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We present a numerical method for solving the system of equations of a model
of cellular electrical activity that takes into account both geometrical effects and
ionic concentration dynamics. A challenge in constructing a numerical scheme
for this model is that its equations are stiff: There is a time scale associated with
“diffusion” of the membrane potential that is much faster than the time scale
associated with the physical diffusion of ions. We use an implicit discretization
in time and a finite volume discretization in space. We present convergence
studies of the numerical method for cylindrical and two-dimensional geometries
for several cases of physiological interest.

1. Introduction

Cellular electrical activity is central to cellular physiology [1], and it has been an
area in which mathematical modeling has seen great success [16; 18]. Most models
of cellular electrical activity are based on the cable model, in which an ohmic
current continuity relation results in a one-dimensional reaction diffusion system
[16; 18].

In the derivation of the cable model, one assumes that the ionic concentrations
do not change appreciably over the time of interest, and that a one-dimensional
picture of cell geometry is adequate for purposes of describing cellular electrical
activity. In [25; 27], we presented a three-dimensional model of cellular electrical
activity that takes into account both ionic concentration and geometrical effects
on electrophysiology. The resulting system of partial differential equations has the
virtue of being more general in its physiological applicability, but has the difficulty
of being far more complicated to study either analytically or numerically.

In this paper, we develop an efficient numerical method to solve this system of
equations in two spatial dimensions. In Section 2, we give a short presentation of
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the model equations and in Section 3 we discuss the time and space scales that are
relevant to the behavior of the model. We shall see that the model equations have
two time scales of interest, the ionic diffusion time scale and the membrane potential
time scale. The membrane potential time scale is associated with the “diffusion” of
the membrane potential, which is closely related to the spread of the membrane
potential in the cable model. In Section 4, we discuss spatial discretization. We use
a finite volume scheme and develop a numerical scheme for cylindrical geometry
and a related scheme for arbitrary two-dimensional geometry. In Section 5, we
discuss time discretization. We use an operator splitting approach. Each time step
is split into two substeps, one in which the gating variables are updated and the
other in which the electrostatic potential and the ionic concentrations are updated.
For the latter substep, a the electrostatic potential and ionic concentrations are
treated implicitly to deal with the disparity of time scales mentioned above. We
then discuss the iterative numerical solution of the nonlinear algebraic equations
which result from the discretization. We conclude with convergence studies using
several examples of biophysical relevance: the Hodgkin–Huxley axon, ephaptic
transmission between cardiac cells, and three model geometries at length scales
typically found in the central nervous system.

2. Model equations

We consider biological tissue to be a three-dimensional space partitioned into the
intracellular and extracellular spaces by membranes. In these regions, we track the
ionic concentrations as well as the electrostatic potential. Let the biological tissue
of interest be divided into membrane bound subregions �(k), indexed by k. We
denote the membrane separating the regions �(k) and �(l) by 0(kl) (Figure 1).

In any of the subregions �(k), both the extracellular and intracellular, the equa-
tions satisfied by the ionic concentrations ci and the electrostatic potential φ are

∂ci

∂t
=−∇ · fi , (ion conservation) (1)

fi =−Di

(
∇ci +

qzi ci

kB T
∇φ

)
, (drift-diffusion flux) (2)

0= ρ0+

N∑
i=1

qzi ci , (electroneutrality condition). (3)

Here, fi denotes the flux of the i-th species of ion. This quantity is expressed as a
sum of a diffusion term and a drift term. Di is the diffusion coefficient of the i-th
ion, qzi is the amount of charge on the i-th ion, where q is the proton charge. Thus
q Di/(kB T ) is the mobility of the ion species (Einstein relation), where kB is the
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φ, ci
intracellular space (�(k))

φ, ci
extracellular space (�(l))

membrane (0(kl))

n(kl)

qzi fi · n(kl)

membrane (lipid bilayer)
capacitance Cm

transmembrane current j (kl)
i

Figure 1. The variables φ, ci are defined in the regions �(k) and
�(l), which we have identified as intracellular and extracellular
regions in the above. The membrane acts primarily as a capacitor,
but possesses ionic channels through which transmembrane current
can flow.

Boltzmann constant and T the absolute temperature. The fixed background charge
density (if any) is given by ρ0.

The electrostatic potential φ is determined implicitly by the electroneutrality
condition (3). We can obtain an equation that is satisfied by φ by taking the
derivative of (3) with respect to time t :

N∑
i=1

qzi
∂ci

∂t
=

N∑
i=1

qzi∇ · fi =∇ · (a∇φ+∇b)= 0, (4)

where

a(x, t)=
N∑

i=1

(qzi )
2 Di

kB T
ci (x, t), b(x, t)=

N∑
i=1

qzi Di ci (x, t). (5)

Thus, φ satisfies an elliptic constraint such that electroneutrality is satisfied at each
instant of time.

We now turn to the boundary conditions, satisfied at both the intracellular and
extracellular sides of the cell membrane. Biological membranes consist largely of a
lipid bilayer. In this cell membrane are embedded ionic channels and transporters
through which certain ionic species may pass.

Across the cell membrane, a jump in electrostatic potential (membrane potential)
is maintained, and the cell membrane acts as a capacitor. There is, therefore, a thin
layer (space charge layer) on both sides of the membrane where electric charge
accumulates. The thickness of this layer is on the order of the Debye length which
measures approximately 1 nm in physiological systems. In (3), we have taken the
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electroneutrality condition to hold inside and outside the cell, and this implies that
we must treat the effect of having Debye layers in the form of boundary conditions.

The strength of the ionic current through an open ionic channel is determined by
the membrane potential and ionic concentrations on either side of the membrane.
Ionic channels may open or close, and the dynamics of this gating is also determined
in large part by the membrane potential and ionic concentrations [10].

The boundary conditions satisfied on the �(k) face of the membrane 0(kl) are

∂σ
(k)
i

∂t
(xm, t)+ j (kl)

i (xm, t)= qzi f (k)i · n
(kl)(xm). (6)

All variables are defined on the boundary, and a spatial location on the boundary is
denoted by xm . The term j (kl)

i denotes the transmembrane current per unit area from
region �(k) into �(l). We note by definition that j (kl)

i =− j (lk)i . The variable σ (k)i
denotes the contribution of the i-th species of ion to surface charge per unit area.
The above boundary condition states that the current that flows onto the membrane
either goes across the membrane through ionic channels, or contributes to change
in surface charge.

In order to make (6) into a useful boundary condition, we must be able to write
j (kl)
i and σ (k)i in terms of ci and φ. The surface charge density σ (k)i is expressed as

σ
(k)
i = λ

(k)
i (xm, t)σ (k)(xm, t), σ (k) = Cmφ

(kl), (7)

∂λ
(k)
i

∂t
=
λ̃
(k)
i − λ

(k)
i

τ
, λ̃

(k)
i (xm, t)=

z2
i c(k)i∑N

i ′=1 z2
i ′c
(k)
i ′
. (8)

Here, c(k)i and φ(k) denote limiting values of ci and φ as one approaches the
membrane from the �(k) side of the membrane 0(kl) and φ(kl)

= φ(k)−φ(l) is the
membrane potential. τ is a relaxation time constant which we shall discuss shortly.
σ (k) is the total charge on the �(k) side of the membrane surface and is the product
of Cm, the capacitance of the membrane and the membrane potential φ(kl). Since
φ(kl)
=−φ(lk), (7) implies that σ (k) =−σ (l) at each point of the membrane. Thus,

like a capacitor, each patch of membrane is electrically neutral, since the charge
stored on one side of the membrane balances the charge stored on the other side.

Note that λ(k)i is the fractional contribution of the i-th species of ion to the surface
charge density on face k of the membrane (7). The quantity λ(k)i relaxes to λ̃(k)i with
time constant τ = r2

d/D0 = 1 ns, the diffusive time scale within the Debye layer (rd

is the aforementioned Debye length and D0 is a representative diffusive constant
for ions). This relaxation time is introduced to avoid an instability that occurs if
we formally take the limit τ → 0 and set λ(k)i = λ̃

(k)
i ; see the Appendix for further

discussion and [25; 24] for details. The choice τ = 1 ns is large enough to avoid
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this instability and yet small enough that λ(k)i remains close to λ̃(k)i at all times in
any practical application.

The derivation of specific formula for λ̃(k)i given in (8) requires a closer look at
the ionic composition of the space charge layer. A derivation by physical reasoning
in [27] and by matched asymptotic analysis in [25] and [24]. A quick derivation
is given in the Appendix for convenience of the reader. The expression for λ̃(k)i
states that the fractional contribution of each species ion to the surface charge on
one face of the membrane is given by the concentration of that ion species in the
bulk solution near that face of the membrane weighted by the square of the charge
carried by that species of ion. This result is closely related to the concept of ionic
strength in electrochemistry [5], which is defined as 1

2 z2
i ci . Note the implication

that ions of either sign can contribute, for example, to a positive space charge layer.
Such a layer involves an increased concentration of positive ions and a reduced
concentration of negative ions in comparison to the concentrations of these ions in
the electroneutral bulk solution outside of the space charge layer.

The interpretation of λ(k)i as the fractional contribution of the i-th ion species to
the surface charge on face k of the membrane requires that

∑
i λ

(k)
i = 1 be satisfied

identically, at all membrane locations for all time. To verify this condition, sum
both parts of (8) from i = 1, . . . , N . The second part gives

∑
i λ̃

(k)
i = 1, and the

first part therefore shows that
∑

i λ
(k)
i relaxes to 1, and indeed is identically equal

to 1 if it is equal to 1 initially. We assume in the sequel that the initial values of λk
i

have this property.
We now discuss ji , the transmembrane currents. Biophysically, these are currents

that flow through ion channels, transporters, or pumps that are located within the
cell membrane [1; 10; 15]. We use the formalism of Hodgkin and Huxley for ion
channel currents [11; 16; 18], generalized to allow for nonlinear instantaneous
current-voltage relations and ion concentration effects.

j (kl)
i (xm, t)= J (kl)

i (xm, s(kl), φ(kl), c(k), c(l)). (9)

The transmembrane current density J (kl)
i is a function characteristic of the channels

(possibly of more than one type) that carry the i-th species of ion across the
membrane separating �(k) from �(l). The explicit dependence of J (kl)

i on x reflects
the possible inhomogeneity of the membrane: the density of channels may vary
from one location to another. The other arguments of J (kl)

i are as follows.
First, there is a vector of gating variables s(kl)(xm, t)= (s(kl)

1 , . . . , s(kl)
G ) where

G is the total number of gating variables in all of the channel types that arise in our
system. (Only some of these influence the channels that conduct ions of species i .)
The individual components s(kl)

g of s(kl) are dimensionless variables as introduced by
Hodgkin and Huxley [11] that take values in the interval [0, 1] and satisfy ordinary
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differential equations of the form,

∂s(kl)
g

∂t
= α(kl)

g (φ(kl))(1− s(kl)
g )−β(kl)

g (φ(kl))s(kl)
g (10)

for g = 1, . . . ,G where α(kl)
g and β(kl)

g are positive, empirically defined functions
of the transmembrane potential. In general, the gating variables obey a more
complicated ordinary differential equation:

∂s(kl)
g

∂t
= f (kl)

g (s(kl), φ(kl), c(k), c(l)). (11)

We note the conditions j (kl)
i = − j (lk)i and φ(kl)

= −φ(lk) impose the following
constraints on the form of the functions α(kl)

g , β
(kl)
g and f (kl)

g :

α(kl)
g (φ(kl))= α(lk)g (φ(lk)), β(kl)

g (φ(kl))= β(lk)g (φ(lk)), (12)

f (kl)
g (s(kl), φ(kl), c(k), c(l))= f (lk)g (s(lk), φ(lk), c(l), c(k)). (13)

The next argument of J (kl)
i is again the transmembrane potential φ(kl). Holding

the other arguments fixed in J (kl)
i , and letting only φ(kl) vary, we get the instanta-

neous current-voltage relationship for current carried by the i-th ion from �(k) to
�(l) at point x at time t .

