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BLOW-UP OF A CRITICAL SOBOLEV NORM FOR ENERGY-SUBCRITICAL
AND ENERGY-SUPERCRITICAL WAVE EQUATIONS

THOMAS DUYCKAERTS AND JIANWEI YANG

We consider a wave equation in three space dimensions, with a power-like nonlinearity which is either
focusing or defocusing. The exponent is greater than 3 (conformally supercritical) and not equal to 5
(not energy-critical). We prove that for any radial solution which does not scatter to a linear solution,
an adapted scale-invariant Sobolev norm goes to infinity at the maximal time of existence. The proof
uses a conserved generalized energy for the radial linear wave equation, new Strichartz estimates adapted
to this generalized energy, and a bound from below of the generalized energy of any nonzero solution
outside wave cones. It relies heavily on the fact that the equation does not have any nontrivial stationary
solution. Our work yields a qualitative improvement on previous results on energy-subcritical and
energy-supercritical wave equations, with a unified proof.

1. Introduction

1A. Motivation and background. Consider the semilinear wave equation in 1C3 dimensions

.@2t ��/uD �juj
2mu; (1-1)

with initial data
u.0; x/D u0.x/; @tu.0; x/D u1.x/; (1-2)

where x 2 R3 and t 2 R. The parameters m> 1 and � 2 f˙1g are fixed. The equation is focusing when
� D 1 and defocusing when � D �1. It has the following scaling invariance: if u.t; x/ is a solution of
(1-1) and �> 0, then �

1
mu.�t; �x/ is also a solution. It is well-posed in the scale-invariant Sobolev space

PHsc WD PH sc .R3/� PH sc�1.R3/, where sc D 3
2
�
1
m

is the critical Sobolev exponent. Equation (1-1) is
energy-subcritical if sc <1 (equivalentlym<2), energy-critical if scD1 (mD2) and energy-supercritical
if sc > 1 (m> 2).

The dynamics of (1-1) depend in a crucial way on the value of m and the sign of �.
The energy-critical case mD 2 is particular. The conserved energy

E.Eu.t//D
1

2

Z
jru.t; x/j2 dxC

1

2

Z
.@tu.t; x//

2 dx�
�

2mC2

Z
ju.t; x/j2mC2 dx

is well-defined in PHsc D PH1 D PH 1 �L2. When the nonlinearity is defocusing, the conservation of the
energy implies that all solutions are bounded in PH1. It was proved in the 90s that all solutions are global
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and scatter to a linear solution in the energy space, i.e., that there exists a solution uL of the linear wave
equation

.@2t ��/uL D 0; .t; x/ 2 R�R3; (1-3)

with initial data in PH1, such that

lim
t!C1

kEu.t/� EuL.t/k PH1 D 0I (1-4)

see [Grillakis 1990; 1992; Ginibre et al. 1992; Shatah and Struwe 1993; 1994; Kapitanski 1994; Ginibre
and Velo 1995; Nakanishi 1999; Bahouri and Shatah 1998]. In the focusing case, there exist solutions
that do not scatter. Indeed, there exist solutions of (1-1) that blow up in finite time with a type I behavior;
i.e., there are solutions u such that

lim
t!TC.u/

kEu.t/k PH1 DC1;

where TC.u/ is the maximal time of existence of u. Furthermore, the equation also admits stationary
solutions and more generally traveling waves. It was proved in [Duyckaerts et al. 2013] that any radial
solution that does not scatter and is not a type I blow-up solution decouples asymptotically as a sum
of rescaled stationary solutions and a dispersive term. This includes global nonscattering solutions (see
[Krieger and Schlag 2007; Donninger and Krieger 2013], and also [Martel and Merle 2016; Jendrej 2016]
in higher space dimensions, for examples of such solutions) and solutions that blow up in finite time
but remain bounded in the energy space, called type II blow-up solutions (see, e.g., [Krieger et al. 2009;
Krieger and Schlag 2014a] and, in higher dimensions [Hillairet and Raphaël 2012; Jendrej 2017]).

The casem¤ 2 is quite different. It is known that stationary solutions do not exist in the critical Sobolev
space, even for focusing nonlinearity, see, e.g., [Joseph and Lundgren 1973; Farina 2007, Theorem 2],
and it is conjectured that any solution that does not satisfy

lim
t!TC.u/

kEu.t/k PHsc DC1 (1-5)

is global and scatters to a linear solution for positive times. A slightly weaker version of this result was
proved in many works; namely, if the solution does not scatter, then

lim sup
t!TC.u/

kEu.t/k PHsc DC1: (1-6)

See [Kenig and Merle 2011; Duyckaerts et al. 2014] for the radial case, m> 2, [Shen 2013; Rodriguez
2017] for the radial case, 1 < m < 2, [Killip and Visan 2011] for the defocusing nonradial case, m> 2,
[Dodson and Lawrie 2015] for the radial case, m D 1, and also [Killip et al. 2014] for the nonradial
defocusing case, 1�m< 2, where (1-6) is proved for finite time blow-up solutions with initial data in
the energy space.

Note that none of the preceding works excludes the existence of a nonscattering solution of (1-1) such
that

lim sup
t!TC.u/

kEu.t/k PHsc DC1 and lim inf
t!TC.u/

kEu.t/k PHsc <1:
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In [Duyckaerts and Roy 2015], this type of solution was ruled out in the case m > 2: for any radial
nonscattering solution of the equation, the critical Sobolev norm goes to infinity as t ! TC.u/.

It is interesting to compare the theorems cited above with analogous ones for other equations, and in
particular for the nonlinear Schrödinger equation

i@tv��v D �jvj
2mv: (1-7)

For the defocusing equation (� D �1), the fact that the bound of a critical norm implies scattering is
known in the cubic case in three space dimensions [Kenig and Merle 2010] and in energy-supercritical
cases in large space dimensions [Killip and Visan 2010]. Merle and Raphaël [2008] considered the
focusing equation (1-7) with �D 1 and an L2 supercritical (i.e., pseudoconformally supercritical), energy
subcritical nonlinearity, that is, 2

3
<m< 2 when the number of space dimensions is three. This condition

is the analogue of the condition 1 < m < 2 (conformally supercritical and energy subcritical power) for
the wave equation. They proved that if u is radial with initial data in the intersection of PH 1 and the
critical Sobolev space, and if TC.v/ is finite, then

kv.t/kL3m �
1

C
j log.TC.v/� t /j˛

for some constant ˛ > 0. Note that in this case there exists a global, bounded, nonscattering solution.
The space L3m is scale-invariant and strictly larger than the critical Sobolev space. Analogous results are
known for Navier–Stokes equations; see [Iskauriaza et al. 2003; Kenig and Koch 2011; Seregin 2012;
Gallagher et al. 2013; 2016]. For example, it is proved in [Seregin 2012] that the scale-invariant L3 norm
of a solution blowing-up in finite time goes to infinity at the blow-up time.

Going back to (1-1) with m¤ 2, many questions remain open:

� Is it true that all nonscattering solutions of (1-1) satisfy (1-5) in the nonradial case, or if 1 < m < 2?

� Can one lower the regularity of the scale-invariant norm used in (1-5), as in the case of nonlinear
Schrödinger and Navier–Stokes equations?

� Is it possible to give an explicit lower-bound of the critical norm, in the spirit of [Merle and Raphaël
2008]?

In this article, we give a partial answer to the first two questions in the radial case. This is based on a new
well-posedness theory for (1-1), in a scale-invariant weighted Sobolev space Lm which is not Hilbertian,
but is related to a conserved quantity of the linear wave equation and is compatible with the finite speed
of propagation.

1B. Strichartz estimates and local well-posedness. Consider the following norm for radial functions
.u0; u1/ on R3:

k.u0; u1/kLm D

�Z C1
0

.jr@ru0j
m
Cjru1j

m/ dr

�1
m

;
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and define the space Lm as the closure of radial, smooth, compactly supported functions for this norm.
Note that L2 is exactly1 PH1rad. The Lm norm was introduced in [Duyckaerts and Roy 2015], in the case
m> 2, as a scale-invariant substitute to the energy norm PH 1 �L2 norm. Let us mention that PHscrad � Lm

if m> 2, and Lm � PHscrad if 1 < m < 2 (see Proposition 2.2 below). It was observed in [Duyckaerts and
Roy 2015] that the Lm norm is almost conserved for solutions of the linear wave equation: we will indeed
introduce in Section 2 a conserved quantity (the generalized energy) which is equivalent to this norm. We
first prove Strichartz estimates for the linear wave equation. If I is a real interval, we denote by S.I / the
space defined by the norm

kf kS.I/ D

�Z
I

�Z C1
0

jf .t; r/j.2mC1/mrm dr

�1
m

dt

� 1
2mC1

:

Theorem 1. Let v be a solution of the linear wave equation

@2t v��v D 0; .v; @tv/�tD0 D .v0; v1/ 2 Lm:
Then v 2 S.R/ and

kvkS.R/ � Ck.v0; v1/kLm :

Note that Theorem 1 generalizes, in the radial case, the L5L10 Strichartz/Sobolev estimate for finite-
energy solutions of the linear wave equation to the case m ¤ 2. Let us mention that we prove more
general Strichartz estimates, including estimates for the nonhomogeneous wave equation (see Section 2B
for the details). As a consequence, we obtain local well-posedness in Lm for (1-1):

Theorem 2. For m> 1, (1-1) is locally well-posed in Lm. For any initial data .u0; u1/ in Lm, there exists
a unique solution u of (1-1), (1-2) defined on a maximal interval of existence Imax.u/D .T�.u/; TC.u//

such that Eu2C 0.Imax.u/;Lm/ and for all compact intervals J bImax.u/, we have u2S.J /. Furthermore,

TC.u/ <1 D) kukS.Œ0;TC.u/// DC1:

We obtain Theorem 1 and the other generalized Strichartz estimates of Section 2B by interpolating
between the known generalized Strichartz estimates of [Ginibre and Velo 1995], see also [Lindblad and
Sogge 1995], in correspondence to the casemD2, and Strichartz-type estimates obtained by a new method,
based on the continuity of the Hardy–Littlewood maximal function from L1 to L1w (see Section 2B).

We also construct a profile decomposition for sequences of functions that are bounded in Lm, which
is adapted to (1-1), in the spirit of the one of [Bahouri and Gérard 1999] which corresponds to the
case mD 2. This construction is based on a refined Sobolev embedding due to Chamorro [2011]. The
fact that Lm is not a Hilbert space yields a new technical difficulty, namely that the usual Pythagorean
expansion of the norm does not seem to be valid and must be replaced by a weaker statement, closer to
Bessel’s inequality than to the Pythagorean theorem. We refer to [Solimini 1995; Jaffard 1999] for other
non-Hilbertian profile decompositions where this type of inequality also appears.

The definition of the space Lm does not involve any fractional derivatives and is technically easier to
handle than the space PHsc with m¤ 2, where the latter are all defined by norms that are not compatible

1 Throughout the article, the index rad denotes the subspace of radial elements of a given space of distributions on R3.
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with finite speed of propagation. We hope that the Strichartz estimates and profile decomposition proved
in this article will find applications for nonlinear wave equations apart from (1-1).

1C. Blow-up of the critical Sobolev norm for the nonlinear equation. Our second result is that the
dichotomy proved in [Duyckaerts and Roy 2015] remains valid in Lm, as long as m¤ 2:

Theorem 3. Assume m> 1 and m¤ 2. Let u be a radial solution of (1-1), (1-2), with .u0; u1/ 2 Lm and
maximal positive time of existence TC. Then one of the following holds:

(1) limt!TC.u/ kEu.t/kLm DC1.

(2) TC.u/DC1 and u scatters forward in time to a linear solution; i.e., there exists a solution uL of
(1-3), with initial data Lm, such that

lim
t!C1

kEu.t/� EuL.t/kLm D 0:

In the energy-supercritical case m> 2, Theorem 3 improves the result of [Duyckaerts and Roy 2015]
since PHsc is continuously embedded into Lm. In the case 1 < m < 2, we know Lm is continuously
embedded into PHsc and Theorem 3 is not strictly stronger than the result of [Shen 2013]. However,
Theorem 3 is also new, since it says that as least some scale-invariant norm of u must go to infinity as t
goes to TC.u/. It is very natural to conjecture that the PHsc norm of the solution also goes to infinity, but
this is still an open question.

Once the Strichartz estimates, well-posed theory and profile decomposition in Lm are known, the proof
of Theorem 3 (sketched in Sections 4, 5 and 6) is very close to the proof of the corresponding result in
[Duyckaerts and Roy 2015], with some simplifications due to the use of the space Lm instead of PHsc

throughout the proof. As in [loc. cit.], we use the channels of energy method initiated in [Duyckaerts et al.
2011], and the main ingredient of the proof is an exterior energy estimate for radial solutions of the linear
wave equation for the Lm-energy, which generalizes the exterior energy estimate used in [Duyckaerts
et al. 2011; 2013; 2014].

According to Theorem 3, there are three potential types of dynamics for (1-1): scattering, finite time
blow-up solutions such that the critical norm goes to infinity at the blow-up time, and global solutions
such that the critical norm goes to infinity as t goes to infinity. Only two of these dynamics are known to
exist: scattering (for both focusing and defocusing nonlinearities) and finite time blow-up (for focusing
nonlinearity only). Indeed, in the focusing case, it is possible to construct blow-up solutions with smooth,
compactly supported initial data using finite speed of propagation and the ordinary differential equation
y00 D jyj2my. Another type of blow-up solution was constructed by C. Collot [2014] for some energy-
supercritical nonlinearity in large space dimension: in this case the scale-invariant Sobolev norms blow
up logarithmically.

