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LIMITING DISTRIBUTION OF ELLIPTIC HOMOGENIZATION ERROR
WITH PERIODIC DIFFUSION AND RANDOM POTENTIAL

WENJIA JING

We study the limiting probability distribution of the homogenization error for second order elliptic equa-
tions in divergence form with highly oscillatory periodic conductivity coefficients and highly oscillatory
stochastic potential. The effective conductivity coefficients are the same as those of the standard periodic
homogenization, and the effective potential is given by the mean. We show that the limiting distribution of
the random part of the homogenization error, as random elements in proper Hilbert spaces, is Gaussian and
can be characterized by the homogenized Green’s function, the homogenized solution and the statistics
of the random potential. This generalizes previous results in the setting with slowly varying diffusion
coefficients, and the current setting with fast oscillations in the differential operator requires new methods
to prove compactness of the probability distributions of the random fluctuation.

1. Introduction

In this article we study the limiting distribution, in certain Hilbert spaces, of the homogenization error for
second order elliptic equations in divergence form with highly oscillatory periodic diffusion coefficients
and highly oscillatory random potential.

More precisely, we consider the following Dirichlet problem on an open bounded subset D �Rn, with
homogeneous boundary condition and a source term f 2 L2.D/,8<:�
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u".x/D 0; x 2 @D:
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and the potential q
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are highly oscillatory in space, and
0 < "� 1 indicates the small scale on which these coefficients oscillate. We assume that the conductivity
coefficients are deterministic and periodic, and the potential is a stationary random field on some
probability space .�;F ;P/. More precise assumptions are given in Section 2. It is well known that,
under mild assumptions like stationary ergodicity of q.x; !/, the equation above homogenizes; i.e., u"

converges, almost surely in�, weakly inH 1.D/ and strongly inL2.D/ to the solution of the deterministic
homogenized problem 8̂<̂
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(1-2)
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Here, the effective conductivity coefficients . Naij / are constants defined by

Naij D

Z
Td
aik.y/

�
ıkj C

@�k

@xj
.y/

�
dy; (1-3)

where Td D Œ0; 1�d denotes the unit cell and the correctors �k , with kD 1; : : : ; d , are given by the unique
solution of the corrector equation
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��
D 0 on Td ; (1-4)

with the normalization condition
R

Td
�k dy D 0; ek above is the k-th standard unit basis vector of Rd .

We note that this formula for . Naij / is exactly the classic periodic homogenization formula for effective
conductivity. The effective potential Nq in (1-2) is given by the constant

Nq D Eq.0; !/; (1-5)

where E denotes the mathematical mean with respect to P.
In this paper we study the law (probability distribution) of the homogenization error u"�u, viewed as

random elements in certain Hilbert spaces. We split this error into two parts: Eu"�u and u"�Eu". In view
of the deterministic oscillations in the diffusion coefficients, we expect that the periodic homogenization
error, in the replacement of

�
aij
�
�
"

��
to . Naij /, makes significant contributions to the deterministic error

Eu" � u. Indeed, we show later that this error is essentially of order O."/, the same as periodic
homogenization. On the other hand, the effect of the random potential q

�
�
"
; !
�

becomes visible in the
random fluctuation u"� Eu", in which the (large) mean is removed. We are interested in characterizing
the size and the law of this random fluctuation, and the answers depend on finer information of the random
potential q, such as the decay rate of the correlations in q and higher-order moments of q; see Section 2
for notations and definitions.

We find that, when q.x; !/ has short-range correlations, the random fluctuation u" � Eu" scales
like "d=2^2 in the L1.�;L2.D//-norm, and scales like "d=2 when integrated against a test function.
Moreover, the law of the scaled random fluctuation "�d=2.u" � Eu"/ in L2.D/ for d D 2; 3 and in
H�1.D/ for d D 4; 5 converges to Gaussian distributions as follows (see Theorem 2.4 for details):

u"� Eu"
p

"d
distribution
������! �

Z
D

G.x; y/u.y/ dW.y/:

Here, W.y/ is the standard multiparameter Wiener process, and hence the law of the right-hand side above
defines a Gaussian probability measure on L2.D/ or H�1.D/. This Gaussian distribution is determined
by G.x; y/, which is the Green’s function associated to the homogenized problem (1-2), u.y/, which is
the homogenized solution, and � , which is some statistical parameter of the random potential q.x; !/.

We also consider the case when q.x; !/Dˆ.g.x; !// is constructed as a function of a Gaussian random
field g.x; !/, and g has long-range correlations that decay like jxj�˛ , with 0 < ˛ < d . Then the random
fluctuation scales like "˛=2^2 in the L1.�;L2.D//-norm, and scales like "˛=2 when integrated against a
test function. Moreover, the law of the scaled random fluctuation "�˛=2.u"�Eu"/ in L2.D/ for d D 2; 3
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and inH�1.D/ for d D4; 5 converges to a Gaussian distribution that can be written as a stochastic integral
as above, but with dW replaced by PW ˛ dy, where PW ˛ is a centered Gaussian random field with correlation
function jx�yj�˛, and � is replaced by some other statistical parameter; see Theorem 6.2 for details.

The study of the limiting distribution of the homogenization error goes back to [Figari et al. 1982],
where the Laplace operator with a random potential formed by Poisson bumps was considered. General
random potential with short-range correlations was considered recently in [Bal 2008], and in [Bal and Jing
2010; 2011] for other nonoscillatory differential operators with random potential. Long-range correlated
random potential was considered in [Bal et al. 2012]. When oscillatory differential operators were
considered, the limiting distribution of homogenization error was obtained in [Bourgeat and Piatnitski
1999] for short-range correlated elliptic coefficients, and in [Bal et al. 2008] for the long-range correlated
case, all in the one-dimensional setting. The main results of this paper show that the general framework
developed in [Bal 2008; Bal and Jing 2011; Bal et al. 2012], in order to characterize the random fluctuation
caused by the random potential, applies even when there are oscillations in the differential operators, as
long as these oscillations are not statistically related to those of the random potential.

Our approach is as follows: we introduce an auxiliary problem with periodic diffusion coefficients
and homogenized potential; let v" be the solution. Then the deterministic homogenization error Eu"�u

is essentially characterized by v"�u, which amounts to classical periodic homogenization theory. The
random fluctuation u" � Eu" is then the same as .u" � v"/� E.u" � v"/, which can be represented as
a truncated Neumann series. The first term X" in this series contributes to the limiting distribution.
By Prohorov’s theorem, we need to show that the probability measures of fX"g are tight in the proper
Hilbert space, and that their characteristic functions converge. The latter is essentially the convergence
in distribution of the integration of X" against test functions; in view of the uniform-in-" estimates of
the Green’s functions associated to the oscillatory diffusion, this step is the same as the earlier setting
with nonoscillatory diffusion. The role of oscillations in the diffusion, however, becomes prominent
in the step of proving tightness of the measures of fX"g. The simple and natural method used in [Bal
et al. 2012] fails completely; see Section 7 for details. New ideas are needed: we obtain tightness of the
measures of fX"g in L2.D/ by controlling the mean square of the H s-norm of fX"g for some 0 < s < 1

2
;

similarly, we get tightness in H�1.D/ by controlling the mean square of the H�s-norm with 1
2
< s < 1.

The constraints on the spatial dimension d arise naturally in the proof of such controls.

Our analysis relies on uniform estimates of the Green’s function associated to the periodic homoge-
nization problem; we refer to [Avellaneda and Lin 1987; 1991] for the classical results, and to [Kenig
et al. 2012; 2014] for recent development in this direction. We refer to [Armstrong and Smart 2014;
Armstrong et al. 2015; Marahrens and Otto 2015; Gloria and Otto 2014] for recent results on uniform
estimates of the Green’s function for equations with highly oscillatory random diffusion coefficients in
spatial dimension higher than one. We remark also that in the random setting, the limiting distribution of
the corrector function and that of the full random fluctuation u"� Eu", in negative Hölder space, were
obtained in [Mourrat and Nolen 2015] and [Gu and Mourrat 2015] respectively, in the discrete setting;
see also [Mourrat and Otto 2014]. Such results are apparently more challenging to obtain, and the proofs
require delicate calculus in the (infinite-dimensional) probability space.
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The rest of this paper is organized as follows: In Section 2 we make precise the main assumptions on
the parameters of the homogenization problem, in particular on the properties of the random potential,
and state the main results in the short-range correlation setting. Homogenization of (1-1) and some useful
results on periodic homogenization theory are recalled in Section 3. Sections 4 and 5 are devoted to
the proofs of the main results, where we characterize how the random fluctuation scales in the energy
norm and in the weak topology, and determine the limiting distribution of the scaled fluctuation. We
present new methods to prove the tightness of the probability measures of the random fluctuations. In
Section 6, we state and prove the corresponding results in the long-range correlation setting. We make
some comments and further discussions in Section 7 and prove some technical results, such as tightness
criteria for probability measures, in the Appendix.

2. Assumptions, preliminaries and main results

2A. Assumptions on the coefficients. Throughout this paper, we assume that the domain D in (1-1) is
an open bounded set of Rd with C 1;1-boundary. The coefficients aij

�
x
"

�
and q

�
x
"
; !
�

are the scaled
versions of aij .x/ and q.x; !/. We make the following main assumptions on aij and q.

Periodic diffusion coefficients. For the functions .aij /, we assume:

(A1) (periodicity) The function A WD .aij / W Rd ! Rd�d is periodic. That is, for all x 2 Rd , k 2 Zd and
i; j D 1; 2; : : : ; d , we have

aij .xC k/D aij .x/: (2-1)

(A2) (uniform ellipticity) For all y 2 Td , the matrix A.y/D .aij .y// is uniformly elliptic in the sense
that, for all � 2 Rd , one has

�j�j2 � �TA.y/� D

dX
i;jD1

�iaij .y/�j �ƒj�j
2: (2-2)

(A3) (smoothness) For some 
;M with 
 2 .0; 1� and M > 0, one has

kAkC
 .Td / �M: (2-3)

We henceforth refer to the above assumptions together as (A).

Random potential. For the random field q.x; !/ on the probability space .�;F ;P/, we assume:

(P) (stationarity and ergodicity) There exists an ergodic group of P-preserving transformations .�x/x2Rd

on �, where ergodicity means that E 2 F and

�xE DE for all x 2 Rd

imply that P.E/ 2 f0; 1g. The random potential q.y; !/ is given by Qq.�y!/, where Qq W�! R is a
random variable satisfying

0� Qq.!/�M for all ! 2�: (2-4)
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Further assumptions on q. The above assumptions are sufficient for proving the homogenization result.
However, to estimate the size of the homogenization error and to characterize the limiting distribution of
the random fluctuation, more assumptions on the random field q. � ; !/ are necessary.

To simplify notations, we write in the sequel

q.x; !/D NqC �.x; !/;

where Nq is the mean of q and � is the fluctuation. Note that Nq is a deterministic constant and � is a mean zero
stationary ergodic random field. The autocorrelation function R.x/ of q (and hence �) is defined as

R.x/D E
�
�.xCy; !/�.y; !/

�
; �2 WD

Z
Rd
R.x/ dx: (2-5)

By Bochner’s theorem, R.x/ is a positive definite function and �2 � 0. We assume that � > 0. When R
is integrable on Rd , i.e., �2 <1, we say that q has short-range correlations; we say q has long-range
correlations if otherwise. We state and prove the main results in the setting where q has short-range
correlations, and mention the corresponding results for the long-range correlation setting in Section 6.

