, an implicit method similar to the backward
Euler method is

89,1 =80+ ALLF (a1, UD 1y +80,) — (i1, UL )]

+ S 0, UD = UL+ UYL (8)

The correction (2) can also be approximated by higher-order methods [41; 17].
The provisional numerical solution is then updated by adding to it the approxima-
tion of the correction, that is, Unl, = U,?, j + 82’ i The SDC method then proceeds
iteratively, by recomputing the residuals, approximating a new correction, and
setting Ur'fj.l = U,'l" it 5£’ j Each SDC iteration raises the formal order of accuracy
of the numerical solution by the order of the approximation to (4) provided the
quadrature rule in (6) is sufficiently accurate. In the methods used in the numerical
experiments presented here, (2) is approximated with a first-order method so that
M total SDC sweeps (including the predictor) are needed for M-th order accuracy.

An alternative form of (8) for general k can be derived using U,fj-l = U,’fy ;T 8,’1 it

i1
Ur]l(,er'-lH = Uﬁl + At (f (41, Ur]fj-lﬂ) PAUESE U,f,j+1)) + S]]'+ [, UY). 9)
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This form of the update equation is compared below to the serial step in the
parareal algorithm.

2.2. Semiimplicit methods. SDC methods are particularly well-suited for the tem-
poral integration of ODEs which can be split into stiff and nonstiff components.
When both stiff and nonstiff terms appear in the equation, it is often significantly
more efficient to use methods that treat only the stiff terms implicitly and treat
nonstiff terms explicitly. Such methods are usually referred to as semi-implicit or
IMEX (implicit-explicit) methods. IMEX linear multistep methods that build on a
backward difference formula treatment of the stiff term have been developed [5; 24;
1; 2; 3; 37], but like backward difference formula methods themselves, the stability
of these methods deteriorates as the order increases, and methods above sixth-order
are unstable (see the discussion in [44]). IMEX or additive Runge—Kutta methods
have also been proposed [59; 64; 4; 15; 39; 56], but methods with order higher than
five have not yet appeared.
To derive IMEX SDC methods, consider the ODE

u'(t) = f(t,u®) = fet,u®) + fit,u@®), t€[0,T], (10)
u(0) = uyg. (11)
Here the right hand side of the equation is split into two terms, the first of which is
assumed to be nonstiff (and hence treated explicitly), and the second of which is

assumed to be stiff (and treated implicitly). A first-order semi-implicit method for
computing an initial solution is simply
UL 1 = UL+ AL (fe(, UL ) + f1(t41, UL ). (12)

Following the same logic used to derive (2), one arrives at the correction equation

8(t) = (13)
fo [fE(, U () +8(0) — fe(r, UY(D)) + f1(r, UN(D)+8(x) — fi(x, UL (v)] dv
+e(1),

where p
e(t) =Up+ f fE(@, UD) + fi(tr, UN()dT — UL(1). (14)

0

A simple semi-implicit time-stepping method analogous to (9) is then
Unthy = U 4+ Aty (fe(ty, USED = fey, UY ) |
+ 1 UL ) = f10, UE D)+ 817 f @, U, (15)

In [50; 52], such a semi-implicit version of SDC is used in combination with
an auxiliary variable projection method approach for the Navier—Stokes equations
that treats the viscous terms implicitly and the nonlinear advective terms explicitly.
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These methods have been subsequently examined in more detail in [50; 44; 42; 41],
and the second numerical example in Section 6.2 is based on this semi-implicit
approach. Semi-implicit SDC methods have been extended to treat three or more
terms (explicit or implicit) in (10), including modifications that allow different
terms in the equation to be treated with different time steps [10; 42; 11].

2.3. Computational cost and storage. Like any numerical method, SDC has disad-
vantages as well as advantages. The price one pays to achieve the flexibility and high
order of accuracy for SDC methods is primarily in the large computational cost per
time step. SDC methods that use a first-order numerical method in the correction
iterates require M total iterations per time step (provisional and correction) to
achieve formal M-th order accuracy. Since each iteration sweep requires that the
solution be computed at a number of substeps that is proportional to the order, the
number of function evaluations per time step grows quadratically with the order.
This makes the cost per time step appear quite high compared to linear multistep or
Runge—Kutta methods.

However, relying on the number of function evaluations per time step as a measure
of efficiency is very misleading. First, the stability region of SDC methods also
increases roughly linearly with the order, so that larger substeps can be taken as the
order increases [21; 43]. In addition, a more relevant measure of cost is in terms of
computational effort versus error, and as is demonstrated in Section 6, SDC methods
compare well with higher-order RK methods in this measure (see also comparisons
in [51; 42]). For equations with both stiff and nonstiff terms, there are no semi-
or multiimplicit methods based on RK or linear multistep methods with order of
accuracy greater than six, so particularly when a small error is required, higher-order
SDC method are very attractive (see Section 6.2). Additionally, techniques to reduce
the computational cost of SDC methods by accelerating the convergence have also
appeared [35].

In the current context, however, it is the parallel cost of the time integration
method that is of interest. One of the main results of this paper is that, when
combined with the parareal strategy, the high cost per time step of SDC methods
due to the need to iterate the correction equation is amortized over the iterations that
must be performed during the parareal methods. Hence the cost of SDC methods
per parareal iteration is much smaller than for a noniterative method like RK.

As previously mentioned, SDC methods require that function values be stored at
a set of substeps within a given time step, which correspond to quadrature nodes
of the Picard integral discretization. If a semi- or multiimplicit operator splitting
treatment is used, each split piece of the function must be stored separately. Since
the number of substeps grows linearly with the order of the method, the storage
costs are comparable to higher-order Runge—Kutta or linear multistep methods.
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3. The parareal method

The parareal method was introduced in 2001 by Lions, Maday and Turinici [45] and
has sparked renewed interest in the construction of time parallel methods. In this
section, a short review of the parareal method is provided, and then comparisons
between parareal and spectral deferred corrections will be explored.

