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We consider the semiclassical Dirac operator coupled to a magnetic potential on a large class of manifolds,
including all metric contact manifolds. We prove a sharp Weyl law and a bound on its eta invariant. In the
absence of a Fourier integral parametrix, the method relies on the use of almost analytic continuations
combined with the Birkhoff normal form and local index theory.

1. Introduction

Semiclassical analysis concerns the study of the spectrum of (h-)pseudodifferential operators Ph W
C1.X/! C1.X/, h 2 .0; 1�, in the limit h! 0 and is now the subject of several texts [Dimassi and
Sjöstrand 1999; Guillemin and Sternberg 2013; Ivrii 1998; 2017; Maslov and Fedoriuk 1981; Robert 1987;
Zworski 2012]. Standard examples of such operators include the Schrödinger operator PhD�h2�XCV
on a compact n-dimensional Riemannian manifoldX with potential V 2C1.X/. The clearest asymptotic
result is given by the celebrated Weyl law, see for example [Dimassi and Sjöstrand 1999, Chapter 10], on
the asymptotic number of eigenvalues NŒa; b� in a fixed interval Œa; b�. A related result is on the number
of eigenvalues N.�ch; ch/ of Ph in the finer interval .�ch; ch/: assuming 0 is not a critical value of the
symbol �.P /D p.x; �/ 2 C1.T �X/, one has

N.�ch; ch/DO.h�nC1/ (1-1)

as h! 0, for all c > 0. Similar results also exist in the case where 0 is a Morse–Bott critical level for
the symbol; see [Brummelhuis et al. 1995]. In the critical case, the exponent in the Weyl law may drop
depending on the codimension of zero energy level †P0 WD fp.x; �/D 0g and the signature of the normal
Hessian. The Weyl laws thus obtained are sharp and are proved using a parametrix construction for the
evolution operator e

it
h
Ph as a Fourier integral operator.

In the context of nonscalar operators Ph W C1.X IE/! C1.X IE/ acting on sections of a vector
bundleE, fewer result are known. The simplest case is when the nonscalar symbolp.x; �/2C1.T �X IE/
is smoothly diagonalizable near the zero energy level †P0 D fdet.p.x; �//D0g. In this case, similar
Fourier integral methods apply; see [Emmrich and Weinstein 1996; Maslov and Fedoriuk 1981] or
[Guillemin; Sandoval 1999] for an exposition in the microlocal/classical setting. For nonscalar operators
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another method is provided under the microhyperbolicity condition of Ivrii [1998, Chapters 2 and 3]; see
also [Dimassi and Sjöstrand 1999, Chapter 12]. In this paper, we study the particular case of the magnetic
Dirac operator where neither diagonalizability nor the microhyperbolicity condition is satisfied.

More precisely, let .X; gTX / be an oriented Riemannian manifold of odd dimension n D 2mC 1
equipped with a spin structure. Let S be the corresponding spin bundle and let L be an auxiliary Hermitian
line bundle. Fix a unitary connection A0 on L and let a 2�1.X IR/ be a one-form. This gives a family
of unitary connections on L via rh D A0C i

h
a and a corresponding family of coupled magnetic Dirac

operators

Dh WD hDA0 C ic.a/ (1-2)

for h 2 .0; 1� and where c stands for the Clifford multiplication endomorphism (see Section 2B).
In order to derive sharp spectral asymptotics, we shall make a couple of restrictive assumptions on the

one-form a and the metric gTX. First, the one-form a will be assumed to be a contact one-form (i.e., one
satisfying a^ .da/m > 0). This gives rise to the contact hyperplane H D ker.a/ � TX as well as the
Reeb vector field R defined via iRdaD 0, iRaD 1.

To state the assumption on the metric, consider the contracted endomorphism J W TxX! TxX defined
at each point x 2X via

da.v1; v2/D g
TX .v1; Jv2/ 8v1; v2 2 TxX:

From the contact assumption, J has a one-dimensional kernel spanned by the Reeb vector field R. The
endomorphism J is clearly antisymmetric with respect to the metric

gTX .v1; Jv2/D�g
TX .Jv1; v2/;

and hence its nonzero eigenvalues come in purely imaginary pairs ˙i�, � > 0. The assumption on the
metric gTX is then as follows.

Definition 1.1. We say that the metric gTX is suitable to the contact form a if there exist positive
constants 0<�1 ��2 � � � � ��m (independent of x 2X ) and a positive real function �.x/ > 0 such that

Spec.Jx/D
˚
0; ˙i�1�.x/; ˙i�2�.x/; : : : ; ˙i�m�.x/

	
(1-3)

for all x 2X.

Before proceeding further, we give two examples of suitable metrics:

(1) In the case that the dimension of the manifold X is 3, any metric gTX is suitable, as Spec.Jx/D
f0;˙i jdajg has only two nonzero eigenvalues.

(2) There is a smooth endomorphism J W TX ! TX such that .X2mC1; a; gTX; J / is a metric contact
manifold. That is, we have

J 2v1 D�v1C a.v1/R;

gTX .v1; J v2/D da.v1; v2/ 8v1; v2 2 TxX:
(1-4)
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In this case the nonzero eigenvalues of Jx D Jx are ˙i (each with multiplicity m). For any given
contact form a there exists an infinite-dimensional space of .gTX; J / satisfying (1-4). This case in
particular includes all strictly pseudoconvex CR manifolds.

In addition to the Weyl law we shall also be interested in the asymptotics of the eta invariant �h D �.Dh/
of the Dirac operator, formally its signature (see Section 2A for a definition). The main result is now
stated as follows.

Theorem 1.2. Under the contact and suitability assumptions on a and gTX, the Weyl counting function
and eta invariant of Dh satisfy the sharp asymptotics

N.�ch; ch/DO.h�m/; (1-5)

�h DO.h
�m/ (1-6)

as h! 0.

We note that the exponents above are significantly lower than (1-1). This is again partly attributed to
the high codimension of the zero energy level †D0 . In this case †D0 D f�D � ag � T

�X is the graph of
the contact form a, a submanifold of half-dimension 2mC 1 on which the canonical symplectic form is
maximally nondegenerate of rank 2m.

The proof of the asymptotic result Theorem 1.2 above will be based on a functional trace expansion.
To state the trace expansion involved, set �0 WD �1Œminx2X �.x/� and choose f 2 C1c .�

p
2�0;
p
2�0/.

Pick real numbers 0 < T 0 < T and let � 2 C1c ..�T; T /I Œ0; 1�/ such that �.x/D 1 on .�T 0; T 0/. Let

F�1�.x/ WD L�.x/D
1

2�

Z
eix��.�/ d�;

F�1h �.x/ WD
1

h
L�

�
x

h

�
D

1

2�h

Z
e
i
h
x��.�/ d�

be its classical and semiclassical inverse Fourier transforms respectively. We now have the following
functional trace expansion for the magnetic Dirac operator D DDh given in (1-2).

Theorem 1.3. Let a be a contact form, gTX be a suitable metric and f be as above. There exist smooth
functions uj 2 C1.R/ such that there is a trace expansion

tr
�
f

�
D
p
h

�
.F�1h �/.�

p
h�D/

�
D tr

�
f

�
D
p
h

�
1

h
L�

�
�
p
h�D

h

��

D h�m�1
�
f .�/

N�1X
jD0

uj .�/h
j
2 CO.h

N
2 /

�
(1-7)

for T sufficiently small and for each N 2 N, � 2 R.

Again, the trace (1-7) should be compared with the wave trace expansions for scalar and microhyperbolic
operators [Dimassi and Sjöstrand 1999, Chapters 10 and 12], although a different scale of size

p
h is

being used. In the absence of a Fourier integral parametrix or microhyperbolicity our strategy is to



1796 NIKHIL SAVALE

combine the use of almost analytic continuations with local index theory expansions. We first show that
the trace is O.h1/ in the region spt.�/� fT > jxj � h"g, " 2

�
0; 1
2

�
(see Lemma 3.1). Here the lack of

microhyperbolicity for the symbol poses a difficulty in the use of almost analytic continuations [Dimassi
and Sjöstrand 1999, Chapter 12]; see also [Dimassi and Sjöstrand 1996]. We however show that this can
be overcome with a closer understanding of the total symbol of D via its Birkhoff normal form. It is in
deriving the Birkhoff normal form that Koszul complexes are used and the assumptions on a; gTX are
required. The local index theory method [Bismut 1987; Ma and Marinescu 2007] finally provides the
expansion in the region spt.�/� fjxj< h"g (see Lemma 3.2).

There is a large recent literature for semiclassical problems in the presence of magnetic fields. In
particular the extensive book of Ivrii [2017] specifically considers the case of the magnetic Dirac operator
in Chapter 17. The Birkhoff normal form here (5-13) generalizes Proposition 17.2.1 therein. Our use
of normal forms should also be compared to their use in scalar cases from [Charles and Vũ Ngo. c 2008;
Helffer et al. 2016; Raymond and Vũ Ngo. c 2015]. We note that some of the spectral literature on Dirac
operators treats the massive case (e.g., mass mD 1 in [Helffer and Robert 1983]), where the mass term
renders the symbol diagonalizable. The geometric Dirac operator considered here corresponds to the
odd-dimensional purely massless case.

The asymptotic problem of the eta invariant (1-6) was earlier considered by the author in [Savale
2014], where a nonsharp estimate was proved, under no assumptions on a; gTX, via the use of the heat
trace. This asymptotic problem was first considered and applied in [Taubes 2007] in the proof of the
three-dimensional Weinstein conjecture using Seiberg–Witten theory. The three-dimensional case has
been further explored in [Tsai 2014].

The paper is organized as follows. In Section 2, we begin with preliminary notions used throughout the
paper, including basic facts about Clifford representations, Dirac operators and the semiclassical calculus.
In Section 2B1 we compute the spectrum of a model magnetic Dirac operator on Rm using Clifford
representations and the harmonic oscillator. In Section 3 we perform certain reductions towards proving
Theorem 1.3, including a time scale breakup of the trace into Lemmas 3.1 and 3.2. These reductions are
then used in Section 4 to further reduce Lemma 3.1 to the case of a Euclidean magnetic Dirac operator
on Rn. In Section 5 we obtain the Birkhoff normal form for the Euclidean magnetic Dirac operator on Rn

from Section 4. It is here in Section 5A that Koszul complexes are employed for the normal form. In
Section 6 we show how the normal form is used in proving Lemma 3.1 via the use of almost analytic
continuations. In Section 7 we prove Lemma 3.2 using the methods of local index theory. In Section 8 we
show how to prove the spectral estimates of Theorem 1.2 via the trace expansion Theorem 1.3. Finally, in
the Appendix we prove some spectral estimates useful in Sections 4 and 5.

2. Preliminaries

2A. Spectral invariants of the Dirac operator. Here we review the basic facts about Dirac operators
used throughout the paper, with [Berline et al. 2004] providing a standard reference. Consider a compact,
oriented, Riemannian manifold .X; gTX / of odd dimension nD 2mC 1. Let X be equipped with spin
structure, i.e., a principal Spin.n/ bundle Spin.TX/! SO.TX/ with an equivariant double covering



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1797

of the principal SO.n/-bundle of orthonormal frames SO.TX/. The corresponding spin bundle S D
Spin.TX/�Spin.n/S2m is associated to the unique irreducible representation of Spin.n/. Let rTX denote
the Levi-Civita connection on TX. This lifts to the spin connection rS on the spin bundle S. The Clifford
multiplication endomorphism c W T �X ! S ˝S� may be defined (see Section 2B) satisfying

c.a/2 D�jaj2 8a 2 T �X:

Let L be a Hermitian line bundle on X. Let A0 be a fixed unitary connection on L and let a 2�1.X IR/
be a one-form on X. This gives a family rh D A0C i

h
a of unitary connections on L. We denote by

rS˝L D rS ˝ 1C 1˝rh the tensor product connection on S ˝L. Each such connection defines a
coupled Dirac operator

Dh WD hDA0 C ic.a/D hc ı .r
S˝L/ W C1.X IS ˝L/! C1.X IS ˝L/

for h 2 .0; 1�. Each Dirac operator Dh is elliptic and self-adjoint. It hence possesses a discrete spectrum
of eigenvalues.

We define the eta function of Dh by the formula

�.Dh; s/ WD
X
�¤0

�2Spec.Dh/

sign.�/j�j�s D
1

�
�
sC1
2

� Z 1
0

t
s�1
2 tr.Dhe

�tD2
h/ dt: (2-1)

Here, and in the remainder of the paper, we use the convention that Spec.Dh/ denotes a multiset with
each eigenvalue of Dh being counted with its multiplicity. The above series converges for Re.s/ > n. It
was shown in [Atiyah et al. 1975; 1976] that the eta function possesses a meromorphic continuation to
the entire complex s-plane and has no pole at zero. Its value at zero is defined to be the eta invariant of
the Dirac operator

�h WD �.Dh; 0/:

By including the zero eigenvalue in (2-1), with an appropriate convention, we may define a variant, known
as the reduced eta invariant, by

N�h WD
1
2
fkhC �hg;

with kh D dim kerDh.
The eta invariant is unchanged under positive scaling:

�.Dh; 0/D �.cDh; 0/ 8c > 0: (2-2)

Let Lt;h denote the Schwartz kernel of the operator Dhe�tD
2
h on the product X �X. Throughout the

paper all Schwartz kernels will be defined with respect to the Riemannian volume density. Denote by
tr.Lt;h.x; x// the pointwise trace ofLt;h along the diagonal. We may now analogously define the function

�.Dh; s; x/D
1

�
�
sC1
2

� Z 1
0

t
s�1
2 tr.Lt;h.x; x// dt: (2-3)
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In [Bismut and Freed 1986, Theorem 2.6], it was shown that for Re.s/ > �2, the function �.Dh; s; x/ is
holomorphic in s and smooth in x. From (2-3) it is clear that this is equivalent to

tr.Lt;h/DO.t
1
2 / as t ! 0: (2-4)

The eta invariant is then given by the convergent integral

�h D

Z 1
0

1
p
�t

tr.Dhe
�tD2

h/ dt: (2-5)

2B. Clifford algebra and its representations. Here we review the construction of the spin representation
of the Clifford algebra. The following, being standard, is merely used to set up our conventions and
subsequently compute the spectrum of the model magnetic Dirac operator on Rm in Section 2B1.

Consider a real vector space V of even dimension 2m with metric h � ; � i. Recall that its Clifford algebra
Cl.V / is defined as the quotient of the tensor algebra T .V / WD

L1
jD0 V

˝j by the ideal generated from the
relations v˝ vCjvj2 D 0. Fix a compatible almost complex structure J and split V ˝CD V 1;0˚V 0;1

into the ˙i eigenspaces of J. The complexification V ˝C carries an induced C-bilinear inner product
h � ; � iC, as well as an induced Hermitian inner product hC. � ; � /. Next, define S2m D ƒ�V 1;0. Clearly
S2m is a complex vector space of dimension 2m on which the unique irreducible (spin)-representation of
the Clifford algebra Cl.V /˝C is defined by the rule

c2m.v/! D
p
2.v1;0 ^! � �v0;1!/; v 2 V; ! 2 S2m:

The contraction above is taken with respect to h � ; � iC. It is clear that c2m.v/ W ƒeven/odd ! ƒodd/even

switches the odd and even factors. For the Clifford algebra Cl.W /˝C of an odd-dimensional vector
space W D V ˚RŒe0� there are exactly two irreducible representations. These two (spin)-representations
SC2mC1 D S

�
2mC1 Dƒ

�V 1;0 are defined via

c˙2mC1.v/D c2m.v/; v 2 V;

cC2mC1.e0/!even/odd D�c
�
2mC1.e0/!even/odd D˙i!even/odd:

(2-6)

Throughout the rest of the paper, we stick with the positive convention and use the shorthand c D c2m,
c D cC2mC1 when the indices 2m, 2mC 1 are implicitly understood.

Pick an orthonormal basis e1; e2; : : : ; e2m for V in which the almost complex structure is given by
Je2j�1D e2j , 1� j �m. An hC-orthonormal basis for V 1;0 is now given by wj D 1p

2
.e2j C ie2j�1/,

1�j �m. A basis for S2m and S˙2mC1 is given bywkDw
k1
1 ^� � �^w

km
m with kD.k1;k2; : : : ;km/2f0;1gm.