It is natural to conjecture that all solutions in Lm are global in the defocusing case. For m < 2,
this follows from conservation of the energy if the data is assumed to be in PH1, and only the case of
low-regularity solution is open. For supercritical nonlinearity m> 2, it is a very delicate issue even for
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smooth initial data, as the recent construction by T. Tao [2016] of a finite time blow-up solution for a
defocusing system2 of energy supercritical wave equation suggests.

The existence of global solutions blowing-up at infinity with initial data in Lm (or PHsc ) is also
completely open. We refer to [Krieger and Schlag 2014b; Luk et al. 2016, Appendix A] for two different
constructions of global, smooth, nonscattering solutions in the case m D 3. The initial data of these
solutions do not belong either to the critical Sobolev spaces PH

7
6 or to the L3 space, but are, however, in

all spaces PHs, s > 7
6

. These constructions and Theorem 3 seem to suggest that any global solution with
initial data decaying sufficiently at infinity actually scatters, but we do not know of any rigorous result in
this direction.

Let us finally mention [Beceanu and Soffer 2017] on (1-1) with supercritical nonlinearity m>2, where
global existence is proved for a class of outgoing initial data.

The outline of the paper is as follows: in Section 2, we prove the Strichartz estimate for the linear wave
equation and deduce the Cauchy theory for (1-1). In Section 3, we construct the profile decomposition. In
Section 4, we prove the exterior energy property for nonzero solutions of (1-1), which is the core of the
proof of Theorem 3. In Section 5, we introduce the radiation term (i.e., the dispersive part) of a solution
which is bounded in the critical space for a sequence of times. In Section 6, we conclude the proof.

Notation. If a and b are two positive quantities we write a . b when there exists a constant C > 0 such
that a � Cb, where the constant will be clear from the context. When the constant depends on some
other quantity M, we emphasize the dependence by writing a .M b. We will write a� b when we have
both a . b and b . a. We will write a� b or a� b if there exists a sufficiently large constant C > 0
such that Ca � b or a � Cb respectively. We use S.Rd / to denote the Schwartz class of functions on the
Euclidean space Rd.

If f is a radial function depending on t and r WD jxj, let

Ef WD .f; @tf / and Œf �˙.t; r/D .@r ˙ @t /.rf /:

Given s � 0 and n a positive integer, we define

PHs.Rn/ WD PH s.Rn/� PH s�1.Rn/;

where PH s denotes the standard homogeneous Sobolev space. We letLpt .I; L
q
x/ be the space of measurable

functions f on I �R3 such that

kf kLpt .I;L
q
x/
D

�Z
I

�Z
R3
jf .t; x/jq dx

�p
q

dt

�1
p

<1:

Unless specified, the functional spaces (Lp, PH s, etc. . . ) are spaces of functions or distributions on R3

with the Lebesgue measure. On a measurable space .�; d�/ where � is positive, the weak Lq quasinorm
of a function f is defined as

kf kLqw WD sup
�>0

�
�
�fx 2� W jf .x/j> �g

� 1
q :

2The unknown u is R40-valued.
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We shall also use the weighted Lebesgue norm Lq.Rn; !/, defined as

kf kLq.Rn;!/ WD

�Z
Rn
jf .x/jq!.x/ dx

�1
q

for some measurable function !.x/ as a weight. For q > 1, we use q0 D q
q�1

to mean its Lebesgue
conjugate.

We denote by TR the operator

f 7! TR.f / WD
�
f .R/; jxj �R;

f .jxj/; jxj �R:

Let SL.t/ denote the linear propagator; i.e.,

SL.t/.w0; w1/ WD cos .tD/w0C
sin .tD/
D

w1; D D
p
�4:

If u is a function of t and r , we will denote by F.@r;tu/ the sum F.@ru/ C F.@tu/; for example,
j@t;ruj

m WD j@tuj
mCj@ruj

m.

2. Strichartz estimates and local well-posedness

2A. Preliminaries. Form>1, we denote by PW1;m the closure of C10;rad for the norm k�k PW1;m defined by

k'k PW1;m WD

�Z C1
0

j@r'.r/j
mrm dr

�1
m

:

Proposition 2.1. We have f 2 PW1;m if and only if f .r/ 2 C 0rad..0;C1// satisfies the conditionsZ C1
0

jr@rf .r/j
m dr <C1; (2-1)

lim
r!0

r
1
mf .r/D lim

r!1
r
1
mf .r/D 0: (2-2)

The proof is given in the Appendix.
We denote by Lm the closure of .C10;rad/

2 for the norm k � kLm ,

k.u0; u1/kLm WD ku0k PW1;m C

�Z C1
0

ju1.r/j
mrm dr

�1
m

:

Then:

Proposition 2.2. (1) If m> 2 and .u0; u1/ 2 PHsc , then .u0; u1/ 2 Lm and

k.u0; u1/kLm . k.u0; u1/k PHsc :

(2) If 1 < m < 2 and .u0; u1/ 2 Lm, then .u0; u1/ 2 PHsc and

k.u0; u1/k PHsc . k.u0; u1/kLm :
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(3) If u0 2 PW1;m, then u0 2 L3m.R3/ and

ku0kL3m . ku0k PW1;m :

(4) If u0 2 PW1;m, and R > 0, then

Rju0.R/j
m
C

Z C1
R

j@r.ru0/j
m dr �

Z C1
R

j@ru0j
mrm dr;

where the implicit constant does not depend on R.

Proof. For the proofs of properties (1), (3), (4), see [Kenig and Merle 2011, Lemma 3.2; Duyckaerts and
Roy 2015, Lemmas 3.2 and 3.3]. We prove (2) by duality from (1). Assume m 2 .1; 2/ and let m0 be the
Lebesgue dual exponent of m. Let .u0; u1/ 2 Lm and '; 2 C10;rad.R

3/. Note thatZ 1
0

r2@ru0@r' dr D

Z 1
0

@r.ru0/@r.r'/ dr:

By Hölder’s inequality and (1),ˇ̌̌̌Z 1
0

r2@ru0@r' dr

ˇ̌̌̌
C

ˇ̌̌̌Z 1
0

r2u1 dr

ˇ̌̌̌
�k.u0; u1/kLmk.';  /kLm0 �k.u0; u1/kLmk.';  /k PH1=2C1=m :

This yields the announced result. �

Let v.t; x/ be a solution to the Cauchy problem

.@2t ��/v.t; x/D 0; .v; @tv/jtD0 D .v0; v1/; t 2 R; x 2 R3; (2-3)

where the initial data is in Lm. Define r D jxj and set

F.�/D
1

2
� v0.j� j/C

1

2

Z j� j
0

r v1.r/ dr: (2-4)

An explicit computation, using
.@2t � @

2
r /.rv/D 0 (2-5)

yields

v.t; r/D
1

r

�
F.t C r/�F.t � r/

�
: (2-6)

We have

Œv�C.t; r/D .@r C @t /.rv/D 2 PF .t C r/; Œv��.t; r/D .@r � @t /.rv/D 2 PF .t � r/: (2-7)

If .v0; v1/ 2 Lm, we define

Em.v0; v1/D

Z C1
0

�
j@r.rv0/C rv1j

m
Cj@r.rv0/� rv1j

m
�
dr;

so that

Em.Ev.t//D

Z C1
0

ˇ̌
Œv�C.t; r/

ˇ̌m
dr C

Z C1
0

ˇ̌
Œv��.t; r/

ˇ̌m
dr:
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Proposition 2.3. Assume 1 < m <C1. Let .v0; v1/ 2 Lm and v.t; r/ be given by (2-3).

(1) Equivalence of energy and Lm norm.

k.v0; v1/k
m
Lm �

Z C1
0

j@r.rv0/j
m dr C

Z C1
0

jrv1j
m dr �Em.v0; v1/:

(2) Energy conservation. Em.Ev/ is independent of time. We call Em the Lm-modified energy for (1-3).

(3) Exterior energy bound. If R > 0, the following holds for all t � 0 or for all t � 0:Z C1
R

j@r.rv0/j
m
Cjrv1j

m dr .
Z C1
RCjt j

j@r.rv/j
m
Cj@t .rv/j

m dr:

Property (2) follows from direct computation, and the formula (2-5). Let us mention that the notationEm
has a slightly different meaning in [Duyckaerts and Roy 2015].

Remark 2.4. Note that

E2.v.t//D

Z
R3
jrv.t; x/j2 dxC

Z
R3
j@tv.t; x/j

2 dx; (2-8)

which coincides (up to a constant) with the standard energy functional for (2-3). Moreover, from (2-6)
we know for any m 2 .1;C1/, there exists Cm > 0 such that

C�1m kEv.0/kLm � kEv.t/kLm � CmkEv.0/kLm for all t: (2-9)

Thus kEv.t/kLm enjoys the pseudoconservation law, namely (2-9), and extends the classical energy to the
general case m> 1.

From the conservation of the energy, we deduce the following energy estimate for the equation with a
right-hand side.

Corollary 2.5. Consider the problem

.@2t ��/u.t; x/D f .t; x/; .u; @tu/jtD0 D .u0; u1/; t 2 R; x 2 R3; (2-10)

with .u0; u1/ 2 Lm for a fixed m> 1, and f radial. Then we have the following inequality as long as the
right-hand side is finite:

sup
t2R

�Z 1
0

�
j@r.ru/j

m.t/Cj@t .ru/j
m.t/

�
dr

� 1
m

�C

�
k.u0;u1/kLmC

Z C1
�1

�Z 1
0

jrf .t; r/jmdr

� 1
m

dt

�
(2-11)

Proof. Write u.t; r/D uL.t; r/CuN .t; r/ with

uL.t; r/D SL.t/.u0; u1/; uN .t/D

Z t

0

sin.t � s/
p
��

p
��

f .s/ ds:

The bound for kEuLkLm follows from (2-9) and the conservation of the Lm modified energy. Moreover,

kEuN .t; r/kLm �

Z t

0





�sin
�
.t � s/

p
��

�
p
��

f .s/; cos
�
.t � s/

p
��

�
f .s/

�




Lm
ds;

and the estimate on uN follows again from (2-9) and the conservation of the Lm-modified energy. �
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2B. Strichartz estimates in weighted Sobolev spaces. Let � be a measurable subset of Rt � .0;C1/

of the form �D
S
t2Rftg �Jt , where for all t , we have Jt is a measurable subset of .0;C1/. If f is a

measurable function on �, we let

kf kS.�/ D

�Z
R

�Z
Jt

jf .t; r/j.2mC1/mrm dr

� 1
m

dt

� 1
2mC1

:

If �D I � .0;C1/, where I is a time interval, we will set S.�/D S.I / to lighten notation:

kf kS.I/ D

�Z
I

�Z C1
0

jf .t; r/j.2mC1/mrmdr

� 1
m

dt

� 1
2mC1

:

In this subsection we prove the following Strichartz estimate:

Proposition 2.6. Let m> 1 and assume v.t; x/ is the solution of the Cauchy problem (2-3) with radial
initial data .v0; v1/ 2 Lm. Then there exists a constant C such that

kvkS.R/ � CkEv.0/kLm : (2-12)

We also have its analogue for the inhomogeneous part:

Proposition 2.7. Let m> 1 and u.t; r/ be the solution of (2-10) with Eu.0/D .0; 0/. Assume

kf kL1tL
m
x .rm dr/

WD

Z C1
�1

�Z C1
0

jf .t; r/jmrm dr

�1
m

dt <1:

Then we have
kukS.R/ � Ckf kL1tL

m
x .rmdr/

: (2-13)

We start by proving auxiliary symmetric Strichartz-type estimates in Section 2B1, using the weak
continuity in L1 of the Hardy–Littlewood maximal function. In Section 2B2 we will interpolate these
estimates with standard Strichartz inequalities to obtain the key estimates (2-12) and (2-13).

2B1. A family of symmetric Strichartz estimates. With the explicit expression (2-6), we are ready to
deduce a crucial estimate for the linear wave equation (2-3) with Ev.0/ 2 Lm.