Short-range correlated random fields. In this case, we make an assumption on the rate of decay of the
correlation function. We denote by C the set of compact sets in Rd , and for two sets K1; K2 in C, the
distance d.K1; K2/ is defined to be

d.K1; K2/D min
x2K1;y2K2

jx�yj:

Given any compact set K � C, we denote by FK the �-algebra generated by the random variables
fq.x/ W x 2Kg. We define the “maximal correlation coefficient” % of q as follows: for each r > 0, %.r/ is
the smallest value such that the bound

E
�
'1.q/'2.q/

�
� %.r/

q
E.'21.q// E.'22.q// (2-6)

holds for any two compact sets K1; K2 2 C such that d.K1; K2/� r and for any two random variables
of the form 'i .q/, with i D 1; 2, such that 'i .q/ is FKi -measurable and E'i .q/D 0. We assume that

(S) The maximal correlation function satisfies %1=2 2 L1.RC; rd�1dr/; that is,Z 1
0

%
1
2 .r/rd�1 dr <1:

Assumptions on the mixing coefficient % of random media have been used in [Bal 2008; Bal and Jing
2011; Hairer et al. 2013]; we refer to these papers for explicit examples of random fields satisfying the
assumptions. We note that the autocorrelation function R.x/ can be bounded by %. For any x 2 Rd ,

jR.x/j D
ˇ̌
E.q.x/� Eq/.q.0/� Eq/

ˇ̌
� %.jxj/Var.q/:

By (2-4), q, and hence its variance, is bounded. In view of (S) and the fact that one can assume % 2 Œ0; 1�
(hence % �

p
%), we find that R is integrable. Therefore, (S) implies that q.x; !/ has short-range

correlations. In fact, (S) is a much stronger assumption, and not necessary for the main results of this
paper to hold. In Section 7, we will provide alternative and less restrictive assumptions that are sufficient.
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However, using the assumption (S) and Lemma 4.3 below, we can simplify significantly certain fourth-
order moment estimates of the random potential �.x; !/; such estimates appear often in the study of the
limiting distribution of the homogenization error.

Notations. Throughout the paper, by universal parameters we refer to �;ƒ; 
 and M in the assump-
tions (A), the autocorrelation function R, �2, and the mixing coefficients %, the domain D and its
boundary @D, and the dimension d . If a constant C depends only on these parameters, we say either C
depends on universal parameters or C is a universal constant. For the random potential �.x; !/ and the
functions %.x/, R.x/, etc. which are related to �, we use �"; %"; R", etc. to denote the scaled versions.
For instance, �".x; !/ is shorthand notation for �

�
x
"

�
. We use the notation H s.K/, with s � 0, for the

Sobolev or the fractional Sobolev space W s;2.K/ on some domain K � Rd ; when K is bounded, we use
H s
0 .K/ for the subspace that consists of functions having trace zero at @K; note that H s

0 .R
d /DH s.Rd /.

We denote by H�s.K/, with s > 0, the dual space .H s
0 .K//

0. For any Hilbert space H, we denote the
inner product in H by . � ; � /H; when HDL2.D/, we very often omit the subscript and write . � ; � / instead.
We use hf; gi whenever the formal integral

R
D fg makes sense. We typically use 1A for the indication

function of a set A� Rd , or if A is a statement, the indication function of A being true. Finally, for two
real numbers a and b, we use a^ b as a shorthand notation for minfa; bg, and a_ b means maxfa; bg.

2B. Probability distribution on functional spaces. We view the random fluctuation u" � Eu" in the
homogenization error as random elements in certain functional spaces, and aim to find the limit of its law
in that space. It turns out that the choice of functional spaces depends on the spatial dimension d .

When d D 1, one can choose the space C.D/ of continuous functions. In fact, convergence in
distribution in C.D/ was proved in [Bal 2008] for random diffusion coefficient a.x; !/ with random
potential q.x; !/, both having short-range correlations. In this paper, we prove that for d D 2; 3, the
space can be chosen as L2.D/ and for d D 4; 5, the space can be chosen as H�1.D/. Note that both
choices are Hilbert spaces. We recall some facts concerning weak convergence of probability measures
on Hilbert spaces. We refer to the books of Billingsley [1999] and Parthasarathy [1967] for more details.

Probability distributions on a Hilbert space. Let H be a separable Hilbert space, and let X.!/ be
an H-valued random element on the probability space .�;F ;P/. Then X determines a probability
measure PX on .H;B.H//, where B.H/ denotes the Borel � -algebra generated by open sets in H, by

PX .S/D P.X 2 S/ for any S 2 B.H/: (2-7)

We say a family fX"g"2.0;1/ of random elements in H converges in probability distribution (or in law),
as "! 0, to another random element X on H, if the probability measures PX

"

converge weakly to PX ;
i.e., for any real bounded continuous functional f WH! R,Z

H
f .g/ dPX

"

.g/!

Z
H
f .g/ dPX .g/:

In particular, any probability measure P on a separable Hilbert space H is determined by its characteristic
function �P WH! C,

�P .h/D

Z
H
ei.h;g/H dP.g/: (2-8)
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Moreover, the following result holds:

Theorem 2.1 [Parthasarathy 1967, Chapter VI, Lemma 2.1]. Let fX"g"2.0;1/ and X be random elements
in H, possibly defined on different probability spaces. Then X" converges to X in law in H, as "! 0, if
the family of probability measures fPX

"

g"2.0;1/ is tight and for any h 2H,

lim
"!0

�P
X"

.h/D �P
X

.h/: (2-9)

Remark 2.2. Let H D L2.D/, which is a separable Hilbert space, and let X be a random element in
L2.D/ defined on the probability space .�;F ;P/. The characteristic function of PX can be calculated
as follows: for any h 2 L2.D/,

�P
X

.h/D

Z
R

eiz dPX
�
f.h; g/ > zg

�
D

Z
R

eiz dP
�
f.h;X.!// > zg

�
D E ei.h;X/: (2-10)

Therefore, to prove that X" converges in distribution to X as L2-paths, it suffices to show that fPX
"

g is
tight and that for any h 2 L2.D/,

.h;X"/ distribution
������! .h;X/I (2-11)

that is, the random variables .h;X"/ converge in distribution to the random variable .h;X/.

In Theorem A.1 in the Appendix, we provide a tightness criterion for fPX
"

g on L2.D/, with the
assumption that fX". � ; !/g is in H s

0 .D/ for certain s > 0. The criterion is sufficient but by no means
necessary. Nevertheless, it is very handy for our analysis since the random fields X" that we are dealing
with come from solutions of (1-1), and hence are naturally in H s

0 .D/.

2C. Main results. We now state the main results of the paper under the assumption that q.x; !/ has short-
range correlations. Analogous results for the long-range correlation setting will be presented in Section 6.

The first main theorem concerns how the homogenization error scales.

Theorem 2.3. Let D � Rd be an open bounded C 1;1 domain, u" and u be the solutions to (1-1) and
(1-2) respectively. Suppose that (A), (P) and (S) hold, f 2 L2.D/ and 2 � d � 7. Then, there exists
positive constant C , depending only on the universal parameters, such that

E ku"�ukL2 � C"kf kL2 : (2-12)
Moreover,

E ku"� Eu"kL2 �

(
C"2^

d
2 kf kL2 if d ¤ 4;

C"2j log "j
1
2 kf kL2 if d D 4:

(2-13)

Furthermore, for any ' 2 L2.D/,

E
ˇ̌
.u"� Eu"; '/L2

ˇ̌
� C"

d
2 k'kL2 kf kL2 : (2-14)

This theorem provides L1.�;L2.D//-estimates of u"�u and its random part, and its proof is detailed
in Section 4. We note that the size of the full homogenization error is much larger than that of its random
part. This is because the oscillations in the diffusion coefficients cause some deterministic fluctuation in
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the solution of size O."/, as in standard periodic homogenization. The additional random fluctuation
caused by the short-range correlated random potential scales like ".d^4/=2 in the energy norm, and scales
like "d=2 in the weak topology. These results agree with the case of nonoscillatory diffusion coefficients;
see [Bal 2008; Bal and Jing 2011]. The next result exhibits the limiting law of the rescaled random
fluctuation "�d=2.u"� Eu"/.

Theorem 2.4. Suppose the assumptions in Theorem 2.3 hold. Let � be defined as in (2-5) and G.x; y/ be
the Green’s function of (1-2). Let W.y/ denote the standard d -parameter Wiener process. Then

(i) For d D 2; 3, as "! 0,

u"� Eu"
p

"d
distribution
������! �

Z
D

G.x; y/u.y/ dW.y/ in L2.D/: (2-15)

(ii) For d D 4; 5, as "! 0, the above holds as convergence in law in H�1.D/.

The proof of item (i) above can be found on page 217 and that of item (ii) is on page 220.

Remark 2.5. The integral on the right-hand side of (2-15) is understood, for each fixed x, as a Wiener
integral in y with respect to the multiparameter Wiener processW.y/. LetX denote the result. For dD2; 3,
because the Green’s function G.x; y/ is square integrable, X is a random element in L2.D/. For d D 4; 5,
X is understood through the Fourier transform of its distribution: given h�2H�1.D/, �P

X

.h�/ is defined
to be E exp

�
i�
R
DhG. � ; y/; h

�. � /iu.y/ dW.y/
�
, where E is the expectation with respect to the law ofW .

Remark 2.6. We expect that the scaling factor for the random fluctuation, with respect to the weak
topology, should be "�d=2 in all dimensions. More precisely, for any ' 2 L2.D/, we expect that
"�d=2.u"�Eu"; '/ should converge in distribution for all dimensions. However, in this paper we control
this term only for d � 7. This constraint is not intrinsic, and is mainly due to the fact that we stopped at
second order iteration in the series expansion (4-11). In fact, if higher- (than six or more) order moments
of the random field are under control, we can iterate as many times as we need in (4-11) until the last
term is small, and use higher-order moments to estimate the terms in between; see Remark 4.6 below.

The spatial dimension plays an intrinsic role on the choice of topology that one should use for the
limiting distribution of the random fluctuations. Indeed, for the term X" D�"�d=2G"�"v" to converge in
law in L2.D/, it is necessary that EkX"k2

L2
is controlled uniformly in ". In view of the singularity of the

Green’s function, namely, of order jx�yj�dC2 near the diagonal, we expect to control EkX"k2
L2

only
for d � 3, and similarly, we expect to have convergence in law in H�1 only for d < 6. Nevertheless,
we expect that convergence in law in H�k.D/, for certain k > 0 increasing with respect to d , could be
proved, provided more controls on the random field are available.

Finally, we remark that other topologies, e.g., those in [Bal et al. 2012; Gu and Mourrat 2015], can be
considered for the law of the random fluctuation as well. In particular, tightness criteria in the Hölder
space C ˛, with ˛ possibly negative, were established in [Mourrat 2015]. By a formal scaling argument,
the short-range noise �" belongs to the Hölder class C 0� and the Green’s function is in C 2�d . The
convergence of X", which is essentially a convolution of the Green’s function with the noise and then
divided by "d=2, should take place in C ˛, for ˛ < �d

2
C 2. In fact, this agrees with the constraint that



LIMITING DISTRIBUTION OF ELLIPTIC HOMOGENIZATION ERROR 201

convergence in L2 can be expected only for d < 4, and convergence in H�1 for d < 6. It would be
interesting to pursue this direction of studies further.

3. Homogenization and periodic error estimates

The following homogenization result for (1-1), without the random potential q".x; !/, is well known.
The effect of the presence of q" turns out to be minor for homogenization; nevertheless, we include a
proof here for the sake of completeness.

Theorem 3.1. Assume (A1), (A2) and (P) hold. Then there exists �1 2 F such that P.�1/D 1, and for
all ! 2�1, the solution u" of (1-1) converges to the solution u of (1-2) weakly in H 1.D/ and strongly in
L2.D/ for any f 2H�1.D/.