3.1. Notation and method. The general strategy for the parareal method is to
divide the time interval of interest [0, 7] into N intervals with each interval being
assigned to a different processor. To simplify the discussion, assume that there
are N processors Py through Py_1, and that the time intervals are of uniform size
AT =T/N so that the n-th processor computes the solution on the interval [#,, #,,+1]
where t, = nAT. On each interval, the parareal method iteratively computes a
succession of approximations U r’f 41 X u(fny1), where k denotes the iteration number.
It is becoming standard to describe the parareal algorithm in terms of two
numerical approximation methods denoted here by % and %. Both § and & propagate
an initial value U, ~ u(¢,) by approximating the solution to (1) from ¢, to #,4. For
example, if ¢ is defined by the forward Euler method applied to (1) , then

(g(tn-‘rla I, Un) = Un + (tn-i-l - tn)f(tm Un) (16)

As discussed below, in order for the parareal method to be efficient, it must be the
case that the ¢ propagator is computationally less expensive than the % propagator;
hence, in practice, ¢ is usually a low-order method. Note that 4 or & could be
defined to be more than one step of a particular numerical method on the interval
[#:, t,+1]. Since the overall accuracy of parareal is limited by the accuracy of the F
propagator, F is typically higher-order and in addition may use a smaller time step
than 9. For these reasons, 4 is referred to as the coarse propagator and ¥ the fine
propagator.

The parareal method begins by computing a first approximation in serial, U? for
n=1...N often performed with the coarse propagator %, that is,

Upyy =Y(tns1. 1. UY) (17)

with U(()) = u(0). Alternatively, one could use the parareal method with a coarser
time step to compute the initial approximation [8; 7]. Once each processor P, has a
value U?, the processors can in parallel compute the approximation F (t, 1, t,, U).
This step is in spirit an accurate solution of the ODE on the interval [z,,, #,+1] using
the approximate starting value U,? . Lastly, the parareal algorithm computes the
serial correction step

Uit =Sttt UST) + F(tust, tn, US) —Gtusr, 10, UY), (18)
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forn=0... N —1. The parareal method proceeds iteratively alternating between the
parallel computation of F(¢,41, ,, U,’f) and the serial computation of (18), which
requires computing the § propagator. The calculation in (18) will be referred to as
the 4§ correction sweep.

Parareal is an iterative method and hence requires a stopping criteria. Note that
after k iterations of the parareal method, the solution U¥ for m < k is exactly equal
to the numerical solution given by using the % propagator in a serial manner. Hence
after N iterations the parareal solution is exactly equal to applying & in serial. Since
each iteration of the parareal method requires the application of both % in parallel
and % in serial (plus the cost of communication between processors ), the parareal
method can only provide parallel speedup compared to the serial & scheme if the
number of iterations required to converge to the specified criteria (denoted here by
K) is significantly less than N (see discussion in Section 5).

3.2. An examination of the parareal correction equation. Here we review the
connection between deferred corrections and the parareal step defined by (18) first
outlined in [53]. Both & and % are approximations to the exact update given by the

Picard equation
Iny1

u(tpt1) = u(ty) + f (T u(r))dr. (19)

In

To highlight the approximation of & and % to the Picard Equation (19), we define

I(tas1s ta, U = F(tyir, ta, UN) — UK, (20)

Vtnt1, tny UX) = G(t41, 1, UY) — U, (21)
so that

F(tnr1, tn, U = UX + 91,01, 10, UY), (22)

Gts1, tn, U = U+ 9ty 11, 1,, UY). (23)

Using these definitions, (18) can be rewritten

Uit = US4 0ttt UST) = Qtugts tn, Up) + $tngr 10, Up). (24)

In the discussion leading to (9), (4) is discretized using a backward Euler type
method to give a concrete example of a time stepping scheme. If 4 is similarly
defined as a single step of backward Euler, then 9.(¢,, 11, t,, U,’f) = Atf(ty+1, U,’l‘ )
and (24) becomes

USH = US4+ At (f (g1, USTD = a1, USL D)) + 3uir 10, US). (25)

Note the similarities between this particular first-order incarnation of the parareal
update and the first-order SDC substep given in (9). The two differences between
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these equations are how the previous fine solution is used in the update and the
fact that in the parareal update, only the solution at the end of the time interval is
updated while the SDC sweep is done for each intermediate substep in the time
interval. A hybrid parareal/SDC approach using deferred corrections for both the
% propagator and the % correction sweep is described next.

4. Parallel and parareal SDC

4.1. Parallel SDC. 1In the description of SDC above, note that once the provisional
solution has been computed at all the intermediate points 7; in a given time step,
a provisional starting value for the next time step is available. This observation
naturally leads to a time parallel version of SDC in which multiple processors
are computing SDC iterations on a contiguous block of time steps simultaneously.
Variations of this approach have been employed in [33; 16] to create parallel
versions of deferred correction schemes. In practice, such an approach is only
efficient when the number of processors is approximately the number of iterations
of the serial deferred correction scheme. This then allows the first processor to
finish the calculation of the first time step as the last processor is finishing the
provisional solution. Then the first processor can receive a starting value from the
last processor and continue forward in time. Hence, the parallel speedup in this
type of parallel SDC method does not result from using an iterative strategy over
the full time domain, but rather computing the necessary iterations of the SDC
method on multiple processors simultaneously. In spirit, the hybrid parareal/SDC
methods discussed below combine the parallel speedup obtained with parallel
deferred corrections with that obtained with parareal.

4.2. Parareal using SDC. Since the parareal algorithm can in principle use any
single-step ODE method for the & and % propagators, it would be straightforward to
incorporate an SDC method into the parareal framework. However, in the standard
parareal scheme, if the & propagator were an SDC method requiring M iterations
in serial, then in the k-th parareal iteration, processor P, would compute & using
the initial value U¥ by performing M total SDC iterations. When k > 1, however,
it would be foolish to ignore the results of the & propagator from iteration k — 1
when using SDC in iteration k.