Ordering the above chosen bases lexicographically in k, we may define the Clifford matrices, of rank 2m,
via


mj D c.ej /; 0� j � 2m;

for eachm. Again, we often write 
mj D 
j with the indexm implicitly understood. Giving representations
of the Clifford algebra, these matrices satisfy the relation


i
j C 
j 
i D�2ıij : (2-7)
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Next, one may further define the Clifford quantization map on the exterior algebra

c Wƒ�W ˝C! End.S2m/;

c.e
k0
0 ^ � � � ^ e

k2m
2m /D c.e0/

k : : : c.e2m/
k2m:

(2-8)

An easy computation yields
c.e0 ^ � � � ^ e2m/D i

mC1:

Furthermore, if e0 ^ � � � ^ e2m is designated to give a positive orientation for W then for ! 2ƒkW we
have

c.�!/D imC1.�1/
k.kC1/
2 c.!/; (2-9)

c.!/� D .�1/
k.kC1/
2 c.!/ (2-10)

under the Hodge star and hC-adjoint. The Clifford quantization map (2-8) is a linear surjection with
kernel spanned by elements of the form �! � imC1.�1/

k.kC1/
2 !. Thus, in particular one has linear

isomorphisms
c Wƒeven/oddW ˝C! End.S2m/: (2-11)

Next, given .r1; : : : ; rm/ 2 Rm n 0, we define

Ir WD fj j rj ¤ 0g � f1; 2; : : : ; mg; (2-12)

Zr WD jIr j; (2-13)

Vr WD
M
j2Ir

CŒwj �� V
1;0; (2-14)

wr WD

mX
jD1

rjwj 2 Vr : (2-15)

Clearly, kwrk D jr j. Denoting by w?r the hC-orthogonal complement of wr � Vr , one clearly has
Vr D CŒwr �˚w

?
r . Hence

ƒevenVr D.ƒ
evenw?r /˚

wr

jr j
^ .ƒoddw?r /;

ƒoddVr D.ƒ
oddw?r /˚

wr

jr j
^ .ƒevenw?r /:

(2-16)

Next, we define

ir Wƒ�Vr !ƒ�Vr via ir.!/ WD
wr

jr j
^!; ir

�
wr

jr j
^!

�
WD ! (2-17)

for ! 2ƒ�w?r . Clearly, i2r D 1 with the decomposition (2-16) implying that

ir WƒevenVr !ƒoddVr ;

ir WƒoddVr !ƒevenVr
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are linear isomorphisms. Next, the endomorphism

c

�
wr � Nwr
p
2

�
D .wr ^C� Nwr / Wƒ

*Vr !ƒ*Vr (2-18)

has the form

c

�
wr � Nwr
p
2

�
D

�
jr jir

jr jir

�
(2-19)

with respect to the decomposition ƒ*Vr D ƒoddVr ˚ ƒ
evenVr . This finally allows us to write the

eigenspaces of (2-18) as

V ˙r D .1˙ ir/.ƒevenVr/ (2-20)

with eigenvalues ˙jr j respectively.

2B1. Magnetic Dirac operator on Rm. We now define the magnetic Dirac operator on Rm via

DRm D

mX
jD1

�
�j

2

�1
2

Œ
2j .h@xj /C i
2j�1xj � 2‰
1
cl.R

m
IC2

m

/: (2-21)

Its square is computed in terms of the harmonic oscillator

D2Rm D H2� ihR2mC1; (2-22)

with

H2 D
1

2

mX
jD1

�j Œ�.h@xj /
2
C x2j �; R2mC1 D

1

2

mX
jD1

�j Œ
2j�1
2j �: (2-23)

It is an easy exercise to show that

R2mC1wk D
i

2

� mX
jD1

.�1/kj�1�j

�
wk : (2-24)

Next, define the lowering and raising operators Aj D h@xj C xj and A�j D�h@xj C xj for 1� j �m,
and the Hermite functions

 �;k.x/ WD  � .x/˝wk;

 � .x/ WD
1

.�h/
m
4 .2h/

j�j
2

p
�Š

� mY
jD1

.A�j /
�j

�
e�
jxj2

2h for � D .�1; �2; : : : ; �m/ 2 Nm0 : (2-25)

It is well known that  �;k.x/ form an orthonormal basis for L2.RmIC2
m

/. Furthermore we have the
standard relations

ŒAj ; A
�
j �D 2h; H2 D

1

2

mX
jD1

�j .AjA
�
j � 1/: (2-26)
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It is clear from (2-22), (2-24) and (2-26) that each  �;k.x/ is an eigenvector of D2Rm with eigenvalue

��;k D h

mX
jD1

.2�j C 1C .�1/
kj�1/

�j

2
:

Hence, clearly the kernel of DRm is one-dimensional and spanned by  0;0 D e�
jxj2

2h . We now find a
decomposition of L2.RmIC2

m

/ into eigenspaces of DRm . First, if we define

N@D
1

2

mX
jD1

�
�j

2

�1
2

c.wj /Aj ; (2-27)

then one quickly computes

N@� D�
1

2

mX
jD1

�
�j

2

�1
2

c. Nwj /A
�
j (2-28)

and
DRm D

p
2.N@C N@�/: (2-29)

For each � 2 Nm0 n 0, we define I� , V� as in (2-12), (2-14) and set

E� WD
M

b2f0;1gI�

C

�Y
j2I�

�
c.wj /Ajp
2�jh

�bj
 �;0

�
:

It is clear that we have an orthogonal decomposition

L2.RmIC2
m

/D CŒ 0;0�˚
M

�2Nm0 n0

E� :

Furthermore, we have the isomorphism

I� Wƒ
�V� !E� ;

I�

�^
j2I�

w
bj
j

�
WD

Y
j2I�

�
c.wj /Ajp
2�jh

�bj
 �;0:

Each E� hence has dimension 2Z� and is closed under c.wj /Aj and c. Nwj /A�j for 1� j �m. We again
have

E� DE
even
� ˚Eodd

� ; where Eeven/odd
� WDI� .ƒ

even/oddV� /; (2-30)

thus giving the Landau decomposition

L2.RmIC2
m

/D CŒ 0;0�˚
M

�2Nm0 n0

.Eeven
� ˚Eodd

� /: (2-31)

The Dirac operator DRm by virtue of (2-27)–(2-29) preserves and acts on E� via

c

�
wr� C Nwr�
p
2

�
D .wr� ^C� Nwr� /;
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under the isomorphism I� , where r� WD .
p
�1�1h; : : : ;

p
�m�mh/ and wr� is as in (2-15). Hence, if we

define i� WDI�ir�I
�1
� WE

even/odd
� !Eodd/even

� , we have that the restriction of DRm to E� is of the form

DRm D

�
jr� ji�

jr� ji�

�
(2-32)

via (2-19). Also note that since Eeven/odd
� �I� .C

1.Rm/˝ƒeven/oddV 1;0/ respectively, one has

c.e0/E
even/odd
� D˙iEeven/odd

� (2-33)

using (2-6). The eigenspaces for DRm are now given by

E˙� DI� .V
˙
� /; (2-34)

via (2-20) with eigenvalues ˙jr� j D ˙
p
�:�h respectively. We now summarize.

Proposition 2.1. An orthogonal decomposition of L2.RmIC2
m

/ consisting of eigenspaces of the magnetic
Dirac operator DRm (2-21) is given by

L2.RmIC2
m

/D CŒ 0;0�˚
M

�2Nm0 n0

.EC� ˚E
�
� /:

Here E˙� , as in (2-34), have dimension 2Z��1 and correspond to the eigenvalues˙
p
�:�h respectively.

2C. The semiclassical calculus. Finally, here we review the semiclassical pseudodifferential calculus
used throughout the paper, with [Guillemin and Sternberg 2013; Zworski 2012] being the detailed
references. Let gl.l/ denote the space of all l � l complex matrices. For A D .aij / 2 gl.l/ we define
jAj Dmaxij jaij j. Denote by S.RnICl/ the space of Schwartz maps f W Rn! Cl. We define the symbol
space Sm.R2nICl/ as the space of maps a W .0; 1�h! C1.R2n

x;�
I gl.l// such that each of the seminorms

kak˛;ˇ WD supx;�;hh�i
�mCjˇ j

j@˛x@
ˇ

�
a.x; �I h/j

is finite for all ˛; ˇ 2 Nn0 . Such a symbol is said to lie in the more refined class a 2 Smcl .R
2nICl/ if there

exists an h-independent sequence ak , k D 0; 1; : : : of symbols such that

a�

� NX
kD0

hkak

�
2 hNC1Sm.R2nICl/ 8N: (2-35)

Symbols as above can be Weyl quantized to define one-parameter families of operators aW WS.RnICl/!
S.RnICl/ with Schwartz kernels given by

aW WD
1

.2�h/n

Z
ei.x�y/:

�
ha

�
xCy

2
; �I h

�
d�:

We denote by ‰mcl .R
nICl/ the class of operators thus obtained by quantizing Smcl .R

2nICl/. This class of
operators is closed under the standard operations of composition and formal-adjoint. Indeed, the Weyl
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symbols of the composition and adjoint satisfy

aW ı bW D .a � b/W WD
�
e
ih
2
.@r1@s2�@r2@s1 /.a.s1; r1I h/b.s2; r2I h//

�W
xDs1Ds2;�Dr1Dr2

;

.aW /� D .a�/W:
(2-36)

Furthermore the class is invariant under changes of coordinates and basis for Cl. This allows one to
define an invariant class of operators ‰mcl .X IE/ on C1.X IE/ associated to any complex vector bundle
on a smooth compact manifold X. These define uniformly in h bounded operators between the Sobolev
spaces H s.X IE/ and H s�m.X IE/ with the h-dependent norm on each Sobolev space defined via

kukH s.X/ WD


.1C h2rE�rE / s2u



L2
; s 2 R;

with respect to any metric gTX, hE on X;E and unitary connection rE.
For A 2‰mcl .X IE/, its principal symbol is well defined as an element in �.A/ 2 Sm.X IEnd.E//�

C1.X IEnd.E//. One has that �.A/D 0 if and only if A 2 h‰mcl .X IE/. We remark that �.A/ is the
restriction of standard symbol in [Zworski 2012] to the refined class ‰mcl .X IE/ and is locally given by
the first coefficient a0 in the expansion of its Weyl symbol. The principal symbol satisfies the basic
relations �.AB/D �.A/�.B/ and �.A�/D �.A/� with the formal adjoints being defined with respect
to the same Hermitian metric hE. The principal symbol map has an inverse given by the quantization
map Op W Sm.X IEnd.E//!‰mcl .X IE/ satisfying �.Op.a//D a 2 Sm.X IEnd.E//. We often use the
alternate notation Op.a/DaW. For a scalar function b2Sm.X/, it is clear from the multiplicative property
of the symbol that ŒaW; bW � 2 h‰mcl .X IE/ and we define Hb.a/ WD i

h
�.ŒaW ; bW �/ 2 Sm.X IEnd.E//.

If a is self adjoint and b real, then it is easy to see that Hb.a/ is self-adjoint. We then define jHb.a/j D
max�2SpecHb.a/ j�j.

The wavefront set of an operator A 2‰mcl .X IE/ can be defined invariantly as a subset WF.A/� T �X
of the fiberwise radial compactification of its cotangent bundle. If the local Weyl symbol of A is given by
a then .x0; �0/…WF.A/ if and only if there exists an open neighborhood .x0; �0I 0/2U � T �X�.0; 1�h
such that a 2 h1h�i�1C k.U ICl/ for all k. The wavefront set satisfies the basic properties

WF.ACB/�WF.A/[WF.B/; WF.AB/�WF.A/\WF.B/ and WF.A�/DWF.A/:

The wavefront set WF.A/D∅ is empty if and only if A 2 h1‰�1.X IE/. We say that two operators A
and B are equal microlocally on U � T �X if WF.A�B/\U D∅. We also define by ‰ccl.X IE/ the
class of pseudodifferential operators A with wavefront set WF.A/b T �X compactly contained in the
cotangent bundle. It is clear that ‰ccl.X IE/�‰

�1
cl .X IE/.

An operatorA2‰mcl .X IE/ is said to be elliptic if h�im�.A/�1 exists and is uniformly bounded on T �X.
IfA2‰mcl .X IE/, m>0, is formally self-adjoint such thatACi is elliptic then it is essentially self-adjoint
(with domain C1c .X IE/) as an unbounded operator on L2.X IE/. Its resolvent .A�z/�1 2‰�mcl .X IE/,
z 2 C, Im z ¤ 0, now exists and is pseudodifferential by an application of Beals’s lemma. The resolvent
furthermore has an expansion .A�z/�1�

P1
jD0 h

j Op.azj / in‰�mcl .X IE/. Here each symbol appearing
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in the expansion has the form

azj D .�.A/� z/
�1azj;1.�.A/� z/

�1
� � � .�.A/� z/�1azj;2j .�.A/� z/

�1
2 S�m.X IEnd.E//;

where az
j;k

is a polynomial in z symbols for k D 1; : : : ; 2j . Given a Schwartz function f 2 S.R/, the
Helffer–Sjöstrand formula now expresses the function f .A/ of such an operator in terms of its resolvent
and an almost analytic continuation Qf via

f .A/D
1

2�

Z
C

N@ Qf .z/.A� z/�1 dz d Nz:

Plugging the resolvent expansion into the above formula then shows that the above lies in and has an
expansion f .A/�

P1
jD0 h

jA
f
j in ‰�1cl .X IE/. Finally, one defines the classical �-energy level of A

via
†A� D

˚
.x; �/ 2 T �X

ˇ̌
det
�
�.A/.x; �/��I

�
D 0

	
:

Now, the form for the coefficients of the resolvent expansion also shows

WF.f .A//�†Aspt.f / WD
[

�2spt.f /

†A� :

2C1. The class ‰m
ı
.X IE/. In Section 3 we shall need the more exotic class of symbols Sm

ı
.R2nIC/

defined for each 0 < ı < 1
2

. A function a W .0; 1�h!C1.R2n
x;�
IC/ is said to be in this class if and only if

kak˛;ˇ WD supx;�;hh�i
�mCjˇ jh.j˛jCjˇ j/ı j@˛x@

ˇ

�
a.x; �I h/j (2-37)

is finite for all ˛; ˇ 2 Nn0 . This class of operators is closed under the standard operations of composition,
adjoint and changes of coordinates allowing the definition of the exotic pseudodifferential algebra ‰m

ı
.X/

on a compact manifold. The class Sm
ı
.X/ is a family of functions a W .0; 1�h! C1.T �X IC/ satisfying

the estimates (2-37) in every coordinate chart and induced trivialization. Such a family can be quantized to
aW 2‰m

ı
.X/ satisfying aW bW D .ab/W Ch1�2ı‰mCm

0�1
ı

.X/ for another b 2 Sm
0

ı
.X/. The operators

in ‰0
ı
.X/ are uniformly bounded on L2.X/. Finally, the wavefront of an operator A 2 ‰m

ı
.X IE/ is

similarly defined and satisfies the same basic properties as before.

2C2. Fourier integral operators. We shall also need the local theory of Fourier integral operators. Let
� W U ! V be an exact symplectomorphism between two open subsets U � T �X and V � T �Y
inside cotangent spaces of manifolds of same dimension n. Assume that there exist local coordinates
.x1; : : : ; xn/;.y1; : : : yn/ on �.U /; �.V / respectively with induced canonical coordinates .x; �/; .y; �/
on U; V . A function S.x; �/ 2 C1.�/ on an open subset �� R2nx;� is said to be a generating function
for the graph of � if the Lagrangian submanifolds

.T �X/� .T �Y /� �ƒ� WD
˚
..x; �/I �.x; �//

ˇ̌
.x; �/ 2 U

	
and

˚
.x; @xS I @�S; �/

ˇ̌
.x; �/ 2�

	
are equal. Here .T �Y /� denotes the cotangent bundle with the negative canonical symplectic form. A
generating function S always exists locally near any point onƒ� . Letting a W .0; 1�h!C1c .���.V /IC/,
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which admits an expansion a.x; y; �I h/�
P1
kD0 h

kak.x; y; �/, one may now define a Fourier integral
operator associated to � via

A W L2.Y /! L2.X/;

.Af /.x/D
1

.2�h/n

Z
R2n

e
i
h
.S.x;�/�y:�/a.x; y; �I h/f .y/ dy d�:

The symbol of �.A/2C1c .ƒ� IC/ is defined using the generating function via �.A/.x; �/Da0.x; @xS; �/.
The adjoint A� is again a Fourier integral operator associated to the symplectomorphism ��1. The
wavefront set of A maybe defined as a subset WF.A/ � T �X � T �Y . A point .x; �Iy; �/ is not in
WF.A/ if and only if there exist pseudodifferential operators B 2‰mcl .X/; C 2‰

m0

cl .Y / with .x; �Iy; �/2
WF.B/�WF.C / such that kBACkH s.Y /!H s0 .X/ DO.h

1/ for each s; s0 2 R. It can be shown that the
wavefront set is in fact a compact subset WF.A/�ƒ� . Given a pseudodifferential operator B 2‰mcl .X/,
Egorov’s theorem says that the composite is a pseudodifferential operator A�BA 2‰mcl .Y /. Moreover
its principal symbol is given via �.A�BA/D .��1/�j�.A/j2�.B/ 2 C1c .V /, where we have again used
the identification of V with ƒ� given by the generating function. Finally one has the wavefront relation
WF.A�BA/�WF.A/\WF.B/, again using the identifications of U; V and ƒ� .