Let L" denote the differential operator

�
@

@xi

�
aij

�
x

"

�
@

@xj

�
C Nq; (3-1)

and let L";! be the differential operator L" C �.x" ; !/. We remark that L" has highly oscillatory but
deterministic coefficients while L";! has, in addition, a highly oscillatory and random potential. Let G";!

and G" be the solution operator of the Dirichlet boundary problems associated to L";! and L". Owing
to the conditions (2-2) and (2-4), G";! is well-defined for any ! 2�. Moreover, we have the standard
estimate, for any ! 2� and " > 0,

kG";!f kH1.D/ � Ckf kH�1.D/; (3-2)

with some constant C that depends on the universal parameters, and neither on ! nor ". By the same
token, G" is well-defined and shares the same estimate above.

Proof of Theorem 3.1. Step 1: For each ! 2�, the solution u" of (1-1) is given by G";!f , which satisfies
the standard estimates

ku"kH1.D/CkA
"
ru"kL2.D/Ckq

".x; !/u"kL2.D/ � C;

where C depends the universal parameters and f and is uniform in " and !. As a result, due to the
compact embeddings H 1.D/ ,! L2.D/ ,!H�1.D/, through a subsequence "j .!/! 0, which by an
abuse of notation is still denoted by ", we have

ru". � ; !/
"!0

L2
��*rv. � ; !/; A

�
�

"

�
ru". � ; !/

"!0

L2
��*�. � ; !/;

u". � ; !/
"!0

L2
��! v. � ; !/; q

�
�

"
; !
�
u". � ; !/

"!0

H�1
��!p. � ; !/

(3-3)

for some function v. � ; !/ 2H 1.D/ and some vector-valued function �. � ; !/ 2 ŒL2.D/�d .

Step 2: Recall that f�kgd
kD1

are the correctors defined in (1-4), and we can extend them periodically to
functions defined on Rd . Since A.y/.ekCr�k.y// is periodic, we have that

A
�
x

"

��
ekC .r�

k/
�
x

"

��
L2
��*

Z
Td
A.y/

�
ek.y/Cr�

k.y/
�
dy D Aek : (3-4)
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For the same reason and the fact
R

Td
r�k dy D 0, we have

ekC .r�
k/
�
x

"

�
L2
��*

Z
Td
ekCr�

k.y/ dy D ek : (3-5)

Now fix an arbitrary function ' 2 C10 .D/. For each fixed ! 2�, let ".!/! 0 be the subsequence in
Step 1. Consider the integralZ

D

A
�
x

"

�
ru".x; !/ � r

n
xkC "�

k
�
x

"

�o
'.x/ dx:

On one hand, in view of the third item in (3-3), (3-5), and the facts that div.A"ru"/ D �f C q"u"

converges in H�1 (to �f Cp. � ; !/, where p is defined in (3-3)) and that ekC .r�k/.x="/ is curl-free,
by the div–curl lemma [Jikov et al. 1994, Lemma 1.1], the above integral satisfies

lim
"!0

Z
D

A
�
x

"

�
ru".x; !/ � r

n
xkC "�

k
�
x

"

�o
'.x/ dx D

Z
D

�.x; !/ � ek'.x/ dx:

On the other hand, in view of the first item in (3-3), (3-4), and the facts that div.A".ek Cr�k.x="///
converges in H�1 (they are all equal to zero) and that ru" is curl-free, by the div–curl lemma, we have

lim
"!0

Z
D

A
�
x

"

�
ru".x; !/ � r

n
xkC "�

k
�
x

"

�o
'.x/ dx D

Z
D

rvA � ek'.x/ dx:

The two limits above must be equal, and it follows that �. � ; !/D Arv. � ; !/ in distribution.

Step 3: Recall that the stationary random potential q.x; !/ can be written as Qq.�x!/, where Qq is an essen-
tially bounded random variable on �. By the Birkhoff ergodic theorem [Jikov et al. 1994, Theorem 7.2],
there exists �1 2 F with P.�1/D 1, and for each ! 2�1,

q
�
x

"
; !
�
D Qq.�x

"
!/

L˛loc.R
d/

����* Nq D Eq.0; !/ (3-6)

for any ˛ 2 .1;1/. From the weak formulation of u", for any ! 2�1 and for any ' 2 C10 .D/, we haveZ
D

A
�
x

"

�
ru".x; !/ � r'.x/ dxC

Z
D

q
�
x

"
; !
�
u".x/'.x/ dx D

Z
D

f .x/'.x/ dx:

Passing to the limit along the subsequence ".!/ found in Step 1, we haveZ
D

Arv � r'C

Z
D

Nqv.x/'.x/ dx D

Z
D

f .x/'.x/ dx� lim
"!0

Z
D

q
�
x

"
; !
�
.u"� v/'.x/ dx:

The first term on the left follows from (3-3) and the fact that � D Arv; the second term on the left is
due to (3-6). Finally, the last term on the right-hand side is zero since q is uniformly bounded and u"� v
converges to zero strongly in L2.D/. Consequently, the above limit shows that v solves the homogenized
equation (1-2). By uniqueness of the homogenized problem, we must have that vDu and v is deterministic.

Finally, for each ! 2�1, by the weak compactness in H 1.D/ and the uniqueness of the possible limit,
the whole sequence u" converges to u. This proves the homogenization theorem. �

Remark 3.2. We remark that the same proof works in the case when .aij / is not symmetric; indeed, it suf-
fices to replace �k above by the solution of the adjoint corrector equation. The same idea of proof can also
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be carried out in the case when .aij / are stationary ergodic random fields; indeed, the corrector equation in
that case is much more involved but, by now, its solution and analogs of (3-4) and (3-5), are well known.

3A. Decomposition of the homogenization error. To separate the fluctuations in the homogenization
error u"�u that are due to the periodic oscillations in the diffusion coefficients from those due to the
random potential, we introduce the function v" which solves the following deterministic problem:8<:�

@

@xi

�
aij

�
x

"

�
@

@xj
v".x; !/

�
C Nqv".x; !/D f .x/; x 2D;

v".x/D 0; x 2 @D:

(3-7)

Here, the potential field is already homogenized, and we expect that v"�u filters out the effect of the
random potential. The problem above is well-posed and its solution v" is given by G"f .

The standard periodic homogenization theory yields that v" converges weakly inH 1.D/ and strongly in
L2.D/ to u for any f 2H�1.D/. Using this function, we can write the homogenization error for (1-1) as

u"�uD .u"� v"/C .v"�u/: (3-8)

The deterministic part of the homogenization error is

Eu"�uD E.u"� v"/C .v"�u/; (3-9)

and the random fluctuation part of the homogenization error is

u"� Eu" D .u"� v"/� E.u"� v"/: (3-10)

The deterministic part of the homogenization error hence contains two parts, the mean of u"�v" and the
periodic homogenization error v"�u. Estimates for the second part amount to the convergence rate of peri-
odic homogenization, and we recall some of the well-known results below, together with uniform-in-" esti-
mates of the Green’s function associated to G". We postpone the estimates for E.u"�v"/ to the next section.

Theorem 3.3 (estimates in periodic homogenization). Let D � Rd be an open bounded C 1;1-domain,
and v" and u be the solutions to (3-7) and (1-2) respectively. Let G".x; y/, with x; y 2D, be the Green’s
function associated to the Dirichlet problem of (3-7). Assume (A) holds. Then there exists positive
constant C , depending only on the universal parameters, such that

(i) for any f 2 L2.D/, we have kv"�ukL2 � C"kf kL2 ,

(ii) for d � 2 and for any x; y 2D, x ¤ y, we have that G".x; y/ satisfies

jG".x; y/j �

(
C jx�yj2�d if d ¤ 2;

C
�
1C

ˇ̌
log jx�yj

ˇ̌�
if d D 2;

(3-11)

and
jrG".x; y/j � C jx�yj

1�d : (3-12)

The O."/-error estimates in L2 were proved in [Moskow and Vogelius 1997] for d D 2, and in [Griso
2006] for general C 1;1-domains; see also [Kenig et al. 2012]. The uniform-in-" estimates on the Green’s
function and its gradient can be found, e.g., in [Avellaneda and Lin 1987; 1991; 2015]. In particular,
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(3-11) was proved in [Avellaneda and Lin 1987, Theorem 13]; the estimate (3-12) follows from an interior
Lipschitz estimate, e.g., [Avellaneda and Lin 1987, Lemma 16], if the distance between x and y is smaller
compared with their distance from the boundary, and it follows from a boundary Lipschitz estimate, e.g.,
[Avellaneda and Lin 1987, Lemma 20], if otherwise; see also the proof of [Armstrong and Shen 2015,
Theorem 1.1].

The homogeneities in these bounds are the same as those for the Green’s function associated to
constant coefficient equations, namely the Laplace equations. The striking fact that these bounds still
hold for oscillatory equations is due to the fact that the problem (3-7) homogenizes to constant (smooth)
coefficient equations. Periodicity or other structural assumptions on the coefficients are crucial. We
remark also that it is to obtain such pointwise estimates that the Hölder regularity of the diffusion matrix,
i.e., assumption (A3), is needed.

4. Estimates for the homogenization error

In this section, we estimate the size of the homogenization error u"�u. In view of the decomposition (3-8),
(3-9), (3-10) and the error estimates in Theorem 3.3, it suffices to focus on the intermediate homogenization
error u"� v", with v" D G"f defined in (3-7).

We introduce the function w" which solves

L"w" D��"v"; (4-1)

with homogeneous Dirichlet boundary condition. With the notations G" and G";! introduced earlier, w" is
given by �G"�"v". It follows that

L";!.u"� v"�w"/D��"w";

and u" � v" �w" vanishes at the boundary. Hence we have u" � v" �w" D �G";!�"w". Due to the
assumptions (A), G";! is uniformly (in " and !) bounded as a linear operator L2! L2; we have

ku"� v"kL2 � Ckw
"
kL2 : (4-2)

An estimate of u"� v" thus follows from this result:

Lemma 4.1. Let v" D G"f and w" be as above. Under the same conditions of Theorem 2.3, there exists
a universal constant C and

Ekw"k2
L2.D/

�

(
C"d^4kf k2

L2
if d ¤ 4;

C"4j log "jkf k2
L2

if d D 4:
(4-3)

Proof. Using the Green’s function G", we write

w".x; !/D

Z
D

G".x; y/�

�
y

"

�
v".y/ dy: (4-4)

The L2-energy of w" is then

kw". � ; !/k2
L2
D

Z
D3
G".x; y/G".x; z/�

�
y

"

�
�

�
z

"

�
v".y/v".z/ dy dz dx:
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Taking the expectation and using the definition of the autocorrelation function R of q, we have

Ekw". � ; !/k2
L2
D

Z
D3
G".x; y/G".x; z/R

�
y � z

"

�
v".y/v".z/ dy dz dx: (4-5)

Integrate over x first. Apply the uniform estimates (3-11) and the fact (see, e.g., Lemma A.1 of [Bal
and Jing 2011]): for any y ¤ z, 0 < ˛; ˇ < d ,

Z
D

dx

jx�yjd�˛ jx� zjd�ˇ
�

8̂<̂
:
C if ˛Cˇ > d;

C
�
1C

ˇ̌
log jy � zj

ˇ̌�
if ˛Cˇ D d;

C jy � zj˛Cˇ�d if ˛Cˇ < d:

(4-6)

We get Z
D

jG".x; y/G".x; z/j dx �

(
C jy � zj�..d�4/^0/ if d ¤ 4;

C.1C log jy � zj/ if d D 4:
(4-7)

Hence, if d � 2 and d ¤ 4,

Ekw". � ; !/k2
L2
� C

Z
D2

jv".y/v".z/j

jy � zj.d�4/_0

ˇ̌̌̌
R

�
y � z

"

�ˇ̌̌̌
dy dz dx:

When d D 4, the term .jy� zj.d�4/_0/�1 should be replaced by 1C
ˇ̌
log jy� zj

ˇ̌
. In any case, the above

yields a bound of the form

Ekw". � ; !/k2
L2
� C

Z
Rd
j Qv".y/j.K" � Qv"/.y/ dy: (4-8)