The last two arguments of J (kl)
i are the vectors of ion concentrations on the two

sides of the membrane: c(k) = (c(k)1 , . . . , c(k)N ) and similarly for c(l). By including
the whole vector of ion concentrations, we allow for the possibility that the current
carried by the i-th species of ion is influenced by the concentrations of other ionic
species on the two sides of the membrane. This, for example, is the case with
calcium gated potassium channels (KCa channels) whose potassium conductance is
controlled by the intracellular calcium concentration [10].

Equations (1)–(3) with the boundary condition (6) is the model we consider in
this paper. We shall call this model the electroneutral model.

3. Cable model and multiple timescales

The above electroneutral model provides a more detailed description of cellular
electrophysiology than the more familiar one-dimensional cable model (see (20),
below). In this section, we sketch the derivation of the cable model from the
electroneutral model. We do so in part to confirm that the electroneutral model
contains the cable model as a limiting case, but also to bring out the different
time scales that will complicate the numerical solution of the equations of the
electroneutral model. For a more complete exposition of the derivation sketched
here, see [25].
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First, recall from (4) that φ satisfies an elliptic equation. The boundary conditions
for this equation can be obtained by the sum over i in (6):

Cm
∂φ(kl)

∂t
+ I (kl)(xm, t)=−(a∇φ+∇b) · n, (14)

where we have used
∑N

i=1 σi =Cmφ
(kl) (7) and I (kl)

≡
∑N

i=1 j (kl)
i . The coefficients

a and b were given in (5). Thus, the electrostatic potential satisfies an elliptic
problem with an evolutionary boundary condition satisfied at the membrane.

Suppose now that the ionic concentrations inside and outside the cell do not
change appreciably in the time of biophysical interest, and that the ionic concen-
trations gradients are negligible. Then, we have only to track the evolution of the
electrostatic potential and the coefficient a and b of (4) is constant within each of
the domains separated by the membrane. Thus, (4) and (14) can now be written as

1φ = 0 in �(k), �(l), (15)

Cm
∂φ(kl)

∂t
+ I (kl)

=−a(k)
∂φ

∂n(kl) =−a(l)
∂φ

∂n(kl) on 0(kl). (16)

where a(k) and a(l) are now constants defined within each domain. The gradient of
b disappears from the equations because we have assumed that we do not have a
concentration gradient. We see that the evolution of the electrostatic potential is
completely specified by what happens at the boundary. We note that Equations (15)
and (16) have been used to model cellular electrophysiology and is also the basis
for the bidomain model used in tissue level electrophysiology [8; 3; 28; 16].

Consider a simple situation in which we have just two regions, one intracellular
and the other extracellular. We take the intracellular region to be a bounded simply
connected set whereas the extracellular space its complement in R3. For simplicity,
suppose that aint

= aext. Consider the following boundary value problem for φ.

1φ = 0 in �ext, �int, (17)

φm ≡ φ
int
−φext

= f,
∂φint

∂n
=
∂φext

∂n
on 0. (18)

where f is some function given on the membrane 0 and n is the unit normal
pointing from the intracellular to extracellular side of the cell. We require that φ
decays to 0 at infinity. The above boundary value problem defines a map from
φm = f to ∂φint/∂n= ∂φext/∂n. This is similar to the usual Dirichlet-to-Neumann
map on a single domain, except that we are here solving a Laplace problem on
both sides of the membrane interface, and the input we are given is the jump in
the electrostatic potential. We denote this map as L. Using this map, and the
simplification a = aint

= aext, we can write (15) and (16) as
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Cm
∂φm

∂t
+ I =−aLφm. (19)

We now clearly see that the evolution of φ is confined to the boundary. It is
straightforward to show that L can be extended to a nonnegative self-adjoint operator
on square integrable functions on 0. This tells us that φm evolves according to an
evolutionary equation similar to a reaction-diffusion equation, where the Laplacian
is replaced with −1 times L. Thus, there is a “diffusive” process that takes place
on the two dimensional membrane surface. We shall call this membrane potential
diffusion.

We would like to compare the speeds of the two dissipative processes at play:
ionic diffusion and membrane potential diffusion. The “diffusion” coefficient a/Cm

in front of the operator −L in (19) has dimensions of length/time. Therefore, it
cannot be compared directly with the ionic diffusion coefficient Di which has
dimensions length2/time. However, if there is a natural characteristic length scale
L associated with the geometry of the system, the combination Dφ ≡ aL/Cm may
be used as a value to be compared with Di .

Suppose the cell is cylindrical in shape. Assuming that the membrane potential
varies slowly on the length scale defined by the radius of the cylinder, (19) can be
further reduced to the following one-dimensional reaction diffusion equation.

Cm
∂φm

∂t
+ I =

a R
2
∂2φm

∂z2 , (20)

where R is the radius of the cylinder and z is the axial coordinate. This is nothing
other than the cable model. A quick derivation of this is given in the Appendix.
The factor R/2 comes from the ratio of the cylindrical cross-sectional area to the
circumference: πR2/(2πR). In (20), L = R/2 emerges as the natural characteristic
length scale, and Dφ = a R/(2Cm). Let us examine the ratio between Dφ and Di .

Dφ =
a R

2Cm
=

N∑
i=1

L(qzi )
2ci

CmkB T
Di =

N∑
i=1

Lqci

Cm(kB T/q)
1
2

z2
i Di , (21)

where we used (5) in the second equality. Given that z2
i is an order 1 quantity,

Dφ

Di
≈

Lqc0

Cm(kB T/q)
= 104

∼ 106, (22)

where c0 is the typical ionic concentration. The above is a ratio of the absolute
amount of charge in the electrolyte solution to the membrane surface charge, which
turns out to be 104 to 106 in physiological systems. This illustrates the presence of
two disparate time scales in the problem.

That membrane potential diffusion is fast and dissipative has important implica-
tions for time stepping, to be discussed in Section 5.
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4. Spatial discretization

4.1. Finite volume method. We shall use a finite volume discretization in space
[21]. Take any finite volume �fv contained in �(k) and suppose the boundary
of this region is comprised of two components, the 0el component that faces the
electrolyte solution, and the 0m component that faces the membrane. It may be the
case that either 0el or 0m is empty. For each ionic species, we have the following
conservation relation in integral form:∫
�fv

∂ci

∂t
dV =

∫
0el∪0m

fi · nd A

=−

∫
0el

Di
(
∇ci +

qzi ci

kB T
∇φ

)
· nd A

+

∫
0m

1
qzi

(
Cm

∂(λ
(k)
i φ(kl))

∂t
+ j (kl)

i

)
d A. (23)

The electroneutrality condition is equivalent to saying that

ρ0+

N∑
i=1

qzi ci = 0 at t = 0,
N∑

i=1

qzi
∂ci

∂t
= 0, for t > 0. (24)

As long as the electroneutrality condition is satisfied at t = 0, we have only to con-
sider the time derivative of the electroneutrality condition for time t > 0. Therefore,
we can obtain the electroneutrality condition expressed in integral form by taking
(23), multiplying by qzi and summing in i .

0=−
∫
0el

( N∑
i=1

qzi Di

(
∇ci +

qzi ci

kB T
∇φ
)
· n
)

d A

+

∫
0m

(
Cm

∂φ(kl)

∂t
+

N∑
i=1

j (kl)
i

)
d A. (25)

Note that (23) and (25) are equivalent to the differential equations since the finite
volume �fv is arbitrary.

In the finite volume discretization, we partition the spatial region into a finite
number of finite volumes (FVs), and apply (23) and (25) on each FV. We then
approximate the volume and surface integrals that appear in the integral conservation
relations.

For simplicity, consider a two-dimensional situation. Discretize space into
polygonal finite volumes. For each FV we designate a representative location xc

where we define the value of the physical variables. Equation (1) for ion conservation



94 YOICHIRO MORI AND CHARLES S. PESKIN

can be discretized using a finite volume approach in the following fashion.

∂ci

∂t

∣∣∣∣
x=xc

≈
1
V

∫
finite volume

∂ci

∂t
dV =−

1
V

∫
faces of FV

f · nd A

≈−
1
V

∑
q

eq Fq , (26)

where V is the volume (in two dimensions the area) of the FV, ` labels the faces
(polygonal sides), and e` is the area (in two dimensions the length) of the face `.
F` is an approximation to the true flux f · n evaluated on face `. The discrete
evolution equation is thus

∂ci

∂t
=−

1
V

∑
`

e`F`. (27)

Label the FVs by p and write the flux density approximation from FV p to p′ as
F (p,p

′). As long as F (p,p
′)
=−F (p

′,p), we have discrete conservation of ci . Thus, it
is straightforward with the finite volume method construct a conservative numerical
scheme. In our case, however, there is the unusual complication that we have to
account not only for ions in the interiors of the FVs but also for the ions in the space
charge layers. Because of this, it will not always be the case that F (p,p

′)
=−F (p

′,p),
but our scheme will be conservative anyway, as explained below.

As we shall see, the discretization of the electroneutrality condition will be
obtained by multiplying (27) by qzi and summing in i . This can be seen as a
discretization of the integral charge conservation relation (25).

4.2. Cylindrical geometry. We have developed finite volume schemes adapted to
two types of simulations, one for arbitrary two-dimensional membrane geome-
try, and the other for cylindrical geometry. We first discuss the finite volume
discretization for cylindrical geometry.

Take a cylindrical coordinate system with the axial coordinate z and the radial
coordinate r . We seek solutions that are axisymmetric. We discretize in r and z. We
have a series of FVs whose shape is a torus with a rectangular cross-section. Each
FV will generically have four faces at which it touches other FVs. FVs are indexed
by p and the associated quantities of the FV p are labeled with the subscript or
superscript p. Consider an FV p. Let the width of this FV in the r direction be hr

p
and that in the z direction be hz

p. We let hr
p < K h and hz

p < K h for some constant
K uniformly for all p and take h→ 0. To each FV we apply the divergence theorem
and its approximation, as we did in (26) and (27).

For cylindrical geometry, we require that the membrane conform to the FV
boundaries. That is to say, the membrane patches can be described by z = const
or r = const. FV faces that coincide with the membrane will be referred to as
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membrane faces. Non-membrane faces will be referred to as ordinary faces. To
each ordered pair of FVs p and p′ we associate two quantities e(p,p

′) and γ (p,p
′).

If FVs p and p′ are adjacent to each other through an ordinary face, we let e(p,p
′)

be the area of this membrane face. Otherwise we set e(p,p
′)
= 0. Likewise, if FVs

p and p′ are adjacent through a membrane face, we set γ (p,p
′) to be its area and

0 otherwise. By definition, e(p,p
′)
= e(p

′,p) and likewise for γ (p,p
′). If e(p,p

′)
6= 0

or γ (p,p
′)
6= 0, we let F (p,p

′) and G(p,p′) denote the flux density from FV p to FV
p′ respectively. Otherwise, we set F (p,p

′)
= 0 or G(p,p′)

= 0. The specific forms
of F (p,p

′) and G(p,p′) will be discussed shortly. If γ (p,p
′)
6= 0 , we must define

membrane associated quantities that correspond to this ordered pair. They include
the gating variables s(p,p

′)
g and the membrane charge fraction λ(p,p

′)
i . The former

satisfy s(p,p
′)

g = s(p
′,p)

g and their associated evolution equations satisfy symmetry
conditions that correspond to (12) and (13). We let λ(p,p

′)
i denote the membrane

charge fraction of the membrane patch (p, p′) found on the membrane surface
facing FV p. There is no symmetry relation between λ(p,p

′)
i and λ(p

′,p)
i since they

are different physical entities. FVs with one or more membrane faces will be called
membrane FVs, whereas FVs without membrane faces will be called ordinary FVs.

Consider FV p whose coordinates are given by z p0 < z < z p1 and rp0 < r < rp1.
The discrete evolution equation for ionic concentrations cp

i in FV p are

∂cp
i

∂t
=−

1
Vp

∑
p′ 6=p

(e(p,p
′)F (p,p

′)
i + γ (p,p

′)G(p,p′)
i ), (28)

where Vp is the volume of the FV p. We think of cp
i and φ p, the physical variables

associated with the FV p, as being defined at the center of the axial cross-section
of FV p. That is to say, the representative point xc in (26) is taken to be at
r = (rp0+ rp1)/2, and z = (z p0+ z p1)/2. For an ordinary FV, the second sum in
(28) is 0.