Instead, the & propagator could perform one or several SDC sweeps on the
solution from the previous parareal iteration (incorporating the initial condition in
the first correction substep). In this approach, the fine solution is computed on each
processor on the J Gaussian quadrature nodes within the time slice assigned to the
processor. These values are stored from one parareal iteration to the next, and the
% propagator is replaced by L SDC sweeps (e.g., the method described in (9) or a
higher-order version thereof) over the J nodes.
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As the parareal iterations converge, the fine solution on each processor converges
to the high-accuracy SDC solution (in fact the spectral collocation solution [35]),
but the cost of applying the & propagator during each iteration is that of a low-order
method and less than a full step of the SDC method by a factor of M /L. Numerical
experiments presented here suggest that L = 1 is sufficient for an efficient method.
Hence, the cost of % is similar to J steps of a low-order method. In the numerical
examples presented in Section 6, Gauss—Lobatto nodes are used for the fine solution
with J =5, 7 and 9.

In addition, following the argument in Section 3.2, the % corrector sweep can
also be cast as a deferred correction sweep which both updates the initial condition
for the following time step and provides a correction to the solution in the interval.
However, since it is desirable to have % be as inexpensive as possible, the correction
to the solution generated in the % correction sweep will generally not be available at
all the fine SDC nodes. In [53] the % correction sweep is computed using one step
of a third-order RK method applied to the correction equation, and the correction
is interpolated from the 3 stage values to the SDC nodes of the fine solution. In
general, ¢ could be computed on a subset of the fine SDC nodes and the correction
interpolated, and this approach is used in the examples presented here.

4.3. Parareal/SDC specifics. A detailed description of the parareal/SDC algorithm
used in the numerical results is now presented. The algorithm in pseudocode appears
in the Appendix. As in parareal, assume the time interval of interest [0, 7] is divided
into N uniform intervals [f,, t,+1] where t, = nAT is assigned to P,. On each
interval [¢,, f,+1] choose the J fine SDC nodes ¢, corresponding to the Gauss—
Lobatto nodes with t, =t,1 < --- < t, j = ty+1. Likewise choose some subset

i, of size J of t, corresponding to the substeps for the coarse propagator 4. In
the first numerical example J =3, that is, 7, is the midpoint and endpoints of
[#:, th+1]. This situation is shown in Figure 1, where J =7 and J = 3. The solution
at the coarse nodes , on processor P, during iteration k is denoted 0,’; 7 while the
solution at the fine nodes is denoted U,’;, i One last piece of notational convention is
that f(¢,, U,’Z‘) refers to the set of function values f(z;, U,’f’ j) at the nodes ¢, with
analogous notation using £,.

t, t

n+l

Figure 1. Notation for SDC substeps for the & and ‘¢ propagators.
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Predictor step. Starting with the initial data Uo | = u(0) on processor Py, compute
the initial approximation U, 70 .1 on each processor in serial. Each processor (except
Py) must wait to receive the value U 0 1= U 0 j from processor P, . Then the
values U jforj=1. .J are computed usmg the numerical method of ¢§. The
value U 0" ¥ 1s then passed to the processor P,y (if n < N — 1), where it is received

as Un+1 1

First parallel iteration (k =1). As soon as processor P, is finished computing the
last predictor value U 0 _j and sending it to P, (if n < N — 1), the following steps
are taken in the first parallel iteration. Note that each of these steps can be done in
parallel if the method is pipelined (see Section 5.2).

(D Interpolate the values U 0. j to all of the fine nodes # to form U, 0 and compute
f@,U ) forj=1. J

2) Compute the values S}Jr f(t,, U,?) for j = 1...J — 1 using the spectral
quadrature rule as in (6).

(3) Perform one sweep (J — 1 substeps) of the numerical method for the F propaga-
tor applied to the correction (2) using the values f (¢}, U,?’ j) and S J] + f(t,, U,?)
just computed. This will yield updated values U,:’ j

(4) Compute the values Sf“ f(t,, U,}) for j=1... J — 1. Since the integral
over a coarse time step is the sum of the integrals over the corresponding fine
time steps, this is done by summing the corresponding values of the spectral
integration rule Sjo f&,,U 1)

(5) Receive the new initial value U ! 1 from processor P, (if n > 0). If n =0,
then U&l = Ugl.
(6) Perform one sweep (J — 1 substeps) of the numerical method for the 4 propaga-

tor applied to the correction (2) usmg the values S/ I, U 0) just computed.
This will yield updated values U ! jforj=1. J

(7) Pass the value U ] to processor Pn+1 (if n < N — 1) which will be received

as Un+1 1

Each subsequent iteration. After the first iteration, the parareal/SDC algorithm
proceeds in nearly the same way as in the first iteration except in the first two
steps above. In the first iteration, the coarse values from the initial predictor must
be interpolated to the fine nodes in step 1 above. In subsequent iterations, there
are two alternatives regarding how the results from applying % in the previous
parareal iteration are used. First, one could use no information from the values
U,’f,}l computed in the previous 9 step. This alternative is in the spirit of parareal
where the § correction sweep only provides a new initial value for the & step on



278 MICHAEL L. MINION

the next processor. In this case step 1 above would be skipped and instead of using
a quadrature rule in step 2, set Sij(t U,/l"j) = Sj:+1f(t Uk 1 .

Alternatively, the coarse Values U, k -1 could also be used to 1mpr0ve the solution
at the fine nodes as well. In the numerlcal tests included here, this is done simply
by forming the difference U, kfl l7 kfl at the coarse nodes, and then interpolating
this difference to the points t to form U k ; instep 1. These values are then used to
compute SH'lf(t Uk) in step 2.