Proposition 2.8. Let v.t; x/D SL.t/.v0; v1/ be a radial solution of (2-3). Then for any m 2 .1;C1/
and ˛ 2 .1;C1/, there is a constant C such that the following a priori estimate is valid:�Z

R

Z C1
0

jv.t; r/j˛mr˛�2 dr dt

� 1
˛m

� CkEv.0/kLm : (2-14)

Proof. We assume v1 � 0 first. Then from (2-4) and the fundamental theorem of calculus,

v.t; r/D
1

2r

Z tCr

t�r

@s.s v0.jsj// ds; r D jxj: (2-15)

Let us consider the operator

T W G.s/ 7! 1

2r

Z tCr

t�r

G.s/ ds: (2-16)
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First, it is clear that
sup

.t;r/2R�RC

jT G.t; r/j � kGkL1.RIds/: (2-17)

Next, we demonstrate the weak-type estimate

kT GkL˛w.R�RCI r˛�2drdt/
� CkGkL1.RIds/; (2-18)

or equivalently, there is C > 0 such that for any � > 0 we have“
E�
r˛�2drdt � C

�
kGkL1

�

�̨
; (2-19)

where E� D f.t; r/ 2 R�RC W jT G.t; r/j> �g.
Given this, we have, interpolating between (2-17) and (2-18),�Z

R

Z C1
0

jT G.t; r/j˛mr˛�2 dr dt
�1
˛

� C

Z
R

jG.s/jm dsI (2-20)

see Theorem 5.3.2 in [Bergh and Löfström 1976]. The estimate (2-14) with v1 � 0 now follows by using
(2-20) with

G.s/D @s.s v0.jsj//:

To show (2-19), one observes that on E�,

0 < r <
kGkL1

�
and .MG/.t/ > �;

where M denotes the Hardy–Littlewood maximal function. Therefore, we can bound the left-hand side
of (2-19) as follows: Z 1

2�
kGk

L1

0

r˛�2 dr

Z
ft2Rj.MG/.t/>�g

dt � C

�
kGkL1

�

�̨
; (2-21)

where we have used the weak estimate M W L1.R/! L1w.R/.
The case v0 � 0 follows from the same argument. Indeed, in this case we have

v.t; r/D
1

2r

Z tCr

t�r

sv1.jsj/ ds: (2-22)

Letting G.s/D sv1.jsj/ and applying (2-20) we are done. �

Let u.t; x/ be a solution to the nonhomogeneous Cauchy problem (2-10), where f .t; x/ is radial in
the space variable and locally integrable. If we set

g.t; �/D �f .t; j�j/; (2-23)

then we have

u.t; r/D
1

2r

Z t

0

Z �Cr

��r

g.t � �; �/ d� d�: (2-24)
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After a change of variables, we obtain

u.t; r/D
1

2r

Z tCr

t�r

G.t; �/ d�; (2-25)

with

G.t; �/D

Z t

0

g.s; �� s/ ds:

A proof very close to the one of Proposition 2.8 yields symmetric Strichartz estimates for the nonhomo-
geneous equation:

Proposition 2.9. Let u.t; x/ be a radial solution of the problem (2-10) with initial data Eu.0/ D .0; 0/.
Then for any m 2 .1;C1/ and ˛ 2 .1;C1/ there is a constant C such that we have�Z

R

Z C1
0

ju.t; r/j˛mr˛�2 dr dt

� 1
˛m

� C

Z
R

�Z C1
0

jrf .t; r/jm dr

�1
m

dt: (2-26)

Proof. In view of (2-25), we have

ju.t; r/j � T zG.t; r/;

where T is defined as in (2-16) and

zG.�/D

Z C1
�1

jg.s; �� s/j ds;

with g given by (2-23). Noting thatm>1, we obtain (2-26) by using (2-20) and Minkowski’s inequality. �

Remark 2.10. Notice that from (2-15) and (2-22), one may deduce the following end-point Strichartz
estimate for linear wave equations in three dimensions with radial initial data

kSL.t/.v0; v1/kL2.Rt ;L1.R3x// � C
�
kv0k PH1.R3/

Ckv1kL2.R3/
�
; (2-27)

where .v0; v1/ 2 PH 1
rad.R

3/�L2rad.R
3/. In fact, we may assume without loss of generality that .v0; v1/

belongs to the Schwartz class. Then (2-27) follows from (2-15) and (2-22) by using the L2-boundedness
of the Hardy–Littlewood maximal function and integration by parts.

2B2. Proof of the key Strichartz inequality. We prove here Propositions 2.6 and 2.7. Let us first recall
the following classical Strichartz estimates for wave equations; see [Ginibre and Velo 1995].

Theorem 2.11. Consider v.t; x/, the solution of the linear Cauchy problem8̂<̂
:
.@2t ��/v D h.t; x/; .x; t/ 2 R3 �R;

vjtD0 D v0 2 PH
1.R3/;

@tvjtD0 D v1 2 L
2.R3/;

(2-28)

so that

v.t/D SL.t/.v0; v1/C

Z t

0

sin.t � s/
p
��

p
��

h.s/ ds:
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Let 2� q; � �1 and let the following conditions be satisfied:

1

q
C
1

�
�
1

2
; .q; �/¤ .2;1/;

1

q
C
3

�
D
1

2
:

Then there exists C > 0 such that v satisfies the estimate

kvkLq.R;L� .R3// � C
�
kv0k PH1.R3/

Ckv1kL2.R3/CkhkL1.R IL2.R3/
�
: (2-29)

We are now ready to prove Proposition 2.6

Proof. Since (2-12) is classical when m D 2, it suffices to consider below the cases for m > 2 and
1 < m < 2 separately.

If m> 2, we define m� D 2m and take ˛ D 4
3
.2mC 1/. Then we have from (2-14)�Z C1

�1

Z C1
0

jv.t; r/ r
1 j˛m
�

r
2 dr dt

� 1
˛m�

� CkEv.0/kLm� ; (2-30)

where


1 D
5m� 2

5m.2mC 1/
; 
2 D

2

5
;

so that 
1˛m�C 
2 D ˛� 2. Let

q D
8m.2mC 1/

8m2� 11mC 6
; � D

8m.2mC 1/

5m� 2
:

Then (2-29) yields �Z C1
�1

�Z C1
0

jv.t; r/ r
1 j�r
2 dr

�q
�

dt

�1
q

� CkEv.0/kL2 : (2-31)

In view of

1

m
D
�

2
C
1� �

m�
;

1

2mC 1
D
�

q
C
1� �

˛m�
;

1

m.2mC 1/
D
�

�
C
1� �

˛m�
; � D

1

m� 1
;

and the fact that 
1m.2mC 1/C 
2 D m, we obtain (2-12) by interpolating (2-30) and (2-31); see
Theorem 5.1.2 in [Bergh and Löfström 1976].

If 1 < m < 2, we set

m� D
mC 1

2
; ˛ D

8.2mC 1/

3mC 5
; � D

2.m� 1/

m.3�m/
;

q D
8.2mC 1/

10�m
; � D

8.2mC 1/

3m� 2
;


1 D
3m� 2

6m2C 11mC 4
D

3m� 2

.2mC 1/.3mC 4/
; 
2 D

6m

3mC 4
:

One can verify that (2-30) and (2-31) along with the interpolation relations as in the first case remain
valid. �
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Using the same argument as above and (2-26), we obtain Proposition 2.7.

We conclude this subsection with some additional Strichartz-type estimates that will be useful in the
construction of the profile decomposition in Section 3 and follow from Proposition 2.8 and (2-27).

Proposition 2.12. Assume m > 2 and v.t; x/ is the solution of the Cauchy problem (2-3) with radial
initial data .v0; v1/ 2 Lm. Let

aD
2m.m� 1/.mC 2/

m2C 3m� 2
; b D

2m.m� 1/.mC 2/

m� 2
:

Then there exists a constant C such that�Z C1
�1

�Z C1
0

jv.t; r/jbrm dr

�a
b

dt

�1
a

� CkEv.0/kLm : (2-32)

Proof. Indeed, from (2-14), we have�Z C1
�1

Z C1
0

jv.t; r/j2m.mC2/rm dr dt

� 1
2m.mC2/

� CkEv.0/kL2m : (2-33)

Interpolating (2-33) with (2-27), we are done. �

The choice of .a; b/ above is not suitable in the case m< 2, where we will use the following estimates:

Proposition 2.13. Assume 1 < m < 2 and v.t; x/ is the solution of the Cauchy problem (2-3) with radial
initial data .v0; v1/ 2 Lm. Let

aD
m.mC 2/.3�m/

m2�mC 2
; b D

m.mC 2/.3�m/

2.2�m/
:

Then there exists a constant C such that�Z C1
�1

�Z C1
0

jv.t; r/jbrm dr

�a
b

dt

�1
a

� CkEv.0/kLm : (2-34)

Proof. Let m� D mC1
2

. From (2-14), we have�Z C1
�1

Z C1
0

jv.t; r/jm
�.mC2/rm dr dt

� 1
.mC2/m�

� CkEv.0/kLm� : (2-35)

Interpolating (2-35) with (2-27), we are done. �

Remark 2.14. In both propositions, we have m< a < 2mC 1 < b
m
<1.

Remark 2.15. The interpolations we used in the above two propositions are based on the complex method.
In fact, we used Theorems 5.1.1 and 5.1.2 in [Bergh and Löfström 1976].

Remark 2.16. Notice that when mD 2, we have .a; b/D .2;1/ coincides with the end-point Strichartz
estimate (2-27).
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2C. Local well-posedness. Consider here the Cauchy problem for the nonlinear wave equations (1-1),
(1-2), with .u0; u1/ 2 Lm, m> 1. In this subsection, we prove the following small-data well-posedness
statement, which implies Theorem 2:

Proposition 2.17. There exists ı0 > 0 such that if 0 2 I � R is an interval and

kSL.t/.u0; u1/kS.I/ D ı � ı0; (2-36)

then there exists a unique solution u 2 S.I / to the Cauchy problem (1-1), (1-2) for t 2 I such that
Eu 2 C 0.I;Lm/. Moreover,

kukS.I/ � 2ı (2-37)

and we have

sup
t2I

kEu.t/kLm � Cm
�
k.u0; u1/kLm C ı

2mC1
�
: (2-38)

Remark 2.18. From the assumption on the initial data and the Strichartz-type inequality (2-12), we see
that for each .u0; u1/ 2 Lm and ı > 0, there is an interval I D I.u0; u1; ı/ such that (2-36) holds. Using
this observation and standard arguments, it is easy to construct from Proposition 2.17 a maximal solution
of (1-1), (1-2) that satisfies the conclusion of Theorem 2.

Proof. Let C0 be the constant in the estimates (2-12) and (2-13) . Consider

XD fv on R�R3 j v.t; x/D v.t; jxj/; kvkS.I/ � 2ıg;

where

0 < ı <min
�
C
� 1
p�1

0 2�
p
p�1 ; 2�

pC2
p�1 .pC0/

� 1
p�1

�
; p D 2mC 1:

Define

ˆ.u0;u1/.v/D SL.t/.u0; u1/C �

Z t

0

sin.t � s/
p
��

p
��

jvj2mv.s/ ds: (2-39)

If v;w 2 X, we have from (2-13)

kˆ.u0;u1/.v/kS.I/ � ıCC0.2ı/
p
� 2ı;

and by the Hölder inequality

ˆ.u0;u1/.v/�ˆ.u0;v0/.w/

S.I/ � 2pC0�kvkp�1S.I/
Ckwk

p�1

S.I/

�
kv�wkS.I/

� 4p C0.2ı/
p�1
kv�wkS.I/

�
1
2
kv�wkS.I/

for all v;w 2 X. Thus, there exists a unique fixed point u 2 X such that

uDˆu0;u1.u/:

Note that (2-37) follows from the construction and (2-38) follows from the energy estimates and (2-37). �



998 THOMAS DUYCKAERTS AND JIANWEI YANG

2D. Exterior long-time perturbation theory. We conclude this section by a long-time perturbation theory
result for (1-1) with initial data in Lm. Taking into account the finite speed of propagation, we will give
a statement that works as well when the estimates are restricted to the exterior fr > ACjt jg of a wave
cone. This generalization will be very useful when using the channels of energy arguments.

Lemma 2.19. Let M > 0. There exist "M > 0, CM > 0 with the following properties. Let T 2 .0;C1�,
u; Qu 2 S..0; T // such that Eu; EQu 2 C 0.Œ0; T /;Lm/. Assume that u is a solution of (1-1), (1-2) on Œ0; T /
and that3 �

@2t Qu�� QuD �1fr�.ACjt j/Cgj Quj
2m QuC e;

Qu�tD0 D . Qu0; Qu1/;
(2-40)

where e 2 L1tL
m
x .r

m dr/, A 2 R[f�1g. Let

RL.t/D SL.t/..u0; u1/� . Qu0; Qu1//:

Assume

k QukS.ft2.0;T /; r�.ACjt j/Cg/ �M; (2-41)Z T

0

�Z C1
.ACjt j/C

jr ejm dr

�1
m

dt CkRLkS.ft2Œ0;T /; r�.ACjt j/Cg/ D "� "M : (2-42)

Then u.t/D Qu.t/CRL.t/C �.t/ with

k�kS.ftŒ0;T /; r�.ACjt j/Cg/C sup
t2Œ0;T /

Z
.ACjt j/C

jr@t;r�j
m dr � CM ":

In the lemma, we have set .AC jt j/C D max.0; AC jt j/. By convention, if AD �1, this quantity
equals 0 for all t . Note that the case AD �1 corresponds to the usual long-time perturbation theory
statement;4 see, e.g., [Tao and Visan 2005].