All we need now in (28) are the approximate flux density expressions F (p,p
′)

i
and G(p,p′)

i . For discretization of the flux density in the axial direction, we take

F (p,p
′)

i = Di

(
cp

i − cp′
i

(hz
p′ + hz

p)/2
+

qzi

kB T

hz
p′c

p
i + hz

pcp′
i

hz
p′ + hz

p

φ p
−φ p′

(hz
p′ + hz

p)/2

)
. (29)

Note that this expression changes sign if p and p′ are exchanged, making this a
conservative discretization. We take care in constructing our mesh that the mesh
width in the z direction changes smoothly as a function of the z coordinate of the
representative point of the FV. For fluxes in the radial direction, we discretize in
exactly the same fashion.
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We now turn to the approximation to the membrane fluxes G(p,p′)
i .

qzi G
(p,p′)
i = Cm

∂(λ
(p,p′)
i φ

(p,p′)
m )

∂t
+ j (p,p

′)
i (sm, φ(p,p

′)
m , cp, cp′), (30)

φ(p,p’)
m = φ p

−φ p′ . (31)

We evaluate the membrane quantities c (vector of ionic concentrations (c1, . . . , cN ))
and φm using values at the representative points xc of FVs p and p′. The function
j (p,p

′)
i satisfies symmetry conditions equivalent to (13) so that j (p,p

′)
i =− j (p

′,p)
i .

Note that in general G(p,p′)
i 6= −G(p′,p)

i , because of the presence of the surface
charge

σ
(p,p′)
i ≡ λ

(p,p′)
i Cmφ

(p,p′)
m .

Our discretization is conservative nevertheless in the following sense. The quantity

Vpcp
i +

1
qzi

∑
p′ 6=p

γ (p,p
′)σ

(p,p′)
i (32)

will be conserved thanks to the symmetry conditions satisfied by F (p,p
′)

i and j (p,p
′)

i .
Expression (32) is the total ionic content in the FV p, taking into account the
amount of ion that resides within the space charge layer.

We finally note that the discretization of the electroneutrality condition for each
FV can be obtained by multiplying the discrete evolution equation (28) by qzi and
summing them over i (under the assumption that the initial configuration satisfies
the electroneutrality condition):

0=
N∑

i=1

qzi

∑
p′ 6=p

(e(p,p
′)F (p,p

′)
i + γ (p,p

′)G(p,p′)
i ). (33)

This is precisely the discretization of (25).
By expanding these flux approximations in Taylor series and substituting into

(26), one can easily obtain the local truncation error for each FV. The local truncation
error for ordinary FVs is O(h) and is O(1) for membrane FVs. We shall nonetheless
observe approximate second order convergence in space in the cylindrical geometry
case, as we shall see in Section 7.

As for boundary conditions at the outer rim of the computational domain, we
shall make use a no-flux boundary condition.

4.3. Arbitrary two-dimensional membrane geometry. We have developed code
that handles two-dimensional arbitrary membrane geometry. The ideas are the same
as for the cylindrical case. We shall use an embedded boundary method, where
a uniform Cartesian grid is used over most of the computational domain, except
where the grid is cut by the membrane [13; 7; 23].
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Figure 2. Grid for two-dimensional simulation. The shaded FVs
are the ordinary FVs whereas the nonshaded FVs are the membrane
FVs. To each membrane patch, there are two membrane FVs. In
the above figure, there are 36 meshes, 16 ordinary FVs, and 40
membrane FVs.

Henceforth, we shall use the word mesh to denote the uniform Cartesian grid
laid on the computational domain, and also to denote the square patches that result
from this grid (Figure 2). We shall take the mesh sides to have length h. An FV
is the same thing as a mesh if the membrane does not cut through this mesh. If
the membrane does cut through the mesh, we approximate this membrane cut by
a straight line, and the resulting two polygons will be our FVs that correspond to
this mesh. We shall call an uncut Cartesian mesh an ordinary FV. An FV that is cut
out of a Cartesian mesh by the membrane will be called a membrane FV. We shall
label our FVs and their associated quantities with subscript or superscript p.

When a membrane cuts through a mesh, two FVs will be generated. These two
FVs share a common membrane patch. These are the membrane faces, whereas
other faces of the FV are the ordinary faces. Each face is flanked by two FVs p and
p′, and the faces are labeled by the ordered pair (p, p′). As in the cylindrical case,
we associate with each membrane patch (p, p′) its attendant physical quantities.

In the case of an ordinary FV, we shall take the representative point xc, with
which the values of the physical variables are associated, to be the center of the FV.
For a membrane FV, we shall take xc to be the center of the Cartesian mesh from
which the FV was cut. Thus, there will be cases in which xc geometrically lies
outside the FV. Conceptually, this involves the smooth extrapolation of a function
defined on one side of the membrane to the other side of the membrane. For each
membrane FV, there is another membrane FV that shares the same membrane
patch which was therefore cut out of the same mesh. These two membrane FVs
have representative points xc that coincide geometrically but are computationally
distinguished.



98 YOICHIRO MORI AND CHARLES S. PESKIN

h

cp
i , φ

p

F (p,p′)
ixc

voxel p′ (extracellular)

voxel p (intracellular)

ordinary faces

cp′

i , φ
p′

membrane face (p, p′) with area γ (p,p
′)

associated quantities: φ(p,p
′)

m = φ p
−φ p′ , s(p,p

′)
g , λ(p,p

′)
i , λ(p

′,p)
i

Figure 3. A membrane FV and its associated quantities.

The structure of the discretization exactly parallels that for the cylindrical case.
The evolution equation for the concentration discretized in space will be the same
as (28). We now briefly discuss approximation of the flux terms F (p,p

′)
i and G(p,p′)

i .
For F (p,p

′)
i , regardless of whether e(p,p

′)
= h or otherwise, we shall use

F (p,p
′)

i = Di

(cp
i − cp′

i

h
+

qzi (c
p
i + cp′

i )

2kB T
φ p
−φ p′

h

)
. (34)

For the membrane flux, we use the same expression as (30).
As in the cylindrical case, one can determine the local truncation error of the above

scheme. For ordinary FVs, the truncation error is O(h2) whereas for membrane
FVs, the error is O(1). Nonetheless, we shall see in Section 8 that we generally
observe obtain linear to supralinear convergence in space.

To handle arbitrary membrane geometry, we must generate the necessary geome-
try data at the membrane where the mesh is cut. We have written a custom mesh
generator to perform this task. It takes the characteristic function of a region as
input to generate the necessary data. The mesh generator approximates a cut by
the membrane as a straight line, and cannot handle nongeneric cases of degenerate
geometry. When the volume of a membrane FV is less than 10−5 times the volume
of an ordinary mesh, this FV is ignored.

5. Temporal discretization

For our algorithm overall, we adopt an operator splitting approach. We split each
time evolution step into the gating substep in which we update the gating variables
sg defined on the membrane followed by the potential/concentration substep in
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which we update the electrostatic potential and ionic concentrations. This splitting
allows us to significantly reduce computational cost and makes the code modular
by making it easy to supply the PDE system with different gating variable kinetics,
which varies widely depending on the biophysical system of interest. Since the
splitting error is first order, the time-stepping error should be first order overall so
long as we use a first order method for the gating part and the potential/concentration
part of the time stepping.

In the gating substep, we treat the gating variables implicitly while we treat the
electrostatic potential and concentrations implicitly. In the potential/concentration
substep, we treat the electrostatic potential and concentrations implicitly while
treating the gating variables explicitly. We now discuss this latter substep in greater
detail.

Recall from the discussion of Section 3 that the system of equations has two
diffusive time scales. For parameter ranges of biophysical interest, the dissipative
nature of membrane potential “diffusion” in particular makes it prohibitively expen-
sive to use an explicit time-stepping scheme, rather than the ionic diffusion, as we
shall see below. We saw in Section 3 that the evolution of the electrostatic potential
is governed by (19) under the approximation of constant concentration:

∂φm

∂t
+

I (φm)

Cm
=−

a
Cm

Lφm, (35)

where we have explicitly noted the dependence of I on φm. The behavior of L can
be gleaned by looking at how L acts in the special case when �int and �ext are the
upper and lower half spaces of R3 respectively. By employing Fourier analysis, we
can see that the component with wave number k on the membrane is multiplied in
amplitude by a factor proportional to |k|. This can also be inferred by looking at
the “diffusion” coefficient a/Cm, which has dimensions length/time. Note that this
is different from the diffusion operator where the amplitude is multiplied by |k|2.
This implies that as the mesh width on the membrane is made smaller, one should
refine the time step proportionally to the mesh width if we are to use an explicit
scheme.

For physiologically relevant systems, the “diffusion” constant in (35), a/Cm,
is approximately equal to 105 µm/ms. We may thus infer that a mesh width on
the order of 1µm will necessitate a time step on the order of 10 ns if an explicit
scheme is used. On the other hand, Di is on the order of 1µm2/ms. Thus, the
time step restriction imposed by ionic diffusion is much less stringent, on the order
of submilliseconds. The time step restriction thus arises chiefly from membrane
potential diffusion, and a time step on the order of nanoseconds is unacceptable
given that biophysical phenomena of interest occur on the millisecond time scale
[1; 18; 10]. For example, a single synaptic transmission event in the central nervous
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system, a process we believe our modeling methodology to be useful for, typically
has a duration on the order of 1–10 ms [18; 15].

We note that in [29], the authors introduce a one-dimensional model of cellular
electrophysiology incorporating ionic diffusion, where they use time steps as small
as 1 ns to simulate their system. This small time step requirement is related to the
time step restriction that would apply to an explicit scheme in our case, too, as
discussed above. In [18], the author argues that this has been a major impediment in
incorporating electrodiffusion of ions in modeling studies of cellular or subcellular
electrophysiology.

This difficulty is overcome by treating φ and ci implicitly in the potential/concen-
tration step. The membrane potential φm becomes an unknown to be determined.
Note that φm is the jump in φ across the cell membrane. We here have an elliptic
interface problem in which we must solve for the unknown jumps across interfaces.
In the context of time-dependent PDEs, similar problems arise in implicit discretiza-
tions of fluid structure interaction problems where one must solve for the unknown
jump in the derivative of the velocity field across the immersed elastic interface.
(see for example [22; 20]).

We label our time step by n, where n is an integer. We let the time step duration
be 1t . Suppose we know values of sg, ci , φ and λi at time (n−1)1t . In the gating
substep, we advance sg to find values at time n for every membrane patch.

s(p,p
′),n

g − s(p,p
′),n−1

g

1t
= fg(s(p,p

′),n, φ(p,p
′),n−1

m , cp,n−1, cp′,n−1). (36)

Note that the evolution of the gating variables sg does not involve any spatial
coupling, and thus, can be solved independently for every membrane patch.

In the potential/concentration substep, we advance ci , φ and λi . Whether we are
considering cylindrical geometry or arbitrary two-dimensional membrane geometry,
the semidiscretized evolution equation for ci is (28). To discretize (28) in time, we
use a backward Euler type discretization to march from time (n−1)1t to time n1t ,
where ci , φ and λi are treated implicitly, whereas the gating variables sg are given
quantities:

cp,n
i − cp,n−1

i

1t
=−

1
Vp

∑
p′ 6=p

(e(p,p
′)F (p,p

′),n
i (cn

i , φ
n)+ γ (p,p

′)G(p,p′),n
i ),

qzi G
(p,p′),n
i = Cm

(λ(p,p′),ni φ
(p,p′),n
m − λ

(p,p′),n−1
i φ

(p,p′),n−1
m

1t

)
+ j (p,p

′),n
i (s(p,p

′),n, φ(p,p
′),n

m , cp,n−1, cp′,n−1). (37)

Note that φ is treated implicitly, so that the membrane potential φm is an unknown
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to be solved for at each time step. Of the arguments of j (p,p
′),n

i , we evaluate c at
time (n−1)1t , whereas φm and s are evaluated at n1t . The evolution of λi is given
by

λ
(p,p′),n
i − λ

(p,p′),n−1
i

1t
=
λ̃
(p,p′),n
i − λ

(p,p′),n
i

r2
d/D0

, (38)

where λ̃(p,p
′),n

i is evaluated using cp,n
i . By summing (37) over i and recalling that∑

i λ̃i = 1, we conclude that
∑

i λ
p,n
i relaxes geometrically to 1 as n increases. In

particular, if this sum is equal to 1 initially it remains equal to 1 at every time step.
Assuming that this is the case, we may multiply the above by qzi and sum in i to
get an equation in φ p,n .