Note that in each iteration, two SDC sweeps are performed, one on the coarse
nodes £, corresponding to % and one on the fine nodes ¢, corresponding to F
However, data is only passed between processors once per iteration after %9 is
completed. The use of the coarse nodes for % reduces the serial cost of computing
the first predictor in contrast to the pipelined SDC methods from [33; 16] described
in Section 4.1.

5. Parallel speedup and efficiency

In this section, an analysis of the theoretical parallel speedup and efficiency of the
parareal and parareal/SDC methods is presented. First, the standard analysis of the
parareal method is reviewed which shows that the parallel efficiency cannot exceed
1/K, for K iterations of the method. Next, it is demonstrated that the parallel
efficiency of the parareal/SDC method can be much closer to 1.

The application of the § corrector sweep described by (18) in the parareal method
is generally regarded as a serial operation since P, cannot apply the correction step
described by (18) until the value U,’frl is computed on P,_; and sent to P,. The 4
propagator is often assumed to be used for the initial prediction phase as well which
is clearly a serial operation, hence parareal is often described as iteratively applying
the G propagator in serial and the % propagator in parallel. The theoretical parallel
speedup and efficiency of the parareal method from this point of view has been
studied previously by [6; 7; 22] and this analysis is first reviewed below. Then, an
analysis for a pipelined version of parareal will be discussed followed by a similar
analysis for a parareal/SDC method.

5.1. Serial-parallel parareal. To begin, assume that each processor is identical
and that the communication time between processors is negligible. Denote the
time for a processor to compute one step of the numerical method used in the 4
propagator by 7. Likewise let 77 denote the time for one processor to compute
one step of the numerical method used as the & propagator Since multiple steps of
a numerical method can be used for either % or %, denote the number of steps as
N¢ and Np respectively, and the size of the steps by At and §¢. Hence the total
cost of F is Nrptr, which is denoted Y. We assume that the cost of applying the %4
correction in (18) is equal to Ngtg = Y, that is, the cost of forming the difference
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N | Number of processors
K | Number of parareal iterations

G Cost of the numerical method in 4§

7 | Cost of the numerical method in &

T Length of time integration
AT | Time increment per processor (7 /N)

At | Time increment for % propagator

ot Time increment for & propagator
N¢ | Number of 4 steps per processor (AT /At)
Np | Number of & steps per processor (AT /§t)
Yg | Total cost § propagator (Ngts)

Yr | Total cost & propagator (Nptr)

Table 1. Notation for the parareal algorithm.

in (18) is negligible. Let N denote the number of processors used, and AT =7 /N
the time increment per processor. Table 1 summarizes these definitions.

Assume that the prediction step is done with the % propagator, then for N
processors the cost of computing the predictor is N Ngtg = NY. Likewise the
cost of each iteration of the parareal method is NNgtg + Nrptp = NYg + Y
(assuming that the method ends with a correction step). A graphical description
of the cost is shown in Figure 2. The dots in the figure indicate communication
between two processors.

~ K(Yr+NYg)

Total Time

<

fa
| | | | |

I I I I
P, P P, P P Ps

Figure 2. Cost of the serial-parallel version of the parareal method
for K = 2 iterations and N = 6 processors. The dots indicate
communication between two processors.
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The total cost for the predictor and K parareal iterations as implemented in
Figure 2 is hence

NNGt6+ K(NNGtG + Nrtr) = NYG + K(NYG + Yr). (26)

The cost of applying & serially is N Nptr = NYF; hence the speedup for parareal
is

NYFr 1
NTG+K(NTG+TF) E+K<E+l)
Yr Tr N
Denoting the ratio Y /YFr by o we have
1
= . (28)
a+ K(@+1/N)

In [6], some further assumptions are made to simplify the computation of a maximum
possible speedup. Since we would like to compare the parareal solution with a
serial fine solution with some fixed time step 6¢, N and N are related by

T
Np=AT /5t = 29
F / Nor (29)

Assume further that the same method is used for both the fine and coarse propagator,
and only one step is used for the coarse propagator; that is, Ng¢ = 1 and tg = 1F.
Then

1 N ot
. (30)
~ Nr T
Under these additional assumptions, the speedup becomes
S= ! (31)
(K + 1)N—8t + &

N

The maximum value of S in terms of N can hence be easily seen to occur when

N = N*, where
N* = KT (32)
V(K + Dt

This value of N* gives a maximum speedup of S* where

.1 T
St = = (33)
2\ 81K (K + 1)

If one considers the parallel efficiency E = S/N, using (28) gives

1
 Na(K+1D+K'

(34)
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Clearly the parallel efficiency is bounded by E < 1/K, which must be true since
each parareal iteration is more expensive than computing the serial solution over the
interval represented on each processor (i.e., AT). Since K is usually at least 2, it is
often stated that the parallel efficiency of parareal is bounded by % Using the value
of N* above, we see that the parallel efficiency at maximum speedup is 1/(2K).

5.2. Pipelined parareal. The version of the parareal algorithm just discussed is
not the most efficient implementation possible on most current parallel architectures
in which processors are able to perform different tasks at different times. Although
the predictor step in parareal is certainly a serial operation, after P, has computed
the value U?, it is free to immediately apply the % propagator rather than wait for
the predictor to be computed on all processors. We refer to such an implementation
where a processor computes a step in the algorithm as soon as possible as “pipelined”.
Likewise, if each processor begins computing the % propagator as soon as the initial
condition is available, the parareal iterations can be pipelined so that the cost is of
each parareal iteration is Nrtg+Ngtg = Yr+ Y instead of Yr+ N Y. Figure 3
demonstrates graphically the cost of a pipelined parareal implementation. Note that
this form of pipelining must be modified if the computation of the predictor is less
expensive than applying the 9 corrector sweep.
The parallel speedup for pipelined parareal is

NNFTF NTF

S = = . 35
NNgtg+K(Ngtg +Nrtrp) NYg+K(Yg+7TF) 53
Introducing @ = Y'¢/Y'F as above gives a parallel speedup of
S= ! (36)
= Y
K(ﬁ L
«tK(§+y)
|
Q
E
H
= - K(Tr+7Yc)
S

} NYg
| | | | | -
I I I I I -

Py Py P, P; Py Ps
Figure 3. Cost of the pipelined version of the parareal method
for K = 3 iterations and N = 6 processors. The dots indicate
communication between two processors.



