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A recent paper by Vaughan, Smith, and Chopp [Comm. App. Math. & Comp.
Sci. 1 (2006), 207–228] reported numerical results for three examples using
the immersed interface method (IIM) and the extended finite element method
(X-FEM). The results presented for the IIM showed first-order accuracy for the
solution and inaccurate values of the normal derivative at the interface. This was
due to an error in the implementation. The purpose of this note is to present
correct results using the IIM for the same examples used in that paper, which
demonstrate the expected second-order accuracy in the maximum norm over
all grid points. Results now indicate that on these problems the IIM and X-
FEM methods give comparable accuracy in solution values. With appropriate
interpolation it is also possible to obtain nearly second order accurate values of
the solution and normal derivative at the interface with the IIM.

1. Introduction

The immersed interface method (IIM) [3; 5; 4] is a method for solving PDE’s with
discontinuous coefficients and singular sources at an interface using values at grid
points. For elliptic problems, uniform second-order accuracy is obtained at all grid
points, including those near and on the interface, by correcting the truncation error
at the interface to first order using jump conditions. This second-order accuracy
has been well established in computational practice and theoretical analysis; see for
example, [1; 2; 3; 4; 5].
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The paper [7] presented numerical results for three test problems using the IIM
as well as the extended finite element method. The reported results with the IIM
showed only first-order accuracy for the solution and inaccurate values of the normal
derivative at the interface. This was due to error in the implementation.

The purpose of this note is to present correct versions of the Tables in [7]. These
results confirm that the IIM gives second-order accuracy in the maximum norm at
the grid points for all the examples. Values at the interface are obtained to second
order by interpolation. Furthermore, the normal derivative of the solution at the
interface, also interpolated from values at grid points, is also nearly second order
accurate. This agrees with the theoretical prediction of Beale and Layton [1].

The corrected results indicate that on these problems the IIM and X-FEM methods
give comparable accuracy in solution values, although the IIM and the X-FEM
results are no longer solved using the same interpolation scheme for locating the
interface from a discrete implicit representation. The IIM results presented here
are using a cubic spline reconstruction, while the X-FEM results are from using a
linear interpolant. The IIM with appropriate interpolation also gives much more
accurate normal derivatives at the interface than those reported for X-FEM in [7].
However, as noted in [6], X-FEM solutions can be significantly improved by using
more specialized enrichment functions. These extra enrichment functions were not
used for the results presented here.

The computer codes used are available on request.

2. Corrected Tables

The examples in the paper [7] are taken from the original IIM paper [3] and the
tables in [3] are correct and indicate second order accuracy. For this note we have
repeated these experiments using a new version of the IIM developed in 2001 by
Li and Ito [4]. With the new code we have also computed the error in the normal
derivative of the solution at the interface for corrected versions of Tables 4, 7, and
10. These errors were not presented in the original paper [3].

The problems and notation are presented in [7] and not repeated here. The error
displayed in the tables is the maximum error over all grid points,

‖En‖∞ = max
i, j

|u(xi , y j ) − ui j |,

where ui j is the computed approximation at the grid point (xi , y j ). In [7] this was
denoted by Tn , but we are now being consistent with the notation of LeVeque and Li
[3] where Tn denotes the truncation error rather than the global error. The statement
made at the bottom of page 219 in [7] about the notation of LeVeque and Li is incor-
rect. We use E I

n to denote the error at the interface (when appropriate interpolation
is used), and E D

n to denote the error in the normal derivative at the interface.
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The ratios of successive errors, ‖En‖∞/‖E2 n‖∞, are displayed to show the order
of convergence. A ratio of 2 corresponds to first order accuracy, while a ratio of
4 indicates second order accuracy. Note that we do not necessarily expect ratios
of exactly 4 since the accuracy seen on a particular grid is sensitive to how the
interface cuts between the grid points.

Below are the corrected tables that should be inserted in [7] in place of the tables
presented there. We give new versions of all tables except Table 2, which concerned
the system size rather than the errors. We have extended the tables to n = 640 for
the IIM to better demonstrate the asymptotic rate of convergence.

n
Step Enrichment Ramp Enrichment

n
IIM

‖En‖∞ ratio ‖En‖∞ ratio ‖En‖∞ ratio

19 3.8397 ·10−3 7.8138 ·10−3 20 3.4796 ·10−3

39 9.3782 ·10−4 4.0943 3.9577 ·10−3 1.9743 40 9.6364 ·10−4 3.6109
79 2.3034 ·10−4 4.0715 1.9029 ·10−3 2.0798 80 2.0531 ·10−4 4.6935

159 6.4061 ·10−5 3.5956 9.3797 ·10−4 2.0287 160 6.0650 ·10−5 3.3852
319 1.5619 ·10−5 4.1015 4.7646 ·10−4 1.9686 320 1.5702 ·10−5 3.8626

640 3.7712 ·10−6 4.1636

Table 1. Errors at grid points for example 1.

n
Step Enrichment Ramp Enrichment

n
IIM

‖En‖∞ ratio
∥∥E I

n

∥∥
∞

ratio
∥∥E I

n

∥∥
∞

ratio

19 5.1857 ·10−3 2.1871 ·10−2 20 3.6675 ·10−3

39 1.2444 ·10−3 4.1672 1.1708 ·10−2 1.8680 40 9.9843 ·10−4 3.6733
79 3.0043 ·10−4 4.1421 6.0996 ·10−3 1.9482 80 2.0727 ·10−4 4.8172