Here, Qv" D v"1D and 1D denotes the indicator function of the set D, K".y/DR
�y
"

�
jyj.4�d/^01B�.y/

if d ¤ 4 and K".y/D R
�y
"

��
1C 1B�.y/

ˇ̌
log jyj

ˇ̌�
if d D 4. Here, B� is the ball centered at zero with

radius � and � is the diameter of D. We check that, when d ¤ 4,

kK".y/kL1 �

Z
Rd

ˇ̌̌̌
R

�
y

"

�ˇ̌̌̌
1

jyj.d�4/_0
dy D

"d

".d�4/_0

Z
Rd

jR.y/j

jyj.d�4/_0
D C"d^4; (4-9)

where in the last inequality we used R 2 L1\L1.Rd /. Similarly, when d D 4,

kK".y/kL1 D

Z
B�

ˇ̌̌̌
R

�
y

"

�ˇ̌̌̌�
1C

ˇ̌
log jyj

ˇ̌�
dy D "4

Z
B�="

jR.y/j
�
1C

ˇ̌
log j"yj

ˇ̌�
� C"4jlog "j: (4-10)

To get the last inequality, we evaluate the integral on B1 and B�=" nB1, and bound
ˇ̌
log j"yj

ˇ̌
by
ˇ̌
log j"�j

ˇ̌
for the second part. Applying Hölder’s and then Young’s inequalities to (4-8), we get

Ekw"k2
L2
� CkK"k

L1
kv"k2

L2
� CkK"k

L1
kf k2

L2
:

Combining this with the estimates in (4-9) and (4-10), we complete the proof of the lemma. �
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4A. Scaling of the energy in the random fluctuation. Now we estimate theL2.D/-norm (the energy) of
the random fluctuation u"�Eu" which, in view of (3-10), is the same as the fluctuation u"�v"�E.u"�v"/.

Using the first-order correctorw" defined by (4-1), and following the approach of [Bal 2008; Bal and Jing
2011], we can derive an expansion formula for u"�v" as follows. Rewrite the equations (1-1) and (3-7) as

L"u" D f � �"u"; L"v" D f:

Then it follows that u"� v" D�G"�"u" D�G"�"v"�G"�".u"� v"/. Iterate this relation another time;
we get the truncated Neumann series

u"� v" D�G"�"v"CG"�"G"�"v"CG"�"G"�".u"� v"/: (4-11)

In particular, the fluctuations in u"� v" can be written as

u"� Eu" D�G"�"v"C
�
G"�"G"�"v"� EG"�"G"�"v"

�
C
�
G"�"G"�".u"� v"/� EG"�"G"�".u"� v"/

�
:

The first term above is exactly w", which has mean zero and its energy was estimated in Lemma 4.1. The
next lemma provides an estimate for the energy of the second term in the above expansion.

Lemma 4.2. Suppose that the assumptions of Theorem 2.3 are satisfied. Then there exists a constant
C > 0, depending only on the universal parameters and f , such that

E


G"�"G"�"v"� EG"�"G"�"v"



2
L2.D/

�

8̂<̂
:
C"2d if d D 2; 3;

C"8j log "j2 if d D 4;

C"8 if 5� d � 7:

(4-12)

Let I "2 denote the left-hand side of (4-12); it has the expression

I "2 D E

Z
D

�Z
D2
G".x; y/G".y; z/

�
�".y/�".z/� E�".y/�".z/

�
v".z/ dz dy

�2
dx

D

Z
D5
G".x; y/G".x; y

0/G".y; z/G".y
0; z0/v".z/v".z0/�

E

�
�

�
y

"

�
�

�
y0

"

�
�

�
z

"

�
�

�
z0

"

��
�R

�
y � z

"

�
R

�
y0� z0

"

��
dz0 dy0 dz dy dx:

It is then evident that we need to estimate certain fourth-order moments of �.x; !/, namely, the function

‰�.x; y; t; s/ WD E�.x/�.y/�.t/�.s/�
�
E�.x/�.y/

��
E�.t/�.s/

�
: (4-13)

Were � a Gaussian random field, its fourth-order moments would decompose as a sum of products of
pairs of R. This nice property does not hold for general random fields; however, the following estimate
for �-mixing random fields provides almost the same convenience.

Lemma 4.3. Suppose �.x; !/ is a random field with maximal correlation function % defined as in (2-6).
Then

j‰�.x; t; y; s/j � #.jx� t j/#.jy � sj/C#.jx� sj/#.jy � t j/; (4-14)

where #.r/D .K%.r=3//1=2, with K D 4k�kL1.��D/.
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We refer to [Hairer et al. 2013] for the proof of this lemma. Estimates of this type based on mixing prop-
erties already appeared in [Bal 2008]. We refer to [Bal and Jing 2011] for an alternative way to control terms
like ‰� , and to Section 7 for some comments on the connection of condition (S) with the lemma above.

Proof of Lemma 4.2. Integrate over x in the expression of I "2 , and apply the estimates (3-11), (4-7) and
(4-14). We find, for d � 3,

I "2 � C

 Z
D4

�
1C1dD4

ˇ̌
log jy �y0j

ˇ̌�
jv".z/v".z0/j

jy �y0j.d�4/_0 jy � zjd�2 jy0� z0jd�2
#

�
y �y0

"

�
#

�
z� z0

"

�
dz0 dy0 dz dy

C

Z
D4

�
1C1dD4

ˇ̌
log jy �y0j

ˇ̌�
jv".z/v".z0/j

jy �y0j.d�4/_0 jy � zjd�2 jy0� z0jd�2
#

�
y � z0

"

�
#

�
z�y0

"

�
dz0 dy0 dz dy

!
:

For d D 2, the terms jy � zj�.d�2/ and jy0 � z0j�.d�2/ above should be replaced by 1C
ˇ̌
log jy � zj

ˇ̌
and 1C

ˇ̌
log jy0� z0j

ˇ̌
respectively. Let I "21 and I "22 denote the two terms on the right-hand side of the

estimate above. In the following, we set � to be the diameter of D.

Estimate of I "21. We use the change of variables

y �y0

"
7! y;

z� z0

"
7! z; y0� z0 7! y0; z0 7! z0:

Then the integral in I "21 becomes, for d � 3,

C"2d

".d�4/_0

Z
B2
�="

dy dz

Z
B�

dy0
Z
D

dz0
�
1C1dD4

ˇ̌
log j"yj

ˇ̌�
jv".z0/v".z0C "z/j

jyj.d�4/_0 jy0C ".y � z/jd�2 jy0jd�2
#.y/#.z/:

We integrate over y0 first and apply (4-6), then integrate over z0 and obtain

I "21 � Ckv
"
k
2
L2
"2d�2.d�4/_0

Z
B2
�="

�
1C 1dD4

ˇ̌
log j"yj

ˇ̌��
1C1dD4

ˇ̌
log j".y � z/j

ˇ̌�
#.y/#.z/

jyj.d�4/_0 jy � zj.d�4/_0
dy dz:

When d D 3, the integral above is bounded because # 2 L1.Rd / thanks to assumption (S), and we
have I "21 � C"

2d . When d D 2, the situation is similar; after the integral over y0, there is again no
singularity in the denominator. Hence, I "21 � C"

2d .
When d � 5, by the Hardy–Littlewood–Sobolev inequality [Lieb and Loss 2001, Theorem 4.3], we

have, for p; r 2 .1;1/,Z
R2d

.#.y/=jyjd�4/#.z/

jy � zjd�4
dy dz � C





 #.y/
jyjd�4






Lp.Rd /

k#kLr .Rd /;
1

p
C
d � 4

d
C
1

r
D 2:

Take pD d=.4Cı/ and r D d=.d �ı/ for any .d �8/_0 < ı < d �4. Then because # 2L1\L1.Rd /
and jyj4�d 2 Lp.B1/, the above is finite and we have I "21 � C"

8.
When d D 4, we need to control the integralZ

B2
�="

�
1C

ˇ̌
log j"yj

ˇ̌��
1C

ˇ̌
log j".y � z/j

ˇ̌�
#.y/#.z/ dy dz;
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where D� D fy �y0� zC z0 W y; y0; z; z0 2Dg is some bounded region formed by certain combinations
of points in D. As a result, the logarithmic terms are bounded away from the poles. Hence, the above
integral is bounded by O.j log "j2/, and I "21 � C"

8j log "j2.

Estimate of I "22. We apply the change of variables

y � z0

"
7! y;

y0� z

"
7! y0; z� z0 7! z; z0 7! z0:

Then the integral in I "22 becomes, for d D 2,

C"2d
Z
B2
�="

dy dy0
Z
D

dz0
Z
B�

dz
ˇ̌
v".z0/v".z0C z/

ˇ̌�
1C

ˇ̌
log jz� "yj

ˇ̌�
.1C log jz� "y0j/#.y/#.y0/:

Integrate over z0, z and then over y0 and y. We find that I "22 � C"
2d . For d � 3, the same change of

variables transforms I "22 to

C"2d
Z
B2
�="

dy dy0
Z
B�

dz

Z
D

dz0
�
1C1dD4

ˇ̌
log jz� ".y �y0/j

ˇ̌�
jv".z0/v".z0C z/j

jz� ".y �y0/j.d�4/_0 jz� "yjd�2 jzC "y0jd�2
#.y/#.y0/:

After an integration over z0, we only need to control

C"2d
Z
B2
�="

dy dy0
Z
B�

dz

�
1C1dD4

ˇ̌
log jz� ".y �y0/j

ˇ̌�
jz� ".y �y0/j.d�4/_0 jz� "yjd�2 jzC "y0jd�2

#.y/#.y0/:

When d D 3, an integration over z removes the singularities in the denominator. Then integrating
over y and y0 yields that I "22 � C"

2d .
When d � 5, we need to control the integral; after another change of variables, "�1z� .y � y0/ 7! z

and �y 7! y, we haveZ
R3d

dy dy0 dz
C"8#.y/#.y0/

jzjd�4 jz�yjd�2 jz�y0jd�2
D

Z
Rd
dz
C"8jK.z/j2

jzjd�4
;

with K.z/D .jyj�.d�2/ �#/.z/. Since # 2 L1\L1.Rd /, we have

jK.z/j D

Z
B1.z/

#.y/ dy

jz�yjd�2
C

Z
RdnB1.z/

#.y/ dy

jz�yjd�2
�

Z
B1.z/

k#kL1 dy

jy � zjd�2
C

Z
RdnB1.z/

#.y/ dy � C:

Moreover, by the Hardy–Littlewood–Sobolev inequality, we have that

kKkL2.Rd / D


jyj�.d�2/ �#.y/



L2.Rd /
� Ck#k

L2d=.dC4/.Rd /
� Ck#k

d�4
2d

L1
k#k

dC4
2d

L1
:

Now we show that K 2 L1\L2.Rd /. It follows that the integral to be controlled is finite and we have
I "22 � C"

8.
When d D 4, after the same change of variables as in the case of d � 5, we are left to control

"8
Z
B2
�="

dy dy0
Z
B3�="

dz

�
1C

ˇ̌
log j"zj

ˇ̌�
#.y/#.y0/ dy dy0 dz

jz�yj2 jz�y0j2
D "8

Z
B3�="

�
1C

ˇ̌
log j"zj

ˇ̌�
.K.z//2 dz;
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where K.z/ D .1B�=".y/jyj
�2 � #/.z/. We verify again that K 2 L1 \L2�ı.Rd / for any ı 2 .0; 1/.

Estimate the integral again by breaking it into pieces inside and outside B1; we find I "22 � C"
8j log "j.