282 MICHAEL L. MINION

K(Yr+7Yc)

}NTG
| | | | |
I I I I I

P, P P P, P, Ps

Total Time

Figure 4. Cost of the hybrid parareal/SDC method for K = 4. The
dots indicate communication between two processors.

Again making the simplifying assumptions from [6] of Ng = 1 and 75 = tF, and
hence o = Nét/ T, gives

S = : (37)

which is maximized by
N*=,/KT/ét. (38)

This value is a factor of 4/ K + 1 larger than the value in (32), meaning that more
processors can be used before the speedup saturates. This value of N* gives a

maximum speedup of
o 1/ T 1 (39)
2V etk \14+ K8t /T )

Comparing (33) and (39) shows that pipelining increases the maximum speedup by
approximately a factor of «/K + 1 when 6¢/7T is small.
The parallel efficiency for pipelined parareal is
. 1 B 1
" Na+K@+1) a(N+K)+K’

(40)

Hence despite the lower cost of each parareal iteration, £ < 1/K since the cost of
each iteration is still greater than the serial cost of computing the fine solution over
the interval of length AT. In the first numerical tests presented in Section 6, for
the tolerances used, K is larger than 10, which unfortunately gives a low parallel
efficiency. Note that the bound E < 1/K holds regardless of the assumptions made
about the relative cost of T because in the parareal iteration, & is computed during
every iteration.
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5.3. Parareal with SDC. In order to examine the speedup and efficiency of the
parareal/SDC hybrid method, the analysis and notation above must be modified
slightly. First we assume again that parareal/SDC has been implemented in a
pipelined fashion as in Figure 3. We assume that the cost of computing one substep
of SDC with & or 4 is the same as one step of & or ¢ for an ODE (i.e., the
cost of additional residual term in the correction equation is negligible). In the
implementation used for the numerical results presented here, the parareal/SDC
method will converge to an SDC method that uses one time step per processor.
Of relevance to the cost is the number of substeps used in the fine SDC method,
and this is denoted as in Section 4.3 as J (which is the number of SDC nodes
used minus one). Let 7 denote the cost of the method used for each substep
in the correction step of SDC on the fine nodes. Likewise, let 7 and J be the
corresponding constants for the ¢ propagator. The total cost of the computing %
is Jp, which is again denoted Yr. The corresponding cost for 4 is Yr = J 5.
Table 2 summarizes this notation.

N | Number of processors

K | Number of parareal iterations

M | Number of SDC iterations for a serial method
7 | Cost of the numerical method in %

7 | Cost of the numerical method in &

J | Number of substeps for coarse SDC sweep in 4
J | Number of substeps for fine SDC sweep in F
Y | Total cost § propagator (f )

Yr | Total cost F propagator (Jtr)

Table 2. Notation for the parareal/SDC algorithm.

Assuming the method is pipelined, each parareal/SDC iteration will have a cost
Jtp+J 76 = Yr + Y. If the method used for the predictor also has cost per time
step Y, then the total cost for K iterations of parareal/SDCis NYg+ K (Yr+Yg).

Let M denote the number of SDC iterations needed to compute the solution to
the desired accuracy on a single processor using the fine SDC nodes. Then the cost
of the serial SDC method will be approximately N M Y'r. The parallel speedup S

is hence
NMTYE

5= NYGg+K(X6+Yr)
Note that this is exactly M times greater than the value for the speedup for the
pipelined parareal method in (35). Proceeding as in the pipelined parareal analysis
above would lead to the same value for N* and a value of S$* which is again M
times bigger than before.

(41)
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Setting « = Y /Y in (41) gives
§— M
o+ (K/N)(@+ 1)’

(42)

and efficiency
M M

~ Na+K@+1) (N+Ka+K’
Again, the efficiency is exactly M times greater than the value for the pipelined
parareal method in (40). This is due to the fact that the cost of doing M iterations
of the SDC method has been amortized over the cost of the parareal iterations. In
contrast to the standard parareal method, the efficiency is not automatically bounded
above by E < 1/K. However, since M is fixed, for the efficiency to approach M /K,
the product (N 4 K)o should be as small as possible. Unfortunately, for ODEs
decreasing « is equivalent to decreasing the accuracy of 4, and this leads in general
to an increase in K as is demonstrated in Section 6.

However for PDE:s, if G could be computed on a coarser spatial mesh, the cost
7 could be reduced significantly. This idea has in fact been suggested for the
parareal method as well [8; 7; 23; 26]. In the parareal method however, reducing
the cost of 7g cannot increase the parallel efficiency beyond the bound £ < 1/K
since % is still computed in every iteration.

(43)

5.4. Further discussion. Several comments can be made about the parallel cost
and efficiency of parareal/SDC. First, it should be noted that achieving a large
parallel speedup is only significant if the serial method to which one is comparing
is efficient. Serial SDC methods have already been shown to be competitive in
terms of cost per accuracy with higher-order Runge—Kutta and linear multistep
methods [51; 43]. A comparison for explicit SDC methods and Runge—Kutta is
also included in Section 6.