−
ρ

p
0 +

∑N
i=1 qzi c

p,n−1
i

1t
=−

1
Vp

∑
p′ 6=p

e(p,p
′)

N∑
i=1

qzi F (p,p
′),n

i

−
1

Vp

∑
p′ 6=p

γ (p,p
′)

(
Cm

(φ(p,p′),nm −φ
(p,p′),n−1
m

1t

)
+

N∑
i=1

j (p,p
′),n

i

)
. (39)

This can be viewed as the full discretization of (33). A subtle point is that we have
only made use of the electroneutrality condition ρ p

0 +
∑

i qzi c
p
i = 0 at time n1t

and not at time (n−1)1t ; thus we retain the term −(ρ p
0 +

∑
i qzi c

p,n−1
i )/1t on the

left hand side of (39). If electroneutrality were strictly satisfied at each time step,
this term would be equal to 0. Since we cannot solve the above system of equations
exactly in a numerical computation, electroneutrality is never strictly satisfied. The
term −

(
ρ

p
0 +

∑
i qzi c

p,n−1
i

)
/1t acts to correct deviations from electroneutrality

that may have been present at time (n−1)1t .

6. Solution of nonlinear equations

We now solve the above discretized nonlinear algebraic equations for ci , φ and λi .
At each time step, we first solve for φ and λi fixing ci , and subsequently solve for
ci fixing φ and λi . This procedure is iterated to convergence.

We chose to use the above simpler procedure in favor of a Newton iteration for the
following reasons. There two major nonlinearities in the equations: the drift term
in the drift-diffusion equation and the ion channel current terms in the membrane
boundary conditions. The drift term couples the concentration term ci with the
gradient of the electrostatic potential. Suppose there are Nfv FVs and N (= 3, 4 in
computational runs presented in Section 7 but potentially much larger) ionic species
of interest. A Newton iteration will require solution of a nonsymmetric linear
system with Nfv×(N+1) unknowns at each iterative step. In the simpler procedure
to be explained below, all linear systems are positive symmetric (semi)definite with
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Nfv unknowns. The complicated dependence of ion channel current terms on ci

and φ add further algebraic complications in generating the Jacobian matrix needed
at each iteration. A possible future direction is to use the simpler solution iterative
procedure adopted here as a preconditioner in a Jacobian-free Newton–Krylov
framework [17].

Let cp,n,m
i , φ p,n,m, λ

(p,p′),n,m
i denote the m-th iterate of the solution procedure,

where m = 0, 1, 2, . . . . We set our initial iterate for each variable to be equal to the
value of that variable at time step n− 1:

cp,n,0
i = cp,n−1

i , φ p,n,0
= φ p,n−1, λ

(p,p′),n,0
i = λ

(p,p′),n−1
i . (40)

We first solve for φ p,n,m . We take (39) and fix the ionic concentrations to their
values at the previous iteration step ci = cn,m−1

i so that the only unknown is φn,m .

−
ρ

p
0 +

∑N
i=1 qzi c

p,n−1
i

1t
=

−
1

Vp

∑
p′ 6=p

e(p,p
′)

N∑
i=1

qzi F (p,p
′)

i (cn,m−1
i , φn,m)

−
1

Vp

∑
p′ 6=p

γ (p,p
′)Cm

(φ(p,p′),n,mm −φ
(p,p′),n−1
m

1t

)
−

1
Vp

∑
p′ 6=p

γ (p,p
′)
∑

i

j (p,p
′),n,m

i (sn,m, φ(p,p
′),n,m

m , cn−1). (41)

By evaluating ci at cn,m−1
i in the flux term F (p,p

′)
i , we avoid dealing with the

nonlinearity that arises from the drift term. The only possibility for a nonlinearity in
the above is in the transmembrane current term. In many applications, ji is assumed
linear in φm. If not, we linearize as follows:

We first recall the functional form of transmembrane current terms. The general
functional form of ion channel currents is written as

ji =
∑
α

ji,α, ji,α = gi,α(x, s, φm, c(k), c(l))Ii,α(φm, c(k)i , c(l)i ), (42)

where α labels the types of ion channels present, and ji,α the transmembrane current
through ion channels of this type. gi,α is the density of the such open ion channels
per unit area of membrane, and Ii,α is the instantaneous current voltage relationship
of a single open channel. We choose a suitable linearization of the instantaneous
current voltage relation with respect to φ(p,p

′)
m around φ(p,p

′),n,m−1
m :
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IL
i,α(φ

(p,p′),n,m
m , cp

i , cp′
i )= DIi,α (φ

p,n,m−1
m , cp

i , cp′
i )(φ

(p,p′),n,m
m −φ(p,p

′),n,m−1
m )

+Ii,α(φ
(p,p′),n,m−1
m , cp′

i , cp′
i ). (43)

The term DIi,α will typically be the derivative of Ii,α with respect to φm. Instead of
ji itself, we shall therefore use the following linearization in its place in (41).

j L ,p,n,m
i =

∑
α

j L ,p,n,m
i,α ,

j L ,n,p,m
i,α = gi,α(s(p,p

′),n, φ(p,p
′),n−1

m , cn−1)IL
i,α(φ

(p,p′),n,m
m , cn−1

i ).

(44)

Note that s(p,p
′),n is already a known quantity; we do not have to solve for it.

The result is a linear equation in φ, which can now be solved.
Solving for λ(p,p

′),n,m
i is simple:

λ
(p,p′),n,r
i − λ

(p,p′),n−1
i

1t
=
λ̃
(p,p′),n,m−1
i − λ

(p,p′),n,m
i

r2
d/D0

, (45)

where λ̃(p,p
′),n,m−1

i is evaluated using cp,n,m−1
i .

Given φ p,n,m and λ(p,p
′),n,m

i , we solve for cp,n,m
i as follows:

cp,n,m
i − cp,n−1

i

1t
=−

1
Vp

∑
p′ 6=p

(e(p,p
′)F (p,p

′),n,m
i + γ (p,p

′)G(p,p′),n,m
i ), (46)

where the flux density expressions are given by

F (p,p
′),n,m

i = Di

(cp,n,m
i − cp′,n,m

i

h

)
+ Di

qzi

kB T

(cp,n,m−1
i + cp′,n,m−1

i

2

)(φ p,n,m−1
−φ p′,n,m−1

h

)
,

qzi G
(p,p′),n,m
i = Cm

(λ(p,p′),n,mi φ
(p,p′),n,m
m − λ

(p,p′),n−1
i φ

(p,p′),n−1
m

1t

)
+ j (p,p

′),n,m
i ,

(47)

where the flux expression (47) is to be suitably modified when dealing with nonuni-
form meshes; see (29). In the above (47), the diffusive flux is treated implicitly,
whereas drift flux is left explicit. The rationale for this difference in treatment of
the two flux terms is that the diffusive flux involves derivatives of ci but the drift
flux does not.

With the above expression for F (p,p
′),n,m

i , (46) is a linear equation in ci . In fact,
this is just a familiar discretization of the diffusion equation with a source term and
flux boundary conditions.
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We now iterate this procedure in m a suitable number of times, and set the final
iterate to be the values at time n. Note that one iteration is enough to obtain a first
order scheme in time. We also point out that the scheme is conservative in exact
arithmetic: we have ion conservation regardless of how may iterations we perform.

We iterate so that electroneutrality is better satisfied at time n. Multiplying (46)
with qzi and summing in i does not reproduce (41) because the concentrations in the
flux approximation Fq

i are evaluated using different values in the two expressions.
Therefore, the solution to (46) only satisfies electroneutrality in the limit m→∞.

Our termination criterion for the above iteration is to check whether the elec-
troneutrality condition is satisfied to within a certain tolerance after the r -th iteration.
We use the following criterion:∑

p Vp|ρ0+
∑

i qzi c
p,n,m
i |∑

p Vp
< εtolqc0. (48)

In all computations, we take εtol = 1× 10−5 and c0 = 100 mmol/l, the typical ionic
concentration. We set this final iterate to be the value of ci , φ at the next time step,
except for the adjustment we discuss below.

When we use no-flux boundary conditions at the outer rim of the computational
domain, we perform the following adjustment at the end of each computational
step, in order to correct for the nonconservation of ions that is purely the result of
round-off error. We fix the concentrations so that the global amount of each ionic
species is conserved as strictly as possible by setting

cp,n
i =

(Qinit
i −3

n,m
i

Qn,m
i

)
cp,n,m

i , (49)

where

Qn,m
i =

∑
p

Vpcp,n,m
i , 3n,m

i =
1

qzi

∑
(p,p′),p 6=p′

γ (p,p
′)λ

(p,p′),n,m
i Cmφ

(p,p′),n,m
m .

The summation in the definition of 3n,m
i is over all ordered pairs (p, p′). The index

m denotes the final iterate, that is, the result before this adjustment is made. The
term Qinit

i is the total amount of the i-th ion at the initial time:

Qinit
i =

∑
p

Vpcp,0
i +

1
qzi

∑
(p,p′),p 6=p′

γ (p,p
′)λ

(p,p′),0
i Cmφ

(p,p′),0
m . (50)

The first sum represents the ions in the bulk solution, whereas the second term is
the contribution from the membrane surface charge.

Why do we need to perform this fix when we know that the scheme is in fact
conservative? The unfortunate reality, however, is that the scheme is conservative
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only in exact arithmetic. With floating point arithmetic, errors tend to accumulate
and, with time, ion conservation is violated. Computational experiments indicate
that this error is negligible as far as the values of ci are concerned. This has
to be corrected nonetheless because this small violation leads to global charge
accumulation, which in turn leads to nonconvergence of Krylov iterations for φ
when no-flux boundary conditions are used (for no-flux boundary conditions, we
perform Krylov iterations in the subspace spanned by all grid functions that integrate
to 0 over the spatial domain, and global charge accumulation leads to nonexistence
of solutions, as can be seen by considering the Fredholm alternative). The scheme
presented above has an inherent mechanism to eliminate local charge accumulation
(39), but cannot eliminate global charge accumulation. The above adjustment is on
the order of round-off error at each time step.

We note that this fix is only necessary for the no-flux boundary condition. When
Dirichlet or mixed boundary conditions are imposed at the outer rim of the compu-
tational domain, global accumulation in charge in the computational domain will
eventually dissipate through communication with the outer bath.

The solution to the nonlinear algebraic equations requires the solution of a linear
system at each iteration. We note that solving for the electrostatic potential as well
as the concentrations involve solving a positive definite symmetric system. We thus
either use a direct solver(Cholesky decomposition) or the conjugate gradient method
[36]. The code for cylindrical geometry has been implemented using Matlab, where
we use a direct solver. The code for general two-dimensional geometry has been
written in C++, where we use PETSc for the linear algebra routines [2]. PETSc
is a package that provides sparse linear solvers and is designed to be suitable for
parallel algorithms. Although we do not yet use parallel machines, having coded in
PETSc should facilitate this transition in the future.

7. Convergence study: cylindrical geometry

We test the convergence for the cylindrical case for two kinds of situations, the
standard Hodgkin–Huxley axon [11; 16; 18], and for a cardiac model of ephaptic
coupling.

7.1. Hodgkin–Huxley axon. The neuronal axon is the standard biological system
to which the cable model is applied. We take this system as our first test case.