An important special case arises when � D etHg is the time t flow of a Hamiltonian g 2 Sm.T �X/.
The operator e

it
h
gW, defined as a unitary operator via Stone’s theorem, is now a Fourier integral op-

erator associated to �. Egorov’s theorem now gives that the conjugation e
it
h
gWAe�

it
h
gW
2 ‰m

0

cl .X/ is
pseudodifferential for each A 2‰m

0

cl .X/ with principal symbol �.e
it
h
gWAe�

it
h
gW /D .etHg/��.A/.

3. First reductions

The trace expansion theorem, Theorem 1.3, will be proved in two steps based on the following two
lemmas. Below, �; T; T 0; f; � and D are the same as in Section 1.

Lemma 3.1. Let " 2
�
0; 1
2

�
and # 2 C1c ..T

0h"; T /I Œ�1; 1�/. Then

tr
�
f

�
D
p
h

�
.F�1h #/.�

p
h�D/

�
D tr

�
f

�
D
p
h

�
1

h
L#

�
�
p
h�D

h

��
DO.h1/

for all � 2 R.

We note that in the above lemma the function # is allowed to depend on h, while its support and range
are contained in h-independent intervals.

Lemma 3.2. There exist smooth functions uj 2 C1.R/ such that for each � 2 R and " 2
�
0; 1
2

�
one has

a trace expansion

tr
�
f

�
D
p
h

�
.F�1h �"/.�

p
h�D/

�
D tr

�
f

�
D
p
h

�
1

h1�"
L�

�
�
p
h�D

h1�"

��
D h�m�1

�N�1X
jD0

cjh
j
2CO.h

N
2 /

�
;

where �".x/ WD �.x=h"/.
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We note that the trace expansion theorem, Theorem 1.3, follows from the above two lemmas by simply
splitting

�.x/D �".x/C Œ�.x/� �".x/�„ ƒ‚ …
#.x/

and applying Lemmas 3.2 and 3.1 to the first and second summands respectively. Lemma 3.2 is a relatively
classical expansion proved via local index theory and will be deferred to Section 7. Our main occupation
until then is in proving Lemma 3.1.

As a first step, for � > 0 fixed one chooses a microlocal partition of unity A˛ 2‰0cl.X/, 0� ˛ �N ,
satisfying

NX
˛D0

A˛D 1; WF.A0/�U0�T �X n†D.��;�/; WF.A˛/bU˛�†D.�2�;2�/; 1�˛�N; (3-1)

subordinate to an open cover fU˛gN˛D0 of T �X. Clearly, it suffices to prove

tr
�
A˛f

�
D
p
h

�
L#

�
�
p
h�D

h

�
Aˇ

�
DO.h1/ (3-2)

for 1� ˛; ˇ �N with WF.A˛/\WF.Aˇ /¤∅.
By the Helffer–Sjöstrand formula we have the trace above is given by

T #˛ˇ .D/ WD
1

2�

Z
C

N@ Qf .z/ L#

�
�� z
p
h

�
tr
�
A˛

�
1
p
h
D� z

��1
Aˇ

�
dz d Nz (3-3)

for Qf an almost analytic extension of f . We note that the resolvent, the above trace, and the left-hand
side of (3-2) are well defined for any essentially self-adjoint pseudodifferential operator in place of D.
The next reduction step attempts to modify D without affecting the asymptotics of T #

˛ˇ
.D/. To this end,

choose open subsets U˛ˇ , V˛ˇ such that

WF.A˛/\WF.Aˇ /�U˛ˇ
\

WF.A˛/[WF.Aˇ /�V˛ˇ b T �X

(3-4)

for each such pair ˛; ˇ with WF.A˛/\WF.Aˇ / ¤ ∅. With d D �.D/ 2 C1.X I iu.S//, define the
required exit time

T˛ˇ WD
1

infg2G˛ˇ jHgd j
; where G˛ˇ WD

˚
g 2 C1.T �X I Œ0; 1�/

ˇ̌
gjU˛ˇ D 1; gjV c˛ˇ

D 0
	
: (3-5)

If one were to use a scalar symbol d 2 C1.X/ instead in (3-5), the required exit time T˛ˇ would have
the following significance: any Hamiltonian trajectory 
.t/D etHd with 
.0/ 2 U˛ˇ and 
.T / 2 V c

˛ˇ

would have length T � T˛ˇ at least the required exit time. We now have the following.



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1807

Lemma 3.3. Let D0 2‰1cl.X IE/ be essentially self-adjoint such that DDD0 microlocally on V˛ˇ . Then
for # 2 C1c ..T

0
˛ˇ
h"; T˛ˇ /I Œ0; 1�/, 0 < T 0˛ˇ < T˛ˇ , one has

T #˛ˇ .D/D T #˛ˇ .D
0/ mod h1:

Proof. Let B 2‰0cl.X/ be a microlocal cutoff such that B D 0 on WF.D�D0/ and B D 1 on V˛ˇ . Then
.1�B/Aˇ D 0 microlocally implies�
z�

1
p
h
D

�
B

�
z�

1
p
h
D0
��1
Aˇ

D Aˇ �

�
1
p
h
D;B

�
.z�D0/�1Aˇ CB

�
1
p
h
D0�

1
p
h
D

��
z�

1
p
h
D0
��1
Aˇ .mod h1/ (3-6)

in trace norm. Next, multiplying through by A˛
�
z� 1p

h
D
��1and using A˛B D A˛ microlocally gives

A˛

�
z�

1
p
h
D0
��1

Aˇ�A˛

�
z�

1
p
h
D

��1
Aˇ DA˛

�
z�

1
p
h
D

��1
B

�
1
p
h
D0�

1
p
h
D

��
z�

1
p
h
D0
��1

Aˇ

�A˛

�
z�

1
p
h
D

��1� 1
p
h
D;B

��
z�

1
p
h
D0
��1

Aˇ

CO.jImzj�1h1/ (3-7)

in trace norm. Now B D 0 on WF.D �D0/ gives that the first term on the right-hand side above is
O.jIm zj�2h1/.

We now estimate the second term. Let S˛ˇ < S 00
˛ˇ
< S 000

˛ˇ
< T˛ˇ and S 0

˛ˇ
> T 0

˛ˇ
be such that

# 2 C1c .ŒS
0
˛ˇ
h"; S˛ˇ �I Œ0; 1�/. Let g0 2 G˛ˇ with jHg0.d/j � 1=S

000
˛ˇ

. Set g D ˛zg0, where

˛z Dmin
�

S 00
˛ˇ

Im z
p
h log.1=h/

;N

�
;

with the constant N > 0 to be specified later. We note that

G D .eg log 1
h /W 2 h�N‰0ı .X/

for each 0 < ı < 1
2

. Since it has an elliptic symbol, we may construct its inverse by symbolic calculus
G�1 2 hN‰0

ı
.X/. Moreover

G

�
z�

1
p
h
Dh

�
G�1 D

�
z�

1
p
h
Dh

�
C i

�̨
z

p
h log

1

h

�
.Hg0.d//

W ; (3-8)

with

RDO

�
h
3
2˛z log

1

h

�
in S0ı .X/: (3-9)

Now, since ˇ̌̌̌�̨
z

p
h log

1

h

�
Hg0.d/

ˇ̌̌̌
�

S 00
˛ˇ

S 000
˛ˇ

jIm zj< jIm zj;
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the inverse G
�
z� 1p

h
Dh
��1

G�1 of the above exists and is O.jIm zj�1/ in operator norm for Im z ¤ 0

and h sufficiently small.
Next, pick C 2‰0cl.X/ such that WF.C /�U˛ˇ and C D 1 on WF.A˛/\WF.Aˇ /. Now GD e˛z log 1

h

on WF.CA˛/, G DG�1 D I on WF.B/ nV˛ˇ and ŒDh; B�D 0 on V˛ˇ imply

e˛z log 1
hCA˛

�
z�

1
p
h
Dh

��1� 1
p
h
Dh; B

�
DCA˛G

�
z�

1
p
h
Dh

��1
G�1

�
1
p
h
Dh; B

�
CO.jIm zj�1h1/

in trace norm. The above is now O.jIm zj�1h�n/ in trace norm. Hence

CA˛

�
z�

1
p
h
Dh

��1� 1
p
h
Dh; B

�
DO

�
jIm zj�1h�n max.hN ; e�

S00
˛ˇ

Imz
p
h /

�
in trace norm. This and CA˛Aˇ D A˛Aˇ now estimate the second term of (3-7) to give

A˛

�
z�

1
p
h
D0h

��1
Aˇ �A˛

�
z�

1
p
h
Dh

��1
Aˇ DO

�
jIm zj�2h�n max.hN ; e�

S00
˛ˇ

Imz
p
h /

�
(3-10)

in trace norm.
Next, we have the Paley–Wiener estimate

L#

�
�� z
p
h

�
D

8̂<̂
:O.e

S˛ˇ.Imz/p
h /; Im z > 0;

O.e
S0
˛ˇ
.Imz/

h1=2�" /; Im z < 0:

(3-11)

Introduce  2 C1.RI Œ0; 1�/ such that

 .x/D

�
1; x � 1;

0; x � 2:

Setting

 M .z/D  

�
Im z

M
p
h log.1=h/

�
for another constant M > 1 yet to be chosen, we have the estimate

N@. M Qf /D

8̂<̂
:O

�
 M jIm zjN C

1

M
p
h log.1=h/

1Œ1;2�

�
Im z

M
p
h log.1=h/

��
; Im z > 0;

O.jIm zjN /; Im z < 0:

(3-12)

Finally, (3-10)–(3-12), along with the observation

 M jIm zjN DO

��
M
p
h log

1

h

�N�
;
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give

T #˛ˇ .D
0/� T #˛ˇ .D/

D
1

�

Z
C

N@. M Qf / L#

�
�� z
p
h

��
A˛

�
z�

1
p
h
D0h

��1
Aˇ �A˛

�
z�

1
p
h
Dh

��1
Aˇ

�
dz d Nz

DO.h1/CO

�Z
fM
p
h log 1

h
�Im z�2M

p
h log 1

h
g

h�n
p
h log 1

h

max.hN e
S˛ˇ.Imz/p

h ; e
�
.S00
˛ˇ
�S˛ˇ/ Imz
p
h /

�
DO

�
max.hN�2MS˛ˇ�n; hM.S

00
˛ˇ
�S˛ˇ/�n/

�
:

Choosing M � n=.S 00
˛ˇ
�S˛ˇ / and furthermore N � 2MS˛ˇ Cn gives the result. �

In the proof above we have closely followed [Dimassi and Sjöstrand 1999, Lemma 12.7]. Again, the
proof above avoids the use of an unknown parametrix for e

it
h
D which, following the significance of the

required exit time T˛ˇ noted before, maybe used to give an alternate proof in the case when d is scalar.

4. Reduction to Rn

In this section we shall further reduce to the case of a Dirac operator on Rn. First we cover X by a finite
set of Darboux charts f's W�s!�0s �Rngs2S for the contact form a, centered at points fxsgs2S 2X. By
shrinking the partition of unity (3-1) we may assume that for each pair ˛; ˇ, with WF.A˛/\WF.Aˇ /¤∅,
the open sets V˛ˇ � T ��s in (3-4) are contained in some Darboux chart. Now consider such a chart �s
with coordinates.x0; : : : ; x2m/ centered at xs 2X and an orthonormal frame fej Dwkj @xkg, 0� j � 2m,
for the tangent bundle on �s . We hence have

wkj gklw
l
r D ıjr ; (4-1)

where gkl is the metric in these coordinates and the Einstein summation convention is being used. Let
� l
jk

be the Christoffel symbols for the Levi-Civita connection in the orthonormal frame ei satisfying
rej ek D �

l
jk
el . This orthonormal frame induces an orthonormal frame uq , 1 � q � 2m, for the spin

bundle S. We further choose a local orthonormal section l.x/ for the Hermitian line bundle L and define
via rA0ej lD ‡j .x/l, 0� j � 2m, the Christoffel symbols of the unitary connection A0 on L. In terms
of the induced frame uq˝ l, 1� q � 2m, for S ˝L the Dirac operator (1-2) has the form [Berline et al.
2004, Section 3.3]

D D 
jwkj PkC h
�
1
4
� ljk


j 
k
l C‡j 

j
�
; (4-2)

where
Pk D h@xk C iak; (4-3)

and

a.x/D ak dx
k
D dx0C

mX
jD1

.xj dxjCm� xjCm dxj / (4-4)

is the standard contact one-form in these coordinates.
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The expression in (4-2) is formally self-adjoint with respect to the Riemannian density e0^� � �^e2mD
p
g dx WD

p
g dx0 ^ � � � ^ dx2m with g D det.gij /. To get an operator self-adjoint with respect to the

Euclidean density dx, one expresses the Dirac operator in the framing g
1
4uq ˝ l, 1 � q � 2m. In this

new frame the expression (4-2) for the Dirac operator needs to be conjugated by g
1
4 and hence the term

h
jwkj g
� 1
4 .@xkg

1
4 / needs to be added. Hence, the Dirac operator in the new frame has the form

D D Œ�jwkj .�kC ak/�
W
C hE 2‰1cl.�

0
s IC

2m/;

with �j D i
j, for some self-adjoint endomorphism E.x/ 2 C1.�0s I iu.C
2m//.

The one-form a is extended to all of Rn by the same formula (4-4). The functions wkj are extended
such that

.wkj @xk ˝ dx
j /j.K0s /c D @x0 ˝ dx

0
C

mX
jD1

�
1
2

j .@xj ˝ dx
j
C @xjCm ˝ dx

jCm/

�
and hence gj.K0s /c D dx20 C

Pm
jD1 �j .dx

2
j C dx

2
jCm/

�
outside a compact neighborhood �0s b K0s .

These extensions may further be chosen such that the suitability assumption Definition 1.1 holds globally
on Rn and for an extended positive function � 2 C1c .R

n/ satisfying

�0 � �1.inf
Rn
�/: (4-5)

The endomorphism E.x/ 2 C1c .R
nI iu.C2

m

// is extended to an arbitrary self-adjoint endomorphism of
compact support. This now gives

D0 D Œ�
jwkj .�kC ak/�

W
C hE 2‰1cl.R

n
IC2

m

/; (4-6)

as a well defined formally self adjoint operator on Rn. Furthermore, the symbol of D0C i is elliptic in
the class S0.m/ for the order function

mD

�
1C

2mX
kD0

.�kC ak/
2

�1
2

;

and hence D0 is essentially self adjoint; see [Dimassi and Sjöstrand 1999, Chapter 8]. Below # 2

C1c ..T
0
˛ˇ
h"; T˛ˇ /I Œ0; 1�/, 0 < T 0˛ˇ < T˛ˇ , as before and we set V 0

˛ˇ
WD .d's/

�V˛ˇ � T
��0s .