Secondly, in order for parareal/SDC to converge to the accuracy of the serial
SDC method, K must be greater than M /2 since only 2K correction sweeps are
done for K parareal iterations. In practice, since it is desirable to make « small (i.e.,
% much less expensive than %), then K must be closer to M to achieve the accuracy
of M serial iterations of SDC. If one examines the efficiency when M = K, then

1
E=—p (44)

N .
(M +1)a+1

Although this still seems to scale poorly as N grows larger, it should be noted

that for the solution of PDEs (which motivates this work), temporal parallelization

would be combined with spatial parallelization and hence N would be chosen so
that the gain in efficiency from temporal parallelization exceeds the (presumably
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saturated) spatial parallelization. Also, the processors in time parallelization can be
used in a cyclical nature. Rather than dividing the entire time domain by the number
of processors available, the processors are employed on the first N time-steps, and
as the first processor finishes, it is employed to begin iterating on the N + 1 time
step as in the parallel deferred correction methods [33; 16].

As previously mentioned, a very promising approach is to use a coarser spatial
grid for % as is discussed in [8; 7; 23; 26]. For three-dimensional calculations, even
a factor of two reduction in grid spacing results in a factor of eight reduction in
the number of spatial unknowns. In this scenario, the quantity « could be quite
small, and the efficiency could theoretically exceed 1/2 in contrast to parareal where
the efficiency is bounded by 1/K regardless of the cost of 4. Investigation of
parareal/SDC using spatial coarsening for PDEs will be reported in a subsequent
paper.

Finally, the above discussion ignores the reality that current massively parallel
computers typically exhibit highly inhomogeneous communication costs between
processors, and in the case of large scale grid computing, processors are not
necessarily of comparable computational power. Even in a serial computation,
when iterative methods are employed to solve the implicit equations associated
with methods for stiff equations, the amount of work per time step can vary greatly.
Furthermore, the issue of time-step adaptivity, which is critical for the efficient
solution of many problems, causes further difficulties in analyzing the parallel
efficiency of the time-parallel methods.

6. Numerical examples

In this section, preliminary numerical results are presented to compare the efficiency
of the parareal/SDC method to standard implementations of parareal using Runge—
Kutta methods for both the & and % propagators. The problems considered are
taken from recent papers on parareal and focus on the effect of using SDC sweeps
for the & and % propagator on the convergence of the parareal iterations.

6.1. The Lorenz oscillator. Here the effectiveness of the hybrid parareal/SDC
method is explored using the Lorenz equation test problem from [27]. Specifically,
we consider

X=o(y—-x), Y=x(p—2-y, =xy-pz (45)

in t € [0, 10] with the usual choice of parameters o = 10, p =28, and 8 = 8/3
and initial conditions (x, y, z)(0) = (5, —5, 20). The resulting solution with these
parameters is very sensitive to numerical error.

The particular implementation of parareal considered in [27] uses use N = 180
processors and the standard explicit fourth-order RK method for both 6 and &, where
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Figure 5. Error versus number of function evaluations: serial
Runge—Kutta and SDC methods for the Lorenz equation.

% is implemented as a single step and & 80 steps. Here, additional implementations
are considered using the standard explicit third-order RK method for 4 and explicit
third-, fourth-, and eighth-order [20] RK methods (denoted here RK3, RK4, and
RKS respectively) as the F propagators. The convergence and efficiency of different
combinations of RK methods will be compared to parareal/SDC methods using a
single explicit correction sweep of SDC as the & propagator with five, seven, and
nine Gauss—Lobatto nodes for each processor.

Before studying the parallel methods, the error for serial methods is first examined
to understand the accuracy of different choices. Figure 5 compares the L, error
of the solution at the final time 7" = 10 versus the number of function evaluations
using serial Runge—Kutta and SDC methods. In the SDC methods, the RK4 method
is used to compute the provisional solution at each node, and a second-order RK
method is applied to the correction (2) during the deferred correction sweeps. Two,
three, and four SDC sweeps respectively, are applied for the SDC methods using
five, seven, and nine Lobatto nodes.

Note that the formal order of accuracy of the three SDC methods if the SDC
iterations are fully converged to the collocation method would be 8, 12 and 16,
but in this example, the number of SDC iterations used limits the formal order of
accuracy to 8, 10, and 12. Here the computational cost of the SDC method ignores
the cost of computing the numerical quadrature for the correction equations (which
is done using a simple matrix-vector multiply). Figure 5 demonstrates that the
numerical approximations for the SDC methods are more efficient than the third-
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Figure 6. Error versus time step: serial Runge—Kutta and SDC
methods for the Lorenz equation.

and fourth-order RK methods for a very modest error tolerance. For more stringent
error tolerances, the efficiency of the SDC methods using seven and nine Lobatto
nodes are similar to the eighth-order RK method.

In Figure 6 the error versus time step of the methods is compared. In this figure,
the cost per time step of the methods is not relevant, and it is evident that the SDC
methods are able to obtain the same level of accuracy as the RK methods with a
much larger time step. This fact will allow a substantial increase in the efficiency
of the parareal/SDC methods considered below since the increased cost per time
step is amortized over parareal iterations.

Next the behavior of various implementations of the parareal and parareal/SDC
methods in terms of the convergence of the parareal iterations is examined. First,
the traditional parareal method using RK is examined. In Figure 7, the error at the
final time is plotted versus parareal iteration for six different combinations of the
% and & propagators. Two choices for ¢ are used (one step of RK3 or RK4), while
three choices for & are used (100 steps of RK3, 80 steps of RK4, or 8 steps of RKS).
In each case the ¢ propagator is used for the initial serial prediction step. Note that
the convergence behavior for methods using the same 4 propagator are very similar.
On the other hand, the overall error after convergence of parareal depends on the
accuracy of the & propagator. Note that the absolute accuracy of the numerical
method is used in the plots, rather than the difference between the parareal iterates
and the result obtained from using & in serial. Hence the leveling off of the error
in the convergence plots gives an indication of the accuracy of the serial & method.
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Figure 7. Convergence of parareal iterations for the Lorenz equa-
tion using different Runge—Kutta combinations for ¢§ and %. In the
legend, the combinations are listed as §/%F.