For ionic channel parameters, we shall use those of the standard Hodgkin–
Huxley model. There are several parameters that are required for computation
with the electroneutral model but not with the cable model. They are the diffusion
coefficients for each ionic species and the initial concentration of the ions. We
consider three ionic species Na+, Cl−, and K+. The initial concentrations and the
diffusion coefficients we use are listed in Table 1. The membrane charge ratios λi
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T Absolute temperature 273.15+37 K

DNa+ Diffusion coefficient of Na+ 1.33µm2/ms [18]

DK+ Diffusion coefficient of K+ 1.96µm2/ms [18]

DCl− Diffusion coefficient of Cl− 2.03µm2/ms [18]

cint
Na+
∣∣
t=0 Initial intracellular concentration of Na+ 10 mmol/l

cext
Na+
∣∣
t=0 Initial extracellular concentration of Na+ 145 mmol/l

cint
K+
∣∣
t=0 Initial intracellular concentration of K+ 140 mmol/l

cext
K+
∣∣
t=0 Initial extracellular concentration of K+ 5 mmol/l

cint
Cl−
∣∣
t=0 Initial intracellular concentration of Cl− 150 mmol/l

cext
Cl−
∣∣
t=0 Initial extracellular concentration of Cl− 150 mmol/l

φm|t=0 Initial transmembrane potential, φint
−φext

−70 mV

Table 1. Parameter values used in the Hodgkin–Huxley simula-
tions of the axon.

are initialized so that λi
∣∣
t=0 = λ̃i

∣∣
t=0. The immobile charge density was taken so

that electroneutrality is satisfied at each spatial point at t = 0. The Hodgkin–Huxley
model has one free parameter, the value of the equilibrium potential [16], which we
take to be−70 mV. The initial value of the gating variables are set to the equilibrium
values at −70 mV.

We take the axon to be a cylinder of radius lµm and axial length lAµm. Take
the z axis along the axis of the cylinder, with the axonal ends at z = ±lA/2, and
the radial axis r from the center of the cylinder. The cylindrical axon is bathed in
an extracellular medium located between the cell membrane at r = l and r = 2l,
where we impose no-flux boundary conditions. We also impose no-flux boundary
conditions at z =±lA/2. The total simulation time be Te. We choose the diameter
2l and the axial length lA to be

2l = 0.1, 1, 10µm, lA = 4
√

2l × 103 µm, Te = 4 ms. (51)

We note that the axonal length is much greater than the radial length. This length of
the axon lA was chosen so that we can see a wave of propagating action potential.
This choice also roughly corresponds to the action propagation speed seen in
unmyelinated neuronal axons on the order of 10 mm/ms at an axonal diameter
of 1–10µm. We use the above dependence of lA on l since, according to cable
theory, the electrotonic length (the typical length scale for the spread of membrane
potential) scales with the square root of the axonal diameter.



A NUMERICAL METHOD FOR CELLULAR ELECTROPHYSIOLOGY 107

At time t = 0, we initiate an action potential by transiently increasing the Cl−

conductance, for which we specify the following spatial distribution and time
dependence:

GCl− =

5
(

1+ cos 12π z
lA

)(
1− cos 2π t

Ts

)
if − lA

12
< z < lA

12
, t < Ts = 1 ms,

0 otherwise.

We thus give a brief change in the membrane chloride conductance at the center of
the axon. An action potential is initiated here and spreads towards the two ends of
the axon. A snapshot from a sample run where the diameter 2l = 1µm is shown in
Figures 4 and 5.

In the case of the cylindrical axon, the computational runs exhibit little radial
variation in the electrostatic potential, and one may argue against the use of this
computationally intensive model in place of much simpler models such as the
cable model. In Section 7.2, we shall see a case in which a radial variation in the
electrostatic potential is seen. Even in the case of a cylindrical axon, however, we

Figure 4. Electrostatic potential φ at t = 1, 2, 3, 4 ms, 2l = 1µm.
Since the solutions we seek are radially symmetric, the radial
cross-section (r between 0µm and 1µm) is plotted in the graph.
The jump discontinuity at r = 0.5µm signifies the jump in the
electrostatic potential. The mesh size is Nz × Nr = 128 × 32.
Potential is measured in mV and length in µm.
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Figure 5. Cumulative change in ionic concentrations from t = 0
at t = 2 ms, 2l = 1µm. The cumulative concentration changes
in Na+, K+, and Cl− are shown. As with the previous figure, the
radial cross section is plotted. The mesh size is Nz×Nr = 128×32.
Concentration is measured in mmol/l and length in µm.

believe that this model can be useful in the following respects. First, it allows us to
track ionic concentration, whose evolution cannot be determined without solving for
the electrostatic potential which ensures that electroneutrality be satisfied pointwise
in space. The constraint of electroneutrality may give rise not only to quantitative
but also qualitatively different behavior compared to simple diffusion [32]. Second,
this model can be used as a validation tool to judge when the cable model is a good
approximation [18; 33]. We hope to make a more detailed comparison between the
cable model and our model in a future publication.

Convergence in space. We take a uniform grid of Nz × Nr over the simulation
domain. We set

Nz = 64× 2n−1, Nr = 16× 2n−1, 1t = 0.02 ms, NT =
Te

1t
= 200, (52)
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where n = 1, . . . , 4. Note that here and throughout the paper the time step remains
fixed in our spatial convergence studies. The possibility of proceeding in this way
without encountering numerical instability is conceptually related to the uncondi-
tional stability of our implicit computational scheme. During spatial grid refinement,
the bounds on spatial difference operators grow because of the appearance of the
mesh width in the denominators of the difference operators. This reflects the
unbounded nature of the corresponding differential operators. In an explicit scheme,
the growth of the operator norms needs to be compensated by refinement of the
time step, but we do not have to do that here.

To measure the convergence rate, we define the discrete p-norm as

‖u‖L p =

(2Nr∑
k=1

|Vk ||uk |
p
)1/p

, 1≤ p <∞, ‖u‖L∞ =max
k
|uk |. (53)

The convergence rate is measured by comparing the interpolation of the numerical
solution at a finer level to the numerical solution at a coarser level. Let ci computed
with an Nr × Nr mesh be written as cNr

i . We define a measure of error es
p[ci ; Nr ]

as follows.
es

p[ci ; Nr ] =
∥∥cNr

i −I2Nr→Nr c2Nr
i

∥∥
L p . (54)

Here, I2Nr→Nr is an interpolation operator from the finer to the coarser grid.
For the electrostatic potential φ, we need to take into account the arbitrariness of

φ, up to addition of a constant. Thus, we measure the error in φ as

es
p[φ; Nr ] = min

cφ∈R

∥∥φNr −I2Nr→Nrφ2Nr − cφ
∥∥

L p . (55)

As an empirical measure of convergence rate in space, we use

r s
p[ψ; Nr ] = log2

( es
p[ψ; Nr ]

es
p[ψ; 2Nr ]

)
, (56)

where ψ can be either ci or φ.
Table 2 lists the rate of convergence for both ci and φ at the three diameters with

three norms, L1, L2 and L∞, at time t = 4 ms. Convergence rates at other time
points were similar.

We see second order convergence for most parameter regions considered. The
second order convergence observed here is, however, lost in the case of general
two-dimensional geometry (Section 8). This favorable property is thus tied to the
fact that the membrane geometry conforms to the underlying Cartesian grid. The
deterioration in convergence rate when the axonal diameter is equal to 10µm seems
attributable to the fact that the concentration gradients near the membrane are not
fully resolved when Nr = 32. Since the mesh has been scaled with the axon size,
the largest axon also has the coarsest mesh, in absolute terms. This affects the
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diameter norm r s
p[c1, 32] r s

p[c2, 32] r s
p[c3, 32] r s

p[φ, 32]

0.1
L1 1.97 1.97 1.93 1.96
L2 1.97 1.97 1.94 1.98
L∞ 1.97 1.97 1.78 1.90

1
L1 1.97 1.97 1.93 1.96
L2 1.97 1.97 1.95 1.97
L∞ 1.97 1.97 1.88 1.82

10
L1 1.97 1.97 1.92 1.97
L2 1.96 1.97 1.84 1.98
L∞ 1.44 1.80 1.41 1.82

Table 2. Convergence rate in space (r s
p) for different axonal diam-

eters. Values computed at t = 4 ms, and Nr = 32.

quality of the computed solution because the radial concentration profiles do not
scale with the size of the axon.

Convergence in time. Convergence in time is measured similarly to the spatial case.
We vary the time step so that

1t = 0.04× 21−n, NT ≡
Te

1t
= 100× 2n−1, (57)

where n= 1, . . . , 4. We take Nr = 32 as our spatial grid to assess time convergence.
The convergence rate and error is computed analogously to the spatial case.

et
p[ci ; Nr ] =

∥∥cNT
i −I2NT→NT c2NT

i

∥∥
L p . (58)

Here, I2NT→NT is an interpolation operator from the finer to the coarser time step.
For the electrostatic potential φ, we let

et
p[φ; NT ] = min

cφ∈R

∥∥φNT −I2NT→NT φ2NT − cφ
∥∥

L p . (59)

As an empirical measure of convergence rate in time, we use

r t
p[ψ; NT ] = log2

et
p[ψ; NT ]

et
p[ψ; 2NT ]

. (60)

where ψ can be either ci or φ.
Table 3 lists the rate of convergence for both ci and φ at the three diameters

with three norms, L1, L2 and L∞ at t = 4 ms. We see approximate first order
convergence in time over all parameter ranges considered, although the convergence
rate is slightly sublinear overall. The source of this sublinear convergence rate is
unclear.
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diameter norm r t
p[c1, 200] r t

p[c2, 200] r t
p[c3, 200] r t

p[φ, 200]

0.1
L1 0.93 0.93 0.93 0.92
L2 0.94 0.94 0.90 0.89
L∞ 0.96 0.96 0.90 0.83

1
L1 0.93 0.93 0.93 0.92
L2 0.94 0.94 0.89 0.89
L∞ 0.95 0.96 0.75 0.81

10
L1 0.93 0.93 0.91 0.92
L2 0.93 0.94 0.86 0.89
L∞ 0.77 0.95 0.75 0.82

Table 3. Convergence rate in time (r t
p) for different axonal diame-

ters. Values computed at t = 4 ms, and NT = 200.

Convergence in space and time. We next refine in both space and time to demon-
strate that the approximation approaches the solution to the PDE system. Given
that we observe second order convergence in space and first order convergence in
time, we should be able to observe second order convergence overall if we make
the time step proportional to the square of the mesh width. We let

Nz = 4× Nr , Nr = 32×2n−1, 1t = 0.02×41−n, NT ≡
Te

1t
= 200×4n−1,

for n = 1, . . . , 3. The spatiotemporal convergence rate r st
p is measured similarly to

the empirical spatial and temporal rates r s
p and r t

p defined in (56) and (60). Table 4
exhibits approximate second order convergence overall.

diameter norm r st
p [c1, 32] r st

p [c2, 32] r st
p [c3, 32] r st

p [φ, 32]

0.1
L1 1.94 1.94 1.93 1.93
L2 1.93 1.95 1.89 1.90
L∞ 1.95 1.95 1.80 1.86

1
L1 1.94 1.94 1.93 1.93
L2 1.94 1.95 1.89 1.90
L∞ 1.95 1.96 1.82 1.86

10
L1 1.94 1.94 1.90 1.93
L2 1.93 1.94 1.82 1.90
L∞ 1.57 1.87 1.50 1.86

Table 4. Convergence rate in space and time (r st
p ) for different

values of axonal diameters. Values computed at t = 4 ms, and
Nr = 32, NT = 200.
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7.2. Cardiac geometry. We next consider a test geometry based on cardiac micro-
scopic anatomy [35; 19; 26]. The motivation for this test case is the following.
Cardiac tissue is composed of muscle cells which are linked to one another through
gap junctions, pore forming proteins similar to ion channels that straddle two
adjacent cell membranes. These low resistance passage ways of electric current
have conventionally been regarded as essential for successful cell-to-cell propagation
of the cardiac electric signal, which in turn coordinates the synchronization of the
heart beat [31]. Recent experimental as well as theoretical studies suggest, however,
that gap junctions are not absolutely essential for propagation of the electric signal.
Indeed, knock-out mice that do not express the principal gap junction isoforms
in cardiac cells do produce a functional heart beat [37; 9]. One hypothesis that
attempts to explain this anomalous conduction is the ephaptic hypothesis, in which
two adjacent cardiac cells interact with one another through the very narrow cleft
(the intercalating disc) between them [19]. The presence of the narrow cleft raises
the possibility of steep voltage gradients and large ionic concentration changes, and
is thus an ideal system in which our model could make interesting physiological
predictions. This program has been partially carried out in [26], to which we refer
the reader for further physiological discussion.