Combining these estimates above, we have proved (4-12). �

Moving on to the last term in the series (4-11), we observe that it cannot be controlled in the same
manner as above. Indeed, the term u"� v" is random and depends on �.x; !/ in a nonlinear way. As a
result, when we move the expectation into the integral representation, like in step (4-5), we cannot get a
simple closed form in terms of R.

We hence choose not to address the interaction between u"� v" and the random fluctuation �" in the
potential directly. Instead, by an application of Minkowski’s inequality, we have

EG"�"G"�".u"�u/




L2.D/

� E


G"�"G"�".u"�u/

L2.D/:

Thus, we use the trivial bound on the L1.�;L2.D//-norm of the fluctuations in G"�"G"�".u"�u/:

r"2 WD E


G"�"G"�".u"�u/� �EG"�"G"�".u"�u/

�


L2.D/

� 2 E


G"�"G"�".u"�u/

L2.D/;

and only control the energy of the last term in (4-11) itself, as contrast to its variance.

Lemma 4.4. Suppose that the assumptions of Theorem 2.3 are satisfied. Then there exists some con-
stant C , depending only on the universal parameters and f , such that

E


G"�"G"�".u"� v"/

L2.D/ �

8̂<̂
:
C"d if d D 2; 3;

C"4j log "j
3
2 if d D 4;

C"6�
d
2 if d � 5:

(4-15)

To prove this result, we estimate the operator norm of G"�"G", which is random since �" depends on !,
and combine it with the control of u"� v", which was obtained earlier.

Lemma 4.5 (mean value of the operator norm kG"�"G"kL2!L2). Under the same assumptions of
Theorem 2.3, there exists some universal constant C such that

EkG"�"G"k2L2!L2 �

8̂<̂
:
C"d if d D 2; 3;

C"4jlog "j2 if d D 4;

C"8�d if d � 5:

(4-16)

Proof. For any h 2 L2.D/, we have

kG"�"G"hk2L2 D
Z
D

�Z
D2
G".x; y/�

".y/G".y; z/h.z/ dz dy

�2
dx:

Note that for almost every fixed x 2D,ˇ̌̌̌Z
D2
G".x; y/�

".y/G".y; z/h.z/ dz dy

ˇ̌̌̌
� khkL2





Z
D

G".x; y/�
".y/G".y; � / dy






L2
:
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It then follows that

kG"�"G"k2L2!L2.!/�
Z
D2

�Z
D

G".x; y/�
".y; !/G".y; z/ dy

�2
dz dx:

Taking the expectation, we find

EkG"�"G"k2L2!L2 �
Z
D4
G".x; y/G".x; �/R

�
y � �

"

�
G".y; z/G".�; z/ dy d� dz dx:

Integrate over z- and x-variables first. Using (3-11) and (4-6), we find that the integrals over x- and
z-variables are estimated as in (4-7). Then we have

EkG"�"G"k2L2!L2 � C
Z
D2

�
1C1dD4

ˇ̌
log jy � �j

ˇ̌
jy � �j.d�4/_0

�2 ˇ̌̌̌
R

�
y � �

"

�ˇ̌̌̌
dy d�:

Change variables in the above integral and carry out the analysis as before. We find that (4-16) holds.
Note that the estimates become useless for d � 8. �

Proof of Lemma 4.4. For each ! 2�, we have

G"�"G"�".u"� v"/

L2 �MkG"�"G"kL2!L2 ku"� v"kL2 ;
where M is the uniform bound on the random potential in (2-4). Take the expectation and then the desired
estimate follows from (4-16), (4-2) and (4-3). �

4B. Scaling factor of the random fluctuations in the weak topology. In this section we aim to find the
correct scaling factor such that the random fluctuation u"� Eu", normalized properly according to this
factor, converges with respect to the weak topology. For that purpose, we fix an arbitrary ' 2 L2.D/
with unit norm, and estimate E.u"� Eu"; '/2.

Using the series expansion formula (4-11), we have

.u"� Eu"; '/D�.G"�"v"; '/C
�
G"�"G"�"v"� E.G"�"G"�"v"/; '

�
C
�
G"�"G"�".u"� v"/� E.G"�"G"�".u"� v"//; '

�
:

Since the operators G" and G"�"G" are self-adjoint on L2.D/, we can move them to '. Set  " D G"'.
The above expression becomes

.u"� Eu"; '/D�.�"v";  "/C
�
.�"G"�"v";  "/� E.�"G"�"v";  "/

�
C
�
.�".u"� v"/;G"�" "/� E.�".u"� v"/;G"�" "/

�
WD I "1 C .I

"
2 � EI "2 /C .I

"
3 � EI "3 /: (4-17)

The aim now is to control the variances of I "j , with j D 1; 2; 3.
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Estimate for I "1 . For I "1 , which is mean-zero, we have

E.I "1 /
2
D E

�Z
D

�".x/v".x/ ".x/ dx

�2
D

Z
D2
R

�
x�y

"

�
v".x/v".y/ ".x/ ".y/ dx dy

D

Z
Rd

�
R" �

�
v".y/ ".y/1D.y/

��
.x/ v".x/ ".x/1D.x/ dx

� CkR"kL1.Rd /kv
" "1Dk

2
L2.Rd /

:

Here, R".y/ D R
�y
"

�
is a shorthand notation. To obtain the last inequality, we applied Hölder’s and

Young’s inequalities. Note that kR"kL1.Rd / D "dkRkL1.Rd /. Note also that f; ' 2 L2.D/ implies
that v";  " 2 H 2.D/, which is embedded in L4.D/ for all 2 � d � 7. As a result, we conclude that
E jI "1 j � C"

d=2.

Estimate for Var.I "2 /. Before calculating the variance of I "2 , we first check that kI "2kL2.�/ can have size
larger than "d=2 for d � 4. By direct computation, for d � 3,

E.I "2 /
2
D

Z
D4
R

�
x�y

"

�
R

�
x0�y0

"

�
G".x; y/G".x

0; y0/v".y/v".y0/ ".x/ ".x0/ dx0 dy0 dx dy

.
Z
D4

ˇ̌̌̌
R

�
x�y

"

�
R

�
x0�y0

"

�ˇ̌̌̌
jv".y/v".y0/ ".x/ ".x0/j

jx�yjd�2 jx0�y0jd�2
dy0 dx0 dy dx:

(4-18)
For d D 2, the last integral above should be replaced byZ
D4

ˇ̌̌̌
R

�
x�y

"

�
R

�
x0�y0

"

�
v".y/v".y0/ ".x/ ".x0/

�
1C
ˇ̌
log jx�yj

ˇ̌��
1C
ˇ̌
log jx0�y0j

ˇ̌�ˇ̌̌̌
dy0dx0dy dx:

After the change of variables

x�y

"
7! x;

x0�y0

"
7! x0; y! y; y0! y0;

the integral to be controlled, for d � 3, becomes

"4
Z
B2
�="

Z
D2
jR.x/R.x0/j

ˇ̌
v".y/ ".yC "x/v".y0/ ".y0C "x0/

ˇ̌
jxjd�2 jx0jd�2

dy0 dy dx0 dx:

Integrating over y and y0 and then over x and x0, we find that the integral above is finite. Hence, E.I "2 /
2

is of order "4 when d � 3. When d D 2, the change of variables in the logarithmic functions yields
the term j log "j2, and we have E.I "2 /

2 is of order "4j log "j2. This shows that the second term in (4-11),
i.e., I "2 , is larger than or comparable to "d=2 for d � 4.
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We show next that the variance of I "2 , however, is smaller than "d=2 in all dimensions. Using the
definition of‰� in (4-13) and the estimate in Lemma 4.3, we bound E.I "2�EI "2 /

2DVar.I "2 /, for d � 3, by

Var.I "2 /D
Z
D4
‰�

�
x

"
;
y

"
;
x0

"
;
y0

"

�
G".x; y/G".x

0; y0/v".y/v".y0/ ".x/ ".x0/ dx0 dy0 dx dy

� C

Z
D4
#

�
x� x0

"

�
#

�
y �y0

"

�ˇ̌
v".y/v".y0/ ".x/ ".x0/

ˇ̌
jx�yjd�2 jx0�y0jd�2

dx0 dy0 dx dy

CC

Z
D4
#

�
x�y0

"

�
#

�
y � x0

"

�ˇ̌
v".y/v".y0/ ".x/ ".x0/

ˇ̌
jx�yjd�2 jx0�y0jd�2

dx0 dy0 dx dy:

The second integral above is essentially the same with the first one if we interchange x0 and y0. Hence,
we focus only on the first one. After the change of variables

x� x0

"
7! x;

y �y0

"
7! y; y � x0 7! x0; y0 7! y0;

the first integral becomes

C"2d
Z

R2d
dx dy

Z
B�

dx0
Z
D

dy0#.x/#.y/

ˇ̌
v".y0C"y/v".y0/ ".y0�x0C"xC"y/ ".y0�x0C"y/

ˇ̌
jx0�"xjd�2 jx0�"yjd�2

:

Integrate over y0 first and use the fact that kv"kL4 � C and k "kL4.D/ � C . Then the above integral is
bounded byZ

R2d
dx dy

Z
B�

#.x/#.y/
C"2d dx0

jx0� "xjd�2 jx0� "yjd�2
�

Z
R3d

C"2d�.d�4/_0#.x/#.y/ dx0 dx dy

jx�yj.d�4/_0

for d ¤ 4, where we integrated over x0 and used (4-6) to have the inequality. The resulting integral is
clearly finite. Hence we conclude that Var.I "2 /� C"

2d for d D 3 and that it is of order "dC4 for d � 5.
When d D 2, there is only logarithmic singularity to start with in the expression of Var.I "2 /, and we

find Var.I "2 /� C"
2d .

When d D 4, the integral that remains after we integrate over x0 has a term of the form�
log j".x�y/j

�
1".x�y/2B2� :

It follows then that Var.I "2 /� C"
8jlog "j.

To summarize, for d � 2, we have EjI "2�E I "2 j� EjI "1 j. That is, when the series expansion is integrated
against test functions and the mean is removed, the second term is much smaller than the leading term.

Estimate for I "3 . For the last term, we control it by the crude estimate E.I "3 � E I "3 /
2 � 2E.I "3 /

2. From
the expression I "3 D .�

".u"� v"/;G"�" "/, we have

EjI "3 j � E
�
k�"kL1 ku

"
� v"kL2 kG"�

" "kL2
�
� C

�
Eku"� v"k2

L2
EkG"�" "k2L2

�1
2

since G"�" " is exactly of the form of w" defined in (4-1). Owing to (4-2) and Lemma 4.1, we conclude
that E jI "3 j is of order "d for d D 2; 3, of order "4j log "j for d D 4, and of order "4 for d � 5. Hence, for
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all 2� d � 7, the truncation term in the Neumann series, with respect to the weak topology, has a scaling
factor that is smaller than that of the leading term (which is of order "d=2).

Remark 4.6. We find that for 2�d � 7, the random fluctuation u"�Eu" scales like "d=2 when integrated
against test functions, and the leading term is the dominating one. We do not expect the dimension
constraint d � 7 to be intrinsic. Firstly, it is related to the fact that we stopped at the second-order iteration
in the Neumann series, and had to control the last term by the crude estimate given by the Minkowski
inequality (not taking advantage of removing the mean). Secondly, it is also needed when we claim that
 " D G"�"' is in L4.D/. In general, if we assume a stronger condition, namely f 2 C.D/, then v" is
always bounded, and we only need  " 2 L2.D/, which holds in all dimensions if ' 2 L2.D/.

We conclude this section by collecting the facts obtained above to give a proof of Theorem 2.3.