The convergence results for parareal/SDC are presented in Figure 8. Again, six
variations are presented. As before % is either RK3 or RK4, although these methods

Error
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Figure 8. Convergence of parareal/SDC iterations for the Lorenz
equation using different combinations of Runge—Kutta for ¢ and a
second-order SDC sweep for & with different number of nodes. In
the legend, the combinations are listed as 9/%.
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are now applied to the correction (2). The & propagator is done using a single
sweep of (2) using the first order method in (7) for each node. This means that
% requires only 4, 6, and 8 function evaluations for the methods using 5, 7, and
9 Lobatto nodes respectively. As in Figure 7, the data in Figure 8 show that the
number of parareal iterations required to converge depends on % while the overall
accuracy depends on F (here the number of Lobatto nodes).

Next the convergence behavior of traditional parareal and parareal/SDC methods
is compared in Figure 9. Of interest is whether the use of a low-order corrector for
% in the parareal/SDC method adversely affects the number of iterations required
for convergence. The left panel in Figure 9 shows the convergence for methods
using RK3 in % and different choices of RK and SDC for &. The right panel shows
the corresponding data using RK4 for 9. The data demonstrate that replacing the
full accuracy RK solve in & with a single SDC sweep does not significantly affect
the convergence of the parareal iterates for this example. As observed above, the
convergence behavior depends mainly on the accuracy of % for both methods and
the number of iterations needed to converge to a given tolerance is very similar
parareal and parareal/SDC methods.

Of greater interest here however is the total parallel computational cost of the
parareal and parareal/SDC methods. Hence Figure 10 shows the convergence of
parareal iterations versus total parallel cost for traditional parareal methods using

e R-K 3 as G propagator e R-K 4 as G propagator
10° 10°
<
1072 0066690 1072
e 107" e 107
L L
10° 10°
—6— SDC5
SDC7
g || —@—SDC9 8
1071 —o—Ria 10
RK4
—— RK8
10_10 T 1 1 10_10 1 1 1
0 5 10 15 0 5 10 15
Iteration Iteration

Figure 9. Convergence of parareal and parareal/SDC methods for
the Lorenz equation. The methods in the left panel use explicit
RK3 for %, while those in the right panel use explicit RK4.
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Figure 10. Error versus parallel computational cost of the parareal
method using different combinations of Runge—Kutta for ¢ and %
(listed as 4/%F in the legend) for the Lorenz equation.

RK methods for ¢ and %. The cost is computed using the assumption of a pipelined
implementation as explained in Section 5.2 and is based on the number of explicit
function evaluations: communication cost is ignored. Figure 10 shows that the
total parallel cost is dominated by the cost of F. Although using RK4 for 4 rather
than RK3 reduces the number of iterations required somewhat, this is offset by the
increased cost of RK4. Since the use of higher-order methods for & is more efficient
in terms of accuracy per functions evaluations (see Figure 5), the total parallel cost
for methods using RK8 for ¥ is substantially less than those using RK3 and RK4.
Next consider the parallel cost for parareal/SDC shown in Figure 11. Again
a pipelined implementation is assumed, and since only function evaluations are
counted, the cost of the computing the numerical quadrature and interpolating the
correction computed by 4 (both of which are simple matrix multiplications) is not
included. The most notable difference in the data is that the total computational
cost of the parareal/SDC method is dominated by the cost of the initial serial §
sweep. As noted before, this fact suggests that using spatial coarsening for ¢ for
PDE:s could increase the efficiency of parareal/SDC methods significantly.
Finally, the total parallel cost for both traditional parareal using RK and para-
real/SDC is compared in Figure 12. Since the methods use the same predictor,
the cost is identical at the end of the serial predictor step, but it is evident that the
much reduced cost of using SDC for & greatly reduces the total computational cost.
Specifically, the cost of & for the parareal/SDC method is either 4, 6, or 8 function
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Figure 11. Error versus parallel computational cost of the para-
real/SDC method using different combinations of ¢ and % (listed
as 9/% in the legend) for the Lorenz equation.
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Figure 12. Comparison of total parallel cost for parareal and para-
real/SDC methods for the Lorenz equation.

evaluations while for the RK based parareal method, it is 300, 320, or 88 function
evaluations.
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6.2. A PDE example. Next, the performance of the parareal/SDC method is demon-
strated for a discretized partial differential equation, namely the viscous Burgers
equation

Uy +uy = vy, u(x,0)=gx).

The spatial domain for all experiment is the periodic interval [0, 1], with initial
data given by g(x) = sin(2wx), and v = 1/50. This example is also considered
in [27], although there a second-order finite difference spatial discretization with
first-order backward Euler in time is used. Here, a semi-implicit or IMEX temporal
discretization is used, and the finite difference discretization is replaced by a pseudo-
spectral approach (with no de-aliasing). The semi-implicit time stepping requires
only the diffusive piece to be treated implicitly; hence the implicit problem is linear
(and here solved in spectral space).

For the parareal/SDC method, 7 Gauss—Lobatto nodes are used in the & propaga-
tor with a first-order semi-implicit corrector. For ¢, either 1 or 2 steps of a first-order
semi-implicit corrector is used. In each of the tests below, the error reported is the
maximum of the error at the final time as compared to a highly resolved reference
solution computed with Runge—Kutta and not the solution generated by using &
in serial. Note that the reference solution is computing using the same number
of spatial unknowns as the problem being run, so the solution to the PDE is not
necessarily fully resolved in space.

In the first set of tests, 64 spatial grid points are used, and the convergence
behavior for runs of different length of integration is compared. Specifically, the
simulations are run to final time 7 = 0.1, T = 0.5, and 7 = 1.0. In all cases, the
time interval for each processor is 1/100; hence 10, 50, and 100 processors are
used. In Figure 13, the results are displayed in the left panel using one step of for-
ward/backward Euler for % and in the right panel for two steps of forward/backward
Euler. In these figures, one does not observe the exponential convergence of the
error in the parareal iterations as is evident in the examples for the Lorenz equation.
This is due to the fact that the convergence of the SDC iteration is slower in this
example than the convergence of the parareal iterations for short time (Note in
particular the nearly constant convergence rate for the 7 = 0.1 example). Note also
in the right panel that the increase in the accuracy of % from using an additional step
of forward/backward Euler increases the rate of convergence of the parareal/SDC
iterations.