As a testbed, we consider 2 cells of equal length separated by a narrow intercel-
lular space of width lg. In fact, we consider two “half” cells, each of length lA/2 as
we shall see shortly. The radius of the cell is l and the whole system is bathed in an
extracellular medium contained within a cylinder of radius 2l (Figure 6).

Similarly to the axonal case, we take z to be the axial direction and r to be the
radial coordinate. We take the origin to be in the middle of the gap. Formally, the
intracellular region can be written as(

−
lA+lg

2
< z<−

lg

2
or

lg

2
< z<

lA+lg

2

)
and r < l. (61)

2l

lA/2

lg

z

r

l

extracellular space intracellular space

Figure 6. Schematic of the geometry used for the cardiac model.
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T Absolute temperature 273.15+37 K

Dus
Na+ Unscaled diffusion coefficient of Na+ 1.33µm2/ms

Dus
K+ Unscaled diffusion coefficient of K+ 1.96µm2/ms

Dus
Ca2+ Unscaled diffusion coefficient of Ca2+ 0.3 µm2/ms

Dus
Cl− Unscaled diffusion coefficient of Cl− 2.03µm2/ms

cint
Na+
∣∣
t=0 Initial intracellular concentration of Na+ 10 mmol/l

cext
Na+
∣∣
t=0 Initial extracellular concentration of Na+ 145 mmol/l

cint
K+
∣∣
t=0 Initial intracellular concentration of K+ 140 mmol/l

cext
K+
∣∣
t=0 Initial extracellular concentration of K+ 5 mmol/l

cint
Cl−
∣∣
t=0 Initial intracellular concentration of Cl− 10 mmol/l

cext
Cl−
∣∣
t=0 Initial extracellular concentration of Cl− see text

cint
Ca2+

∣∣
t=0 Initial intracellular concentration of Ca2+ 0.4 µmol/l

cext
Ca2+

∣∣
t=0 Initial extracellular concentration of Ca2+ 2 mmol/l

φm|t=0 Initial transmembrane potential, φint
−φext

−90 mV

Table 5. Parameter values used in cardiac simulation.

The intracellular region is open-ended at z =± 1
2(lA+ lg). This is what we mean

by “half cell”. We impose no-flux boundary conditions at z =± 1
2(lA+ lg) and at

r = 2l.
The values for lg, lA and l are

lg = 20 nm, lA = 100µm, l = 11µm. (62)

We note that lg is about 4 orders of magnitude smaller than lA, and thus we use a
nonuniform mesh, the details of which we shall describe shortly.

We consider 4 ion types in the calculation, Na+, K+, Ca2+ and Cl−. The initial
condition for all ionic species except Cl− in the extracellular space are listed in
Table 5. In the intracellular medium, we set the fixed negative charge density ρ0 so
that electroneutrality is satisfied everywhere. In the gap we introduce a nonuniform
fixed negative charge density. This represents the charged groups on extracellular
macromolecules that may be present within the gap. We initialize the fixed charge
density ρ0 in the extracellular space to be

ρ0 =

{
−
(
54+ 50

(
1− (r/ l)2

))
mmol/l if r < l and − lg/2< z < lg/2,

−54 mmol/l if r ≥ l.
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Set the extracellular Cl− concentration so that the electroneutrality condition is
satisfied everywhere:

cext
Cl−
∣∣
t=0 =

{
100− 50

(
1− (r/ l)2

)
mmol/l if r < l and − lg/2< z < lg/2,

100 mmol/l if r ≥ l.

The diffusion coefficients are adjusted in the following way. If we ignore ionic
diffusion, electric current is solely driven by the gradient of the electrostatic potential.
In this case, the ohmic cytoplasmic conductance is given by a(x, t) defined in (5).
If one computes the cytoplasmic or extracellular conductance using (5) according
to values of Di in an aqueous solution, the values used in Table 1, we obtain an
overestimate which deviates from the experimentally observed value by a factor of
2–5 [19]. We thus scale the diffusion coefficient in aqueous solution by a uniform
factor α so that the cytoplasmic or extracellular conductance calculated above is
approximately within the experimental range. More concretely, we let

gobserved
= α

N∑
i=1

(qzi )2 ci |t=0

kB T
Dus

i , (63)

where gobserved is the cytoplasmic conductance, which we take to be equal to
the extracellular conductance, Dus

i is the unscaled diffusion coefficient, and over-
line denotes averaging over the computational domain. Following [19], we let
1/gobserved

= 150� cm.
For the ion channel composition for the membrane, we use the model of Bernus

et al. [4], in which the authors model the electrical activity of human ventricular
myocytes. The only change we make concerns the localization of the Na+ channels.
We concentrate their distribution so that 99% of the total Na+ conductance sits
at the membranes facing the gap. Evidence for such localization of Na+ channel
expression has been presented in [19]. This may allow an action potential to propa-
gate across the gap without the two intracellular spaces being directly connected by
gap junctions forming a cytoplasmic bridge.

All instantaneous current voltage relations for ionic channels in the model of
Bernus et al. are linear in the transmembrane voltage. We do not have to linearize
the current voltage relationship to obtain a linear system. The ionic pump currents
are nonlinear in the transmembrane voltage, but will be treated explicitly. This does
not result in numerical instabilities because ionic pump currents are typically small
in magnitude.

We simulate this system for time Te = 4 ms. We add a transient excitation to the
system by way of an increase in Na+ conductance distributed along the lateral cell
membrane of the cell on the left according to
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Gadd
Na+ =


5
4

(
1+ cos π(z+L z)

lA/2

)(
1− cos 2π t

τe

)
if z <−

lg

2
, t < τe,

0 otherwise,

where L z = (lA+ lg)/2 and τe = 1 ms. Thus, we stimulate the system at one end
of the cell located in z < 0, and see whether the action potential propagates into
the next cell. Snapshots from this simulation are shown in Figures 7 and 8. We
note a radial gradient in the electrostatic potential in the thin gap spaces, an effect
that cannot be modeled with a simple use of the cable model. Note in these figures
that the action potential propagates across a thin gap between two cells even if
there are no gap junctions (low resistance connections) that connect the two cells.
The feasibility of such ephaptic transmission (a term borrowed from neuroscience
[12]), in the context of cardiac action potential propagation has been a subject of
much debate [19; 35]. We have used this model to explore the biophysics of this
mechanism in [26].

Figure 7. The evolution of the electrostatic potential in the car-
diac simulation with variable mesh width. The radial cross sec-
tion (r from 0µm to 20µm) is shown. Snapshots shown at
t = 0.6, 1.2, 1.8, 2.4 ms. The mesh size is Nz × Nr = 48 × 32
in this computation. Potentials are in mV and lengths in µm.
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Figure 8. The cumulative change in ionic concentrations from the
initial value, in the cardiac simulation with variable mesh width.
The plot of the cumulative concentration changes of Na+, K+ and
Cl− at t = 2 ms shown. As with the previous figure, the radial
cross section is plotted. The mesh size is Nz×Nr = 48×32 in this
computation. Concentrations are in mmol/l and lengths in µm.

Convergence in space. As we remarked above, the gap width lg is four orders of
magnitude smaller than the cell length lA. We therefore use a nonuniform mesh,
both in the axial and radial directions.

In the axial direction, we lay a mesh whose width is of order lg/2n when−lg/2<
z < lg/2 and of order lA/n away from the gap where z ∼ ±(lA/2), where n is
the number of steps in each direction into which the lengths of our system are
divided. For meshes in between, we interpolate the two widths with an approximate
geometric sequence. In the radial direction, we lay a mesh of width of order lg near
r = l and of order l where r = l±l. Again, we interpolate between the extremes with
an approximate geometric sequence. We give details of this construction below.

We first define a function f on 0≤ z ≤ (lA+ lg)/2:

f (z)=


2z/lg if 0≤ z ≤ lg/2,

(2/(lgb)) log
(
1+ b(z− lg/2)

)
+ 1 if lg/2≤ z ≤ zβ,

((nz − 1)/ lA)(z− lA/2)+ nz if zβ ≤ z ≤ lA/2,

(64)
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where nz is an integer parameter that we specify, and b and zβ are determined so
that f is continuously differentiable at z = zβ . We define the FV boundaries zk

using f (z) as follows:

zk = f −1
( nz

Nz/2
k
)
, k = 0, . . . , Nz/2, (65)

where Nz/2 is a multiple of nz . This construction adjusts the FV width depending
on whether the location is far away from the intercellular gap. For z < 0, we take
the FV boundaries to be the reflection of the zk above with respect to z = 0.

In the radial direction, we shall take the following mesh. We first define the
following function g analogous to f above. For r > l let

g(r)=
{
(2/(lgb)) log(1+ b(r − l)) if l ≤ r ≤ rβ,

(nr/2l)(r − l)+ nr if rβ ≤ r ≤ 2l,
(66)

where nr is an integer parameter that we specify, and b and rβ are determined so
that g is continuously differentiable at r = rβ . We define the FV boundaries rk

using g(r) as follows:

rk = g−1
( nr

Nr/2
k
)
, k = 0, . . . , Nr/2, (67)

where Nr/2 is a multiple of nr . For r < l, we take the points 2l − rk as the FV
boundaries. This construction again has the benefit of concentrating the meshes
toward the membranes and near the gaps.

The coarsest level starts with 2 meshes −lg/2 < z < lg/2 and 5 meshes each
for z <−lg/2 and z > lg/2, a total of Nz = 12 meshes in the axial direction. This
corresponds to nz = 6 in (64). In the radial direction, the coarsest level is Nr = 8
meshes, which corresponds to nr = 4 in (66). We take

Nr = 32× 2n−1, Nz = 48× 2n−1, 1t = 0.02 ms, NT =
Te

1t
= 200, (68)

where n = 1, . . . , 4.
Spatial convergence is assessed in exactly the same way as in the axonal case.

Table 6 lists the rate of convergence for both ci and φ at the three diameters with
three norms, L1, L2 and L∞ at t = 4 ms. Convergence rates at other time points
were similar. We see approximate second order convergence overall, similarly to
the neuronal axon calculation of Section 7.1.

Convergence in time. We vary the time step so that

1t = 0.02× 21−n, NT ≡
Te

1t
= 200× 2n−1, (69)

where n = 1, . . . , 4. As the spatial mesh, we use Nr = 64, Nz = 96.
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norm r s
p[c1, 64] r s

p[c2, 64] r s
p[c3, 64] r s

p[c4, 64] r s
p[φ, 64]

L1 1.90 1.91 1.94 1.94 2.00
L2 1.95 1.87 1.89 1.97 2.00
L∞ 1.88 1.89 2.10 1.83 2.00

Table 6. Convergence rate in space (r s
p) in the cardiac simulation.

Values computed at t = 4 ms, and Nr = 64.

norm r t
p[c1, 400] r t

p[c2, 400] r t
p[c3, 400] r s

p[c4, 400] r s
p[φ, 400]

L1 1.01 1.02 1.03 1.02 1.06
L2 1.02 1.02 1.03 1.02 1.07
L∞ 1.06 1.04 1.08 1.06 1.07

Table 7. Convergence rate in time (r t
p) in the cardiac simulation.

Values computed at t = 4 ms, and NT = 400.

Table 7 lists the rate of convergence for both ci and φ with three norms, L1, L2

and L∞ at t = 4 ms. We see first order convergence for all variables, similarly to
the corresponding results in Section 7.1.