Proof of Theorem 2.3. Let v" be as defined in (3-7). In view of (3-10) and the Minkowski inequality, we
have

Eku"� Eu"k2
L2
� E

�
2ku"� v"k2

L2
C 2 kE.u"� v"/k2

L2

�
� 4 Eku"� v"k2

L2
:

Owing to (4-2) and Lemma 4.1, we have (2-13).
In view of (3-8), (4-2), Lemma 4.1 and Theorem 3.3, we have

Eku"�ukL2 � Eku"� v"kL2 Ckv
"
�ukL2 � C"kf kL2 :

This proves (2-12).
Finally, to estimate Ej.u"� Eu"; '/L2 j for an arbitrary field ' 2 L2.D/, without loss of generality we

can assume k'kL2 D 1. Then this term is precisely what was studied immediately above. With I "j , where
j D 1; 2; 3, defined earlier, we have showed that for 2� d � 7, we have E j

P3
jD1.I

"
j � E I "j /j � C"

d=2,
which is precisely (2-14). �

5. Limiting distribution of the random fluctuation

In this section, we study the limiting distribution of the scaled random fluctuation, "�d=2.u" � Eu"/,
in functional spaces. As mentioned earlier, the choice of space depends on dimension. When d D 1,
convergence in law in C.D/ of the random fluctuation was proved in [Bourgeat and Piatnitski 1999; Bal
2008]. We prove Theorem 2.4 below, which establishes convergence in law of the random fluctuation in
L2.D/ for d D 2; 3 and in H�1.D/ for d D 4; 5.

Multiplying "�d=2 to the series expansion (4-11), we obtain the following expression for the scaled
random fluctuation:

�
G"�"v"
p

"d
C

G"�"G"�"v"� EG"�"G"�"v"
p

"d
C

G"�"G"�".u"� v"/� EG"�"G"�".u"� v"/
p

"d
: (5-1)

Our strategy, as in [Bal 2008; Bal and Jing 2011], is to prove that the leading term X" D�"�d=2G"�"v"

contributes and converges in law to the right distribution depicted by Theorem 2.4, and show that the other
terms converge in stronger mode to the zero function and hence have no contribution to the limiting law.
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At the purely formal level, all these steps are the same as in the setting of nonoscillatory diffusion
coefficients. Indeed, we already established controls for the second and last terms above in the previous
section. Moreover, the "-dependence in G" and v" is not a problem, as we will see later, for the convergence
of the characteristic functions of X", thanks to the fact that G"'! G' in L2 for any ' 2H�1.D/. This
dependence, however, does impose difficulty on showing the tightness of the measures of fX"g". As
discussed in Section 7, the old approach for tightness in [Bal et al. 2012] fails and new ideas are needed.

Our new approach is to use some nonoptimal but convenient tightness criteria, described in Theorems A.1
and A.2, for probability measures on Hk.D/ that are induced by processes in HkCs.D/, with k D�1; 0
and s > 0. Since we do need s to be fractional in .0; 1/, we recall some definitions regarding fractional
Sobolev spaces; see [Di Nezza et al. 2012] for reference. Given an open set K � Rd , the fractional
Sobolev space H s

0 .K/, for s 2 .0; 1/, is the closure of C10 .K/ in the norm

kuk2H s.K/ WD kuk
2
L2.K/

C

Z
K2

ju.x/�u.y/j2

jx�yjdC2s
dx dy:

When K D Rd , an equivalent norm for u 2H s.Rd / is

kuk2
H s.Rd /

WD

Z
Rd
.1Cj�j2/s jFuj2.�/ d�: (5-2)

Moreover, for s 2 .0; 1/, the space H�s.K/ is defined to be the dual space .H s
0 .K//

0, and in particular
when K D Rd , the above norm for H�s.Rd / is still valid.

5A. Limiting distribution in L2.D/ for dimensions two and three. For d D 2; 3, we prove that the
leading term X" in (4-11) converges in law in L2.D/ and show that the other terms vanish in the limit.
The next lemma, together with Theorem A.1, yields tightness of X", which is the key step.

Lemma 5.1. Suppose that the conditions of Theorem 2.3 are satisfied. Assume further that d D 2; 3. Then
for any s2

�
0; 1
2

�
, there exists a constant C , depending only on the universal parameters and s, such that

Ek"�
d
2 G"�"v"k2H s � C: (5-3)

Proof. For each fixed ! 2� and " > 0, we know that "�d=2G"�"v" belongs to H 1
0 .D/ and hence also to

H s
0 .D/ for any s 2 .0; 1/. In particular, its H s-seminorm has the expression

Œ"�
d
2 G"�"v"�2H s.D/ D

1

"d

Z
D2

ˇ̌
.G"�"v"/.x/� .G"�"v"/.y/

ˇ̌2
jx�yjdC2s

dy dx:

Taking the expectation and using the L4-bounds of v", we have

EŒ"�
d
2 G"�"v"�2H s.D/�

C

"d

Z
D4

ˇ̌�
G".x; z/�G".y; z/

��
G".x; �/�G".y; �/

�ˇ̌
jx�yjdC2s

ˇ̌̌̌
R

�
z� �

"

�ˇ̌̌̌
d� dz dy dx:

We claim: there exists C , depending only on the universal parameters and s, such that for all �; z 2D,Z
D2

ˇ̌�
G".x; z/�G".y; z/

��
G".x; �/�G".y; �/

�ˇ̌
jx�yjdC2s

dy dx � C: (5-4)
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x

y

z
�

x

y

z

�

x

y

z
�

Figure 1. Decomposition criteria of the domain of integration based on the relative
position between four points. Left: .x; y/2D21 ; middle: .x; y/2D22 ; right: .x; y/2D23 .

We decompose the integration region D2 into three parts D2j , with j D 1; 2; 3, as follows: in D21 , one of
the points in fz; �g, namely � without loss of generality, lies outside B�.x/[B�.y/, where �D jx�yj;
in D22 , one of the points, namely z without loss of generality, lies in B�.x/ and satisfies jz�xj � jz�yj
and at the same time � 2B�.y/ and j��yj � j��xj; inD23 , we have that � and z cluster around one of the
points in fx; yg; without loss of generality, assume this point is x, so z; � 2B�.x/\f� W j��xj< j��yjg.
In Figure 1, the relative positions between fx; y; z; �g are illustrated for each case.

Let Ij be the integral over D2j of the integrand in (5-4). We estimate Ij , with j D 1; 2; 3, separately
and we focus on the case of d D 3. It is clear that when d D 2, the only change is that the Green’s
function has logarithmic bound, and the analysis below can be adapted.

On D21 , without loss of generality, we assume that jz�xj � jz�yj (if otherwise, we would switch the
roles of x and y). Hence jG".x; z/�G".y; z/j � C jx� zj2�d . By the mean value theorem,

jG".x; �/�G".y; �/j � jrG".�; �/jjx�yj for some � between x and y:

By the gradient bound (3-12) and the fact that j�� �j � jy � �j=2, we have

jrG".�; �/j �
C

j�� �jd�1
�

C

jy � �jd�1
; hence jG".x; �/�G".y; �/j �

C jx�yj

jy � �jd�1
:

As a result, we have,

I1 �

Z
D21

C

jx�yjdC2s�1

1

jx� zjd�2

1

jy � �jd�1
dx dy:

Integrate over x first and then over y, using (4-6) in each step; we find that as long as 0 < s < 1
2

, we have
I1 � C for some C that only depends on the universal parameters and s.

On D22 , we have jG".x; z/�G".y; z/j � C jx� zj2�d and jG".x; �/�G".y; �/j � C jy � �j2�d . At
the same time, jx� zj � jx�yj and jy � �j � jx�yj, so we may split the singularity into the integrals
over x and y so that each of them is essentially not singular. That is,

I2 �

Z
D22

C

jx� zj
d
2
Cs
jy � �j

d
2
Cs

1

jx� zjd�2

1

jy � �jd�2
dx dy:
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We note that the integral above can be separated, and as long as 0 < s < 2� d
2
D
1
2

, each integral is finite
and hence I2 � C .

On D23 , we assume without loss of generality that z and � cluster around x. Then we have

jG".x; �/�G".y; �/j � C jx� �j
2�d

for � 2 fz; �g. At the same time, jx�yj> jy � zj. As a result, we have

I3 �

Z
D23

C

jy � zjd�� jx� zj2sC�

1

jx� zjd�2

1

jx� �jd�2
dx dy:

We choose � > 0 so the integral over y is uniformly bounded. The integral over x is also bounded as
long as 2sC � < .4� d/^ 2 D 1, and we have I3 � C . We note that for any s 2

�
0; 1
2

�
, there exists

� 2 .0; 1� 2s/ satisfying the constraint 2sC � < 1.
The above bounds are uniform in ı. Therefore, taking the limit ı ! 0, we prove (5-4). Integrate

over z and � in the integral expression of EŒ"�d=2G"�"v"�2H s ; in particular, integrating R. � ="/ yields a
factor of "d that cancels the one in the denominator. We conclude that EŒ"�d=2G"�"v"�2H s � C for each
fixed s 2

�
0; 1
2

�
. Combining this with E k"�d=2G"�"v"k2L2 � C , which is due to (4-1) for d D 2; 3, we

prove (5-3). �

Remark 5.2. The key step in the proof above is to derive (5-4), which concerns only the Green’s
function G" and hence is obtained from a purely deterministic argument. Indeed, the scaling factor "�d=2

plays a role only afterward when we integrate against R", and it disappears in the final estimate because it
is the right scaling for integrals of R". In Section 6, where we consider the case of long-range correlated
random potential q.x; !/, the scaling in X" will be different, but the tightness of (the measures of) X",
with the right scaling, is obtained in the same way as above.

Next we address the convergence of the characteristic function of the measure of X". In view of
Theorem 2.1, this amounts to proving this:

Lemma 5.3. Assume (S) holds. For any fixed ' 2 L2.D/, we have

�
1
p

"d
.G"�"v"; '/L2

distribution
������!N .0; �2' /; where �2' WD �

2

Z
D

u2.x/.G'/2.x/ dx: (5-5)

Proof. Moving the operator G" to ', we have

�
1
p

"d
.G"�"v"; '/L2 D�

1
p

"d

Z
D

�
�
x

"

�
v".x/ ".x/ dx;

where  " D G"'. Let I "1 Œ'� denote the random variable above. Set  D G' and introduce

J "1 Œ'� WD �
1
p

"d

Z
D

�
�
x

"

�
u.x/ .x/ dx: (5-6)
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Since �.x; !/ is a stationary ergodic random field that has short-range correlation, u 2 L2.D/, we
apply the well-known functional central limit theorem (see, e.g., [Bal 2008, Theorem 3.8]) and obtain

J "1 Œ'�
distribution
������! I1Œ'� WD �

�Z
D

G.x; y/u.y/ dW.y/; '

�
L2
�N

�
0; �2

Z
D

.u.y/ .y//2 dy

�
: (5-7)

The last relation � above means equal in law. We note that

E
ˇ̌
J "1 Œ'�� I

"
1 Œ'�

ˇ̌2
D

1

"d
E

�Z
D

�
�
x

"

�
.v" "�u / dx

�2
� Ckv" "�u k2

L2
;

and from periodic homogenization theory, we have v"! u in L2,  "!  in L2, as "! 0; moreover,
v" and  " are bounded in L1 since H 2.D/ is embedded in L1.D/ for d D 2; 3. As a consequence,
the right-hand side above converges to zero as "! 0. As a result,

I "1 Œ'�D J
"
1 Œ'�C .I

"
1 Œ'��J

"
1 Œ'�/

is the sum of a term that converges in distribution to I1Œ'� and a term that converges to zero in L2.�/.
The desired result follows immediately. �

Finally, we collect the facts obtained above to give a proof of Theorem 2.4(i).