Proposition 4.1. There exist A0˛; A
0
ˇ
2‰0cl.R

n/, with WF.A0˛/[WF.A0
ˇ
/b V 0

˛ˇ
� T � z�s , such that

T #˛ˇ .D/D tr
�
A0˛f

�
D0
p
h

�
L#

�
�
p
h�D0

h

�
A0ˇ

�
„ ƒ‚ …

WDT #
˛ˇ
.D0/

mod h1:

Proof. Let K 0
˛ˇ
; K 00

˛ˇ
and V 0

˛ˇ
; V 00
˛ˇ

be compact and open subsets respectively satisfying V˛ˇ �K 0˛ˇ �
V 0
˛ˇ
�K 00

˛ˇ
� V 00

˛ˇ
� T ��s . Choose D0 2‰0cl.X IS/ self-adjoint such that DDD0 microlocally on K 0

˛ˇ

and
†D

0

.�1;2�� � V
0
˛ˇ (4-7)



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1811

and set E DD0� 3� 2‰0cl.X IS/. Pick a cutoff function �.xIy; �/ 2 C1c
�
�.V 00

˛ˇ
/� .d's/

�V 00
˛ˇ
I Œ0; 1�

�
such that �D 1 on �.K 00

˛ˇ
/� .d's/

�K 00
˛ˇ

. Now define the operator

U W L2.RnIC2
m

/! L2.X IS/;

.Uf /.x/D
1

.2�h/n

Z
e
i
h
.'s.x/�y/:��.xIy; �/f .y/ dy d�; x 2X:

The above is a semiclassical Fourier integral operator associated to symplectomorphism � D .d'�1s /�

given by the canonical coordinates. Its adjoint U � W L2.X IS/! L2.RnIC2
m

/ is again a semiclassical
Fourier integral operator associated to the symplectomorphism ��1 D .d's/

�. A simple computation
gives the following compositions are pseudodifferential with

UU � D I microlocally on K 00˛ˇ ; (4-8)

U �U D I microlocally on �.K 00˛ˇ /: (4-9)

The composition

E 0 DE0 WD U
�EU 2‰0cl.R

n
IC2

m

/

is now a pseudodifferential operator by Egorov’s theorem with symbol

�.E0/D .d's/
��2:�.E/: (4-10)

Similarly, E 00 WD UE0U
� 2‰0cl.X IS/ and

�.E 00/D .d's/
��4:�.E0/: (4-11)

By (4-7), (4-10) and (4-11) we have†E0
.�1;���

� �.V 0
˛ˇ
/ and†

E 00
.�1;���

�V 0
˛ˇ

. Hence by Proposition A.6,
E;E 0; E0 and E 00 all have discrete spectrum in .�1;���. We now select g 2 C1c .�5�;��/ such that
g D 1 on Œ�4�;�2��. We have

WF.g.E//�†Espt.g/ �†
E
.�1;��� � V

0
˛ˇ :

Combined with (4-9) this gives .U �U�I /g.E/2h1‰�1cl .X IS/ and hence k.U �U�I /g.E/kDO.h1/
as an operator on L2.X IS/. This in turn now gives

.U �U � I /…E

.kEkkU kC 1/DO.h1/; (4-12)

with …E D…E
Œ�4�;�2��

denoting the spectral projector of E onto the interval Œ�4�;�2��. Similarly, we
get 

.UU �� I /…E0

.kE0kkU �kC 1/DO.h1/: (4-13)

Another easy computation gives E DE 00 microlocally on K 00
˛ˇ

and we may similarly estimate

.E �E 00/…E 00

DO.h1/: (4-14)
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Next we define A0˛ WD U
�A˛U; A

0
ˇ
WD U �AˇU 2‰

0
cl.R

n/ and again note

UA0˛A
0
ˇU
�
D A˛Aˇ microlocally on K 00˛ˇ ;

U �A˛AˇU D A
0
˛A

0
ˇ microlocally on �.K 00˛ˇ /:

(4-15)

This again gives 

ŒUA0˛A0ˇU ��A˛Aˇ �…E

DO.h1/; (4-16)

ŒU �A˛AˇU �A0˛A0ˇ �…E0

DO.h1/: (4-17)

Now using (4-12), (4-13), (4-14), (4-16), (4-17) and using the cyclicity of the trace we may apply
Proposition A.5 of the Appendix with

�.x/D f

�
xC 3�
p
h

�
L#

�
�
p
h� 3� � x

h

�
to get

tr
�
A˛f

�
D0
p
h

�
L#

�
�
p
h�D0

h

�
Aˇ

�
� tr

�
A0˛f

�
D00
p
h

�
L#

�
�
p
h�D00
h

�
A0ˇ

�
DO.h1/

forD00 WDE0C3� . Finally observingDDD0 on V˛ˇ , D0DD00 on V 0
˛ˇ

and using Lemma 3.3 completes
the proof. �

5. Birkhoff normal form for the Dirac operator

In this section we derive a Birkhoff normal form for the Dirac operator (4-6) on Rn. First consider the
function

f0 WD

�
x0�0�

x0

.
p
2� 1/

�
ln 4
�
C

mX
jD1

.xjxjCmC �j �jCm/:

If Hf0 and etHf0 denote the Hamilton vector field and time t flow of f0 respectively then it is easy to
compute

e
�
4
Hf0 .x0; �0/D

�
p
2x0;

�0C 1
p
2

�
;

e
�
4
Hf0 .xj ; �j I xjCm; �jCm/D

�
xj C �jCm
p
2

;
�xjCmC �j
p
2

I
xjCmC �j
p
2

;
�xj C �jCm
p
2

�
:

We abbreviate .x0; � 0/ D .x1; : : : ; xmI �1; : : : ; �m/, .x00; � 00/ D .xmC1; : : : ; x2mI �mC1; : : : ; �2m/ and
.x; �/ D .x0; x

0; x00I �0; �
0; � 00/. Further, let oN � S1cl.R

2nICl/ denote the subspace of self-adjoint
symbols a W .0; 1�h! C1.R2n

x;�
I iu.2m// such that each of the coefficients ak , k D 0; 1; 2; : : : , in its

symbolic expansion (2-35) vanishes to order N in .�0; x0; � 0/ at 0. We also denote by oN the space of
Weyl quantizations of such symbols.

Using Egorov’s theorem, the operator (4-6) is conjugated to

e
i�
4h
fW0 D0e

� i�
4h
fW0 D dW0 ; (5-1)
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with
d0 D

p
2.�jw0j;f0�0C �

jwkj;f0�kC �
jwkCm

j;f0
xk/C ho0; (5-2)

where
wkj;f0 D .e

��
4
Hf0 /�wkj : (5-3)

Note that the index k ranges from 1 to m in the Einstein summation above. A Taylor expansion of d0,
given in (5-2), in .�0; x0; � 0/ now gives r0j 2 o2, 0� j � 2m, such that

d0 D
p
2�j . Nw0j �0C Nw

k
j �kC Nw

kCm
j xk/C �

j r0j C ho0

and where Nwkj .x0; x
00; � 00/D wkj

�
x0;�

�00
p
2
; x
00
p
2

�
. On squaring using (4-1) we obtain

.dW0 /
2
DQW0 C ho1C o3C h

2o0;

with

Q0 D
�
x0 �0 �

0
�24 Ng.kCm/.lCm/.x0; x00; � 00/ Ng.kCm/0.x0; x00; � 00/ Ng.kCm/l.x0; x00; � 00/Ng0.lCm/.x0; x

00; � 00/ Ng00.x0; x
00; � 00/ Ng0l.x0; x

00; � 00/

Ngk.lCm/.x0; x
00; � 00/ Ngk0.x0; x

00; � 00/ Ngkl.x0; x
00; � 00/

3524x0�0
� 0

35:
Here Ngkl.x0; x00; � 00/ D 2gkl

�
x0;�

�00
p
2
; x
00
p
2

�
and the gkl are the components of the inverse metric

on T �Rn.
Next we consider another function f1 of the form

f1 D
1
2

�
x0 �0 �

0
� � ˛m�m.x0; x

00; � 00/ 
m�mC1.x0; x
00; � 00/


 tmC1�m.x0; x
00; � 00/ ˇmC1�mC1.x0; x

00; � 00/

�24x0�0
� 0

35;
where ˛; ˇ and 
 are matrix-valued functions of the given orders, with ˛; ˇ symmetric. An easy
computation now shows

.eHf1 /�

24x0�0
� 0

35D eƒ
24x0�0
� 0

35C o2;
with

ƒ.x0; x
00; � 00/D

�
0 �ImC1�mC1

Im�m 0

� �
˛m�m.x0; x

00; � 00/ 
m�mC1.x0; x
00; � 00/


 tmC1�m.x0; x
00; � 00/ ˇmC1�mC1.x0; x

00; � 00/

�
:

From the suitability assumption (1-3), we have that there exist smooth matrix-valued functions ˛; ˇ and 

such that

�
x0 �0 �

0
�
eƒ

t

24 Ng.kCm/.lCm/.x0; x00; � 00/ Ng.kCm/0.x0; x00; � 00/ Ng.kCm/l.x0; x00; � 00/Ng0.lCm/.x0; x
00; � 00/ Ng00.x0; x

00; � 00/ Ng0l.x0; x
00; � 00/

Ngk.lCm/.x0; x
00; � 00/ Ngk0.x0; x

00; � 00/ Ngkl.x0; x
00; � 00/

35 eƒ
24x0�0
� 0

35
D �20 C N�

� mX
jD1

�j .x
2
j C �

2
j /

�
C o3;
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where

N�.x0; x
00; � 00/D �

�
x0;�

� 00
p
2
;
x00
p
2

�
: (5-4)

Letting

H2 D
1

2

mX
jD1

�j .x
2
j C �

2
j /;

Egorov’s theorem now gives

e
i
h
fW1 dW0 e

� i
h
fW1 D

� 2mX
jD0

�j bj

�W
C ho0; (5-5)

with
2mX
jD0

b2j D .�
2
0 C 2 N�H2/

W
C o3:

Another Taylor expansion in the variables .x0; �0; � 0/ givesAD.ajk.x0;x00; � 00//2C1.Rn.x0;x00;�00/Iso.n//
and rj 2 o2, j D 0; : : : ; 2m, such that

e�A

264 b0
:::

b2m

375D
2666666664

�0

.2 N��1/
1
2x1

.2 N��1/
1
2 �1

:::

.2 N��m/
1
2xm

.2 N��m/
1
2 �m

3777777775
C

264 r0
:::

r2m

375 :

We may now set cA D 1
i
ajk�

j�k 2 C1.Rn
.x0;x00;�00/

I iu.2m// and compute

eic
W
A e

i
h
fW1 dW0 e

� i
h
fW1 e�ic

W
A D dW1 ; (5-6)

where

d1 DH1C �
j rj C ho0; (5-7)

H1 WD �0�0C .2 N�/
1
2

mX
jD1

�
1
2

j .xj�2j�1C �j�2j /: (5-8)

5A. Weyl product and Koszul complexes. We now derive a formal Birkhoff normal form for the sym-
bol d1 in (5-7). First denote by R D C1.x0; x

00; � 00/ the ring of real-valued functions in the given
2mC 1 variables. Further define

S WDRŒŒx0; �0; �
0
I h��;

the ring of formal power series in the further given 2mC 2 variables with coefficients in R. The ring
S ˝C is now equipped with the Weyl product

a � b WD
�
e
ih
2
.@r1@s2�@r2@s1 /.a.s1; r1I h/b.s2; r2I h//

�
xDs1Ds2;�Dr1Dr2

;
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corresponding to the composition formula (2-36) for pseudodifferential operators, with

Œa; b� WD a � b� b � a

being the corresponding Weyl bracket. It is an easy exercise to show that for a; b 2 S real-valued, the
commutator i Œa; b� 2 S is real-valued.

Next, we define a filtration on S. Each monomial hk�a0 .x
0/˛.� 0/ˇ in S is given the weight 2kC aC

j˛jC jˇj. The ring S is equipped with a decreasing filtration

S DO0 �O1 � � � � �ON � : : : ;
\
N

ON D f0g;

whereON consists of those power series with monomials of weightN or more. It is an exercise to show that

ON �OM �ONCM ;

ŒON ; OM �� ihONCM�2:

The associated grading is given by

S D

1M
ND0

SN ;

where SN consists of those power series with monomials of weight exactly N . We also define the quotient
ring DN WD S=ONC1 whose elements may be identified with the set of homogeneous polynomials with
monomials of weight at most N . The ring DN is also similarly graded and filtered. In a similar vein,
we may also define the ring

S.m/D S ˝ glC.2
m/

of R˝ glC.2
m/-valued formal power series in .x0; �0; � 0I h/. The ring S.m/ is equipped with an induced

product � and decreasing filtration

O0.m/�O1.m/� � � � �ON .m/� � � � ;
\
N

ON .m/D f0g;

whereON .m/DON˝glC.2
m/. It is again a straightforward exercise to show that for a; b 2S˝iuC.2

m/

self-adjoint, the commutator i Œa; b� 2 S ˝ iuC.2
m/ is self-adjoint.

5A1. Koszul complexes. Let us now again consider the 2m and .2mC1/-dimensional real inner product
spaces V DRŒe1; : : : ; e2m� andW DRŒe0�˚V from Section 2B. Considering the chain groupsDN˝ƒkV ,
k D 0; 1; : : : ; n, one may define four differentials

w0x D

mX
jD1

�
1
2

j .xj e2j�1 ^C�j e2j^/; i0x D

mX
jD1

�
1
2

j .xj ie2j�1 C �j ie2j /;

w0@ D

mX
jD1

�
1
2

j .@xj e2j�1 ^C@�j e2j^/; i0@ D

mX
jD1

�
1
2

j .@xj ie2j�1 C @�j ie2j /:
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We equip DN with the RŒŒh��-valued inner products, where the distinct monomials

1p
aŠ˛ŠˇŠ

�a0 .x
0/˛.� 0/ˇ

are orthonormal. With these inner products w0x; i
0
@

and w0
@
; i0x are respectively adjoints. The combinatorial

Laplacians �0 D w0xi
0
@
C i0

@
w0x D w

0
@
i0x C i

0
xw

0
@

are computed to be equal and act on basis elements
�a0 .x

0/˛.� 0/ˇ
�V

e

j
j

�
via multiplication by�:.2.˛Cˇ/C
/. It now follows that these have (co-)homology

only in degree zero given by RŒŒh��.
Similarly, we may consider the chain groups DN ˝ƒkW, k D 0; 1; : : : ; n; one may define four

differentials
wx D �0e0 ^C.2 N�/

1
2w0x; ix D �0ie0 C .2 N�/

1
2 i0x ;

w@ D @�0e0 ^C.2 N�/
1
2w0@ ; i@ D @�0ie0 C .2 N�/

1
2 i0@ :

Again these complexes have cohomology only in degree zero given by RŒŒh��.
Next, we define twisted Koszul differentials on DN ˝ƒkV via

Qw0@ D
i

h

mX
jD1

�
1
2

j .adxj e2j�1 ^Cad�j e2j^/D
mX
jD1

�
1
2

j .@xj e2j ^�@�j e2j�1^/;

Qi0@ D
i

h

mX
jD1

�
1
2

j .adxj ie2j�1 C ad�j ie2j /D
mX
jD1

�
1
2

j .@xj ie2j � @�j ie2j�1/:

We note that the above are symplectic adjoints to their untwisted counterparts with respect to the symplectic
pairing

Pm
jD1 e2j�1 ^ e2j on V .

Similar twisted Koszul differentials on DN ˝ƒkW are defined via

Qw@ D
i

h
ad�0e0 ^C.2 N�/

1
2 Qw0@ D�@x0e0 ^C.2 N�/

1
2 Qw0@ ;

Qi@ D
i

h
ie0ad�0 C .2 N�/

1
2 Qi0@ D�@x0ie0 C .2 N�/

1
2 Qi0@ :

These twisted differentials correspond to the untwisted ones by a mere change of basis in V , W and hence
also have (co-)homology only in degree zero given by RŒŒh��.

We now compute the twisted combinatorial Laplacian to be

Q�0 D Qw0@ i
0
x C i

0
x Qw

0
@ D�.w

0
x
Qi0@ C
Qi0@w

0
x/D

mX
jD1

�j Œ�j @xj � xj @�j C e2j ie2j�1 � e2j�1ie2j �:

One may similarly define Q� D Qw@ix C ix Qw@. Next, we define the spaces of twisted Q�0-harmonic,
�0-independent elements

HkN D
˚
! 2DN ˝ƒ

kW
ˇ̌
Q�0!D0; @�0!D0

	
;

Hk D
˚
! 2 S ˝ƒkW

ˇ̌
Q�0!D0; @�0!D0

	
:

We now prove a twisted version of the Hodge decomposition theorem.
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Lemma 5.1. The k-th chain group is spanned by three subspaces:

DN ˝ƒ
kW D RŒIm.ix Qw@/; Im. Qw@ix/;HkN �:

Proof. We first compute Q� in terms of Q�0 to be

Q�D��0@x0 C 2 N�
Q�0� 2.@x0 N�

1
2 /e0i

0
x :

Next, since Q�0 is skew-adjoint, we may decompose

DN ˝ƒ
kW DE0˚

M
�>0

ŒEi�˚E�i��

into its eigenspaces. Following Œ Q�0; N�� D 0 we may now invert Q� on the nonzero eigenspaces of Q�0

above using the Volterra series:

Q��1 D .2 N� Q�0/�1
1X
jD0

�
.2 N� Q�0/�1.�0@x0 C 2.@x0 N�

1
2 /e0i

0
x /
�j
:

The sum above is finite since �0@x0 C 2.@x0 N�
1
2 /e0i

0
x is nilpotent on DN ˝ƒkW . Thus we haveM

�>0

ŒEi�˚E�i��� Im. Q�/� R
�
Im.ix Qw@/; Im. Qw@ix/

�
:

Finally, we have the decomposition

E0 D

NM
jD0

�
j
0H

k
N

and we write each ! 2 �j0H
k
N , j � 1, as

! D !0C Q�!1;

where

!0 D

�
�2.@x0 N�

1
2 /e0i

0
x�
�1
0

Z x0

0

�j
! 2HkN ;

!1 D�

�
��10

Z x0

0

� j�1X
lD0

�
�2.@x0 N�

1
2 /e0i

0
x�
�1
0

Z x0

0

�l
!;

to complete the proof. �

5B. Formal Birkhoff normal form. The importance of the Koszul complexes introduced in the previous
subsection is in continuing the Birkhoff normal form procedure for the symbol d1 in (5-7). The remaining
steps in the procedure are formal.

First let us define the Clifford quantization of an element in a 2 S˝ƒkW using (2-8) as an element in

c0.a/ WD i
k.kC1/
2 c.a/ 2 S.m/:



1818 NIKHIL SAVALE

It is clear from (2-10) and (2-11) this gives an isomorphism

c0 W S ˝ƒ
odd/evenW ! S ˝ iuC.2

m/ (5-9)

of real elements of the even or odd exterior algebra with self-adjoint elements in S.m/. It is clear from
(5-7) that

d1 DH1C c0.r/C hS ˝ iuC.2
m/ (5-10)

for r WD
Pn
jD1 rj ej 2O2˝W .