159 8.8146 ·10−5 3.4083 3.1101 ·10−3 1.9612 160 6.1075 ·10−5 3.3936
319 1.9315 ·10−5 4.5636 1.6142 ·10−3 1.9267 320 1.5816 ·10−5 3.8615

640 3.7840 ·10−6 4.1799

Table 3. Interface errors for example 1.

n
Step Enrichment Ramp Enrichment

n
IIM

‖En‖∞ ratio
∥∥E D

n

∥∥
∞

ratio
∥∥E D

n

∥∥
∞

ratio

19 4.1828 ·10−1 1.8292 ·10−0 20 3.8809 ·10−3

39 1.6067 ·10−1 2.6033 1.6479 ·10−0 1.1100 40 1.6169 ·10−3 2.4002
79 9.3826 ·10−2 1.7124 1.3096 ·10−0 1.2583 80 3.8618 ·10−4 4.1870

159 4.5301 ·10−2 2.0712 1.4733 ·10−0 0.8889 160 1.5042 ·10−4 2.5673
319 2.2290 ·10−2 2.0323 1.3818 ·10−0 1.0662 320 4.0937 ·10−5 3.6744

640 1.0109 ·10−5 4.0497

Table 4. Interface derivative errors for example 1.
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n
Step Enrichment

n
IIM

‖En‖∞ ratio ‖En‖∞ ratio

19 1.7613 ·10−3 20 1.7445 ·10−3

39 4.1771 ·10−4 4.2166 40 4.8638 ·10−4 3.5867
79 1.0289 ·10−4 4.0598 80 1.4476 ·10−4 3.3598

159 3.0164 ·10−5 3.4110 160 3.0120 ·10−5 4.8063
319 6.7960 ·10−6 4.4385 320 8.2255 ·10−6 3.6618

640 2.0599 ·10−6 3.9932

Table 5. Errors at grid points for example 2.

n
Step Enrichment

n
IIM∥∥E I

n

∥∥
∞

ratio
∥∥E I

n

∥∥
∞

ratio

19 1.6517 ·10−3 20 1.6370 ·10−3

39 3.3824 ·10−4 4.8832 40 4.5883 ·10−4 3.5678
79 8.2238 ·10−5 4.1129 80 1.2910 ·10−4 3.5540

159 3.1568 ·10−5 2.6051 160 2.5791 ·10−5 5.0058
319 7.4612 ·10−6 4.2310 320 6.7347 ·10−6 3.8295

640 1.5924 ·10−6 4.2292

Table 6. Interface errors for example 2.

n
Step Enrichment

n
IIM∥∥E D

n

∥∥
∞

ratio
∥∥E D

n

∥∥
∞

ratio

19 2.7307 ·10−1 20 1.0232 ·10−2

39 1.2776 ·10−1 2.1374 40 5.2912 ·10−3 1.9337
79 6.1203 ·10−2 2.0875 80 3.6363 ·10−3 1.4551

159 4.8216 ·10−2 1.2694 160 9.3114 ·10−4 3.9052
319 2.4790 ·10−2 1.9450 320 2.7492 ·10−4 3.3869

640 6.8856 ·10−5 3.9927

Table 7. Interface derivative errors for example 2.

n
Step Enrichment

n
IIM

‖En‖∞ ratio ‖En‖∞ ratio

19 1.7648 ·10−4 20 4.37883 ·10−4

39 6.0109 ·10−5 2.9360 40 1.07887 ·10−4 4.0587
79 1.7769 ·10−5 3.3828 80 2.77752 ·10−5 3.8843

159 4.8626 ·10−6 3.6542 160 7.49907 ·10−6 3.7038
319 1.2362 ·10−6 3.9335 320 1.74001 ·10−6 4.3098

640 4.50600 ·10−7 3.8614

Table 8. Errors at grid points for example 3.
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n
Step Enrichment

n
IIM∥∥E I

n

∥∥
∞

ratio
∥∥E I

n

∥∥
∞

ratio

19 4.7842 ·10−4 20 2.7671 ·10−3

39 1.0659 ·10−4 4.4884 40 4.5255 ·10−4 6.1143
79 2.8361 ·10−5 3.7583 80 7.7651 ·10−5 5.8280

159 7.3603 ·10−6 3.8532 160 1.3988 ·10−5 5.5512
319 2.0634 ·10−6 3.5671 320 2.7647 ·10−6 5.0596

640 6.5488 ·10−7 4.2217

Table 9. Interface errors for example 3.

n
Step Enrichment

n
IIM∥∥E D

n

∥∥
∞

ratio
∥∥E D

n

∥∥
∞

ratio

19 5.6520 ·10−2 20 3.8100 ·10−3

39 2.4190 ·10−2 2.3365 40 1.7600 ·10−3 2.1648
79 9.4512 ·10−3 2.5595 80 5.2150 ·10−4 3.3749

159 7.1671 ·10−3 1.3187 160 1.4000 ·10−4 3.7250
319 2.6865 ·10−3 2.6678 320 3.6260 ·10−5 3.8610

640 9.1910 ·10−6 3.9452

Table 10. Interface derivative errors for example 3.
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