Proof of Theorem 2.4(i). Owing to Lemma 4.2 and Lemma 4.4, for d D 2; 3, we have

E


"�d2 �G"�"G"�"v"� EG"�"G"�"v"

�
C "�

d
2

�
G"�"G"�".u"� v"/� EG"�"G"�".u"� v"/

�


L2
� "

d
2 :

By Chebyshev’s inequality, these two terms, as random elements of L2.D/, converge in probability to the
zero function. It follows that the limiting distribution of "�d=2.u"� Eu"/ is given by that of the leading
term X".!/ WD �"�d=2G"�"v".

Let X be the right-hand side of (2-15). It is a random element of L2.D/ defined on some probability
space . z�; zF ; zP/ on which the Wiener process W.y; Q!/ is defined. Let the distribution of X be PX and its
characteristic function be �P

X

. We note that, for any ' 2 L2.D/, the inner product .X; '/ has Gaussian
distribution N .0; �2' /, with �2' defined in (5-5). Indeed,

EP
X

.X; '/D � EP
X

Z
D

�Z
D

G.x; y/'.x/ dx

�
u.y/ dW.y/D 0;

and

EP
X

.X; '/2 D �2 EP
X

�Z
D

�Z
D

G.x; y/'.x/ dx

�
u.y/ dW.y/

�2
D �2

Z
D

.G'/2u2 dy:

This shows .X; '/ � N .0; �2' / in law. By Lemma 5.3, for any fixed ' 2 L2.D/, the random variable
.X"; '/ converges in distribution to N .0; �2' /. This shows that, as mentioned in Remark 2.2, the char-
acteristic function of the law of X" converges to that of X . In view of Lemma 5.1 and Theorem A.1,
the distribution of fX"g"2.0;1/ in L2.D/ is tight as well. Consequently, by applying Theorem 2.1, we
complete the proof of Theorem 2.4(i). �
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5B. Limiting distribution in H �1.D/ for dimensions four and five. For dimension d � 4, we do not
expect "�d=2.u"�Eu"/ to converge in distribution in L2.D/, because as shown in (2-13), the fluctuations
scale like "2j log "j1=2 for d D 4, and scale like "2 for d � 5. In both cases, the scaling is much stronger
than "d=2. Nevertheless, we prove that convergence in law in H�1.D/ holds.

As before, the key step is to show that the probability measure in H�1.D/ of the scaled leading term
fX"g WD �"�d=2G"�"v" in the expansion (4-11) is tight, and to show that the characteristic function of
this measure converges.

Let us first address the characteristic function �X
"

. We note that L2.D/ is naturally embedded to
H�1.D/. For any f 2 L2, the linear form Lf W H

1
0 .D/! R given by Lf . / D .f;  / is clearly an

element of H�1.D/, and

kLf kH�1.D/ D sup
 2H1

0 .D/; k kH1�1

Lf . /� kf kL2 :

We henceforth identify Lf 2 H�1.D/ with f when f 2 L2.D/. For any ` 2 H�1.D/, let l be the
element in H 1

0 .D/ that is related to ` by a Riesz representation. Then we have

.f; `/H�1.D/ D Lf .l/D .f; l/:

That is, the H�1.D/ inner product of f 2 L2.D/ with ` is the same as the L2 inner product of f
with l . As a result, Remark 2.2 applies for distribution on H�1.D/: to show �P

X"

converges to �P
X

as
characteristic functions of distributions in H�1.D/, it suffices to prove .X"; h/! .X; h/ in distribution
as random variables for each fixed h 2 L2.D/.

Now we address the tightness of the measures of fX"g. Our strategy is to control the mean of
kX"kH�s.D/ for some s 2 .0; 1/ and then apply Theorem A.2. To this purpose, we first observe that
X" 2 L2.D/ and hence X" 2H�s.D/ if we set

X" WH s
0 .D/! R by X".h/D

Z
D

X".x/h.x/ dx: (5-8)

For any h 2H s
0 .D/, the above clearly defines a continuous linear functional. Moreover, if we identify the

function X" with its extension to Rd by zero outside D, the above also defines an element in H�s.Rd /.
Since @D is regular (as a matter of fact, a C 0;1-boundary is sufficient), any h 2H s

0 .D/ can be extended
continuously to Eh 2H s.Rd /, which satisfies kEhkH s.Rd / � T khkH s.D/; see [Di Nezza et al. 2012,
Theorem 5.4]; by duality, H�s.Rd / is continuously embedded in H�s.D/. If fact, we have

kX"kH�s.D/ WD sup
w2H s

0 .D/;kwkHs.D/�1

.X"; w/L2 D sup
w2H s.D/;kwkHs

0
.D/�1

.X"; Ew/L2

� sup
v2H s.Rd /;kvk

Hs.Rd /
�T

.X"; v/L2 � T kX
"
kH�s.Rd /: (5-9)

We note that kX"kH�s.Rd / can be calculated using the formula (5-2).
Consider, for each fixed y 2D, the Green’s function G". � ; y/ for the Dirichlet problem (3-7). Extend

G". � ; y/ to Rd by zero outside D, and let Gy" denote the extended function. Then Gy" defines naturally a
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linear form on H s.Rd / by

Gy" WH
s.Rd /! R;

h 7!Gy" .h/ WD

Z
Rd
Gy" .x/h.x/ dx D

Z
D

G".x; y/h.x/ dx;
(5-10)

provided the integral is finite. Since G" is self-adjoint and by the Green’s function representation,
w.y/ WDG

y
" .h/ is the solution to the Dirichlet problem L"w D h on D, with zero boundary condition.

Note that the restriction of h on D is in H s.D/. Invoking elliptic regularity, we find that w is bounded
in H sC2.D/. Let s 2 .0; 1/ if d D 4 and s 2

�
1
2
; 1
�

if d D 5; then by the embedding theorem of fractional
Sobolev spaces, H sC2.D/�C 0;˛.D/ with ˛D sC2� d

2
2 .0; 1/; see [Grisvard 1985, Theorem 1.4.4.1].

As a result, jGy" .h/j � CkhkH s , where C only depends on the universal constants and the index s. We
hence proved the following fact:

Lemma 5.4. Assume (A) holds and Nq � 0. Identify G". � ; y/, for each fixed y 2D, with the element in
H�s.Rd / defined above. Suppose s 2 .0; 1/ for d D 4 and s 2

�
1
2
; 1
�

for d D 5. Then there exists C > 0,
depending only on universal parameters and s, such that

kG". � ; y/kH�s.Rd / � C: (5-11)

Using this fact and the Fourier transform formula for the H�s.Rd /-norm, we can prove the following
control of kX"kH�s.Rd / which, together with Theorem A.2, yields the tightness of fX"g.

Lemma 5.5. Suppose that the conditions of Theorem 2.3 are satisfied. Assume further that d D 4; 5. Let
s 2 .0; 1/ if d D 4 and s 2

�
1
2
; 1
�

if d D 5. Then there exists a constant C > 0, depending only on the
universal parameters and on s, such that

EkX"k2H�s.D/ � C: (5-12)

Proof. We identify X" with the element in H�s.D/ �H�s.Rd / defined earlier. In view of (5-9), we
have

kX"k2H�s.D/ � CkX
"
kH�s.Rd / D

1

"d

Z
Rd
jFX".�/j2.1Cj�j2/�s d�;

where FX" denotes the Fourier transform of the (extended) function X". Using the integral representation
of X", we rewrite the above as

kX"k2H�sD
1

"d

Z
Rd
d�.1Cj�j2/�s

Z
R2d

dxdy

Z
D2
dz dt ei��.x�y/G".x;z/G".y; t/�

".z/v".z/�".t/v".t/;

where the Green’s functions are extended by zero to Rd for their first variables. Take the expectation in
this formula; we have

EkX"k2H�s D
1

"d

Z
R2d

�Z
R3d

ei��.x�y/G".x; z/G".y; t/

.1Cj�j2/s
dx dy d�

�
R

�
z� t

"

�
v".z/v".t/ dt dz:

We claim that for any z and t in D,ˇ̌̌̌Z
R3d

ei��.x�y/G".x; z/G".y; t/

.1Cj�j2/s
dx dy d�

ˇ̌̌̌
� C: (5-13)
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Indeed, we recognize the quantity inside the absolute value sign to beZ
Rd

FGz" .�/FGt".�/

.1Cj�j2/s
d� �

�Z
Rd
jFGz" .�/j

2.1Cj�j2/�s
�1
2
�Z

Rd
jFGt".�/j

2.1Cj�j2/�s
�1
2

:

The term on the right-hand side is precisely kGz" kH�s.Rd /kG
t
"kH�s.Rd /. In view of Lemma 5.4, we can

apply (5-11) to get an upper bound for the quantity above and prove (5-11). Then (5-13) follows, which
in turn completes the proof. �

Finally, we conclude this section by collecting the facts above and proving Theorem 2.4(ii).

Proof of Theorem 2.4(ii). Step 1: Limiting distribution of the leading term. In view of Theorem A.1 and
Lemma 5.5, the probability measures onH�1.D/ induced by fX"g are tight. To check the limit of the char-
acteristic functions of fPX

"

g, it suffices to prove (2-11). This is done in Lemma 5.3. By Theorem 2.1, we
conclude that X"!X in distribution on H�1.D/, where X is defined to be the right-hand side of (2-15).

Step 2: Convergence to zero of the higher-order terms. By Lemma 4.2, and d D 4; 5, we see that the
second term in u" � Eu", i.e., G"�"G"�"v" � EG"�"G"�"v", converges in L2.�;L2.D// and hence in
L2.�;H�1.D// to the zero function. Similarly, the remainder term G"�"G"�".u"�v"/�EG"�"G"�".u"�v"/
converges to the zero function in L1.�;H�1.D//. These convergence results are stronger than the mode
of convergence in distribution in H�1.D/. The proof of Theorem 2.4(ii) is thus complete. �

6. The long-range correlated setting

In this section, we consider the setting where q.x; !/ has long-range correlations. In this setting, the
general central limit theorem (Lemma 5.3) does not hold, and we hence restrict to the special case where q
is constructed as a function of Gaussian random fields. Limiting theorems in the spirit of Lemma 5.3 are
then obtained from Gaussian computations; see, e.g., [Bal et al. 2008; 2012].

Long-range correlated potentials constructed from Gaussian fields. Let q.x; !/D NqC �.x; !/ with Nq a
nonnegative constant; we assume:

(L1) �.x; !/Dˆ.g.x//, and g.x; !/ is a centered stationary Gaussian random field with unit variance.
Furthermore, the correlation function of g.x; !/ has heavy tail. That is, for some positive constant �g
and some real number ˛ 2 .0; d/,

Rg.x/ WD E
˚
g.y; !/g.yC x; !/

	
� �g jxj

�˛ as jxj !1: (6-1)

(L2) The function ˆ W R! R satisfies �Nq �ˆ�M � Nq, and has Hermite rank one, i.e.,Z
R

ˆ.s/e�
s2

2 ds D 0; V1 WD

Z
R

sˆ.s/e�
s2

2 ds ¤ 0: (6-2)

(L3) The Fourier transform ŷ of the function ˆ satisfiesZ
R

j ŷ .�/j
�
1Cj�j3

�
<1: (6-3)

We henceforth refer to the above conditions together as (L).
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The assumption (L2) makes �.x; !/ D ˆ.g.x; !// mean zero, and the bounds on ˆ ensure that
0� q.x; !/�M , which is (2-4). From the above construction, we check that �.x; !/ is stationary ergodic
and has a long-range correlation function that decays like �jxj�˛ , where � D V 21 �g ; see Lemma A.3 for
the details. Assumption (L3) allows one to derive a (nonasymptotic) estimate (see Lemma A.4 in the
Appendix) for the fourth-order moments of �.x; !/. Universal constants in the long-range correlation
setting may depend on ˛;Rg ; �g ; ˆ and �.

For the scaling of the homogenization error, we have the following analogue of Theorem 2.3. We focus
on the error u"� Eu" because, as seen earlier, the main contribution to the deterministic error Eu"�u

comes from the periodic oscillation in the diffusion coefficients, and Theorem 3.3(i) holds independent of
the correlation length of �.x; !/.