For a 2ƒkW , we define Œa� WD
�
k
2

�
. Now for f 2ON , N � 3, and a 2ON ˝ƒevenW , N � 1, we

may compute the conjugations

e
i
h
fH1e

� i
h
f
DH1C c0. Qw@f /CON ˝ iuC.2

m/; (5-11)

eic0.a/H1e
�ic0.a/ DH1C .�1/

Œa�C12c0.ixa/C hc0. Qw@a/CONC2˝ iuC.2
m/ (5-12)

in terms of the Koszul differentials.
We now come to the formal Birkhoff normal form for the symbol d1.

Proposition 5.2. There exist f 2O3, a 2O2˝ƒevenW and ! 2Hodd\O2 such that

eic0.a/e
i
h
f d1e

� i
h
f e�ic0.a/ DH1C c0.!/: (5-13)

Proof. We first prove that for each N � 1, there exist fN 2O3, a0N 2O1˝ƒ
2W , !0N 2H

1\O2 and
r0N 2ONC1˝W such that

eic0.a
0
N /e

i
h
fN d1e

� i
h
fN e�ic0.a

0
N / DH1C c0.!

0
N /C c0.r

0
N /C hS ˝ iuC.2

m/;

fNC1�fN 2ONC2; a0NC1� a
0
N 2ON ; !0NC1�!

0
N 2ONC1:

(5-14)

The base case N D 1 is given by (5-10) with a01 D f1 D !
0
1 D 0 and r01 D r . To complete the induction

step we decompose r0N as

r0N D u0N„ƒ‚…
2SNC1˝W

C r0NC1„ƒ‚…
2ONC2˝W

: (5-15)

Next we use Lemma 5.1 to find bN ; gN 2ONC1˝W and �0N 2H
1\SNC1 such that

u0N D �
0
N � ix Qw@b

0
N � Qw@ixg

0
N CONC2: (5-16)

Next, define fNC1 D fN C ixg0N 2O3, a0NC1 D a
0
N C

1
2
Qw@b

0
N 2O1˝ƒ

2W and !0NC1 D !
0
N C �

0
N .

We now use (5-11), (5-12), (5-15) and (5-16) to compute

eic0.a
0
NC1

/e
i
h
fNC1d1e

� i
h
fNC1e�ic0.a

0
NC1

/

D eic0.
1
2
Qw@b

0
N /e

i
h
ixg

0
NH1e

� i
h
ixg

0
N e�ic0.

1
2
Qw@b

0
N /C c0.!

0
N /C c0.r

0
N /C hS ˝ iuC.2

m/

DH1C c0.!
0
NC1/C c0.r

0
NC1/C hS ˝ iuC.2

m/;
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completing the induction step. Now setting f D limN!1 fN , a0D limN!1 a0N and !0D limN!1 !0N
and letting N !1 in (5-14) gives the relation

eic0.a0/e
i
h
f d1e

� i
h
f e�ic0.a0/ DH1C c0.!0/C hS ˝ iuC.2

m/: (5-17)

Next we claim that for each N � 0, there exist aN 2O1˝ƒevenW , !N 2H�\O2 such that

eic0.aN /e
i
h
f d1e

� i
h
f e�ic0.aN / DH1C c0.!N /C hON ˝ iuC.2

m/;

aNC1� aN 2ONC1˝ƒ
evenW; !NC1�!N 2Hodd

\ON :
(5-18)

The base case N D 0 is now provided by (5-17). To complete the induction step, we use the isomorphism
(5-9) to decompose the remainder term in (5-18) above as

c0.uN /C ihONC1˝ uC.2
m/

for uN 2 SN ˝ƒoddW . Next we use Lemma 5.1 to find bN ; gN 2ON ˝ƒoddW and �N 2Hodd\SN

such that
uN D �N � ix Qw@bN � Qw@ixgN CONC1: (5-19)

Now define aNC1 D aN C ixgN C 1
2
h.�1/ŒbN � Qw@bN 2O1 and !NC1 D !N C�N . We now use (5-11),

(5-12), (5-15) and (5-19) to compute

eic0.aNC1/e
i
h
f d1e

� i
h
f e�ic0.aNC1/ DH1C c0.!NC1/C ihONC1˝ uC.2

m/;

completing the induction step. Now setting aD limN!1 aN and ! D limN!1 !N and letting N !1
in (5-18) gives the proposition. �

Finally, we show how the Birkhoff normal form maybe used to perform a further reduction on the
trace. First note that we may similarly use (2-8) to define a self-adjoint Clifford–Weyl quantization map

cW0 WD Op˝c0 W S0cl.R
2n
IC/˝ƒodd/evenW !‰0cl.R

n
IC2

m

/;

which maps real-valued symbols S0cl.R
2nIR/˝ƒodd/evenW to self-adjoint operators in ‰0cl.R

nIC2
m

/.
Similarly we define a space of real-valued, twisted Q�0-harmonic, �0- independent symbols

HkS0cl WD
˚
! 2 S0cl.R

2n
IR/˝ƒkW

ˇ̌
Q�0!D0; @�0!D0

	
:

Next, an application of Borel’s lemma by virtue of (5-1), (5-6) and (5-13) gives the existence of

Na �

1X
jD0

hj Naj 2 S
0
cl.R

2n
IR/˝ƒoddW; Nf �

1X
jD0

hj Nfj 2 S
0
cl.R

2n
IR/;

Nr �

1X
jD0

hj Nrj 2 S
0
cl.R

2n
IR/˝ƒoddW; N! �

1X
jD0

hj N!j 2HoddS0cl

such that
eic

W
0 . Na/e

i
h
NfW dW0 e

� i
h
NfW e�ic

W
0 . Na/ DHW

1 C c
W
0 . N!/„ ƒ‚ …

WDD

CcW0 . Nr/ (5-20)



1820 NIKHIL SAVALE

on V ˛ˇ WD e
X Nf0 .V 0

˛ˇ
/. Here fNrj gj2N0 , Nf0, N!0 vanish to infinite, second and second order respectively

along

†
D0
0 D†

D
0 D†

DCcW0 . Nr/

0 D f�0Dx
0
D� 0D0g:

Note that on account of (4-5) and (5-4) one again has

�0 D �1 min
x2X

�.x/� �1 inf
Rn
x0;x
00;�00

N�:

Furthermore, since N!0 vanishes to second order we may choose N!0 arbitrarily small satisfying the estimate

k N!0kC1 < " (5-21)

for any " > 0, while still satisfying (5-20).
We note that D 2‰1cl.R

nIC2
m

/, with DC i having an elliptic symbol in the class S0.h�0; � 0i/, and
is hence essentially self-adjoint as an unbounded operator on L2.RnIC2

m

/. The domain of its unique
self-adjoint extension is H 1.Rx0/˝L

2.Rn�1x0;x00 IC
2m/; see [Dimassi and Sjöstrand 1999, Chapter 8]. We

now set

A˛ WD e
icW0 . Na/e

i
h
NfWA0˛e

� i
h
NfW e�ic

W
0 . Na/; (5-22)

T #˛ˇ .D/ WD tr
�
A˛f

�
D
p
h

�
L#

�
�
p
h�D

h

�
Aˇ

�
D
1

�

Z
C

N@ Qf .z/ L#

�
�� z
p
h

�
tr
�
A˛

�
1
p
h
D� z

��1
Aˇ

�
dz d Nz: (5-23)

Proposition 5.3. We have

T #˛ˇ .D0/D T #˛ˇ .D/ mod h1:

Proof. Since the conjugations in (5-1) and (5-20) are unitary and WF.A˛/;WF.Aˇ /� V ˛ˇ , we have

T #˛ˇ .D0/D
1

�

Z
C

N@ Qf .z/ L#

�
�� z
p
h

�
tr
�
A˛

�
1
p
h
.DC cW0 . Nr//� z

��1
Aˇ

�
dz d Nz:

It now remains to do away with the cW0 . Nr/ above. Since this term vanishes to infinite order along
†D0 D†

DCcW0 . Nr/
0 , we may use symbolic calculus to find PN ;QN 2‰0cl.R

nIC2
m

/, for all N � 1, such
that

cW0 . Nr/D PN .DC c
W
0 . Nr//

N; (5-24)

cW0 . Nr/DQN .D/
N : (5-25)



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1821

Modifying D outside a neighborhood of V ˛ˇ using Lemma 3.3 and Proposition A.6 we may assume that
D;DC cW0 . Nr/ have discrete spectrum in .�

p
2�0;
p
2�0/ and hence

T #˛ˇ .D/D tr
�
A˛f

�
D
p
h

�
L#

�
�
p
h�D

h

�
Aˇ

�
;

T #˛ˇ .D0/D tr
�
A˛f

�
DC cW0 . Nr/
p
h

�
L#

�
�
p
h�D� cW0 . Nr/

h

�
Aˇ

�
:

Next, with…DD…D
Œ�
p
2�0h;

p
2�0h�

and…DCc
W
0 . Nr/D…

DCcW0 . Nr/

Œ�
p
2�0h;

p
2�0h�

denoting the spectral projections,
(5-24) and (5-25) give

kcW0 . Nr/…
D
k DO.h

N
2 /; kcW0 . Nr/…

DCcW0 . Nr/k DO.h
N
2 /

for each N � 1. Finally applying Proposition A.5 with

�.x/D f

�
x
p
h

�
L#

�
�
p
h� x

h

�
and using the cyclicity of the trace gives T #

˛ˇ
.D0/� T #

˛ˇ
.D/DO.h�1h

N
4096 /, for all N � 1, completing

the proof. �

6. Extension of a resolvent

In this section we complete the proof of Lemma 3.1. On account of the reductions in Propositions 4.1 and
5.3 in the previous sections, it suffices to now consider the trace T #

˛ˇ
.D/. First let A˛ D aW˛ , Aˇ D aWˇ

for a˛; aˇ 2 S0cl.R
2n/. The conjugations

e
it
h
x0A˛e

� it
h
x0 D aW˛;t and e

it
h
x0Aˇe

� it
h
x0 D aWˇ;t

are easily computed in terms of the one-parameter family of symbols a˛;t .�0; : : :/ D a˛.�0 C t; : : :/,
aˇ;t D aˇ .�0C t; : : :/ 2 S

0
cl.R

2n/, t 2 R, obtained by translating in the �0-direction. One now introduces
almost analytic continuations of the symbols a˛;t , aˇ;t 2 S0cl.R

2n/, defined for t 2 C, such that all the
Fréchet seminorms of N@a˛;t , N@aˇ;t are O.jIm t j1/. These may be further chosen to have the property that
the wavefront sets of their quantizations have uniform compact support when t is restricted to compact
subsets of C. Again one clearly has

aW˛;t D e
i Re t
h
x0.a˛;i Im t /

W e�
i Re t
h
x0; (6-1)

aWˇ;t D e
i Re t
h
x0.aˇ;i Im t /

W e�
i Re t
h
x0: (6-2)

In similar vein we may define

D t WD e
� it
h
x0De

it
h
x0 DHW

1;t C c
W
0 . N!/; (6-3)

H1;t D .�0C t /�0C .2 N�/
1
2

mX
jD1

�
1
2

j .xj�2j�1C �j�2j / 2 S
1
cl.R

2n/ (6-4)
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for t 2 R, on account of the �0-independence of N!. An almost analytic continuation of D t is easily intro-
duced by simply allowing t 2C to be complex in (6-4) above. The resolvent .D t�z/

�1 WL2.RnIC2
m

/!

L2.RnIC2
m

/ is well defined and holomorphic in the region Im z > jIm t j.
In the lemma below we set t D i
.M; ı/ WD i2Mhı log 1

h
, for ıD 1�"2

�
1
2
; 1
�

with " as in Lemma 3.1
and M > 1. We now have the following.

Lemma 6.1. For h sufficiently small and for all "0 > 0, the resolvent�
1
p
h
Di
 � z

��1
W L2.RnIC2

m

/! L2.RnIC2
m

/

extends holomorphically, and is uniformly O.h�
1
2 /, in the region Im z > �Mhı�

1
2 log 1

h
, jRe zj �

p
2�0� "0.

Proof. We begin with the orthogonal Landau decomposition (2-31)

L2.RnIC2
m

/D L2.RmC1x0;x00
/˝

�
CŒ 0;0�˚

M
�2�:.Nm0 n0/

ŒEeven
� ˚Eodd

� �

�
„ ƒ‚ …

DL2.Rm
x0
IC2

m
/

; (6-5)

where

Eeven
� WD

M
�2Nm0 n0

�D�:�

Eeven
� ; Eodd

� WD

M
�2Nm0 n0

�D�:�

Eodd
� (6-6)

according to the eigenspaces of the squared magnetic Dirac operator D2Rm (2-21) on Rm. It is clear from
(6-4) that

HW
1;t D .�0C t /

W �0C Œ.2 N�/
1
2 �W ˝DRm

in terms of the above decomposition. Furthermore one has the commutation relations

Œ�0;D
2
Rm �D 0;

ŒcW0 . N!/;D
2
Rm �D ihc

W
0 .
Q�0 N!/D 0;

since N! is Q�0-harmonic. The above and (6-3) show that the
�
1p
h
D t � z

�
preserves the eigenspaces in the

decomposition (6-5) for all t 2 C. It hence suffices to consider the restriction of
�
1p
h
Di
 � z

�
to each

eigenspace.
Let E0 WD CŒ 0;0�; E� WD E

even
� ˚Eodd

� and P0; P� denote the projection onto the corresponding
summands of (6-5). Define the restrictions

˝0 WD P0cW0 . N!/P0 W L
2.RmC1x0;x00

/! L2.RmC1x0;x00
/;

˝� WD P�cW0 . N!/P�W L
2.RmC1x0;x00

IEeven
� ˚Eodd

� /! L2.RmC1x0;x00
IEeven

� ˚Eodd
� /; � > 0:
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Now N! �
P1
jD0 h

j N!j 2HoddS0cl with �0-independent N!0 vanishing to second order along †D00 D†
D
0 D

f�0Dx
0D� 0D0g. Hence we may decompose

N!0 D
X
i�j

Œaij zizj C Naij Nzi Nzj C bij Nzizj C Nbij zi Nzj �

in terms of the complex coordinates zj D xj C i�j , Nzj D xj � i�j , 1 � j � m, with aij ; bij 2
S0cl.R

2nIR/˝ƒoddW . The self-adjoint Clifford–Weyl quantization now yields

cW0 . N!0/D
X
i�j

�
cW0 .aij /AiAj CA

�
j A
�
i c
W
0 . Naij /C c

W
0 .bij /A

�
i Aj CA

�
j Aic

W
0 .
Nbij /

�
C h‰0cl.R

n
IC2

m

/

in terms of the raising and lowering operators in (2-26). Since each lowering operator Aj annihilates
 0;0, this leads to the estimate

k˝0k DO.h/: (6-7)

Next, on account of (5-21) one may also expand N!0D
Pm
jD1Œaj zjCNaj Nzj �, with aj 2S0cl.R

2nIR/˝ƒoddW ,
satisfying kaj kC0 � " < 1. On self-adjoint quantization this now gives

cW0 . N!0/D

mX
jD1

�
cW0 .aj /Aj CA

�
j c
W
0 . Naj /

�
C h‰0cl.R

n
IC2

m

/;

where
kcW0 .aj /kL2!L2 ; kc

W
0 . Naj /kL2!L2 D kaj kC0 CO.h/� "CO.h/:

Knowing the action of the lowering and raising operators Aj , A�j on each eigenstate (2-25) of D2Rm gives
the estimate

k˝�k � "
p
�hCO.h/; (6-8)

with the O.h/ term above being uniform in �.
Next we compute the restriction of

�
1p
h
Di
 � z

�
to the E0 eigenspace in (6-5) using (2-6) to be

Di
;0.z/ WD P0

�
1
p
h
Di
 � z

�
P0 D

1
p
h
Œ��0� i
 � z

p
hC˝0�: (6-9)

The above is again understood as a closed unbounded operator on L2.RmC1x0;x00
/ with domain H 1.Rx0/˝

L2.Rmx00/. Set Ri
;0.z/D Œri
;0.z/�W, with

ri
;0.z/D

p
h

��0� i
 � z
p
h
;

which is well defined for Im z > �
=.2
p
h/D�Mhı�

1
2 log 1

h
, and compute

Ri
;0.z/Di
;0.z/D I CO.h
1�ı/;

Di
;0.z/Ri
;0.z/D I CO.h
1�ı/

using (6-7). This shows that the inverse Di
;0.z/�1 exists and is O.Ri
;0.z//DO.h
1
2
�ı/.
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Next, we compute the restriction of
�
1p
h
Di
 �z

�
to the E�, �> 0, eigenspace in (6-5). Using (2-32),

(2-33) this has the form

Di
;�.z/ WD P�

�
1
p
h
Di
 � z

�
P� D

1
p
h

"
��0� i
 � z

p
h .
p
2 N��h/W

.
p
2 N��h/W �0C i
 � z

p
h

#
C

1
p
h
˝�

with respect to the Z2-grading E�DEeven
� ˚Eodd

� . Here we leave the identification i� in (2-32) between
the odd and even parts as being understood. Set Ri
;�.z/D Œri
;�.z/�W, where

ri
;�.z/ WD

p
h

z2h� .�0C i
/2� 2 N��h

"
��0� i
 � z

p
h .

p
2 N��h/

.
p
2 N��h/ �0C i
 � z

p
h

#
;

which is well defined for jRe zj �
p
2�0� "0 < infRn

p
2 N��, and h sufficiently small. We now compute

kRi
;�.z/Di
;�.z/� Ik � C"CO.h/;

kDi
;�.z/Ri
;�.z/� Ik � C"CO.h/

using (6-8) with the constants above being uniform in �. Choosing " sufficiently small in (5-21) shows
that the inverse Di
;�.z/�1 exists and is O.Ri
;�.z//DO.h�

1
2 / uniformly. �

We now finally finish the proof of Lemma 3.1.