Sketch of the proof. We let, for t 2 Œ0; T /,

E.t/D

�Z C1
.ACjt j/C

j�.t; r/j.2mC1/mrm dr

� 1
.2mC1/m

;

zU.t/D

�Z C1
.ACjt j/C

j Qu.t; r/j.2mC1/mrm dr

� 1
.2mC1/m

;

R.t/D

�Z C1
.ACjt j/C

jRL.t; r/j
.2mC1/mrm dr

� 1
.2mC1/m

:

By the assumptions (2-41), (2-42),

kzUkL2mC1.0;T / �M; kRkL2mC1.0;T / � ":

3in the sense that Qu satisfies the usual integral equation
4Traditionally the “linear part” of the solution RL.t/ is incorporated into Qu. For convenience we preferred to distinguish

between these two components.
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Since

.@2t ��/� D �.juj
2mu� j Quj2m Qu/C e;

we obtain by (2-11), Strichartz estimates and finite speed of propagation that for all � 2 Œ0; T /,

sup
t2Œ0;��

��Z C1
.ACjt j/C

jr@t;r�j
m dr

�1
m

CkE�.t/kLm CkE.t/kL2mC1

�

� C

Z �

0

�Z C1
.ACjt j/C

�ˇ̌
j Quj2m Qu� juj2mu

ˇ̌m
Cjejm

�
rm dr

�1
m

dt:
(2-43)

We have Z �

0

�Z C1
.ACjt j/C

jejmrm dr

�1
m

dt � "

and, using Hölder’s inequalityZ �

0

�Z C1
.ACjt j/C

ˇ̌
j Quj2m Qu� juj2mu

ˇ̌m
rm dr

�1
m

dt

.
Z �

0

.E.t/CR.t//.zU.t/2mCR.t/2mCE.t/2m/ dt

� C

�
kEk2mC1

L2mC1.0;�/
CkRk2mC1

L2mC1.0;�/
C

Z �

0

R.t/zU.t/2m dt C

Z �

0

E.t/zU.t/2m dt

�
� C

�
kEk2mC1

L2mC1.0;�/
C "2mC1CM 2m"C

Z �

0

E.t/zU.t/2m dt

�
:

Collecting the above, we obtain, for all � 2 Œ0; T /,

kEkL2mC1.0;�/ � C

�
"C "2mC1CM 2m"CkEk2mC1

L2mC1.0;�/
C

Z �

0

E.t/zU.t/2m dt

�
:

This is a Grönwall-type inequality classical in this context. Using, e.g., Lemma 8.1 in [Fang et al. 2011],
we deduce that for all � 2 Œ0; T /,

kEkL2mC1.0;�/ � C
�
"C "2mC1CM 2m"CkEk2mC1

L2mC1.0;�/

�
ˆ.CM 2m/;

where ˆ.s/D 2�.3C2s/, and � is the usual Gamma function. Using a standard bootstrap argument, we
deduce, assuming that "� "M for some small "M ,

kEkL2mC1.0;�/ � CM ";

and going back to (2-43) and the computations that follow this inequality, we obtain also the desired
bound on the Lm norm of �. �
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3. Profile decomposition

3A. Linear profile decomposition. The main result of this section is the following:

Theorem 3.1. Let .uL;n/n be a sequence of radial solutions of (1-3) such that .EuL;n.0//n is bounded in Lm.
Then there exists a subsequence of .uL;n/n (still denoted by .uL;n/n) and, for all j � 1, a solution U jL
of (1-3) with initial data .U j0 ; U

j
1 / in Lm and sequences .�j;n/n 2 .0;1/N, .tj;n/n 2 RN such that the

following properties hold:

� Pseudo-orthogonality. For all j; k � 1, one has

j ¤ k D) lim
n!1

�j;n

�k;n
C
�k;n

�j;n
C
jtj;n� tk;nj

�j;n
DC1: (3-1)

� Weak convergence. For all j � 1,�
�
1
m

j;nuL;n.tj;n; �j;n � /; �
1
m
C1

j;n @tuL;n.tj;n; �j;n � /
�
���*
n!1

.U
j
0 ; U

j
1 /; (3-2)

weakly in Lm.

� Bessel-type inequality. For all J � 1,

lim
n!1

Em.u0;n; u1;n/�

JX
jD1

Em. EU
j
L .0//� 0: (3-3)

� Vanishing in the dispersive norm.

lim
J!1

lim
n!1

kwJn kS.R/ D 0; (3-4)

In the above, we have taken

wJn .t; x/D uL;n.t; x/�

JX
jD1

U
j
L;n.t; x/; (3-5)

U
j
L;n.t; x/D

1

�
1
m

j;n

U
j
L

�
t � tj;n

�j;n
;
x

�j;n

�
: (3-6)

Theorem 3.1 generalizes (in the radial setting) the profile decomposition of [Bahouri and Gérard 1999]
to sequences that are bounded in Lm instead of the classical energy space. The only difference between
the two decompositions is the fact that the Pythagorean expansion proved in that paper is replaced by the
weaker property (3-3). One cannot hope, in this context, to have an exact Pythagorean expansion; see the
example on p. 387 of [Jaffard 1999].

The proof of Theorem 3.1 is based on the following two propositions, which we will prove in Sections 3B
and 3C respectively.

Proposition 3.2. Let .uL;n/n be a sequence of radial solutions to the linear wave equation and set
.u0;n; u1;n/D EuL;n.0/. Assume for m 2 .1;C1/, the sequence .EuL;n.0//n is bounded in Lm and that for
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all sequences .�n/n 2 .0;1/N and .tn/n 2 RN, 
1

�
1
m
n

uL;n

�
�tn

�n
;
�

�n

�
;

1

�
1C 1

m
n

@tuL;n

�
�tn

�n
;
�

�n

�!
n

(3-7)

converges weakly to 0 in Lm as n!C1. Then

lim
n!C1

kuL;nkS.R/ D 0: (3-8)

Proposition 3.3. Let J � 1 and .U jL /jD1;:::;J be solutions of the linear wave equations with initial data
in Lm. For all j D 1; : : : ; J, we let .�j;n/n 2 .0;1/N and .tj;n/n 2 RN be sequences of parameters that
satisfy the pseudo-orthogonality property (3-1). Let .uL;n/ be a sequence of solutions of the linear wave
equation with initial data in Lm. Let wJn be defined by (3-5), (3-6) and assume that for all j 2 f1; : : : ; J g,�

�
1
m

j;nw
J
n .tj;n; �j;n � /; �

1
m
C1

j;n @tw
J
n .tj;n; �j;n � /

�
���*
n!1

0 weakly in Lm: (3-9)

Then the Bessel-type inequality (3-3) holds.

Proof of the theorem. The proof of Theorem 3.1, assuming Proposition 3.2 and 3.3, is quite standard, at
least in the Hilbertian setting. We give it for the sake of completeness. We mainly need to check that it
is harmless that we have only a Bessel-type inequality (3-3) in the Lm setting, which is not Hilbertian,
instead of a more precise Pythagorean expansion.

We construct the profiles U jL and the parameters �j;n, tj;n by induction.
Let J � 1 and assume that for 1 � j � J � 1, we have constructed profiles U jL such that (3-1) and

(3-2) hold after extraction of a subsequence in n (if J D 1 we do not assume anything and set w0nD uL;n).
Note that this implies (3-3) by Proposition 3.3. Let AJ be the set of .U0; U1/ 2 Lm such that there exist
sequences .�n/n, .tn/n of parameters such that, after extraction of a subsequence,�

�
1
m
n w

J�1
n .tn; �n � /; �

1
m
C1

n @tw
J�1
n .tn; �n � /

�
���*
n!1

.U0; U1/

weakly in Lm, where wJ�1n is defined by (3-5). We distinguish two cases.

Case 1: AJ D f.0; 0/g. In this case we stop the process and let U jL D 0 for all j � J.

Case 2: There exists a nonzero element in AJ . In this case, we choose .U J0 ; U
J
1 / 2AJ such that

Em.U
J
0 ; U

J
1 /�

1
2

sup
.U0;U1/2AJ

Em.U0; U1/; (3-10)

and we choose sequences .�J;n/n and .tJ;n/n such that, (after extraction of subsequences in n),�
�
1
m

J;nw
J�1
n .tJ;n; �J;n � /; �

1
m
C1

J;n @tw
J�1
n .tJ;n; �J;n � /

�
���*
n!1

.U J0 ; U
J
1 / (3-11)

weakly in Lm. Note that (3-2) holds for j D J thanks to (3-11). Furthermore, (3-1) for j 2 f1; : : : ; J �1g,
k D J follows from (3-2) (for j 2 f1; : : : ; J � 1g), (3-11) and the fact that .U J0 ; U

J
1 /¤ .0; 0/. Finally,

as already observed, (3-3) is a consequence of (3-1), (3-2) and Proposition 3.3.
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If there exists a J � 1 such that Case 1 above holds, then we are done: indeed, in this case, wJn
does not depend on J for large n, and (3-4) is an immediate consequence of the definition of AJ and
Proposition 3.2.

Next assume that Case 2 holds for all J � 1. Using a diagonal extraction argument, we obtain, for all
j � 1, profiles U jL , and sequences of parameters .�jn/n and .tjn /n such that (3-1), (3-2) and (3-3) hold for
all j; k; J. It remains to prove (3-4). In view of Proposition 3.2, it is sufficient to prove

lim
J!1

sup
.A0;A1/2AJ

k.A0; A1/kLm D 0:

This follows from (3-10), the equivalence between E
1
m
m and the Lm norm, and the fact that, by (3-3),

lim
J!1

Em.U
J
0 ; U

J
1 /D 0: �

3B. Convergence to 0 of the Strichartz norm. First of all, let us introduce the notation PBs1;1.R
d / for

the homogeneous Besov space on Rd, which is defined as follows. Let  2 C10 .R
d / be a radial function,

supported in
˚
� 2 Rd W 1

2
� j�j � 2

	
and such thatX

j2Z

 .2�j �/D 1; � 2 R3 n f0g:

We denote by P�j the Littlewood–Paley projector

P�jf .x/D
�
 .2�j � / Of . � /

�_
.x/; j 2 Z;

where

Of .�/D

Z
Rd
f .x/e�ix�� dx

is the Fourier transform on Rd and we use

g_.x/D
1

.2�/d

Z
Rd
g.�/eix�� d�

to denote the inverse Fourier transform. For a tempered distribution f on Rd, we set

kf k PBs1;1.Rd /
WD sup

j2Z

2js


 P�jf 

L1.Rd / :

If kf k PBs1;1 <C1, we say f belongs to PBs1;1.

We have the following refined Sobolev inequality in weighted norms.

Lemma 3.4. Let !.x/ 2 Ap with 1 < p <C1; i.e.,

sup
B

�
1

jBj

Z
B

!.x/ dx

��
1

jBj

Z
B

!.x/�
1
p�1 dx

�p�1
<C1; (3-12)
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where the supremum is taken over all balls B in Rd. If rf 2 Lp.Rd ; !.x/dx/ and f 2 PB�ˇ1;1.Rd /,
then

kf kLq.Rd ;!/ � Ckrf k
�
Lp.Rd ;!/

kf k1��
PB
�ˇ
1;1.Rd /

; (3-13)

where 1 < p < q <C1, � D p
q

, ˇ D �
1��

.

The refined Sobolev inequality (3-13) in weighted norms was proved in [Chamorro 2011], where
the author considered more general situations with the underlying domain Rd replaced by stratified Lie
groups. The above lemma follows immediately since the Euclidean space Rd with its natural group
structure is an example of a stratified Lie group. Notice that 1 2 Ap , and one recovers the classical result
on the refined Sobolev inequalities established first in [Gerard et al. 1997].

With Lemma 3.4 at hand, we are ready to prove the Proposition 3.2.

Proof. Since ..u0;n; u1;n//n is bounded in Lm, there exists A > 0 such thatZ C1
0

jr@ru0;n.r/j
m dr C

Z C1
0

jru1;n.r/j
m dr � A <C1

for all n.
Assuming (3-8) fails, we have for some constant c0 having the property that 0 < c0 � C A

1
m , that

lim sup
n!1

kuL;nkL2mC1t .R;L
m.2mC1/
x .R3;rm�2//

D c0; (3-14)

where C is the constant in (2-12), (2-32) and (2-34). From (2-32), (2-34) and Hölder’s inequality, we
know that up to a subsequence, there exists some � 2 .0; 1/ such that

lim
n!1

kuL;nkL1t .R;L
m.mC1/
x .R3;rm�2//

�

�
c0

.CA
1
m /�

� 1
1��

: (3-15)

For m > 1, we denote by Œm� the greatest integer less than or equal to m and by fmg WD m� Œm� the
fractional part of m. Notice that fmg 2 Œ0; 1/ and fmg D 0 if and only if m 2 N.

Let d D Œm�C1 and !.x/D jxj
 with 
 Dfmg, x 2Rd. It is easy to see that ! 2Am, see for example
[Grafakos 2014], and we have the following refined Sobolev inequality in view of Lemma 3.4:

kf kLm.mC1/.Rd ;jxj
 / � C0krf k
1

mC1

Lm.Rd ;jxj
 /
kf k

m
mC1

PB
�1=m
1;1 .Rd /

: (3-16)

If we apply (3-16) to functions uL;n.t; jxj/ with respect to the spatial variable x 2 RŒm�C1, we obtain by
transferring the formula into polar coordinatesZ C1
0

juL;n.t; r/j
m.mC1/rm dr �C

m.mC1/
0

Z C1
0

jr@ruL;n.t; r/j
m dr

�sup
j2Z

sup
x2RŒm�C1

�
2�

j
m

Z
RŒm�C1

 _.y/ uL;n.t; jx�2
�jyj/ dy

�m2
: (3-17)
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In view of the conservation of the Lm-energy, and the fact that the norms k�kLm and .Em/
1
m are equivalent,

there exists some N > 0 such that if n�N

sup
t2R

sup
j2Z

sup
x2RŒm�C1

ˇ̌̌̌Z
RŒm�C1

2�
j
m uL;n.t; jx� 2

�jyj/  _.y/ dy

ˇ̌̌̌
� ı0; (3-18)

where

ı0 D
1
2
c

mC1
.1��/m

0 .C
�
1�� C0/

�
mC1
m C

� 1
m

m A
�
mC1

m2

�
�
1��
C 1
mC1

�
> 0;

and Cm is the constant in (2-9).
As a result of (3-18), we have a family of .t0n/n in RN, a sequence of .jn/n 2 ZN and .xn/n in

.RŒm�C1/Nsuch thatˇ̌̌̌Z
RŒm�C1

2�
jn
m uL;n.t

0
n ; jxn� 2

�jnyj/ _.y/ dy

ˇ̌̌̌
�
ı0

2
; n�N:

Setting '. � /D _. � /, �n D 2jn , tn D�t0n�n, and yn D �nxn, we will obtain a contradiction by letting
n!1 provided, up to some subsequences,Z

RŒm�C1

1

�
1
m
n

uL;n

�
�tn

�n
;
jy �ynj

�n

�
'.y/ dy! 0; n!C1: (3-19)

To prove this, we divide the argument into two cases.