In the next set of tests, the integration time is fixed at 7 = 1 with 100 processors,
but the number points used in the spatial discretization is varied. Figure 14 shows
the convergence behavior for 64, 128, and 256 spatial points. The data show that the
convergence behavior is completely unaffected by the number of spatial variables
used.
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Figure 13. Convergence of the parareal/SDC method for Burgers
equation using one step (left) and two steps (right) of forward/
backward Euler for %.

In the final set of tests, the integration time is fixed at 7 = 1 with a grid size
of 64 spatial points, but the number of processors is varied. Figure 15 shows the
convergence behavior for N = 20, 40 and 100 for 1 step of forward/backward Euler
for ¢ in the left panel, and 2 steps in the right panel. The fact that the parareal
iterates are converging faster for a larger number of processors is again due to
the increased accuracy of 9. As the number of processors is increased, the coarse
time step gets smaller and hence % becomes more accurate. Hence the number of
iterations needed to converge decreases.

A few words should be said regarding any comparison in cost to the method
in [27]. First, the & propagator in [27] is based on 10 steps of backward Euler
for the first set of test cases. Here, the & method is 6 substeps of a semi-implicit
method applied in the SDC sweep. Depending on the efficiency of solving the
nonlinear equation for the fully implicit method, the semi-implicit approach could
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Figure 14. Parareal/SDC convergence for different spatial resolu-
tions for Burgers equation. For all runs, the final time is 7 =1, and
100 processors are used.

be substantially more efficient. The biggest difference between the two approaches
is in the overall accuracy, which for the high-order SDC-based method used here is
over ten orders of magnitude smaller than that achieved with the first-order temporal
method used in [27].

7. Conclusions

A new strategy for combining deferred corrections and the parareal method for the
temporal parallelization of ordinary differential equations first presented in [53] is
further developed and evaluated. One can regard the parareal/SDC strategy as either
a way to parallelize SDC methods in time or as a way to increase the efficiency of
parareal methods by reducing the computational cost of the & propagator.

The motivation of this research is to develop parallel-in-time strategies to be
combined with spatial parallelization for massively parallel computations of PDEs,
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Figure 15. Parareal/SDC convergence for different numbers of
processors. Each run is to the final time 7 = 1 with 64 spatial grid
points.

particularly in computational fluid dynamics. One of the significant features of the
parareal/SDC approach is that the greatly reduced cost of computing & means that
reducing the cost of ¢ by using a coarser spatial grid could increase the overall
parallel efficiency significantly. Results in this direction will be reported in the
future.

Other possibilities for further increasing the efficiency of the parareal/SDC
approach include the use of Krylov methods to accelerate the convergence of the
parareal/SDC iterations. Krylov acceleration methods have already been studied
for serial SDC methods for both ODEs and DAEs [35; 36; 12], as well as for the
traditional parareal method [28], although the effectiveness of these methods for
large scale PDEs has not yet been demonstrated. Another possibility concerns
the use of iterative solvers within implicit or semi-implicit temporal methods for
PDE:s. It seems reasonable that the error tolerance within implicit solvers could
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be dynamically decreased as the parareal iterations progress, but this may affect
the convergence of the parareal iterations. In the parareal/SDC approach, a very
good initial guess for these implicit solves is available from the previous parareal
iteration. In conclusion, despite the promising initial results reported here, avenues
for further improvement need to be pursued.

Appendix: Pseudo-code of the parareal/SDC method

The following is the pseudocode for a semi-implicit parareal/SDC implementation
using the first-order time-stepping method in (12) and (15).

Serial initialization:

FORn=0...N —1
COMMENT: Get initial data
IFn=0
U°, =u(0)
ELSE
Receive U,?_]’ j from P,
Set U0, =U)_, ;
ENDIF ’
COMMENT: Compute solution at coarse time nodes

FOR j=0...J—1
Ur?,j—‘,—] = Ur(l),i + At](FE(t]7 U;?’j) + FI (t]-‘rl, U}?,j'_l'_]))

END FOR
COMMENT: Send data forward
IFn<N-—1

Send U;?,i to Pyt
END IF

END FOR

Parallel iteration:

FORk=1...K
DO in parallelon P,,n =0...N —1

COMMENT: Update values at fine time steps

IFk=1
INTERPOLATE l~],lf, ; at coarse times to form U,f’ ; at fine points
COMPUTE f(t;, Uy ;) for j=1...J.

ELSE
INTERPOLATE U,’f i U,’f’}l at coarse times to form U/f, ; at fine points

END IF
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COMMENT: Compute time integral of fine solution at fine nodes
COMPUTE S]J. + f(t,, Uﬁ) for j =0...J — 1 using spectral integration

COMMENT: Do a fine SDC sweep
FOR j=0...J—-1
n,
END FOR
COMMENT: Compute time integral of fine solution at coarse nodes
COMPUTE S{*! f(%,, U%) j=0...J — 1 by summing §/*' £ (£, U%)

COMMENT: Get new initial data
IFn=0

SET U, = U7,

SET f (tn, U ) = f(ta, U5 1"
ELSE

RECEIVE Uf_, ; from P,_,

SET Ur?,1 = Urlf—l,f

COMPUTE f (5, Uy ) = f(tn. US )
END IF

COMMENT: Do a coarse SDC sweep

FOR j=0...J—1

n
END FOR
COMMENT: Send data forward
IFn<P—-1
Send U,’f’j to Py
END IF
END DO

END FOR
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