Proof of Lemma 3.1. As noted in the beginning of the section, on account of (3-2), (3-3) and the reductions
in Propositions 4.1 and 5.3, it suffices to show T #

˛ˇ
.D/DO.h1/. We now define the trace

�˛ˇ;t .z/ WD tr
�
aW˛;t

�
1
p
h
D t � z

��1
aWˇ;t

�
; Im z > jIm t j; (6-10)

in terms of the almost analytic continuations. We clearly have

�˛ˇ;t .z/DO.h
�n
jIm zj�1/;

@

@Nt
�˛ˇ;t .z/DO.h

�n
jIm t j1jIm zj�2/:

Furthermore, by (6-1)–(6-3) �˛ˇ;t .z/ only depends on Im t and we have

�˛ˇ;i Im t .z/D �˛ˇ;0.z/CO.h
�n
jIm t j1jIm zj�2/: (6-11)

As before, we again introduce  2 C1.RI Œ0; 1�/ such that

 .x/D

�
1; x � 1;

0; x � 2;

and set

 M .z/D  

�
Im z

M
p
h log 1

h

�
:
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The estimates (3-11), (3-12) along with the observation  M jIm zjN DO
��
M
p
h log 1

h

�N � now give

T #˛ˇ .D/D
1

�

Z
C

N@. M Qf / L#

�
�� z
p
h

�
�˛ˇ;0.z/ dz d Nz

DO.h1/C
1

�

Z
fM
p
h log 1

h
�Im z�2M

p
h log 1

h
g

N@. M Qf / L#

�
�� z
p
h

�
�˛ˇ;0.z/ dz d Nz:

Using (6-11) and 
 D 2Mhı log 1
h

, ı 2
�
1
2
; 1
�
, the above now equals

T #˛ˇ .D/DO.h
1/C

1

�

Z
fM
p
h log 1

h
�Im z�2M

p
h log 1

h
g

N@. M Qf / L#

�
�� z
p
h

�
�˛ˇ;i
 .z/ dz d Nz:

Since the resolvent
�
1p
h
Di
 � z

��1, and hence the trace �˛ˇ;i
 .z/, extends holomorphically to Im z >

�Mhı�
1
2 log 1

h
, jRe zj �

p
2�0� "0 by Lemma 6.1 we may replace the integral in the last line above:

T #˛ˇ .D/DO.h
1/C

1

�

Z
f�1=2Mhı�1=2 log 1

h
�Imz�� 1

4
Mhı�1=2 log 1

h
g

N@. M Qf / L#

�
��z
p
h

�
�˛ˇ;i
 .z/dz d Nz

DO.h1/CO

�Z
f�1=2Mhı�1=2 log 1

h
�Imz�� 1

4
Mhı�1=2 log 1

h
g

h�n�1=2
p
h log.1=h/

e
S0
˛ˇ
.Imz/

h1=2�" dz d Nz

�
DOŒh

M
4
.S 0
˛ˇ
/�n� 1

2 �

using (3-11) and O.h�
1
2 / estimate on the resolvent

�
1p
h
Di
 � z

��1. Choosing M sufficiently large now
gives the result. �

7. Local trace expansion

In this section we prove Lemma 3.2. This is a relatively classical trace expansion. A parametrix construc-
tion for the operator e

it
h
D2
h may potentially be employed in its proof since the principal symbol of D2

h
is

Morse–Bott critical, as in [Brummelhuis et al. 1995]. However Lemma 3.2 would require an understanding
of the large time behavior of parametrix left open in that paper; see [Camus 2004; Khuat-Duy 1997]. Here
we prove the expansion using the alternate methods of local index theory. The expansion is analogous to
the heat trace expansions arising in the analysis of the Bergman kernel [Bismut 1987; Ma and Marinescu
2007]. Here we adopt a modification of the approach in [Ma and Marinescu 2007, Chapters 1 and 4].

First, fix a point p 2X. On account of Definition 1.1 there is an orthonormal basis e0;p DRp, ej;p,
ejCm;p , j D1; : : : ; m, of TpX consisting of eigenvectors of Jp with eigenvalues 0;˙�j;p.WD˙i�j �.p//,
j D 1; : : : ; m, such that

da.p/D

mX
jD1

�j .p/e
�
j;p ^ e

�
jCm;p: (7-1)

Using the parallel transport from this basis, fix a geodesic coordinate system .x0; : : : ; x2m/ on an open
neighborhood of p 2�. Let ej Dwkj @xk , 0� j � 2m, be the local orthonormal frame of TX obtained by
parallel transport of ej;p D @xj jp , 0� j � 2m, along geodesics. Hence we again have wkj gklw

l
r D ıjr ,

wkj jp D ı
k
j , with the gkl being the components of the metric in these coordinates. Choose an orthonormal
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basis fuq.p/g2
m

qD1for Sp in which Clifford multiplication

c.ej /jp D 
j (7-2)

is standard. Choose an orthonormal basis lp for Lp. Parallel transport the bases fuq.p/g2
m

qD1, lp along
geodesics using the spin connection rS and unitary family of connections rh D A0C i

h
a to obtain trivi-

alizations fuqg2
m

qD1, l of S , L on �. Since Clifford multiplication is parallel, the relation (7-2) now holds
on �. The connection rS˝LDrS˝1C1˝rh can be expressed in this frame and these coordinates as

r
S˝L

D d CAhj dx
j
C�j dx

j; (7-3)

where eachAhj is a Christoffel symbol ofrh and each �j is a Christoffel symbol of the spin connection rS.
Since the section l is obtained via parallel transport along geodesics, the connection coefficient Ahj may
be written in terms of the curvature F h

jk
dxj ^ dxk of rh via

Ahj .x/D

Z 1

0

d�.�xkF hjk.�x//: (7-4)

The dependence of the curvature coefficients F h
jk

on the parameter h is seen to be linear in 1
h

via

F hjk D F
0
jkC

i

h
.da/jk (7-5)

despite the fact that they are expressed in the h-dependent frame l. This is because a gauge transformation
from an h-independent frame into l changes the curvature coefficient by conjugation. Since L is a line
bundle, this is conjugation by a function and hence does not change the coefficient. Furthermore, the
coefficients in the Taylor expansion of (7-5) at 0 maybe expressed in terms of the covariant derivatives
.rA0/lF 0

jk
, .rA0/l.da/jk evaluated at p. Next, using the Taylor expansion

.da/jk D .da/jk.0/C x
lajkl ; (7-6)

we see that the connection rS˝L has the form

r
S˝L

D d C

�
i

h

�
xk

2
.da/jk.0/C x

kxlAjkl

�
C xkA0jkC�j

�
dxj; (7-7)

where

A0jk D

Z 1

0

d�.�F 0jk.�x//; Ajkl D

Z 1

0

d�.�ajkl.�x//

and �j are all independent of h. Finally from (7-2) and (7-7) may write down the expression for the
Dirac operator (1-2) also given as D D hc ı .rS˝L/ in terms of the chosen frame and coordinates to be

D D 
rwjr
�
h@xj C i

1
2
xk.da/jk.0/C ix

kxlAjkl C h.x
kA0jkC�j /

�
(7-8)

D 
r
�
wjr h@xj C iw

j
r
1
2
xk.da/jk.0/C

1
2
hg�

1
2 @xj .g

1
2wjr /

�
C 
r

�
iwjr x

kxlAjkl C hw
j
r .x

kA0jkC�j /�
1
2
hg�

1
2 @xj .g

1
2wjr /

�
2‰1cl.�

0
s IC

2m/: (7-9)

In the second expression above, both square brackets are self-adjoint with respect to the Riemannian
density e1 ^ � � � ^ en D

p
g dx WD

p
g dx1 ^ � � � ^ dxn with g D det.gij /. Again one may obtain an
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expression self-adjoint with respect to the Euclidean density dx in the framing g
1
4uq˝ l, 1� q � 2m,

with the result being an addition of the term h
jwkj g
� 1
4 .@xkg

1
4 /.

Let ig be the injectivity radius of gTX. Define the cutoff � 2 C1c .�1; 1/ such that �D 1 on
�
�
1
2
; 1
2

�
.

We now modify the functions wkj , outside the ball Big=2.p/, such that wkj D ı
k
j (and hence gjk D ıjk)

are standard outside the ball Big.p/ of radius ig centered at p. This again gives

DD 
r
�
wjr h@xj C iw

j
r
1
2
xk.da/jk.0/C

1
2
hg�

1
2 @xj .g

1
2wjr /

�
C�.jxj=ig/


r
�
iwjr x

kxlAjkl C hw
j
r .x

kA0jkC�j /�
1
2
hg�

1
2 @xj .g

1
2wjr /

�
2‰1cl.R

n
IC2

m

/ (7-10)

as a well defined operator on Rn formally self adjoint with respect to
p
g dx. Since DC i is elliptic in

the class S0.m/ for the order function

mD

q
1Cgjl

�
�j C

1
2
xk.da/jk.0/

��
�l C

1
2
xr.da/lr.0/

�
;

the operator D is essentially self adjoint.

Proposition 7.1. There exist tempered distributions uj 2 S 0.Rs/, j D 0; 1; 2; : : : , such that one has a
trace expansion

tr�
�
D
p
h

�
D h�

n
2

� NX
jD0

uj .�/h
j
2

�
C h

NC1�n
2 O

� nC1X
kD0

kh�iN O�.k/kL1

�
(7-11)

for each N 2 N, � 2 S.Rs/.

Proof. We begin by writing � D �0C�1, with

�0.s/D
1

2�

Z
R

ei�s O�.�/�

�
2�
p
h

ig

�
d�; �1.s/D

1

2�

Z
R

ei�s O�.�/

�
1��

�
2�
p
h

ig

��
d�

via Fourier inversion.
First considering �1, integration by parts gives the estimate

jsnC1�1.s/j � CNh
N�1
2

� nC1X
kD0

k�N O�.k/kL1

�
for all N 2 N. Hence,



DnC1�a�1� D

p
h

�
Da






L2!L2

D CNh
nCN
2

� nC1X
kD0

k�N O�.k/kL1

�
for all N 2 N, for all aD 0; : : : ; nC 1. The semiclassical elliptic estimate and Sobolev’s inequality now
give the estimate ˇ̌̌̌

�1

�
D
p
h

�ˇ̌̌̌
C0.X�X/

� CNh
nCN
2

� nC1X
kD0

k�N O�.k/kL1

�
; (7-12)

for all N 2 N, on the Schwartz kernel.
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Next, considering �0, we first use the change of variables ˛ D �
p
h to write

�0

�
D
p
h

�
D

1

2�
p
h

Z
R

ei˛.DA0Cih
�1c.a// O�

�
˛
p
h

�
�

�
2˛

ig

�
d˛:

Now since D D D on Big=2.p/, we may use the finite propagation speed of the wave operators ei˛h
�1D,

ei˛h
�1D [Ma and Marinescu 2007, Theorem D.2.1] to conclude

�0

�
D
p
h

�
.p; � /D �0

�
D
p
h

�
.0; � /: (7-13)

The right-hand side above is defined using functional calculus of self-adjoint operators, with standard
local elliptic regularity arguments implying the smoothness of its Schwartz kernel. By virtue of (7-12), a
similar estimate for �1

�
Dp
h

�
, and (7-13) it now suffices to consider �

�
Dp
h

�
.

We now introduce the rescaling operator

R W C1.RnIC2
m

/! C1.RnIC2
m

/; .Rs/.x/ WD s

�
x
p
h

�
:

Conjugation by R amounts to the rescaling of coordinates x ! x
p
h. A Taylor expansion in (7-10)

now gives the existence of classical (h-independent) self-adjoint, first-order differential operators Dj D
akj .x/@xk C bj .x/, j D 0; 1; : : : , with polynomial coefficients (of degree at most j C 1) as well as
h-dependent self-adjoint, first-order differential operators Ej D

P
j˛jDNC1 x

˛
�
ckj;˛.xI h/@xkCdj;˛.xI h/

�
,

j D 0; 1; : : : , with uniformly C1 bounded coefficients ckj;˛; dj;˛ such that

RDR�1 D
p
hD; (7-14)

with

DD
� NX
jD0

h
j
2 Dj

�
C h

NC1
2 ENC1 8N: (7-15)

The coefficients of the polynomials akj .x/; bj .x/ again involve the covariant derivatives of the curvatures
F TX, FA0 and da evaluated at p. Furthermore, the leading term in (7-15) is easily computed as

D0 D 
j
�
@xj C i

1
2
xk.da/jk.0/

�
(7-16)

D 
0@x0 C 

j
�
@xj C

1
2
i�j .p/xjCm

�
C 
jCm

�
@xjCm �

1
2
i�j .p/xj

�„ ƒ‚ …
WDD00

(7-17)

using (7-1), (7-6). It is now clear from (7-14) that

�

�
D
p
h

�
.x; x0/D h�

n
2 �.D/

�
x
p
h
;
x0
p
h

�
: (7-18)

Next, let Ij D
˚
kD.k0; k1; : : :/

ˇ̌
k˛ 2N;

P
k˛ D j

	
denote the set of partitions of the integer j and set

Czj D
X
k2Ij

.z� D0/�1
�
…˛ŒDk˛ .z� D0/�1�

�
: (7-19)
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Local elliptic regularity estimates again give

.z� D/�1 DOL2loc!L
2
loc
.jIm zj�1/ and Czj DOL2loc!L

2
loc
.jIm zj�j�1/; j D 0; 1; : : : :

A straightforward computation using (7-15) then yields

.z� D/�1�
� NX
jD0

h
j
2 Czj

�
DOL2loc!L

2
loc
..jIm zj�1h

1
2 /NC1/: (7-20)

A similar expansion as (7-15) for the operator .1C D2/
nC1
2 .z� D/ also gives the bounds

.1C D2/�
nC1
2 .z� D/�1�

� NX
jD0

h
j
2 Czj;nC1

�
DO

H s
loc!H

sCnC1
loc

..jIm zj�1h
1
2 /NC1/ (7-21)

for all s 2 R, for classical (h-independent) Sobolev spaces H s
loc. Here each Czj;nC1 satisfies

Czj;nC1 DOH s
loc!H

sCnC1
loc

.jIm zj�j�1/

with leading term

Cz0;nC1 D .1C D20/
�
nC1
2 .z� D0/�1:

Finally, plugging the expansion (7-21) into the Helffer–Sjöstrand formula

�.D/D�
1

2�

Z
C

N@ Q�.z/.1C D2/�
nC1
2 .z� D/�1 dz d Nz;

with �.x/ WD hxinC1�.x/, gives

�.D/.0; 0/D
� NX
jD0

h
j
2Uj;p.�/

�
C h

NC1
2 O

� nC1X
kD0

kh�iN O�.k/kL1

�
(7-22)

using Sobolev’s inequality. Here each

Uj;p.�/D�
1

�

Z
C

N@ Q�.z/Czj;nC1.0; 0/ dz d Nz 2 EndSTXp (7-23)

defines a smooth family (in p 2X ) of distributions Uj and the remainder term in (7-22) comes from the
estimate

N@ Q�DO

�
jIm zjNC1

nC1X
kD0

kh�iN O�.k/kL1

�
on the almost analytic continuation; see [Zworski 2012, Section 3.1]. Integrating the trace of (7-22) over
X and using (7-18) gives (7-11). �

Next we would like to understand the structure of the distributions uj appearing in (7-11). Clearly,

uj D

Z
X

uj;p; with uj;p WD trUj;p 2 C1.X IS 0.Rs//; (7-24)
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is the smooth family of tempered distributions parametrized by X defined via the pointwise trace of
(7-23). Letting H.s/ 2 S 0.Rs/ denote the Heaviside distribution, we now define the following elementary
tempered distributions:

vaIp.s/ WD s
a; a2N0; (7-25)

va;b;c;�Ip.s/ WD @
a
s

�
jsjsb.s2�2�p�/

c� 1
2H.s2�2�p�/

�
; .a;b;cI�/2N0�Z�N0��:.N

m
0 n0/: (7-26)

Proposition 7.2. For each j , the distribution (7-24) can be written in terms of (7-25), (7-26):

uj;p.s/D
X

a�2jC2

cj Ia.p/s
a
C

X
�2�:.Nm0 n0/

a;jbj;c�4jC4

cj Ia;b;c;�.p/va;b;c;�Ip.s/: (7-27)

Moreover, the coefficient functions cj Ia, cj Ia;b;c;� 2 C1.X/ above are evaluations at p of polynomials
in the covariant derivatives (with respect to rTX ˝ 1C 1˝rA0) of the curvatures F TX, FA0 of the
Levi-Civita connection rTX, rA0 and da.