Case 1: lim supn!1 jynj D C1. Up to a subsequence, we may assume

0 < jy1j � jy2j � � � � � jynj � jynC1j � � � ! C1; n!C1: (3-20)

Define

Vn.y/D
1

�
1
m
n

uL;n

�
�
tn

�n
;
jyj

�n

�
:

Note that Vn is a radial function on RŒm�C1. Then from the radial Sobolev embedding (see (4) in
Proposition 2.2), we have

jVn.y/j �
1

jyj
1
m

�Z C1
0

ˇ̌̌̌
r@ruL;n

�
�
tn

�n
; r

�ˇ̌̌̌m
dr

�1
m

� Cm

�
A

jyj

�1
m

(3-21)

for all n. As a consequence, (3-19) is bounded by

cn WD

Z
RŒm�C1

jy �ynj
� 1
m j'.y/j dy; (3-22)

and it suffices to show

lim
n!C1

cn D 0: (3-23)

We write

cn D

Z
jy�ynj�1

jy �ynj
� 1
m j'.y/j dyC

Z
jy�ynj�1

jy �ynj
� 1
m j'.y/j dy:
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The first term is bounded by �
sup

jy�ynj�1

j'.y/j
� Z
jzj�1

jzj�
1
m �!
n!1

0;

while the second one goes to zero by dominated convergence. Hence (3-23).

Case 2: There exists c >0 such that jynj� c <C1 for all n. We have, up to some subsequences, yn!y�

as n!1, where y� 2RŒm�C1 such that jy�j � c. Setting �n'. � /D '. � Cyn/ and ��'. � /D '. � Cy�/,
we have

�n'! ��'; n!C1; in S.RŒm�C1/: (3-24)

From the condition that (3-7) converges weakly to zero in Lm, we have

lim
n!C1

Z
RŒm�C1

Vn.x/ ��'.x/ dx D 0:

In fact, considered as a function on R3, we have, by (3) in Proposition 2.2,

Vn ���*
n!1

0 weakly in L3m.R3/:

Furthermore,Z
RŒm�C1

Vn.x/ ��'.x/ dx D

Z C1
0

Z
S Œm�

��'.r!/ d�.!/ Vn.r/r
Œm� dr

D

Z C1
0

�Z
S Œm�

��'.r!/ d�.!/ r
Œm��2

�
„ ƒ‚ …

WD‰.r/

Vn.r/r
2 dr �!

n!1
0;

since ‰.r/ can be considered as a radial function in L.3m/
0

.R3/ for 1 < m <C1. On the other hand,
we have by the fundamental theorem of calculus and integration by partsZ

RŒm�C1
Vn.jyj/ .�n'.y/���'.y// dy D

Z 1

0

Z
RŒm�C1

˝
rVn.y/; .y��yn/'.yC s.yn�y�/Cy�/

˛
dy ds:

After using Hölder’s inequality and the energy estimate, we see the term on the right-hand side is bounded
by

CmA
1
m jyn�y�j

Z 1

0

�Z
RŒm�C1

ˇ̌
'.yC s.yn�y�/Cy�/

ˇ̌ m
m�1 jyj�

m�Œm�
m�1 dy

�m�1
m

ds:

Notice that ' 2 S.RŒm�C1/, jy�j � c and jyj�
m�Œm�
m�1 is integrable near the origin of RŒm�C1 when m> 1.

We have

lim
n!1

Z
RŒm�C1

Vn.y/
�
�n'.y/� ��'.y/

�
dy D 0: �

3C. Bessel-type inequality. In this subsection we prove Proposition 3.3.
We let fuL;ngn2N and, for 1� j � J, let U jL and .�j;n; tj;n/n be as in Proposition 3.3, and define U jL;n

by (3-6) and wJn by (3-5).
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First of all, we have the explicit formula for ŒU jL �˙.t; r/

ŒU
j
L �C.t; r/D 2

PF j .t C r/; ŒU
j
L ��.t; r/D 2

PF j .t � r/; j � 1; (3-25)

with

F j .�/D
1

2
�U

j
0 .j� j/C

1

2

Z j� j
0

%U
j
1 .%/ d%:

In view of (2-7), one easily verifies that

ŒU
j
L; n�˙.t; r/D

1

�
1
m

j; n

ŒU
j
L �˙

�
t � tj;n

�j;n
;
r

�j;n

�
:

Up to subsequences, we may assume, after translating in time and rescaling U jL if necessary,

j � 1; lim
n!1

�
tj;n

�j;n
D˙1 or for all n; tj;n D 0: (3-26)

Step 1: decoupling of linear profiles. In this step, we prove

lim
n!C1

Em

� JX
jD1

EU
j
L;n.0/

�
D

JX
jD1

Em. EU
j
L .0//: (3-27)

Recall that for any solution u of the linear wave equation, we have

Em.Eu.0//DEm.Eu.t//D
X
˙

Z C1
0

ˇ̌
Œu�˙.t; r/

ˇ̌m
dr;

where Œu�˙ is defined in (2-7). Hence (for constants C > 0 that depend on J and m, but not on n)ˇ̌̌̌
Em

� JX
jD1

U
j
L;n.0/

�
�

JX
jD1

Em.U
j
L .0//

ˇ̌̌̌
D

ˇ̌̌̌
Em

� JX
jD1

U
j
L;n.0/

�
�

JX
jD1

Em.U
j
L;n.0//

ˇ̌̌̌

�C
X
j¤k
˙

Z C1
0

ˇ̌
ŒU
j
L;n�˙.0;r/

ˇ̌m�1ˇ̌
ŒU kL;n�˙.0;r/

ˇ̌
dr

�C
X
j¤k
˙

Z C1
0

ˇ̌̌̌
ˇ 1
�
1
m

j;n

PF j
�
�tj;n˙r

�j;n

�̌̌̌̌
ˇ
m�1 ˇ̌̌̌

ˇ 1

�
1
m

k;n

PF k
�
�tk;n˙r

�k;n

�̌̌̌̌
ˇdr:„ ƒ‚ …

I˙
j;k;n

We are thus reduced to proving that each of the terms I˙
j;k;n

(j ¤ k) goes to 0 as n goes to infinity. By
density we may assume

U
j
0 ; U

j
1 ; U

k
0 ; U

k
1 2 C

1
0 ;

and thus PF j; PF k 2C10 . We will only consider IC
j;k;n

, whereas the proof for I�
j;k;n

is the same. Extracting
subsequences and arguing by contradiction, we can distinguish without loss of generality between the
following three cases.
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Case 1: We assume limn!1
�k;n
�j;n
D 0. By the change of variable s D �tk;nCr

�k;n
, we obtain

IC
j;k;n
D

Z C1
�
tk;n
�k;n

�
�k;n

�j;n

�1� 1
m
ˇ̌̌̌
PF j
�
�k;nsC tk;n� tj;n

�j;n

�ˇ̌̌̌m�1
j PF k.s/j ds .

�
�k;n

�j;n

�1� 1
m

; (3-28)

where we have used that PF j and PF k are bounded and compactly supported. Since �k;n
�j;n

goes to 0 as n
goes to infinity, we are done.

Case 2: We assume limn!1
�j;n
�k;n
D 0. We argue similarly by using the change of variable s D �tj;nCr

�j;n
.

Case 3: We assume that the sequence
� �j;n
�k;n
C
�k;n
�j;n

�
n

is bounded. We use as in Case 1 the change of
variable s D �tk;nCr

�k;n
. By the pseudo-orthogonality condition (3-1) we see that

lim
n!1

jtj;n� tk;nj

�j;n
DC1;

and thus, as a consequence of the first line of (3-28), IC
j;k;n

is 0 for large n, which concludes Step 1.

Step 2: end of the proof. For 1 < m <C1, we introduce the notation

ˆ
j
n;0.r/D

1

2r

X
˙

Z r

0

ˇ̌
ŒU
j
L; n�˙.0; s/

ˇ̌m�2
ŒU
j
L; n�˙.0; s/ ds;

ˆ
j
n;1.r/D

1

2r

X
˙

˙
ˇ̌
ŒU
j
L; n�˙.0; r/

ˇ̌m�2
ŒU
j
L; n�˙.0; r/;

and let ˆjn;L.t/ be the solution of the linear wave equations with initial data .ˆjn;0; ˆ
j
n;1/ 2 L

m0, where
m0 D m

m�1
. Then we have

Œˆ
j
n;L�˙.0; r/D

ˇ̌
ŒU
j
L;n�˙.0; r/

ˇ̌m�2
ŒU
j
L;n�˙.0; r/;

and note that

Em. EU
j
L .0//DEm.

EU
j
L;n.0//D

Z C1
0

X
˙

Œˆ
j
n;L�˙.0/ŒU

j
L;n�˙.0/ dr: (3-29)

From the weak convergence condition satisfied by the remainder term wJn , we have by time translation
and changing variablesZ C1
0

�
Œˆ
j
n;L�C.0; r/Œw

J
n �C.0; r/C Œˆ

j
n;L��.0; r/Œw

J
n ��.0; r/

�
dr

D

Z C1
0

ˇ̌
ŒU
j
L �C.0; r/

ˇ̌m�2
ŒU
j
L �C.0; r/ �

1
m

j;nŒw
J
n �C.tj;n; �j;n r/ dr

C

Z C1
0

ˇ̌
ŒU
j
L ��.0; r/

ˇ̌m�2
ŒU
j
L ��.0; r/ �

1
m

j;nŒw
J
n ��.tj;n; �j;n r/ dr;

which goes to zero as n!C1 for 1� j � J. Furthermore,Z C1
0

ˇ̌
Œˆ
j
n;L�˙.0; r/ŒU

k
L;n�˙.0; r/

ˇ̌
dr D

Z C1
0

ˇ̌
ŒU
j
L;n�˙.0; r/

ˇ̌m�1ˇ̌
ŒU kL;n�˙.0; r/

ˇ̌
dr;
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and, by Step 1, this goes to 0 as n goes to infinity if j ¤ k. Hence from (3-29), we have
JX
jD1

Em. EU
j
L .0//

D lim
n!C1

�Z C1
0

ŒuL;n�C.0; r/

� JX
jD1

Œˆ
j
n;L�C.0; r/

�
dr C

Z C1
0

ŒuL;n��.0; r/

� JX
jD1

Œˆ
j
n;L��.0; r/

�
dr

�
;

which is bounded after using Hölder’s inequality by�
lim

n!C1
Em0

� JX
jD1

Ê j
n;L.0; r/

�� 1
m

0�
lim sup
n!C1

Em.EuL;n.0//

� 1
m

:

Furthermore, by the decoupling property proved in Step 1 we obtain

lim
n!C1

Em0

� JX
jD1

Ê j
n;L.0; r/

�
D

JX
jD1

Em0. Ê
j
n;L.0//D

JX
jD1

Em. EU
j
L .0//

and this concludes the result.

3D. Approximation by sum of profiles. We next write a lemma approximating a nonlinear solution by a
sum of profiles outside a wave cone. This type of approximation is only available in space-time slabs
where the S norm of all the profiles remain finite. To satisfy this assumption, we will work outside a
sufficiently large wave cone.

Let f.u0;n; u1;n/gn be a sequence of functions in Lm that has a profile decomposition with profiles
.U

j
0 ; U

j
1 / and parameters .�j;n; tj;n/n, j � 1. Extracting subsequences and time-translating the profiles,

we can assume that for all j � 1 one of the following holds:

lim
n!1

�
tj;n

�j;n
2 f˙1g or (3-30)

for all n; tj;n D 0: (3-31)

We will denote by J1 the set of indices j such that (3-30) holds and by J0 the set of indices such that
(3-31) holds. We assume:

(1) There exist j0 � 1, A > 0 and a global solution U j0 of(
@2tU

j0 ��U j0 D �jU j0 j2mU j01fr�jt jCAg;

EU j0.0; r/D EU
j0
L .0; r/; r � A;

such that EU j0.0/ 2 Lm and kU j0kS.fr�jt jCAg/ <1.

(2) If j 2 J0 n fj0g, then the solution of (1-1) with initial EU jL .0/ scatters in both time directions or

lim
n!1

�j;n

�j0;n
D 0:

For j � 1, we define U j as follows:

� U j0 is defined as in point (1) above.

� If j 2 J0 and limn!1
�j;n
�j0;n

D 0, then U j is the solution of (1-1) with initial data EU jL .0/.
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� If j 2 J0 and limn!1
�j;n
�j0;n

D1, then U j D 0.

� If j 2 J1, then U j D U jL .

We let U jn be the corresponding modulated profiles:

U jn .t; x/D
1

�
1
m

j;n

U j
�
t � tj;n

�j;n
;
x

�j;n

�
:

Lemma 3.5. Assume that points (1) and (2) above hold, let un be the solution of (1-1) with initial data
.u0;n; u1;n/, and In be its maximal interval of existence. Then

un.t; x/D

JX
jD1

U jn .t; x/Cw
J
n .t; x/C "

J
n .t; x/;

where

lim
J!1

lim sup
n!1

�
k"Jn kS.ft2In; r�A�j0;nCjt jg/

C sup
t2In

Z C1
A�j0;nCjt j

jr@t;r E"
J
n .t; r/j

m dr

�
D 0:

Proof. This follows from Lemma 2.19 with

Qun D
X
j2J0

U jn :

We omit the details of the proof that are by now standard; see, e.g., the proof of the main theorem in
[Bahouri and Gérard 1999]. �

3E. Exterior energy of a sum of profiles.