Convergence in space and time. We vary the time step and spatial mesh so that

Nz = 96×2n−1, Nr = 64×2n−1, 1t = 0.02×41−n, NT ≡
Te

1t
= 200×4n−1,

where n = 1, . . . , 3. The observed convergence rate in Table 8 is the expected order
of two overall similarly to corresponding results in Section 7.1.

norm r st
p [c1, 64] r st

p [c2, 64] r st
p [c3, 64] r st

p [c4, 64] r st
p [φ, 64]

L1 2.05 2.07 2.09 2.05 2.16
L2 2.06 2.08 2.09 2.05 2.20
L∞ 2.16 2.11 2.22 2.16 2.20

Table 8. Convergence rate in space and time (r st
p ) in cardiac simu-

lation. Values computed at t = 4 ms, and Nz = 64, NT = 200.

8. General two-dimensional geometry

In this section we consider three examples of general two-dimensional geometry.
All three cases involve one or more cells in a two-dimensional square computational
domain. Let the computational domain be of size l. Take the origin of the domain
to be at the center of the computational domain, and take the x and y axes parallel
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Figure 9. Shapes of cells used in computational experiments.

to the sides of the square computational domain. We consider the following three
cases as regions of the intracellular domain.( 2x

l

)2
+

( 2y
l

)2
<

105
256

, l = 1µm,

exp
(
−

(2x
l

)2
− 10y

)
+ exp

(
−

(2y
l

)2
− 10x

)
>

1
2
, l = 1µm,

sin2 4πx
l

sin2 4πy
l
>

1
30
, l = 2µm.

The first represents a circular cell, the second a star-shaped cell and the third
represents four intracellular domains in a 2× 2 square array (Figure 9).

We use parameter values that are as close as possible to physiological parameters
in the context of a two-dimensional geometry. The value of l is chosen so that it is a
typical scale for microstructures in the central nervous system[18; 15; 30]. For the
ionic channel model, we use the Hodgkin–Huxley kinetics. Given the geometries
are two-dimensional, we cannot claim that our geometries correspond closely to
those of specific physiological systems. However, even our two dimensional studies
may be of physiological interest as the cross-sectional profile of systems with large
longitudinal extent. For example, adjacent axons that run parallel may influence the
electrical activity of one another. Such coupling has been implicated in neuropathic
pain [12] and has been suggested to play a role in the corpus callosum and optic
and auditory nerves [33]. The square array example above may be seen as a cross
section of four axons running parallel.

At the outer boundary of the computational domain, we impose either no-flux or
Dirichlet boundary conditions. In the case of Dirichlet boundary conditions, we
set the ci to be equal to their initial values, and we set φ equal to 0. If we can
demonstrate that the scheme performs well under no-flux and Dirichlet boundary
conditions, it would then seem likely that the scheme will perform well for mixed
boundary conditions.
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T Absolute temperature 273.15+37 K

DNa+ Diffusion coefficient of Na+ 0.266µm2/ms

DK+ Diffusion coefficient of K+ 0.392µm2/ms

DCl− Diffusion coefficient of Cl− 0.406µm2/ms

cint
Na+
∣∣
t=0 Initial intracellular concentration of Na+ 10 mmol/l

cext
Na+
∣∣
t=0 Initial extracellular concentration of Na+ 145 mmol/l

cint
K+
∣∣
t=0 Initial intracellular concentration of K+ 140 mmol/l

cext
K+
∣∣
t=0 Initial extracellular concentration of K+ 5 mmol/l

cint
Cl−
∣∣
t=0 Initial intracellular concentration of Cl− 20 mmol/l

cext
Cl−
∣∣
t=0 Initial extracellular concentration of Cl− 150 mmol/l

φm|t=0 Initial transmembrane potential, φint
−φext

−70 mV

GNa Maximal Na+ channel conductance 600 mS/cm2

GK Maximal K+ channel conductance 180 mS/cm2

GL Leak conductance (carried by K+ ions) 1.5 mS/cm2

Table 9. Parameter values used in the simulation for general two-
dimensional geometries.

In order to observe appreciable changes in ionic concentrations over the time
range of the computational study, we scaled the maximal conductances by a factor
of 5 and decreased the diffusion coefficient by a factor of 5 with respect to the values
of Table 1. The ionic makeup of the simulation is therefore Na+, K+ and Cl−, where
the concentrations and the diffusion coefficients used are summarized in Table 9. As
before, the immobile charge density is initialized so that electroneutrality is strictly
satisfied at t = 0. We initialize λi with λ̃i evaluated using the initial concentrations
and membrane potential.

We add the following the membrane conductances for 0≤ t ≤ τe to initiate an
action potential for each of the three geometries.

Gadd
Cl− = Gadd

Na+ = Gadd
K+ =

200
(2y

l

)2(
1− cos 2π t

τe

)
if y < 0, t < τe = 1 ms,

0 otherwise.

We run the simulation for a total of Te = 2 ms. Snapshots from the simulation are
given in Figures 10–12, where a no-flux boundary condition is used at the boundary
of the computational domain.
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Figure 10. Circular geometry: cumulative change in ionic con-
centrations and electrostatic potential φ computed under no-flux
boundary conditions at the outer boundary of the computational
domain. Snapshot at t = 0.6 ms. Mesh size: 128× 128.

8.1. Convergence in space. We lay a uniform mesh of Nx × Nx over the compu-
tational domain, where the membrane cuts through the uniform mesh as described
in the above. We vary Nx in multiples of 2. We take

Nx = 32× 2n−1, 1t = 0.02 ms, NT = Te/1t = 100, (70)

where n = 1, . . . , 5. Convergence is measured similarly to the cylindrical cases
discussed above.

We tabulate the convergence rates in Table 10. We see that it is linear to supralin-
ear. For φ, the rate of convergence is not smooth as the mesh is refined (see Figure
13 on page 125). Given that we observe smooth second order convergence in the
case of cylindrical geometry, we infer that this behavior arises because the Cartesian
cells are randomly cut by the membrane as the mesh is refined. A direction for future
study would be to improve the discretization of the equations near the membrane
or adopt a better discretization of the geometry to improve the convergence profile.
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Figure 11. Star geometry: cumulative change in ionic concentra-
tions and electrostatic potential φ computed under no-flux boundary
conditions at the outer boundary of the computational domain.
Snapshot at t = 0.6 ms. Mesh size: 128× 128.

Geometry
and norm

No Flux Dirichlet
c1 c2 c3 φ c1 c2 c3 φ

Circle
L1 1.52 1.54 1.51 1.50 1.07 1.04 1.15 2.24
L2 1.49 1.52 1.51 1.50 1.02 1.01 1.14 2.25
L∞ 0.92 1.02 1.48 1.50 0.94 1.02 1.23 2.21

Star
L1 0.83 1.23 1.73 2.76 1.24 1.18 1.14 1.87
L2 1.27 1.38 1.79 2.77 1.05 1.04 1.05 1.87
L∞ 1.16 1.12 1.51 2.47 1.14 1.12 0.97 1.86

Square
Array

L1 2.01 2.02 1.54 1.79 1.13 1.11 1.22 1.11
L2 1.71 1.84 1.58 1.82 1.05 1.05 1.07 1.10
L∞ 0.80 0.78 0.76 1.61 0.96 1.01 1.01 1.10

Table 10. Convergence rate in space (r s
p). Computed at t = 2 ms,

and Nx = 128.
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Figure 12. Square array geometry: cumulative change in ionic
concentrations and electrostatic potential φ computed under no-
flux boundary conditions at the outer boundary of the computational
domain. Snapshot at t = 0.6 ms. Mesh size: 128× 128.

Geometry
and norm

No Flux Dirichlet
c1 c2 c3 φ c1 c2 c3 φ

Circle
L1 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
L2 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00
L∞ 1.00 1.01 0.69 1.00 1.00 1.01 1.00 1.00

Star
L1 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00
L2 1.00 1.00 0.99 1.00 1.00 1.00 0.99 1.00
L∞ 1.00 0.91 0.86 1.00 1.00 0.91 0.86 0.99

Square
Array

L1 0.99 0.99 0.98 1.00 0.99 0.99 0.98 0.99
L2 0.99 0.99 0.98 1.00 0.99 0.99 0.97 0.99
L∞ 0.99 0.99 1.08 1.00 0.99 0.82 0.95 0.99

Table 11. Convergence rates in time (r t
p). Computed at t = 2 ms,

and NT = 200.
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8.2. Convergence in time. For convergence in time, we let

1t = 0.04× 21−nms, NT =
Te

1t
= 50× 2n−1, (71)

where n = 1, . . . , 5. For the spatial grid, we take Nx = 64. We give a table of the
convergence rates in Table 11. We see first order convergence in all cases.

8.3. Convergence in space and time. We test convergence in space and time. As
was demonstrated above, convergence in space is linear to supralinear. We thus
refine the time step proportionally to the spatial step in order to study spatiotemporal
convergence. We expect to see first order convergence in this case. We let

1t = 0.04× 21−nms, NT =
Te

1t
= 50× 2n−1, Nx = 64× 2n−1, (72)

where n = 1, . . . , 4. We give a table of the convergence rates in Table 12. We
observe approximate first order convergence in all cases as expected.

Geometry
and norm

No Flux Dirichlet
c1 c2 c3 φ c1 c2 c3 φ

Circle
L1 1.01 1.01 1.01 1.01 1.00 1.00 1.02 1.00
L2 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.00
L∞ 1.00 1.01 1.01 1.01 1.00 1.01 1.01 1.00

Star
L1 0.99 1.00 0.92 1.00 0.99 0.99 0.93 0.99
L2 0.99 0.99 0.92 1.00 0.99 0.99 0.92 0.99
L∞ 0.98 0.99 0.93 1.00 0.98 0.99 0.93 0.99

Square
Array

L1 0.98 0.99 0.94 0.99 0.97 0.98 0.94 0.99
L2 0.98 0.99 0.94 1.00 0.97 0.98 0.94 0.99
L∞ 0.99 1.01 0.94 0.99 0.96 0.97 0.96 0.99

Table 12. Convergence rates in space and time r st
p . Computed at

t = 2 ms, and N x = 128, NT = 100.

9. Conclusion

We have presented a numerical method for an electrodiffusion model of cellular
electrical activity, which we call the electroneutral model. The ionic concentrations
ci obey the drift diffusion equations and the electrostatic potential φ evolves so as
to ensure electroneutrality. The boundary conditions at the membrane are expressed
in terms of the capacitive current term Cm((∂φm)/(∂t)) as well as the ionic channel
current term ji . We have a system of partial differential equations satisfied in both
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Figure 13. L∞ error in space for ci (mmol/l) and φ(mV). Er-
ror measured at 2 ms. ncirc, dcirc: circular geometry with no-
flux/Dirichlet boundary conditions; nstar; dstar: star geometry;
nsqry, dsqry: square array geometry; ref: reference line indicating
first order convergence.

the intracellular and extracellular regions supplemented with nonlinear evolutionary
interface conditions at the membrane.

We use a finite volume method in space, a natural discretization since all equa-
tions can be written in conservation form. We develop code for both cylindrical
and general two dimensional membrane geometries. In the latter case, we use
an embedded boundary method, in which the membrane cuts through a regular
Cartesian mesh.

The model possesses two diffusive time scales, one that originates from the
“diffusion” of the membrane potential and the other from the physical diffusion
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of ions. The membrane potential “diffusion” is fast compared to the time scale
of biophysical phenomena of interest. We thus develop an implicit scheme to
overcome this severe time step restriction that an explicit scheme would face as a
result of this disparity of time scales. This means in particular that we must solve an
elliptic interface problem where the jump in φ is not known a priori. The resulting
nonlinear algebraic equations in ci and φ are solved using an iterative scheme. We
fix ci and solve for φ, and fix φ to solve for ci . This reduces each linear algebra
task to the solution of a symmetric positive definite system. We use either a direct
solver or a conjugate gradient iteration to solve these linear systems.