Proof. It suffices to consider the restriction of uj to the interval .�
p
2�M;

p
2�M/ for each 0 <M …

�:.Nm0 n 0/. We begin by finding the spectrum of the operator D00 in (7-17). To this end, define the
unitary operator U� W C1.RnIC2

m

/! C1.RnIC2
m

/,

.U�s/.x0; x1; x2; : : :/D
� mY
jD1

�j

�
s.x0; �

� 1
2

1 x1; �
� 1
2

1 x2; �
� 1
2

2 x3; �
� 1
2

2 x4; : : :/

and

f D

mX
jD1

.xjxjCmC �j �jCm/ 2 C
1.R2m/:

Next, as in (5-1) we compute the conjugate

e
i�
4
fW0 U�D00U��e

� i�
4
fW0 D Œ2�.p/�

1
2DRm jhD1

of the operator in (7-17) in terms of the magnetic Dirac operator on Rm (2-21) evaluated at hD 1. Hence
the eigenspaces of D00 are

U��e
� i�
4
fW0 .E0˝L

2.RmC1x0;x00
//; U��e

� i�
4
fW0 .E˙� ˝L

2.RmC1x0;x00
//I� 2 �:.Nm0 n 0/;

with eigenvalues 0, ˙
p
2�� respectively, where

E0 WD CŒ 0;0jhD1�; E˙� D
M

�2Nm0 n0

�D�:�

E˙�

ˇ̌̌
hD1

are as in (6-5). We again let P0, P˙� denote the respective projections onto the eigenspaces of D00 and
P� D PC�˚ P��. We also denote by P>M D˚�>MP� the projection onto eigenspaces with eigenvalue
greater than

p
2�M in absolute value.
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Now, since expansions in L2loc are unique, it suffices to work with the resolvent expansion (7-20) in the
computation of uj . The j -th term in the expansion is of the form

Czj D
X
k2Ij

.z� D0/�1Œ…˛Dk˛ .z� D0/�1�; (7-28)

where each Dk˛ is a differential operator with polynomial coefficients involving the covariant derivatives of
the curvatures F TX, FA0 and da. Now using (7-17) we decompose each resolvent term above according
to the eigenspaces of D00:

.z� D0/�1 D P0

�
1

z� 
0@x0

�
P0

˚

M
�2�:Nm0 \.0;M/

P�

�
zC 
0@x0 C D00
z2C @2x0 � 2��

�
P�˚ P>M

�
zC 
0@x0 C D00
z2C @2x0 � D200

�
P>M : (7-29)

Next, we plug (7-29) into (7-28). This gives an expansion for Czj with some of the terms given by

T zŒ…˛Dk˛T
z�; where T z D P>M

�
zC 
0@x0 C D00
z2C @2x0 � D200

�
P>M ;

and which are holomorphic for Re z 2 .�
p
2�M;

p
2�M/. For the rest of the terms in Czj , we use the

commutation relations

Œ
0; P0�D Œ
0; P��D Œ
0; P>M �D 0;

Œ@x0 ; P0�D Œ@x0 ; P��D Œ@x0 ; P>M �D 0;

Œ@x0 ; D00�D 0;

Œ.z2C @2x0 � 2��/
�1; xj �D ı0j .z

2
C @2x0 � 2��/

�2@x0 ;

Œ.z2C @2x0 � 2��/
�1; @xJ �D 0;

as well as the Clifford relations (2-7). This now gives a finite sum of terms of the form

T z0

� KY
kD1

SkT
z
k

�
�

� Y
�2�:Nm0 \.0;M/

1

.z2C @2x0 � 2��/
a�

�
.z� 
0@x0/

�a0zb1x
b2
0 @

b3
x0
; (7-30)

a0C†a��2jC2, b1; b2; b3�jC1, where each Sk is a differential operator in .x0x00/ (i.e., independent
of x0) with polynomial coefficients and each T z

k
is equal to one of

P0; P�; P�D00P�; P>M

�
1

z2C @2x0 � D200

�
P>M ; or P>M

�
D00

z2C @2x0 � D200

�
P>M ; (7-31)

with at least one occurrence of P0; P� or P�D00P� in (7-30). Now using partial fractions, (7-30) may be
written as a sum of terms of the forms
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T z0

� KY
kD1

SkT
z
k

�
� .z� 
0@x0/

�a0zb1x
b2
0 @

b3
x0
;

T z0

� KY
kD1

SkT
z
k

�
� .z2C @2x0 � 2��/

�a�zb1x
b2
0 @

b3
x0
; � 2 �:Nm0 \ .0;M/; (7-32)

a0; a� � 2j C 2, b1; b2; b3 � j C 1. Next, we plug (7-32) into the Helffer–Sjöstrand formula and
use the analyticity of P>M .1=.z2C @2x0 � D200//P>M and P>M .D00=.z2C @2x0 � D200//P>M for Re z 2
.�
p
2�M;

p
2�M/. This gives

Uj;p.�/D�
1

2�

Z
C

N@ Q�.z/Czj .0; 0/ dz d Nz

for � 2 C1c .�
p
2�M;

p
2�M/, as a sum of terms of the form�
T 00

� KY
kD1

SkT
0
k

�
� x

b2
0 @

b3
x0
�0.


0@x0/

�
.0; 0/;

�
T 00

� KY
kD1

SkT
0
k

�
� x

b2
0 @

b3
x0
��.�@

2
x0
C 2��/

�
.0; 0/; � 2 �:Nm0 \ .0;M/; (7-33)

where each T 0
k

is equal to one of

P0; P�; P�D00P�; P>M

�
1

2��� D200

�
P>M ; or P>M

�
D00

2��� D200

�
P>M ;

and

�0.s/D
.�1/a0�1

.a0� 1/Š
xb1�.s/;

��.s
2/D

.�1/a��1

.a�� 1/Š

��
@a��1r

�
rb1�.r/

.r � s/a�

��ˇ̌̌̌
rD�s

�

�
@a��1r

�
rb1�.r/

.r C s/a�

��ˇ̌̌̌
rDs

�
:

At least one occurrence of P0;P� and P�D00P� in (7-33) gives the smoothness of the kernel.
Finally, an elementary computation involving Laplace transforms using the knowledge of the heat

kernel

e
t@2x0 .x0; y0/D

1
p
4�t

e�
jx0�y0j

2

4t

gives

x
b2
0 @

b3
x0
�0.


0@x0/.0; 0/D
.�1

2
/Œ
b3C1

2
�

p
��

��
b3C1
2

�
C
1
2

�ı0b2vb3Ip.�0/;
x
b2
0 @

b3
x0
��.�@

2
x0
C 2��/.0; 0/D

8̂̂<̂
:̂

�
�
1
2

�b3
2

4��
�
b3
2
�
1
2

�ı0b2v0;0;b3
2
;�Ip

.��.s
2//; b3 even;

0; b3 odd;

completing the proof. �
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As an immediate corollary of Proposition 7.2, we have that the distributions uj are smooth near 0.

Corollary 7.3. For each j ,

sing spt.uj /� R n .�
p
2�0;

p
2�0/:

Proof. This follows immediately from (7-24)–(7-27) on noting that the distributions vaIp are smooth,
while va;b;c;�Ip D 0 on R n .�

p
2�0;
p
2�0/ for each p 2X. �

We next give the exact computation for the first coefficient u0 of Proposition 7.1. In the computation
below, recall that Z� D jI� j, as in (2-13), denotes the number of nonzero components of � 2 Nm0 n 0.

Proposition 7.4. The first coefficient u0 of (7-11) is given by

u0;p D c0I0C
X

�2�:.Nm0 n0/

c0I0;0;0;�.p/v0;0;0;�Ip.s/; (7-34)

where

c0I0 D
�mp
�Qm

jD1 �j
�

.4�/
n
2

;

c0I0;0;0;�.p/D
�mp
�Qm

jD1 �j
�

.4�/
n
2

dim.E�/D
�mp
�Qm

jD1 �j
�

.4�/
n
2

� X
�2Nm0 n0

�:�D�

2Z�
�
: (7-35)

Proof. First note that the square of (7-16) gives the harmonic oscillator

D20 D�ı
jk@xj @xk � i.da/

j

k
.0/xk@xj C

1

4
xkxl.da/

j

k
.0/.da/lj .0/C

i

2

j 
k.da/jk.0/:

The heat kernel e�tD
2
0 of the above is given by Mehler’s formula [Berline et al. 2004, Section 4.2]

e�tD
2
0.x;y/D

1

.4�t/m
e�

.x0�y0/
2

4t

p
4�t

det
1
2

�
i tda.0/

sinh i tda.0/

�
e�tc.ida.0// (7-36)

�exp
�
�

�j

4 tanh�j t

�
.xj�yj /

2
C.xjCm�yjCm/

2
�
C
�j

2
tanh

�
�j t

2

�
.xjyjCxjCmyjCm/

�
:

(7-37)

Next, using (7-1) we compute

e�tc.ida.0// D

mY
jD1

�
cosh.t�j /� ic.ej /c.ejCm/ sinh.t�j /

�
: (7-38)

For I � f2; : : : ; mg and !I D
V
j2I .ej ^ ejCm/, the commutation

c.e1/c.emC1/c.!I /D
1
2
Œc.e1/; c.emC1/c.!I /�
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shows that the only traceless terms in (7-38) are the constants. Hence, Mehler’s formula (7-36) gives

tr e�tD
2
0.0; 0/D

1

.4�t/
n
2

det
1
2

�
i tda.0/

tanh i tda.0/

�
D

t�
1
2

.4�/
n
2

� mY
jD1

�j

tanh t�j

�

D
t�

1
2

.4�/
n
2

� mY
jD1

�j .1C 2e
�2t�j C 2e�4t�j C � � � /

�

D
t�

1
2

.4�/
n
2

� mY
jD1

�j

�� X
�2Nm0

2Z� e�2t�:�
�

D
�mp
�Qm

jD1 �j
�

.4�/
n
2

�
t�

1
2

X
�2Nm0

2Z� e�2t�:�
�
D u0;p.e

�ts2/; (7-39)

with u0;p as in (7-34) and the last line above following from an easy computation of Laplace transforms;
see [Savale 2014, Section 4]. Furthermore, differentiating Mehler’s formula using (7-16) gives

tr D0e�tD
2
0.0; 0/D 0D u0;p.se

�ts2/ (7-40)

since the right-hand side of (7-34) is an even distribution. From (7-39) and (7-40) we have that the
evaluations of both sides of (7-34) on e�ts

2

, se�ts
2

are equal. Differentiating with respect to t and setting
t D 1 gives that the two sides of (7-34) evaluate equally on ske�s

2

for all k 2N0. The proposition now
follows from the density of this collection in S.Rs/. �

We now complete the proof of Lemma 3.2.

Proof of Lemma 3.2. We begin by writing

tr
�
f

�
D
p
h

�
1

h1�"
L�

�
�
p
h�D

h1�"

��
D
h�

1
2

2�

Z
dt tr

�
f

�
D
p
h

�
e
it.�� Dp

h
/
�
�.th

1
2
�"/: (7-41)

Next, the expansion result, Proposition 7.1, with �.x/D f .x/eit.��x/, combined with the smoothness of
uj on spt.f /� .�

p
2�0;
p
2�0/ from Corollary 7.3 gives

tr
�
f

�
D
p
h

�
e
it.�� Dp

h
/
�
D eit�h�

n
2

� NX
jD0

h
j
2 cf uj .t/�ChNC1�n2 O

�nC1X
kD0

kh�iN O�.k/.��t /kL1

�
„ ƒ‚ …

DO.htiN /

: (7-42)

Finally, plugging (7-42) into (7-41) and using �.th
1
2
�"/D 1CO.h1/ gives via Fourier inversion

h�
1
2

2�

Z
dt tr

�
f

�
D
p
h

�
e
it.�� Dp

h
/
�
�.th

1
2
�"/D h�m�1

� NX
jD0

h
j
2 f .�/uj .�/

�
CO.h".NC1/�m�1/

as required. �
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8. Asymptotics of spectral invariants

In this section we prove Theorem 1.2 on the asymptotics of the spectral invariants.

Proof of Theorem 1.2. To prove the Weyl law (1-5), we choose � 2 C1c ..�T; T /I Œ0; 1�/ such that
�.x/D 1 on .�T 0; T 0/, T 0 < T , L�.�/� 0 and L�.�/� 1 for j�j � c in Theorem 1.3. Choosing f .x/� 0
with f .0/D 1, the trace expansion (1-7) with �D 0 now gives

1

h
N.�ch; ch/.1CO.

p
h//� tr

�
f

�
D
p
h

�
1

h
L�

�
�D

h

��
DO.h�m�1/

proving (1-5).
To prove the estimate (1-6) on the eta invariant, we first use its invariance under positive scaling (2-2)

and the formula (2-5) to write

�h D �

�
D
p
h

�
D

Z 1
0

dt
1
p
�t

tr
�
D
p
h
e�

t
h
D2
�

D

Z 1

0

dt
1
p
�t

tr
�
D
p
h
e�

t
h
D2
�
C

Z 1
1

dt
1
p
�t

tr
�
D
p
h
e�

t
h
D2
�
: (8-1)

Next, [Savale 2014, equation 4.5, p. 859] with r D 1
h

translates to the estimate

tr
�
D
p
h
e�

t
h
D2
�
DO.h�mect /: (8-2)

Plugging, (8-2) into the first integral of (8-1) gives

�h DO.h
�m/C trE

�
D
p
h

�
; (8-3)

where

E.x/D sign.x/ erfc.jxj/D sign.x/ �
2
p
�

Z 1
jxj

e�s
2

ds

with the convention sign.0/D 0. The function E.x/ above is rapidly decaying with all derivatives, odd
and smooth on Rxn 0. We may hence choose functions f 2 C1c .�

p
2�0;
p
2�0/, g 2 C1c .R<0/ such

that

f .x/Cg.x/DE.x/ for x � 0:

Define the spectral measure

Mf .�
0/ WD

X
�2Spec . Dp

h
/

f .�/ı.���0/:

It is clear that the expansion (1-7) to its first term may be written as

Mf � .F�1h � 1
2
/.�/D h�m�

1
2 .f .�/u0.�/CO.h

1
2 //;
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where � 1
2
.x/D �.x=

p
h/ as before. Since both sides above involve Schwartz functions in �, the remainder

maybe replaced by O.h
1
2 =h�i2/. One may then integrate the equation to obtainZ 0

�1

d�

Z
d�0.F�1h � 1

2
/.���0/Mf .�

0/D h�m�
1
2

�Z 0

�1

d�f .�/u0.�/CO.h
1
2 /

�
: (8-4)

Next we observeZ 0

�1

d�.F�1h � 1
2
/.���0/D

Z 0

�1

dt L�

�
t �

�0
p
h

�
D 1.�1;0�.�

0/CO

��
�0
p
h

��1�
: (8-5)

While the Weyl law yields Z
d�0Mf .�

0/O

��
�0
p
h

��1�
DO.h�m/: (8-6)

Substituting (8-5) and (8-6) into (8-4) givesX
��0

�2Spec . Dp
h
/

f .�/D h�m�
1
2

�Z 0

�1

d�f .�/u0.�/

�
CO.h�m/:

This combined with

trg
�
D
p
h

�
D h�m�

1
2u0.g/CO.h

�m/

then gives X
��0

�2Spec . Dp
h
/

E.�/D h�m�
1
2

�Z 0

�1

d�E.�/u0.�/

�
CO.h�m/;

where the integral makes sense from the formula (7-34) for u0. A similar formula forX
��0

�2Spec . Dp
h
/

E.�/

now gives

trE
�
D
p
h

�
D h�m�

1
2

�Z 1
�1

d�E.�/u0.�/

�
CO.h�m/:

Since E is odd and u0 is even from (7-34), the integral above is zero and hence �h D trE.D=
p
h/D

O.h�m/ from (8-3) as required. �

In the above proof we have used a Tauberian argument, as in [Dimassi and Sjöstrand 1999, Chapter 10].
A similar argument along with the trace expansion theorem, Theorem 1.3, also gives a true Weyl law in
O.
p
h/-sized intervals: the number of eigenvalues N.�c

p
h; c
p
h/, 0 < c <

p
2�0, in the given interval

satisfies

N.�c
p
h; c
p
h/D h�m�

1
2

�
2c

.4�/m

Z
X

�m
� mY
jD1

�j

�
dx

�
CO.h�m/: (8-7)



KOSZUL COMPLEXES, BIRKHOFF NORMAL FORM AND THE MAGNETIC DIRAC OPERATOR 1837

The leading term of the above may possibly be obtained by squaring the Dirac operator and using the
spectral estimates on an O.h/-sized interval near the critical level for D2

h
, as in [Brummelhuis et al. 1995].