Proposition 3.6. Let f.u0;n; u1;n/gn2N be a bounded sequence in Lm that has a profile decomposition
with profiles fU jL gj�1 and parameters f.tj;n; �j;n/ngj�1. Let f.�n; �n; �n/gn2N be a sequence such that
0� �n < �n �1, �n 2 R. Let k � 1. Then, extracting a subsequence if necessary

on.1/C

Z �n

�n

jr@r;tuL;n.�n; r/j
m dr �

Z �n

�n

jr@r;tU
k
L;n.�n; r/j

m dr; (3-32)

where limn on.1/D 0, uL;n is the solution of the linear wave equation with initial data .u0;n; u1;n/ and
U kL;n is defined in (3-6).

See [Duyckaerts and Roy 2015, Proposition 3.12] for the proof.

4. Exterior energy for solutions of the nonlinear equation

4A. Preliminaries on singular stationary solutions. We recall from [Duyckaerts et al. 2014; Duyckaerts
and Roy 2015; Shen 2013] the following result on existence of stationary solutions for (1-1).

Proposition 4.1. Let ` 2 R n f0g. Assume m > 1, m ¤ 2. There exists R` � 0 and a maximal radial
C 2 solution Z` of

�Z`C �jZ`j
2mZ` D 0 on R3\fjxj>R`g (4-1)

such that

jrZ`.r/� `jC jr
2Z0`.r/C `j.

1

r2m�2
; r � 1: (4-2)
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Furthermore,

� if �DC1 (focusing nonlinearity), then R` D 0 and Z` … L3m.R3/,

� if �D�1 (defocusing nonlinearity), then R` > 0 and

lim
r!R`

jZ`.r/j D C1: (4-3)

Remark 4.2. We will construct Z1 and let

Z` D
˙1

j`j
1

m�1

Z1

�
r

j`j
m
m�1

�
(where ˙ is the sign of `), which will satisfy the conclusion of Proposition 4.1 for all ` 2 R n f0g. In
particular,

R` DR1j`j
m
m�1 :

Let us mention that the uniqueness of Z` can be proved by elementary arguments. However, it will follow
from Proposition 4.3 and we will not prove it here.

Proof. The proof is essentially contained in [Duyckaerts et al. 2014; Shen 2013] (focusing case for m> 2
and m 2 .1; 2/ respectively) and [Duyckaerts and Roy 2015] (defocusing case for m > 2). We give a
sketch for the sake of completeness.

We assume `D 1 (see Remark 4.2).

Existence for large r . Letting g D rZ1, we see that the equation on Z1 is equivalent to

g00.r/D�
�

r2m
jg.r/j2mg.r/: (4-4)

It is sufficient to find a fixed point for the operator A defined by

A.g/D 1�

Z 1
r

Z 1
s

�

�2m
jg.�/j2mg.�/ d� ds

in the ball
B D

˚
g 2 C 0.Œr0;C/;R/ W d.g; 1/�M

	
;

where r0 and M are two large parameters and

d.g; h/ WD sup
r�r0

.r2m�2jg.r/� h.r/j/:

Noting that .B; d/ is a complete metric space, it is easy to prove that A is a contraction on B assuming
M � 1 and r0� 1 (depending on M ), and thus that A has a fixed point g1. The fact that Z1 WD 1

r
g1

satisfies the estimates (4-2) follows easily. Let R1 � 0 such that .R1;C1/ is the maximal interval of
existence of g1 as a solution of the ordinary differential equation.

Focusing case. We next assume �D 1 and prove that R1 D 0 and Z` … L3m. Let

G.r/D
1

2
g0.r/2C

1

.2mC 2/r2m
jg.r/j2mC2:
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By (4-4), if r 2 .R1;C1/,

G0.r/D�
m

.mC 1/r2mC1
jg.r/j2mC2:

Hence

jG0.r/j �
C

r
G.r/:

This proves that G is bounded on .R1;C1/ if R1 > 0, a contradiction with the standard ODE blow-up
criterion. Thus R1 D 0.

The fact that Z1 … L3m.R3/ is nontrivial but classical. Assume by contradiction that Z1 2 L3m. Then
one can prove, see [Duyckaerts et al. 2014], that Z1 is a solution in the distributional sense on R3 of

��Z1 D jZ1j
2mZ1:

Noting that jZ1j2m 2 L
3
2 , one can use [Trudinger 1968] to prove that Z1 2 L1, and thus, by elliptic

regularity, that Z1 is C 2 on R3. To deduce a contradiction, we introduce, as in [Shen 2013], the function
v.r/D r

1
mZ1. It is easy to check, using (4-2), for the limits at infinity and the fact that Z1 is C 2 for the

limit at 0, that

lim
r!0C

v.r/D lim
r!0C

rv0.r/D lim
r!C1

v.r/D lim
r!C1

rv0.r/D 0:

Furthermore,

v00C
2

r

�
1�

1

m

�
v0C

1

r2

�
1

m2
�
1

m

�
vC

1

r2
jvj2mv D 0:

Integrating the identity

d

dr

�
r2
jv0.r/j2

2
�
m� 1

2m2
v2.r/C

jv.r/j2mC2

2mC 2

�
D
2�m

m
r jv0.r/j2 (4-5)

between 0 and C1, one sees that v must be a constant, a contradiction with the construction of Z1. Note
that we have used in this last step that the constant 2�m

m
in the right-hand side of the identity (4-5) is

nonzero, i.e., m¤ 2.

Defocusing case. Assume �D�1. We prove that R1 > 0 by contradiction. Assume R1 D 0 and let

h.s/ WDZ`

�
1

s

�
:

Then

h00.s/D
1

s4
jh.s/j2mh.s/

and by (4-2),

lim
s!0C

h.s/

s
D lim
s!0C

h0.s/D 1:

By a classical ODE argument, see [Duyckaerts and Roy 2015] for the details, one can prove that h blows
up in finite time, a contradiction. This proves that R1 > 0. The condition (4-3) follows from the standard
ODE blow-up criterion. �
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4B. Statement. One of the main ingredients of the proof of Theorem 3 is a bound from below of
the exterior Lm-energy for nonzero, Lm solutions of (1-1). It is similar to [Duyckaerts et al. 2013,
Propostions 2.1 and 2.2] and [Duyckaerts and Roy 2015, Propositions 4.1 and 4.2]. The statements in
these articles are divided between two cases, whether the support of .u0; u1/� .Z`; 0/ is compact for all
`¤ 0 or not. We give below a unified statement.

If .u0; u1/ 2 Lm and A > 0 we will denote by TA.u0; u1/ the element of Lm defined by

TA.u0; u1/.r/D .u0; u1/.r/ if r > A; (4-6)

TA.u0; u1/.r/D .u0.A/; 0/ if r � A: (4-7)

We note that

kTA.u0; u1/kmLm D
Z C1
A

�
j@ru0.r/ht j

m
Cju1.r/j

m
�
rm dr: (4-8)

We denote by ess supp the essential support of a function defined on a domain D of R3:

ess supp.f /DD n
[
f��D j� is open and f D 0 a.e. in �g:

Recall from Proposition 4.1 the definition of Z1 and R1.

Proposition 4.3. Let u be a radial solution of (1-1) with .u0; u1/ 2 Lm. Assume that .u0; u1/ is not
identically 0. Then there exist A > 0, � > 0 such that, if . Qu0; Qu1/D TA.u0; u1/, and Qu is the solution of

@2t Qu�� QuD �j Quj
2m
Qu1fr�ACjt jg (4-9)

with initial data . Qu0; Qu1/, then Qu is global, scatters in Lm and the following holds for all t � 0 or for all
t � 0: Z C1

ACjt j

j@r Qu.r/j
mrm dr C

Z C1
ACjt j

j@t Qu.r/j
mrm dr � �: (4-10)

The proof of Proposition 4.3 is very close to the proofs of the analogous propositions in [Duyckaerts
et al. 2014; Duyckaerts and Roy 2015]. We give a sketch of proof for the sake of completeness.

4C. Sketch of proof of Proposition 4.3. We argue by contradiction, assuming that for all A > 0 the
solution Qu of (4-9) with initial data TA.u0; u1/ is not a scattering solution, or is scattering and satisfies

lim inf
t!˙1

Z
ACjt j

j@t;r Qu.t; r/j
mrm dr D 0: (4-11)

We let

v.r/D ru.r/; v0.r/D ru0.r/; v1.r/D ru1.r/:

Step 1: In this step we prove that there exists "0 > 0 such that, if A > 0 is such thatZ C1
A

.j@ru0j
m
Cju1j

m/rm dr D "� "0; (4-12)
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then Z C1
A

j@rv0j
m
Cjv1j

m dr �
C

A.2mC1/.m�1/
jv0.A/j

m.2mC1/; (4-13)

for all B 2 ŒA; 2A�; jv0.B/� v0.A/j � CA2�2mjv0.A/j2mC1 � C"2jv0.A/j: (4-14)

We first assume (4-13) and prove (4-14). By the Hölder inequality and (4-13) we have

jv0.B/� v0.A/j �

Z 2A

A

j@rv0.r/j dr � A
m�1
m

�Z 2A

A

j@rv0j
m dr

�1
m

� CA2�2mjv0.A/j
2mC1: (4-15)

Furthermore, by (4-12) and (4) in Proposition 2.2,

1

Am�1
jv0.A/j

m
D Aju0.A/j

m . ";

which yields
jv0.A/j

2m . "2A2m�2:

Combining with (4-15), we obtain the second inequality of (4-14).
We next prove (4-13). Let

. Qu0; Qu1/D TA.u0; u1/:

Let Qu and QuL be the solutions of the nonlinear wave equation (1-1) and the linear wave equation (1-3),
respectively, with initial data . Qu0; Qu1/. By the small data theory, Qu is global and

sup
t2R

kEQu.t/� EQuL.t/kLm � C"
2mC1: (4-16)

Using the exterior energy property (3) in Proposition 2.3, we have that the following holds for all t � 0 or
for all t � 0:Z C1

A

.j@r.v0/j
m
Cjv1j

m/ dr � C

Z C1
ACjt j

j@r;t .r QuL/.t; r/j
m dr � C

Z C1
ACjt j

j@r;t QuL.t; r/j
mrm dr:

Using (4-16), we obtain that the following holds for all t � 0 or for all t � 0:Z C1
A

.j@r.v0/j
m
Cjv1j

m/ dr � C

�Z C1
ACjt j

j@r;t Qu.t; r/j
m dr C ".2mC1/m

�
: (4-17)

Using (4-11) and the definition (4-12) of ", and letting t !C1 or t !�1, we obtain

1

C

Z C1
A

.j@rv0j
m
Cjv1j

m/ dr �

�Z C1
A

.j@ru0j
m
Cju1j

m/rm dr

�2mC1
:

By (4) in Proposition 2.2, and since Aju0.A/jm D 1
Am�1

jv0.A/j
m,Z C1

A

.j@rv0j
m
Cjv1j

m/ dr � C

�Z C1
A

.j@rv0j
m
Cjv1j

m/ dr C
1

Am�1
jv0.A/j

m

�2mC1
:

Since
RC1
A .j@rv0j

mCjv1j
m/ dr is small, we deduce (4-13).
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Step 2: We prove that there exists ` 2 R n 0 such that

lim
r!1

v0.r/D `; (4-18)

and that there exists a constant M > 0 (depending on u) such that

jv0.r/� `j �
M

r2m�2
(4-19)

for large r .
Let " > 0 and fix A0 such thatZ C1

A0

.j@ru0j
m
Cju1j

m/rm dr D "� "0; (4-20)

where "0 is given by Step 1. By (4-14),

for all k � 0; jv0.2kC1A0/j � .1CC"2/.jv0.2kA0/j/:

Hence, by a straightforward induction,

for all k � 0; jv0.2kC1A0/j � .1CC"2/kjv0.A0/j:

Using (4-14) again, we deduceˇ̌
v0.2

kC1A0/� v0.2
kA0/

ˇ̌
� C.2kA0/

2�2m.1CC"2/k.2mC1/jv0.A0/j
2mC1: (4-21)

Choosing " small enough (so that 22�2m.1CC"2/2mC1 < 1), we see thatX
k�1

ˇ̌
v0.2

kC1A0/� v0.2
kA0/

ˇ̌
<1;

and thus that v0.2kA0/ has a limit ` as k!C1. Using (4-14) again, we deduce

lim
r!1

jv0.r/j D `:

Summing (4-21) over all k � 0, we deduce, using that v0 is bounded, that there exists a constant M > 0,
such that jv0.A0/� `j �MA2�2m0 for A0 large enough. This yields (4-19).

It remains to prove that `¤ 0. We argue by contradiction. By (4-19), if `D 0, then

jv0.r/j �
M

r2m�2
:

On the other hand, using (4-14) and an easy induction argument, we obtain that for all " > 0, for all A0
satisfying (4-20),

jv0.2
kA0/j � .1�C"

2/kjv0.A0/j:

Combining with the previous bound, we obtain

.1�C"2/kjv0.A0/j �
M

.2kA0/2m�2
;
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a contradiction if " is chosen small enough unless v0.A0/ D 0. Using (4-13), we see that this would
imply v0.r/ D 0 and v1.r/ D 0 for almost all r � A0. Since this is true for any A0 such that (4-20)
holds, an obvious bootstrap argument proves that .v0; v1/D .0; 0/ almost everywhere, contradicting our
assumption.