We examined the convergence properties of our scheme in both the cylindrical
case and also in the case of the scheme for general two-dimensional geometry. In the
cylindrical case, we applied the method to the Hodgkin–Huxley axon and to a model
of cardiac action potential propagation. We observe close to second order accuracy
in space and first order accuracy in time. For general two dimensional geometries,
we test convergence with three geometries in which realistic biophysical parameters
are used. We see first order accuracy in time. In space, the convergence rate is
linear to supralinear, although in some cases, the convergence profile seems to be
somewhat erratic. Improving both the order and the profile of spatial convergence
is a direction for future research. We would also like to improve the accuracy of our
time stepping scheme. We have employed an operator-splitting framework in which
the gating variables defined on the membrane and the electrostatic potential/ionic
concentrations defined in the bulk are marched alternately, each of which are
discretized using a backward Euler type scheme. Merely replacing the backward
Euler scheme with a second order L-stable method will not yield a second order
scheme, since the splitting errors incurred will still be first order in time. One future
direction would be to adapt splitting methods developed, for example, in [6] to
develop higher order time marching schemes.

We anticipate many applications for the numerical scheme introduced in this
paper. These include any situation in electrophysiology in which detailed membrane
geometry and/or local changes in ionic concentrations are important. One such
application was already used as a test problem in this paper. It concerns the
transmission of the cardiac action potential across the narrow gap that separates the
ends of adjacent myocytes. This gap is normally spanned by specialized channels
known as gap junctions [1], but we study here the transmission that can occur
even in the absence of these direct connections between neighboring cells [35]. A
detailed study of this issue using the present model can be found in [26].

Potential applications in neuroscience include specialized synapses where ge-
ometrical relationships, localized extracellular currents, and ionic concentration
changes in restricted spaces are thought to play a role [18; 34]. An example of this
would be the ribbon synapse of the retina, in which horizontal cells mediate the
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interaction between photoreceptors and bipolar cells in ways that are only partly
understood [14]. Yet another potential arena of application concerns intracellular
electrophysiology, that is, the role of electrodiffusion of ions in the function of such
intracellular organelles as the sarcoplasmic reticulum or the mitochondrion.

Most of the applications discussed above will probably require for their full real-
ization a three-dimensional generalization of the code for general two-dimensional
geometry that we have developed for the purpose of testing the basic methodology
in the present paper. Local mesh refinement will most likely be needed to accom-
modate the different spatial scales that will interact in any particular application.
The principles on which our two-dimensional method are based extend readily to
the three-dimensional case even with local mesh refinement. There are, however,
significant implementation difficulties that must be overcome, most notably in the
representation of the complicated three-dimensional membrane geometry and its
interaction with a locally refined mesh. Parallel implementation and efficient solvers
will also be needed in the three-dimensional case. This substantial research effort
will be rewarded by the ability to make detailed simulations of electrically active
cells at a level that takes into account their intricate and beautiful microscopic
anatomy.

Appendix

A.1. Derivation of λ̃(k)i . We give a derivation of the expression for λ̃(k)i in (8).
What is presented here is an adaptation of a calculation contained in [27]. For a
derivation using matched asymptotics we refer to [25] and [24].

We take a closer look at what is happening in the space charge layer, the thin
layers of electric charge accumulation that form on both sides of the membrane. We
now derive the ionic composition of the space charge layer when it is in equilibrium
with the bulk solution in the immediate vicinity of the space charge layer.

Our starting point is the following Poisson–Nernst–Planck system satisfied in
both the intracellular and extracellular regions.

∂ci

∂t
=−∇ · fi , (73)

fi =−Di

(
∇ci +

qzi ci

kB T
∇φ

)
, (74)

−ε1φ = ρ0+

N∑
i=1

qzi ci . (75)

All quantities except for the dielectric constant ε have been introduced in (1)–(3).
Instead of the electroneutrality condition (3), we have the Poisson equation (75).
Taking c0 and L0 to be the representative ionic concentration and spatial scales
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respectively, the Poisson equation can be nondimensionalized as

−
( rd

L0

)2
1̃φ̃ = ρ̃0+

N∑
i=1

zi c̃i , (76)

where ·̃ denote the respective nondimensionalized quantities and operators. In (76)
rd is the Debye length given by

rd =

√
εkB T
q2c0

. (77)

Given that rd ≈ 1 nm and L0 is on the order or µm to cm in biophysical systems,
(rd/L0)

2 is a very small quantity. We may thus safely disregard the left hand side
of (76) provided we are sufficiently far away from the membrane. This amounts to
taking the right hand side of (75) to be equal to 0. This leads to the electroneutrality
condition (3). However close to the membrane we have a boundary layer of thickness
O(rd), within which the ionic concentrations deviate from electroneutrality. In this
space charge layer, we must deal with the Poisson–Nernst–Planck system (73), (74)
and (75).

We make some assumptions in our analysis of the space charge layer. We
suppose that the quantities within the space charge layer experience fast spatial
variation in the direction normal to the membrane but slow spatial variation in the
direction parallel to the membrane. Under this “boundary layer” assumption, all
quantities may be treated as functions only of the distance from the membrane.
This also implies that the ionic fluxes must be equal to 0 to leading order within the
space charge layer. It is possible to formalize this argument within the traditional
framework of matched asymptotics as presented in [25] and [24]. We also make
the assumption that the deviation of the electrostatic potential and hence the ionic
concentration from its bulk values is small. This assumption is justified because the
membrane capacitance is “small” in biophysical systems. For a further elaboration
of this point we refer the reader to [27].

Let x denote the distance coordinate normal to the membrane surface. Then,
according to the assumptions just stated, (73)–(75) become

0=−Di

(∂ci

∂x
+

qzi ci

kB T
∂φ

∂x

)
, (78)

−
∂2φ

∂x2 =
1
ε

(
ρ0+

N∑
i=1

qzi ci

)
, (79)

which hold on 0 < x < ∞ with ci (∞) and φ(∞) given. Here, x = 0 is the
intracellular or extracellular face of the membrane, and x =∞ corresponds to the
bulk solution where ci and φ values in the space charge layer are to be matched
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with the bulk values. For now we shall assume that ci (∞) and φ(∞) are constant
in time. Assuming that the background fixed charge density ρ0 varies on the scale
of the cellular size L0, its variation within the thickness of the space charge layer
is negligible, of order O(rd/L0). Thus, we will treat ρ0 as being constant within
the space charge layer. It is important to note that these values at x =∞ satisfy
electroneutrality, that is,

ρ0+

N∑
i=1

qzi ci (∞)= 0. (80)

Equation (78) can be integrated easily to obtain,

ci (x)= ci (∞) exp
(
−

qzi

kB T
(φ(x)−φ(∞))

)
. (81)

We substitute this into (79) to find,

−
∂2φ

∂x2 =
1
ε

(
ρ0+

N∑
i=1

qzi ci (∞) exp
(
−

qzi

kB T
(φ(x)−φ(∞))

))
. (82)

We now assume, as we stated earlier, that the deviation of the electrostatic potential
within the space charge layer from the bulk value is small.∣∣∣ qzi

kB T
(φ(x)−φ(∞))

∣∣∣� 1. (83)

Then, taking into account the electroneutrality condition at x =∞ (80), we obtain

ci (x)= ci (∞)
(

1−
qzi

kB T
(φ(x)−φ(∞))

)
(84)

and
∂2

∂x2 (φ(x)−φ(∞))= γ
2(φ(x)−φ(∞)),

where

γ 2
=

N∑
i=1

(qzi )
2ci (∞)

εkB T
. (85)

Letting γ be the positive square root of γ 2 (1/γ is nothing other than the Debye
length), we find the unique bounded solution

φ(x)−φ(∞)= (φ(0)−φ(∞)) exp(−γ x), (86)

and hence according to (84),

ci (x)− ci (∞)=−ci (∞)
qzi

kB T
(φ(0)−φ(∞)) exp(−γ x). (87)



130 YOICHIRO MORI AND CHARLES S. PESKIN

R

ηR

1z

r
z

Figure 14. Derivation of the cable model. A portion of a cylindri-
cal cell is shown. As explained in the main text, the divergence
theorem is applied to the intracellular and extracellular slabs of
thickness 1z, shown above.

Using this equation, we may compute σi as

σi =

∫
∞

0
qzi (ci (x)− ci (∞))dx =−ci (∞)

(qzi )
2

kB T γ
(φ(0)−φ(∞)). (88)

Using the above and noting that
∑N

i=1 σi = σ , we immediately obtain

σi =
z2

i ci (∞)∑N
i ′=1 z2

i ′ci ′(∞)
σ. (89)

The coefficient in front of σ corresponds to the expression for λ̃i in (8).
If the bulk concentrations are not changing in time, the fractional contribution

σi/σ = λi of (8) will be equal to λ̃i . If the bulk concentration changes slowly
with time, we expect the ionic concentration profile within the space charge layer
to closely follow the corresponding equilibrium profile calculated above, on the
diffusive time scale within the space charge layer. We thus let λi relax to λ̃i with
the time constant τ = r2

d/D0, where D0 is the representative magnitude of ionic
diffusion coefficient.

A.2. Derivation of the cable model. We give a short derivation of the cable model
from (15) and (16). Our derivation here can be formalized using thin domain
asymptotics. See [25] and [24] for details.

Suppose the cell is cylindrical in shape (Figure 14). Let z be the axial coordinate
and r be the radial coordinate. The membrane is located at r = R. The intracellular
space corresponds to r < R and the extracellular space to R < r < ηR where
η > 1 is some constant. Now, consider the cross sectional slab between z = z0 and
z = z0+1z. Let us compute the integral of 1φ over the region z0 < z < z0+1z,
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r < R. We get∫
z0<z<z0+1z,r<R

1φdV

=

∫
z=z0+1z,r<R

∂φ

∂z
d A−

∫
z=z0,r<R

∂φ

∂z
d A+

∫
z0<z<z0+1z,r=R

∂φ

∂r
d A, (90)

where we used the divergence theorem. The symbols dV and d A denote volume
and surface integration respectively. Now, note by (17) that 1φ = 0. Therefore, the
left hand side of (90) is 0, and we have∫

z=z0+1z,r<R

∂φ

∂z
d A−

∫
z=z0,r<R

∂φ

∂z
d A =−

∫
z0<z<z0+1z,r=R

∂φ

∂r
d A. (91)

Dividing by 1z and taking the limit as 1z goes to 0, we obtain the following
relationship.

∂

∂z

∫
z=z0

∂φ

∂z
d A =−

∫
z=z0,r=R

∂φ

∂r
d`, (92)

where d` denotes a line integral. Now, we make the assumption that the cylindrical
diameter is small so that the electrostatic potential φ varies very little over the
diameter of the cylinder. We thus take the approximation that φ = φint(z) does
not depend on the radial direction in r < R. Under this approximation, the above
becomes

aintπR2 ∂
2φint

∂z2 =

∫
r=R

(
Cm

∂φm

∂t
+ I

)
d`, (93)

where we used (18). Note that the above is valid for any value of z0, and thus, we
have omitted reference to z0. φm is the membrane potential, the difference in φ
across the membrane. aint is the value of a (which appears in (16) as a(k) and a(l))
in the intracellular space.

A similar calculation, applied to the extracellular region z0 < z < z0 + 1z,
R < r < Rext, yields

aextπ((ηR)2− R2)
∂2φext

∂z2 =−

∫
r=R

(
Cm

∂φm

∂t
+ I

)
d`, (94)

where we have assumed that φ in the extracellular region is again, a function only of
z and does not depend on the radial direction r . Note that the membrane potential
φm can now be expressed as φm = φ

int
−φext, and is thus a function only of z, and

does not depend on the angular coordinate. Rearranging (93) and (94), we may
write an equation solely in terms of φm :

Cm
∂φm

∂t
+ Ī =

aeff R
2

∂2φm

∂z2 , aeff
= ((aint)−1

+ (aext(η2
− 1))−1)−1. (95)
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This is nothing other than (20). If we let a = aint
= aext and consider the case in

which η is very large, we may replace aeff by a, as used in (19).
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