8A. Sharpness of the result. Here, we finally show that the result Theorem 1.2 is sharp. The worst case
example was already noted in [Savale 2014, Section 5] for �h. To recall, we let Y be a complex manifold
of dimension 2m with complex structure J and a Riemannian metric gTY . Fix a positive, holomorphic,
Hermitian line bundle L! Y . The curvature F L of the Chern connection is thus a positive .1; 1/-form.
Let X be the total space of the unit circle bundle S1! X �

�! Y of L. The Chern connection gives a
splitting of the tangent bundle

TX D TS1˚��T Y; (8-8)

where TS1 is the vertical tangent space spanned by the generator e of the S1 action. Define a metric gTS
1

on TS1 via kek
gTS

1 D 1. A metric on X can now be given using the splitting (8-8) via

gTX D gTS
1

˚ "�1��gTY

for any " > 0. A spin structure on Y corresponds to a holomorphic, Hermitian square root K of the
canonical line bundle KY DK˝2. Fixing such a spin structure as well as the trivial spin structure on TS1

gives a spin structure on X. Finally a D e� 2 �1.X/, while the auxiliary line bundle is chosen to be
trivial LD C with the family of connections rh D d C i

h
a. We now have the required family of Dirac

operators Dh (1-2). One may check that .X2mC1; a; gTX; J / here gives a metric contact structure (1-4)
and hence the assumption Definition 1.1 is satisfied.

Denote by �p
N@k
W �0;p.X IK˝L˝k/ �! �0;p.X IK˝L˝k/ the Hodge Laplacian acting on .0; p/

forms on X. Its null-space is given by the cohomology Hp.X IK˝L˝k/ of the tensor product via Hodge
theory. Let ep;k� denote the dimension of a each positive eigenspace with eigenvalue 1

2
�2 2 SpecC.�p

N@k
/.

The spectrum of Dh was now computed in Proposition 5.2 of [Savale 2014].

Proposition 8.1. The spectrum of Dh is given by eigenvalues of the following types:

� Type 1.

�D .�1/ph

�
kC

�
"�

m

2

�
�
1

h

�
; (8-9)

0� p �m, k 2 Z, with multiplicity dimHp.X IK˝L˝k/.

� Type 2.

�D h

�
1

2

�
.�1/pC1"˙

s�
2kC ".2p�m/�

2

h
C 1

�2
C 4�2"

��
; (8-10)

0� p �m, k 2 Z, 1
2
�2 2 SpecC.�p

N@k
/, with multiplicity dp;k� WD e

p;k
� � e

p�1;k
� C� � �C .�1/pe

0;k
� .

As observed in [Savale 2014], by choosing

" < inf
k;p

˚
1
2
�2 2 SpecC.�p

N@k
/
	
;
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the eigenvalues of type 2 are either positive or negative depending on the sign appearing in (8-10). Hence
the dimension of the kernel kh of Dh is now given by the eigenvalues of type 1:

kh D

�
dimH�.X IK˝L˝k/; 1

h
D kC

�
"� m

2

�
;

0; otherwise:
(8-11)

Now by a combination of Kodaira vanishing and Hirzebruch–Riemann–Roch,

dimH�.X IK˝L˝k/D dimH 0.X IK˝L˝k/D �.X;K˝L˝k/D
Z
X

ch.K˝L˝k/ td.X/

for k� 0, where �.X;K˝L˝k/, ch.K˝L˝k/ and td.X/ denote Euler characteristic, Chern character
and Todd genus respectively. Hence (8-11), (8-12) show that the kernel and hence the counting function
are discontinuous of order O.h�m/D kh �N.�ch; ch/ in this example. A similar discontinuity of the
eta invariant of O.h�m/ was proved in Theorem 5.3 of [Savale 2014].

Appendix: Some spectral estimates

In this appendix we prove some spectral estimates used in Sections 4 and 5; see [Helffer 1988, Section 4.1]
for some related estimates.

Let H be a separable Hilbert space. Let A WH !H be a bounded self-adjoint operator. The resolvent
set and the spectrum of A are defined to be

R.A/D f� 2 C j A��I is invertibleg;

Spec.A/D C nR.A/:

Since A is self-adjoint, Spec.A/� R. We may now define the following subsets of the spectrum:

EssSpec.A/D f� 2 C j A��I is not Fredholmg;

DiscSpec.A/D Spec.A/ nEssSpec.A/:

We shall consider DiscSpec.A/ above as a multiset with the multiplicity function mA W DiscSpec.A/!
N0 defined by mA.�/ D dim ker.A/. We may then find a countable set of orthonormal eigenvectors
vA1 ; v

A
2 ; v

A
3 ; : : : , with eigenvalues �A1 � �

A
2 � �

A
3 � � � � such that DiscSpec.A/ and f�A1 ; �

A
2 ; : : :g are

equal as multisets. Now let Œa; b�� R be a finite closed interval such that EssSpec.A/\ Œa; b�D∅ (i.e.,
A has discrete spectrum in Œa; b�). Then

HA
Œa;b� D

M
�2Spec.A/\Œa;b�

ker.A��/

is a finite-dimensional vector subspace of H . We denote by

…AŒa;b� WH !HA
Œa;b� �H

the orthogonal projection onto HA
Œa;b�

and by NA
Œa;b�

the dimension of HA
Œa;b�

. The operator �.A/ WH!H

may now be defined for any function � 2 C 0c .Œa; b�/ by functional calculus.
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Lemma A.1. Let v 2H and � 2 Œa; b�. Assume there exists " > 0 such that A has discrete spectrum in
Œa�
p
"; bC

p
"� and k.A��/vk � "kvk. Then

k…A
Œa�
p
";bC

p
"�
v� vk �

p
"kvk; (A-1)

k.�.A/� �.�//vk � 3
p
"k�kC0;1kvk (A-2)

for any Holder continuous function � 2 C 0;1c .Œa; b�/.

Proof. We abbreviate … D …A
Œa�
p
";bC

p
"�

. Let H0 WD HA
Œa�
p
";bC

p
"�
D …H; which by assumption

is a finite-dimensional vector space. Let H?0 be the orthogonal complement of H0. By assumption,
Spec..A��/2jH?0 /\ Œ�"; "�D∅. Hence by the mini-max principle for self-adjoint operators bounded
from below [Dimassi and Sjöstrand 1999, Lemma 4.21], we have "� .A��/2jH?0 . Hence

k…v� vk2"� k.A��/.…v� v/k2

� k.A��/.…v� v/k2Ck.A��/…vk2 D k.A��/vk2 � "2kvk2

since .A��/.…v� v/ and .A��/…v are orthogonal. This gives

k…v� vk<
p
"kvk: (A-3)

To prove (A-2) first note that k…0v� vk<
p
"kvk, for …0 D…A

Œ��
p
";�C

p
"�

, by the same argument. We
now have

k.�.A/� �.�//vk � k.�.A/� �.�//.…0v� v/kCk.�.A/� �.�//…0vk

� 2
p
"k�kC0;1kvkC

p
"k�kC0;1kvk: �

Before stating the next lemma we need the following definition.

Definition A.2. Given 0 < " < 1, a set of vectors w1; w2; : : : ; wN 2H is called an "-almost orthonormal
set of eigenvectors ("-AOSE for short) of A if

(1)
ˇ̌
kwj k

2� 1
ˇ̌
< " for all j ,

(2) jhwj ; wkij< " for all j ¤ k,

(3) k.A��j /wj k< " for some �j 2 R, for all j .

Lemma A.3. Assume that H0 � H has finite dimension M and is mapped onto itself by A. Let
w1; w2; : : : ; wN 2 H0 be an "-AOSE of A for some " < 1=.2.M C 1//. Then there exist orthonormal
w01; w

0
2; : : : ; w

0
M�N 2 H0 such that k.A� �0j /w

0
j k < 4M" for some �0j 2 R, for all j . Furthermore

hwj ; w
0
k
i D 0 for each j; k.

Proof. It follows from " < 1=.2.M C 1// that w1; w2; : : : ; wN are linearly independent. Let W denote
their span and W ? � H0 its orthogonal complement. Let …;…? be the orthogonal projections onto
W;W ? and consider the operator A0 WD…?A…? WW ?!W ?. Let w01; w

0
2; : : : ; w

0
M�N 2W

? be an
orthogonal basis of eigenvectors of A0. Hence

…?Aw0j D �
0
jw
0
j
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for some �0j 2 R, for all j . Also

jhAw0j ; wkij D jhw
0
j ; .A��k/wkij< ":

It then follows that k…Aw0j k � 2M"
p
1C " < 4M" giving the result. �

Lemma A.4. Given N 2 N, let 0 < " < .kAk C jaj C jbj C N C 1/�4. Let w1; w2; : : : ; wN 2 H
be an "-AOSE for A. Assume that A has discrete spectrum in Œa � "

1
8 ; b C "

1
8 �. Then there exist

orthonormal vectors Nw1; Nw2; : : : ; NwN 2 H which span the same subspace of H as w1; w2; : : : ; wN .
Moreover kwj � Nwj k <

p
" and k.�.A/� �.�j // Nwj k � 3"

1
8 k�kC0;1 for 1 � j � N and any Holder

continuous function � 2 C 0;1c .Œa; b�/.

Proof. Again it follows easily that the vectors wj , 1� j �N , are linearly independent. Let W �H be
their span and choose an orthonormal basis ei , 1� j �N, for W . We write

wj D

NX
kD1

mjkek :

If we consider the matrix M D Œmjk�, then assumptions (1) and (2) of Definition A.2 are equivalent
to jM �M � I j < ". Consider the polar decomposition M D UP , where U is unitary and P is a
positive semidefinite Hermitian matrix. We have jP �P � I j < " and hence kP �P � Ik < N". Thus
any eigenvalue �P of P , being nonnegative, satisfies j�P � 1j < " and we have kP � Ik < N". Thus
kM �U k D kUP �U k<N". If we now let U D Œujk� and Nwj D

PN
kD1 ujkek , then the Nwj are clearly

orthonormal and satisfy kwj � Nwj k<
p
". This last inequality along with assumption (3) of Definition A.2

easily gives
k.A��j / Nwj k< "

1
4 :

Now Lemma A.1 gives

k… Nwj � Nwj k< "
1
8 ; (A-4)

k.�.A/� �.�j // Nwj k< 3"
1
8 k�kC0;1 ; (A-5)

completing the proof. �

Next, let H 0 be another separable Hilbert space. Let U W H ! H 0 be a bounded operator. Let
B;D WH 0!H 0 and C WH !H be bounded self-adjoint operators. Define A0 D UAU � WH 0!H 0,
B 0DU �BU WH!H, C 0DUCU � WH 0!H 0 and D0DU �DU WH!H. In the next proposition we
assume that there exists ı > 0 such that A, A0, B and B 0 have discrete spectrum in Œa� ı; bC ı�. We also
abbreviate NADNA

Œa�ı;bCı�
and …AD…A

Œa�ı;bCı�
and similarly define NA0, NB , NB 0, …A

0

, …B , …B
0

.

Proposition A.5. Suppose there exists 0 < " < L�2048, with

LD 25
˚
kAkCkA0kCkBkCkB 0kCkCkCkDkCNA

CNA0
CNB

CNB 0
CjajC jbjC ı�1C 1

	
;

such that

(1) k.U �U � I /…Ak
�
kAkkU kC 1

�
< " and k.UU �� I /…Bk

�
kBkkU �kC 1

�
< ",
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(2) k.A0�B/…A
0

k< " and k.A�B 0/…B
0

k< ",

(3) k.C 0�D/…Ak< " and k.C �D0/…Bk< ".

Then we have ˇ̌
trŒC�.A/�� trŒD�.B/�

ˇ̌
� "

1
2048 k�kC1

for any � 2 C 1c .Œa; b�/.

Proof. Let .DiscSpec.A/;mA/ \ Œa; b� D f�Aa1 ; �
A
a2
; : : : ; �AaN g, with N D NA

Œa;b�
, as multisets. Let

�C.x/ D 1
2
.�.x/C j�.x/j/ and ��.x/ D 1

2
.�.x/� j�.x/j/. We then have �C; �� 2 C 0;1c .Œa; b�/ with

k�CkC0;1 � k�kC1 , k��kC0;1 � k�kC1 . We further decompose C D CCCC�, D DDCCD� into
their positive and nonpositive parts. Clearly

trŒCC�C.A/�D
NX
jD1

�C.�aj /hvaj ; C
Cvaj i:

Next we consider wj D Uvaj 2H
0. From assumption (1) we have

.A0��aj /wj

D 

.UAU ���aj /Uvaj 

� 

.U �U � I /…AŒa;b�

kAkkU k< ":

Similar estimates give
ˇ̌
kwj k

2 � 1
ˇ̌
< " and jhwj ; wkij < " for j ¤ k. Now by Lemma A.1 we have

k…wj �wj k< .2"/
1
2 with …D…A

0

Œa�
p
2";bC

p
2"�

. Following this and using assumption (3) we have

.B ��aj /wj

� 

.A0��aj /wj

C 

.B �A0/…wj

C 

.B �A0/.…wj �wj /


� "C "

p
1C "C .2"/

1
2 .kA0kCkBk/

< "
1
4 � "

1
8 kwj k:

Next define w0j WD…
B
Œa�"1=16;bC"1=16�

wj . By Lemma A.1,

kw0j �wj k � "
1
16 kwj k: (A-6)

From here it follows immediately that w01 ; w
0
2 ; : : : ; w

0
N form an "

1
64 -AOSE of B. If we let H0 D

HB
Œa�"1=16;bC"1=16�

, then by Lemma A.4 there exist orthonormal Nw1; Nw2; : : : ; NwN 2H0 which span the
same subspace of H0 as the w0j . Furthermore

kw0j � Nwj k< "
1
128 (A-7)

and k.�C.B/� �C.�aj // Nwj k � 3k�kC1"
1
512 . From (A-6) and (A-7) we also have kwj � Nwj k < "

1
256.

From Lemma A.3 there exist orthonormal w01; w
0
2; : : : ; w

0
M�N with M D NB

Œa�"1=16;bC"1=16�
such that

hw0i ; Nwj i D 0 and k.B ��0j /w
0
j k < 4M"

1
64 < "

1
128. Hence by Lemma A.1, k.�C.B/� �C.�0j //w

0
j k �
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3k�kC1"
1
256. We now have

trŒDC�C.B/�D
NX
jD1

h Nwj ;D
C�C.B/ Nwj iC

M�NX
jD1

hw0j ;D
C�C.B/w0j i

�

NX
jD1

�C.�aj /h Nwj ;D
C
Nwj iC

M�NX
jD1

�C.�0j /hw
0
j ;D

Cw0j i � 3"
1
512MkDkk�kC1

�

NX
jD1

�C.�aj /h Nwj ;D
C
Nwj i � 3"

1
512MkDkk�kC1

�

NX
jD1

�C.�aj /hwj ;D
Cwj i � 6"

1
512MkDkk�kC1

�

NX
jD1

�C.�aj /hvaj ; C
Cvaj i � 6"

1
512M.kDkC 1/k�kC1

� trŒCC�C.A/�� "
1

1024 k�kC1 :

Reversing the roles of H and H 0 givesˇ̌
trŒDC�C.B/�� trŒCC�C.A/�

ˇ̌
� "

1
1024 k�kC1 :

Similar estimates with CC��.A/, C��C.A/ and C���.A/ give the result. �

Finally, we now give a criterion implying the discreteness of spectrum for pseudodifferential operators
required by the preceding propositions in this appendix.

Proposition A.6. Let A 2 ‰mcl .R
nICl/ and I D Œa; b� � R be a closed interval such that the I -energy

band

†AI WD
[
�2I

†A�

is bounded. Then for h < h0 sufficiently small

EssSpec.A/\ I D∅:

Proof. Let �.A/D a.x; �/ 2 C1.R2n/ and †I .a/�BR be some open ball of finite radius R around the
origin. For �2I and .x; �/…BR, we hence have that a�1 WD .a.x; �/��/�1 exists. Let �2C1c .�4R; 4R/
such that �.x/D 1 for x < 2R. Set �.x/D 1��.x/ and define

A�1 D
�
�.j.x; �/j/a�1.x; �/

�W
2‰0cl.R

n
ICl/:

Then since it has vanishing symbol, we have

.A��/A�1� .I ��.j.x; �/j/
W /D hR 2 h‰0cl.R

n
ICl/:
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Next, we clearly have I ChR is invertible for h < h0 sufficiently small. Also, �.j.x; �/j/W is trace class
by [Hörmander 1994, Lemma 19.3.2]. Hence if S WD A�1.I C hR/�1, then .A��/S � I is trace class.
By a similar argument, S.A��/� I is trace class. Hence by Proposition 19.1.14 of [Hörmander 1994],
A�� is Fredholm. �
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