Step 3: Recall from Proposition 4.1 the definition of R`. Let, for r > R`,

.g0; g1/.r/ WD .u0.r/�Z`.r/; u1.r//; .h0; h1/.r/D r.g0.r/; g1.r//:

If " > 0, we fix A" >R` such thatZ C1
A"

j@rZ`j
mrm dr CkZ`k

m
S.fr�A"Cjt jg/

�
"m

C
; (4-22)

In this step, we prove that for all " > 0, if A > A" satisfiesZ C1
A

.j@rg0j
m
Cjg1j

m/rm dr <
"m

C
(4-23)

then Z C1
A

j@rh0j
m
Cjh1j

m dr �
"

Am�1
jh0.A/j

m: (4-24)

Fix A > A", let . Qu0; Qu1/ D TA.u0; u1/, and let Qu be the solution of the nonlinear wave equation (1-1)
with initial data . Qu0; Qu1/ at t D 0. Note that by (4-23) and small data theory, Qu is global and scatters in
both time directions. Note also that by our assumption, Qu satisfies (4-11).

Define Qg as the solution to the equation�
@2t Qg�� Qg D 1fr�ACjt jg.j Quj2m Qu� jZ`j

2mZ`/;

EQg�tD0 D TA.g0; g1/;
(4-25)

and QgL the solution of the free wave equation with the same initial data. Notice that .@2t ��/. Qu�Z`/D
.@2t ��/ Qg for r >ACjt j and EQg.0; r/D . Qu0�Z`; Qu1/.r/ for r >A. Thus, by finite speed of propagation,
Qg D Qu�Z` for r > ACjt j, and we can rewrite the first equation in (4-25):

@2t Qg�� Qg D 1fr�ACjt jg
�
jZ`C Qgj

2m.Z`C Qg/� jZ`j
2mZ`

�
: (4-26)

Using (4-26), Strichartz estimates and the Hölder inequality, we see that for all time intervals I containing 0

k Qg� QgLkS.I/C sup
t2Imax.u/

kEQg.t/� EQgL.t/kLm � C
�
kZ`k

2m
S.fr�ACjt jg/k QgkS.I/Ck Qgk

2mC1
S.I/

�
:

By (4-23), (4-22) and a straightforward bootstrap argument, we deduce that for all intervals I with 0 2 I ,

k QgkS.I/ � Ck QgLkS.I/ � CkTA.g0; g1/kLm � C";

and

sup
t2R

kEQg.t/� EQgL.t/kLm � C"
2m
kTA.g0; g1/kLm : (4-27)
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By the exterior energy property (3) in Proposition 2.3, the following holds for all t � 0 or for all t � 0:Z C1
A

.jh0j
m
Cjh1j

m/ dr � C

Z C1
ACjt j

j@t;r QgLj
mrm dr

� C

�
."2mkTA.g0; g1/kLm/mC

Z C1
ACjt j

j@t;r Qgj
mrm dr

�
;

where in the last line we used (4-27).
Letting t !˙1 and using (4-11), we deduceZ C1

A

j@rh0j
m
Cjh1j

m dr � C"2m
2

Z C1
A

.j@rg0j
m
Cjg1j

m/rm dr:

The desired estimate (4-24) follows, taking " small and using (4) in Proposition 2.2.

Step 4: Fix a small " > 0 and let A" be as in Step 3, i.e., such that (4-22) holds. In this step, we prove
that r � A" on ess supp.u0�Z`; u1/.

Indeed, if not, we obtain from (4-24) that there exists A > A" such that h0.A/¤ 0. Using a similar
argument to that in Step 1, we deduce from (4-24) that for all A� A" such that (4-23) holds,

for all B 2 ŒA; 2A�; jh0.A/� h0.B/j � C"jh0.A/j: (4-28)

If ess supp.u0�Z`; u1/ is not bounded, we deduce by (4-24) that h0.A/¤ 0 for all large A> 0. If " > 0
is small enough, we deduce using (4-28) that

lim
r!C1

r˛h0.r/DC1;

where ˛ 2 .0; 2m� 2/ is fixed. Since

v0.r/� `D h0.r/� `C rZ`;

this contradicts (4-19) in Step 2 and the asymptotic estimate (4-2) of Z`.
We have proved that ess supp.u0 �Z`; u1/ is bounded. Using (4-24), (4-28) and a straightforward

bootstrap argument, we deduce that r � A" on the support of ess supp.u0�Z`; u1/.

Step 5: Fix a small "> 0. We have proved in Step 4 that .u0; u1/.r/D .Z`.r/; 0/ for almost every r �A",
where A" depends only on `. We will prove .u0; u1/.r/D .Z`.r/; 0/ for r > R`, a contradiction with
Proposition 4.1 since .u0; u1/ 2 Lm.

We argue by contradiction, assuming that there existsB>R` such thatB 2ess supp.u0�Z`; u1/. Using
a similar argument to that in Step 3, but on small time intervals (see, e.g., the proof of Proposition 2.2(a),
§2.2.1 in [Duyckaerts et al. 2013]), we prove that the following holds for all t � 0 or for all t � 0:

BCjt j 2 ess supp
�
.u.t/�Z`; @tu.t//

�
: (4-29)

Choose t0 such that

BCjt0j> A" on ess supp
�
.u.t0/�Z`; @tu.t0//

�
: (4-30)
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It is easy to see that u satisfies the following: for all A > jt0j the solution Qu of

@2t Qu�� QuD �j Quj
2m
Qu1fr�ACjt�t0jg

with initial data TA.Eu.t0// at t D t0 is not a scattering solution, or is scattering and satisfies

lim inf
t!˙1

Z C1
ACjt�t0j

j@t;r Qu.t; r/j
mrm dr D 0:

We can then go through Steps 1–4 above, but with initial data at t D t0, and restricting to r > jt0j. Note
that by finite speed of propagation, the limit ` obtained in Step 2 for t D 0 and for t D t0 is the same; i.e.,

lim
r!C1

ru.t0; r/D lim
r!C1

ru.0; r/:

By the conclusion of Step 4, we obtain that r < max.A"; t0/ on ess supp.Eu.t0/ �Z`/, contradicting
(4-30). �

5. Dispersive term

This section concerns the existence of a “dispersive” component for a solution u of (1-1) that remains
bounded in Lm along a sequence of times. This component is the strong limit of Eu.t/, in Lm, outside the
origin in the finite time blow-up case (see Section 5A), and a solution of the linear wave equation in the
global case (see Section 5B).

5A. Regular part in the finite time blow-up case.

Proposition 5.1. Let u be a radial solution of (1-1), (1-2). Assume

TC.u/ <1; lim inf
t!TC.u/

kEu.t/kLm <1:

Then there exists a solution v of (1-1), defined in a neighborhood of t D TC, such that for all t in
Imax.u/\ Imax.v/,

for all r > TC� t; Eu.t; r/D Ev.t; r/:

We omit the proof; see Section 6.3 in [Duyckaerts and Roy 2015] for a very close proof.

5B. Extraction of the radiation term in the global case. We prove here:

Proposition 5.2. Let u be a radial solution of (1-1), (1-2). Assume

TC.u/DC1; lim inf
t!C1

kEu.t/kLm <1:

Then there exists a solution vL of the free wave equation (1-3) such that for all A 2 R,

lim
t!C1

Z
jxj�ACjt j

�
j@t .u� vL/j

m
Cj@r.u� vL/j

m
�
rm dr D 0: (5-1)
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The proof relies on the following lemma, which is a consequence of finite speed of propagation,
Strichartz estimates and the small data theory. We omit the proof, which is an easy adaptation of the
proofs of Claims 2.3 and 2.4 in [Duyckaerts et al. 2016] where the usual energy is replaced by the
Lm-energy:

Lemma 5.3. There exists "1 > 0 with the following property. Let u be a solution of (1-1), (1-2) such
that TC.u/DC1. Let T � 0 and A � 0. Assume kSL. � � T /Eu.T /kS.fjxj�ACt; t�T g/ D "

0 < "1: Then
kukS.fjxj�ACt; t�T g/ � 2"

0, and there exists a solution vL of the linear wave equation such that (5-1)
holds.

Proof of Proposition 5.2. See also Section 3.3 in [Duyckaerts et al. 2013].

Step 1: Let tn!C1 such that the sequence .Eu.tn//n is bounded in Lm. In this step we prove that there
exists ı > 0 such that for large n,

kSL. � /Eu.tn/kS.fjxj�.1�ı/tnCt; t�0g/ < "1; (5-2)

where "1 is given by Lemma 5.3. We argue by contradiction, assuming (after extraction of subsequences)
that there exists a sequence ın! 0 such that

kSL. � /Eu.tn/kS.fjxj�.1�ın/tnCt; t�0g/ � "1: (5-3)

Extracting subsequences again, we can assume that the sequence .Eu.tn//n has a profile decomposition
with profiles U jL and parameters .�j;n; tj;n/n. Let J be a large integer such that



SL. � /

�
Eu.tn/�

JX
jD1

EU
j
L;n.0/

�




S.R/

�
"1

2
:

A contradiction will follow if we prove (possibly extracting subsequences in n) that for all j 2 f1; : : : ; J g,

lim
n!1

kSL. � / EU
j
L;n.0/kS.fjxj�.1�ın/tnCt; t�0g/ D 0: (5-4)

We have
kSL. � / EU

j
L;n.0/kS.fr�.1�ın/tnCt; t�0g/ D kU

j
L kS.Aj;n/;

where

Aj;n WD

�
.t; r/ 2 R� .0;1/ W t � �

tj;n

�j;n
and r �

.1� ın/tn

�j;n
C

ˇ̌̌̌
t C

tj;n

�j;n

ˇ̌̌̌�
:

As a consequence, we see that we can extract subsequences so that the characteristic function of Aj;n
goes to 0 pointwise unless tj;n

�j;n
and tn

�j;n
are bounded. Time translating the profile U jL and extracting

again, we can assume
lim
n!1

tn

�j;n
D �0 2 Œ0;1/ for all n; tj;n D 0:

By finite speed of propagation and the small data theory,

lim
A!C1

lim sup
n!C1

Z
jxj�tnCA

jr@r;tu.tn/j
m dr D 0: (5-5)
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By Proposition 3.6, for all A 2 R, we have that for large n,Z C1
tnCA

jr.@r;tu.tn//j
m dr �

1

2

Z C1
tnCA

jr.@r;tU
j
L;n.0//j

m dr

D
1

2

Z C1
tnCA
�j;n

jr.@r;tU
j
L .0//j

m dr �!
n!1

1

2

Z C1
�0

jr.@r;tU
j
L .0//j

m dr:

Combining with (5-5), we see that if U jL is not identically 0, then �0 is strictly positive, and we can rescale
the profile U jL to assume �0 D 1, and �j;n D tn. Using (5-5) we see that ess supp EU jL .0/ is included in
the unit ball of R3, which implies

kU
j
L kS.Aj;n/ D kU

j
L kS.ft�0; r�.1�ın/Ctg/ �!n!1

0;

concluding the proof of (5-4) in this case. Step 1 is complete.

Step 2: By Step 1 and Lemma 5.3, for all A 2 R, there exists a solution vAL of the free wave equation
such that

lim
t!C1

Z
jxj�ACjt j

�
j@t .u� v

A
L /j

m
Cj@r.u� v

A
L /j

m
�
rm dr D 0: (5-6)

We consider the sequence tn!C1 of Step 1 and assume, extracting a subsequence if necessary, that
Eu.tn/ has a profile decomposition .U jL ; .�j;n; tj;n/n/j�1. Reordering the profiles and rescaling and time-
translating U 1L if necessary, we can assume, without loss of generality, that t1;n D tn and �1;n D 1 for
all n. In other words, EU 1L .0/ is the weak limit, as n goes to infinity, of ESL.�tn/Eu.tn/. Note that U 1L might
be identically 0.

Fix A 2 R. Then

Eu.tn/� Ev
A
L .tn/D

EU 1L .tn/� Ev
A
L .tn/C

JX
jD2

EU
j
L;n.0/C Ew

J
n .tn/I

i.e., Eu.tn/ � EvAL .tn/ has a profile decomposition . zU jL ; .�j;n; tj;n/n/j�1, with zU jL D U
j
L if j � 2, and

zU 1L D U
1
L � v

A
L . By Proposition 3.6,

lim sup
n!1

Z
r�ACtn

jr@r;t .u� v
A
L /.tn/j

m dr � lim sup
n!1

Z
r�tnCA

jr@r;t .U
1
L � v

A
L /.tn/j

m;

and thus, by (5-6)

lim
n!1

Z
r�tnCA

jr@r;t .U
1
L � v

A
L /.tn/j

m
D 0:

Using (5-6) again, we obtain

lim
n!1

Z
r�tnCA

jr@r;t .U
1
L �u/.tn/j

m
D 0:
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This is valid for all A 2 R. A simple argument using finite speed of propagation and small data theory
yields

lim
t!1

Z
r�tCA

jr@r;t .U
1
L �u/.t/j

m
D 0;

concluding the proof of the proposition with vL D U
1
L . �

6. Scattering/blow-up dichotomy

In this section we prove Theorem 3. Let u be a solution of (1-1). Consider the property:

lim inf
t!TC.u/

kEu.t/kLm <1: (6-1)

We must prove:

(1) If (6-1) holds then TC.u/DC1.

(2) If TC.u/DC1 and (6-1) holds, then u scatters to a linear solution in Lm.

The proofs of (1) and (2) are very similar, and are simplified versions of the corresponding proofs in
[Duyckaerts and Roy 2015]. We will only sketch the proof of (2) and explain the necessary modification
to obtain (1).

6A. Proof of scattering. Let u be a global solution and let tn!C1 such that Eu.tn/ is bounded. Let
vL be the linear component of u, given by Proposition 5.2. Extracting subsequences, we can assume that
.Eu.tn/� EvL.tn//n has a profile decomposition with profiles U jL and parameters .�j;n; tj;n/n. As before,
we denote by U jL;n the modulated profiles; see (3-6). Extracting subsequences and translating the profiles
in time if necessary, one of the following three cases holds.

Case 1: Assume

8j � 1; U
j
L � 0 or lim

n!1

�tj;n

�j;n
D�1: (6-2)

Let T �1 such that kvLkS..T;C1//<
ı0
2

, where ı0 is given by the small data theory (see Proposition 2.17).
By (6-2), for all j ,

lim
n!1

kU
j
L;nkS..T�tn;0// D lim

n!1
kU

j
L kS..

T�tn�tj;n
�j;n

;
�tj;n
�j;n

//
D 0:

Thus for large n,

kSL. � /Eu.tn/kS..T�tn;0// < ı0:

By Proposition 2.17, for large n,

kukS..T;tn// D ku.tnC � /kS..T�tn;0// < 2ı0:

Letting n!1, we deduce kukS..T;C1// < 2ı0, and thus u scatters.



BLOW-UP OF CRITICAL SOBOLEV NORM FOR ENERGY-SUB/SUPERCRITICAL WAVE EQUATIONS 1021

Case 2: We assume
8j � 1; U

j
L � 0 or lim

n!1

�tj;n

�j;n
2 f˙1g: (6-3)

and
9j0 � 1; U

j0
L 6� 0 and lim

n!1

�tj0;n

�j0;n
DC1: (6-4)

We will use a channel of energy argument based on the following observation, which is a direct consequence
of the explicit form of the solution; see (2-4), (2-6):

Claim 6.1. Let uL be a nonzero solution of the linear wave equation (1-3) with initial data in Lm. Then
there exists A 2 R such that

lim inf
t!C1

Z C1
ACt

rmj@r;tuLj
m dr > 0:

If j � 1, we have
kU

j
L;nkS.ft�0; r�tg/ D kU

j
L kS.ft��

tj;n
�j;n

; r�tC
tj;n
�j;n
g/
:

Noting that under the assumptions of Case 2,

for all j � 1; 1
ft��

tj;n
�j;n

; r�tC
tj;n
�j;n
g
�!
n!1

0

pointwise, otherwise U jL � 0. We obtain

for all j � 1; lim
n!1

kU
j
L;nkS.fr�t�0g/ D 0

and thus
lim
n!1

kSL.t/Eu.tn/kS.fr�t�0g/ D 0:

By the small data theory (see Proposition 2.17) and finite speed of propagation

lim
n!1

�
ku.tnC � /kS.fr�t�0g/C sup

t�0

Z C1
t

ˇ̌
@t;r.u.tnC t /�SL.t/Eu.tn//

ˇ̌m
rm dr

�
D 0: (6-5)

Let j0 be as in (6-4). By Claim 6.1, there exists A 2 R such that

lim inf
t!C1

Z 1
�j0;nA�tj0;nCt

jr@t;rU
j0
L;nj

m dr > 0:

For large n, we have �j0;nA� tj0;n � 0. By Proposition 3.6, we deduce from (6-5) that for large n,

lim inf
t!C1

Z 1
�j0;nA�tj0;nCt�tn

rmj@t;r.u.t; r/� vL.t; r//j
m dr > 0;

contradicting the definition of vL.

Case 3: In this last case we assume

9j � 1; 8n; tj;n D 0 and U
j
L 6� 0: (6-6)

This is the core of the proof, where we use Proposition 4.3, and thus the fact that (1-1) has no nonzero
stationary solution in Lm.
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We will use Section 3D to approximate u, outside appropriate wave cones, by a sum of profiles. As
in Section 3D, we let J0 be the set of indices j such that tj;n D 0 for all n and J1 the set of j such
that tj;n

�j;n
goes to C1 or �1. Extracting subsequences and translating the profiles in time if necessary,

we can assume N n f0g D J0 [J1. Let ı1 > 0 be a small number, smaller than the number given by
the small data theory, and such that there exists j 2 J0 with k EU jL .0/kLm > ı1. We let j0 2 J0 such that
k EU

j0
L .0/kLm > ı1, and�

j 2 J0 and k EU
j
L .0/kLm > ı1

�
D) lim

n!1

�j0;n

�j;n
DC1: (6-7)

We note that by Proposition 3.3, there exists a finite number of j 2 J0 with k EU jL .0/kLm > ı1, so that, in
view of the pseudo-orthogonality property (3-1), j0 is well-defined. By Proposition 4.3, there exist A,
� > 0, U j0 2 S.R/ such that EU j0 2 C 0.R;Lm/,

.@2t ��/U
j0 D �jU j0 j2mU j01fr�ACjt jg; EU j0.0/D TA. EU

j0
L .0//; (6-8)

and the following holds for all t � 0 or for all t � 0:Z C1
jt jCA

jr@t;rU
j0 j
m dr � �: (6-9)

Note that .U jL ; �j;n; tj;n/j�0 with U 0L D vL and �0;n D 1; t0;n D tn is a profile decomposition of Eu.tn/.
According to Lemma 3.5,

u.t C tn/D vL.t C tn/C

JX
jD1

U jn .t/Cw
J
n .t/C "

J
n .t/; t 2 Œ�tn;C1/; (6-10)

where the modulated profiles U jn for j ¤ j0 are defined in Section 3D and

lim sup
n!1

�
k"Jn kS.ft2Œ�tn;C1/; r>A�j0;nCjt jg/

C sup
t��tn

Z C1
jt jCA�j0;n

jr@t;r"
J
n .t; r/j

m dr

�
goes to 0 as J goes to infinity. It can be deduced from Proposition 3.6 that for all sequences .�n/n in
Œ�tn;C1/,

on.1/C

Z C1
A�j0;nCj�nj

ˇ̌
r@r;t .u� vL/.tnC �n; r/

ˇ̌m
dr �

Z C1
A�j0;nCj�nj

jr@r;tU
j0
n .�n; r/j

m dr: (6-11)

Indeed, this can be proved by noticing that (6-10) (and its time derivative) at t D �n can be considered as
a profile decomposition of the sequence ..Eu� EvL/.�nC tn//n and using Proposition 3.6 and finite speed
of propagation. We refer to the proof of (3.18) in [Duyckaerts and Roy 2015] for a detailed proof in a
very similar setting.

If (6-9) holds for t � 0, then by (6-11), for large n,

lim sup
t!C1

Z C1
tCA�j0;n

jr@t;r.u.tn; r/� vL.tn; r//j
m dr �

�

2
;

contradicting the definition of vL.
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If (6-9) holds for t � 0, we use (6-11) at �n D�tn together with (6-9) and obtain that for large nZ C1
tnCA�j0;n

jr@t;r.u.0; r/� vL.0; r//j
m dr �

�

2
;

a contradiction since Eu.0/ 2 Lm. �

6B. Proof of global existence. We argue by contradiction, assuming that (6-1) holds and that TCDTC.u/
is finite. Let v be the regular part of u at t D TC, defined by Proposition 5.1. Recall that v is a solution
of (1-1) defined in a neighborhood of TC.u/ and such that

for all t 2 Imax.u/\ Imax.v/; for all r > TC� t; Eu.t; r/D Ev.t; r/: (6-12)

As in Section 6A, we consider a sequence tn! TC such that Eu.tn/ is bounded in Lm, and we assume
(extracting subsequences if necessary) that .Eu.tn/� Ev.tn//n has a profile decomposition with profiles U jL
and parameters .�j;n; tj;n/n. We distinguish again between three cases.

Case 1: We assume (6-2). By the same proof as in Case 1 of Section 6A, we obtain

lim
n!1



SL. � /.Eu.tn/� Ev.tn//



S..�1;0//

D 0:

By Lemma 2.19, if T < TC.u/ is in the domain of definition of v, close to TC.u/,

lim
n!1

kEu.tn/kS..T;tn// <1;

which contradicts the blow-up criterion

kEu.tn/kS..T;TC.u/// DC1;

Case 2: We assume (6-3) and (6-4). Fix j0 � 1 such that (6-4) holds. Using Claim 6.1 and an argument
very similar to the one of Case 2 of Section 6A, we obtain that for large n,

lim inf
t!TC.u/

Z
r�A�j0;n�tj0;nCt�tn

j@t;r.u� v/.t; r/j
m rm dr > 0;

where A 2 R is given by Claim 6.1, contradicting (6-12) (since for large n, we have A�j0;n� tj0;n � 0).

Case 3: We assume (6-6). We define J0, J1 as in Case 3 of Section 6A and choose j0 2 J0 such that
(6-7) holds. Using Proposition 4.3, we obtain A, � > 0, and a solution U j0 2 S.R/ of (6-8), such that
(6-9) holds for all t � 0 or for all t � 0. We distinguish two cases.

If (6-9) holds for all t � 0, then we prove using Lemma 2.19 and Proposition 3.6 that for large n,

lim inf
t!TC.u/

Z
r�A�j0;nCt�tn

j@t;r.u� v/.t; r/j
m rm dr > 0;

a contradiction with (6-12).
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If (6-9) holds for all t � 0, we let T 2 Œ0; TC.u// such that T is in the domain of definition of v. Using
Lemma 2.19 and Proposition 3.6, we deduce that for large nZ

r�A�j0;nCtn�T

j@t;r.u� v/.T; r/j
m rm dr �

�

2
;

a contradiction for large n, since @t;r.u�v/.T; r/ is supported in jxj � TC�T . This concludes the sketch
of proof.

Appendix: Proof of Proposition 2.1

The “only if” part. First of all, we have a sequence of smooth radial functions .fn/n with compact
supports such that Z C1

0

j@r.f �fn/.r/j
mrm dr! 0; n!1: (A-1)

As a consequence, we clearly have (2-1). Notice that for 0 < r < r 0 <C1, we have

jf .r 0/�f .r/j �
Cm

r
1
m

�Z r 0

r

js@sf .s/j
m ds

�1
m

;

and this yields that f .r/ is continuous.
To see (2-2), we first prove

jf .r/j �
1

r
1
m

�Z C1
r

js@sf .s/j
m ds

�1
m

;

and

jrf .r/j � r
m�1
m

�Z r

0

j@s.sf .s//j
m ds

�1
m

:

Indeed, if f 2 C10 ..0;C1//, then the preceding inequality follows from the fundamental theorem of
calculus and the Hölder inequality. The case of a general function f can be deduced from (A-1). The
desired estimate (2-2) is an immediate consequence of these two inequalities.

The“if” part. Given a radial function f .x/ on R3, satisfying the conditions (2-1), (2-2), we are to construct
a sequence of smooth radial functions fn.x/ compactly supported in R3 such that (A-1) holds.

To achieve this, we take a smooth radial function '.x/ on R3 such that '.x/ D 1 for jxj � 1 and
'.x/D 0 if jxj � 2. Let ."n/n be a sequence of positive numbers, tending to zero as n!1. Define

fn.x/D '."nx/

�
1�'

�
x

"n

��
.f � �"n/.x/; (A-2)

where �".%/ is the usual approximate delta function supported in � "
2
< % < 0 and f � �" denotes the

radial convolution as in [Strauss 1977], namely

f � �".x/D

Z 0

� "
2

�".%/ f .jxj � %/ d%:
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Then it is clear that fn.x/ is smooth, radial and supported in
˚
x 2 R3 j "n � jxj �

2
"n

	
. We have

@r.f .r/�fn.r//D�"n.@r'/."nr/

�
1�'

�
r

"n

��
f .r/ (A-3)

C'."nr/
1

"n
.@r'/

�
r

"n

�
f .r/ (A-4)

C

�
1�'."nr/

�
1�'

�
r

"n

���
@rf .r/ (A-5)

C @r

�
'."nr/

�
1�'

�
r

"n

���Z 0

�
"n
2

.f .r/�f .r � %// �"n.%/ d% (A-6)

C'."nr/

�
1�'

�
r

"n

��Z 0

�
"n
2

.@rf .r/� @rf .r � %// �"n.%/ d%: (A-7)

In view of (2-1), one easily sees that multiplying by r on both sides of the above identity, raising them
to the power m and integrating over .0;C1/, we have the contributions of (A-6), (A-7) go to zero as
n!1. In fact, this is immediate for (A-7) in view of the boundedness of ' and the fact that �" is an
approximation of the identity. For (A-6), we need to estimate two terms produced correspondingly by the
cases when @r hits on '."nr/ and '

�
r
"n

�
. In the first case, we use the fundamental theorem of calculus to

write

f .r/�f .r � %/D

Z 1

0

% @rf .r � �%/ d�:

Applying Minkowski’s inequality, we are led to estimating

"n

Z 0

�
"n
2

Z 1

0

�Z 4
"n

1
2"n

jr@rf .r/j
m dr

�1
m

j% �"n.%/j d� d%;

which is clearly tending to zero as n!1. A similar argument applies to the second case. In fact,
applying the same trick will lead us to estimatingZ 0

�
"n
2

Z 1

0

�Z 2"n

"n
2

jr@rf .r/j
m dr

�1
m j%j

"n
�"n.%/ d� d%;

which tends to zero as n!1.

Next, by invoking (2-2), one sees that the contribution from (A-3) is bounded by

�
sup

1
"n
�r� 2

"n

r
1
m

ˇ̌
f .r/j

�m
�

Z 2
"n

1
"n

j'0."nr/j
m"mn r

m�1 dr! 0; n!1:

Similar argument applies to (A-4) thanks to (2-2). Finally, the contribution of (A-5) is easily seen to be
bounded by Z 2"n

0

jr@rf .r/j
m drC

Z C1
1
"n

jr@rf .r/j
mdr �!0; n!1: �
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