Theorem 6.1. Let D � Rd be an open bounded C 1;1-domain, u" and u be the solutions to (1-1) and
(1-2) respectively. Suppose that (A), (P) and (L) hold and f 2 L2.D/. Then, there exists positive
constant C , which depends only on the universal parameters, such that if 2� d � 5 and 0 < ˛ < d or
6� d � 7 and 0 < ˛ < 6,

Eku"� Eu"kL2 �

(
C"

˛
2
^2
kf kL2 if d ¤ 4;

C"
˛
2 kf kL2 if d D 4:

(6-4)

Moreover, for any ' 2 L2.D/, with 2� d � 7 and 0 < ˛ < d ,

E
ˇ̌
.u"� Eu"; '/L2

ˇ̌
� C"

˛
2 k'kL2kf kL2 : (6-5)

This result shows that the random fluctuation u"� Eu" caused by the long-range correlated random
potential scales like ".˛^4/=2 in the energy norm, and scales like "˛=2 with respect to the weak topology.
Since ˛ < d , we note that the random fluctuation in this setting is larger than the case of short-range
correlated potential. We mention that if ˛ < 2, then the random fluctuations dominate the deterministic
fluctuation caused by the periodic diffusion.

The next result exhibits the limiting law of the rescaled random fluctuation "�˛=2.u"� Eu"/. In the
presentation, we define formally W ˛.dy/ as PW ˛.y/ dy; here PW ˛.y/ is a centered stationary Gaussian
random field with covariance function E. PW ˛.x/ PW ˛.y//D �jx�yj�˛ , where E denotes the expectation
with respect to the distribution of PW ˛ . Here, �D�gV 21 >0, where �g and V1 are defined in (6-1) and (6-2).

Theorem 6.2. Suppose that the assumptions in Theorem 6.1 hold. Let � be defined as in (6-2) andG.x; y/
be the Green’s function of (1-2). Let W ˛. dy/ be defined as above. Then

(i) For d D 2; 3, as "! 0,

u"� Efu"g
p
"˛ "!0

distribution
������!

p
�

Z
D

G.x; y/u.y/W ˛.dy/ in L2.D/: (6-6)

(2) For d D 4; 5, as "! 0, the above holds as convergence in law in H�1.D/.

Remark 6.3. The right-hand side of (6-6) is an integral with respect to the multiparameter Gaussian
random processes W ˛; we refer to [Khoshnevisan 2002] for the theory. Let X denote the result of
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the integral. When d � 4, ˛ < 4, the Green’s function G.x; � / is in Ld=.d�˛=2/ and X is a random
element in L2.D/. In general, X is understood through the Fourier transform of its distribution. Given
h� 2H�1.D/, the function �P

X

.h�/ is defined to be E exp
�
i
p
�
R
DhG. � ; y/; h

�. � /iu.y/W ˛.dy/
�
. In

particular, for any fixed positive integer N and functions f'i W 1� i �N g in L2.D/, the random variables
Ii WD hX; 'i i D

p
�
R
DhG. � ; y/; 'i . � /iu.y/W

˛.dy/, with i D 1; : : : ; N , are joint Gaussian, centered
and have covariance matrix †ij WDE.IiIj / given by

†ij WD �

Z
D2

.uG'i /.y/.uG'j /.z/
jy � zj˛

dy dz: (6-7)

We will not present the proofs of the results above here, but they can be found in a longer version
of this paper [Jing 2015]. The proofs are again based on the expansion formulas (4-11) and (4-17):
the leading term has mean zero and contributes to the limiting law; the other terms have larger mean
but smaller variance and, after the mean is removed, do not contribute to the limiting law. The main
difference in the analysis of the long-range correlation setting is as follows. Firstly, to estimate integrals
of R".x/, because R.x/ is not integrable, we cannot expect to gain a factor of "d by scaling the variable
in R". Instead, we gain a factor of "˛ by using the asymptotic of R" outside a .T "/-ball; see Lemma A.3.
Secondly, to control fourth-order moments of �, Lemma 4.3 is no longer useful and we use the estimate in
Lemma A.4 instead. In fact, this estimate is less restrictive and, even in the short-range correlation setting,
it could be used to replace %1=2 in the stronger assumption (S) by %. Last but not least, as mentioned earlier,
general central limit theorems, e.g., Lemma 5.3, are not available for the limiting law of the first term
in (4-17), and we need to appeal to limit theorems that are special for functions of Gaussian processes.

7. Further discussions

7A. An alternative condition for (S). In the short-range correlation setting for �.x; !/, we assumed the
condition (S). Upon applying Lemma 4.3, we can bound the (partial) fourth-order moment ‰� by the
sum of two terms, each consisting of the product of a pair of functions # 2 L1\L1.Rd /. However, as
remarked earlier, (S) essentially requires the mixing coefficient %.r/, and hence R.jxj/, to behave like
o.r�2d / at infinity, which is much stronger than R.x/ being integrable.

We remark that (S) is assumed mainly to simplify the presentation and the o.r�2d / decay of % is not
necessary. In fact, an alternative assumption used in [Bal and Jing 2011] to control fourth-order moments
is: there exists # WRd !RC in L1\L1.Rd / such that (A-6) holds. This is clearly a much more general
assumption, and it is satisfied if �.x; !/Dˆ.g.x; !//, with ˆ satisfying (L2) and (L3), and g.x; !/ a
centered stationary Gaussian random field with correlation function Rg D o.jxj�d / as jxj !1.

The conclusions of Theorem 2.4 still hold if (S) is replaced by the above alternative assumption. Indeed,
we only need to modify the control of ‰� in the proof of Lemma 4.2 and in Section 4B. For instance,
in the first inequality in the proof of Lemma 4.2, we have more but finitely many integrals instead of
two on the right-hand side. Nevertheless, in all of these integrals, at most one of the functions # has the
same variable as one of the Green’s function, and all of them can be controlled. We refer to [Jing 2015,
Section 6] for the details.
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7B. Comparison with the case of nonoscillatory diffusion. The main results of this paper show that the
framework developed in [Bal 2008; Bal and Jing 2011; Bal et al. 2012], in the setting of a nonoscillatory
differential operator with oscillatory random potential, applies even when the differential operator is also
oscillatory, as long as we have uniform-in-" control of the Green’s functions and their gradients, i.e.,
(3-11) and (3-12), and provided that there is no random correlation between the diffusion coefficients
and the potential. At the formal level, there is no difference in the proof, and the usual strategy using
(truncated) series expansion applies. However, the role played by the oscillatory diffusion coefficients
becomes prominent in getting the tightness of the measures of fX"g.

Let us recall the previous method used for tightness in the setting of a nonoscillatory differential
operator. Set

L WD �
dX

i;jD1

Naij
@2

@xi@xj
C Nq;

and consider the Dirichlet problem .LC �"/u" D f in D with zero boundary condition. Then u"

homogenizes to u, the solution of (1-2). As in [Bal et al. 2012], the limiting distribution of "�d=2.u"�Eu"/,
say, in the short-range correlation setting, is characterized by that ofX"D�"�d=2G�"u. To prove tightness
of the measures fX"g in L2.D/, the strategy of [Bal et al. 2012] is to use the spectral representation
of L2.D/. Note that L is formally self-adjoint and its inverse, i.e., G, is compact on L2.D/. Hence, L
admits real eigenvalues f�kg1kD1 such that,

0� Nq < �1 � �2 � � � � ; �k!1 as k!1;

and eigenfunctions f�kg1kD1, with k�kkL2 D 1, such that(
L�k D �k�k in D;

�k D 0 on @D:

Moreover, f�kg form an orthonormal basis ofL2.D/ and we have the following representation of the space
H0.D/D L2.D/ and the Sobolev space H1.D/DH 1

0 .D/; see [Evans 1998, Section 6.5]: for s D 0; 1,

Hs.D/D
�
f 2 C1.D/ W

1X
kD1

.f; �k/
2
L2
�s
k
<1

�
and kvk2Hs WD

1X
kD1

.f; �k/
2
L2
�sk : (7-1)

A natural criterion for tightness of (the measures of) fX"g is that their measures do not scatter to
higher and higher modes. More precisely, let PN denote the projection operator in L2.D/ to the space
WN WD spanf�1; : : : ; �N g spanned by the first N modes. Then fX"g is tight if EkX"kL2 � C and

lim
N!1

sup
"2.0;1/

EkX"�PNX
"
kL2 D 0: (7-2)

Using the representation formula in (7-1), and the fact that G�k D .�k/�1�k , we have

EkX"�PNX
"
k
2
L2
D

1

"d

1X
kDNC1

E.G�"u; �k/2 D
1

"d

1X
kDNC1

1

�2
k

E.�"u; �k/
2:
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As in Section 4B, we have sup"2.0;1/ supk E.�"u; �k/2 � C . In view of Weyl’s asymptotic formula for
the eigenvalues, �k � k2=d for k large, we conclude that

sup
"2.0;1/

EkX"�PNX
"
k
2
L2
.

1X
kDNC1

1

�2
k

.
1X

kDNC1

1

k
4
d

:

Hence, for d D 2; 3, we obtain tightness of fX"g for free, as byproduct of the analysis in Section 4B.
In the setting of this paper, L above is replaced by L", defined in (3-1). The above approach for

tightness fails completely. On the one hand, if we replace the eigenpairs .�k; �k/k by .�"
k
; �"
k
/k , where

the latter solve the eigenvalue problems associated to L", then instead of (7-2), we obtain

lim
N!1

sup
"2.0;1/

EkX"�P "NX
"
kL2 D 0;

where P "N is the projection to W "
N WD spanf�"1; : : : ; �

"
N g. This is useless because, a priori, the basis .�"

k
/k

changes with ", and it is not clear that the union (over " 2 .0; 1/) of unit balls in W "
N is still compact for

all N . On the other hand, if we fix a spectral representation, say, using .�k; �k/k defined before, then we
no longer have the relation G"�k D .�k/�1�k . It is not difficult to check that krG"�kkL2 � 1=

p
�k and

this estimate is sharp. An application of the Poincaré inequality yields that kG"�kkL2 �C=
p
�k � k

�1=d ,
with C uniform in " and k. It is not clear at all how to improve this estimate. Consequently, in view of
the estimate on I "1 in Section 4B, we have

sup
"2.0;1/

EkX"�PNX
"
k
2
L2
D
1

"d

1X
kDNC1

E.�"u;G"�k/2�
1X

kDNC1

CkG"�kk2L2�
1X

kDNC1

1

�k
�

1X
kDNC1

1

k
2
d

:

This fails to show (7-2) or the tightness of fX"g, even for d D 2.
In view of the analysis above, we find that the above approach for tightness, which is natural for

nonoscillatory differential operators, fails completely in the presence of fast oscillations in the diffusion
coefficients. The new approach used in Section 5 is necessary and more stable.

Appendix: Some technical results

Tightness criteria for probability measures in functional spaces. We first present a tightness criterion
for the probability measures fPX

"

g"2.0;1/ on L2.D/ induced by fX". � ; !/g that are random elements in
H s
0 .D/� L

2.D/, with s 2 .0; 1�.

Theorem A.1 (tightness in L2.D/). Let fX". � ; !/g"2.0;1/ be a family of random fields on the probability
space .�;F ;P/, withX". � ; !/2H s

0 .D/ for some 0< s� 1, for each fixed "2 .0; 1/ and ! 2�. Suppose
there exists C > 0, independent of " and !, such that

EkX"kH s � C: (A-1)

Then the family of probability measures fPX
"

g"2.0;1/ on L2.D/ is tight.
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Proof. By assumption, PX
"

concentrates on the subspace H s
0 .D/. For any fixed ı > 0, set Mı D Cı

�1

and define
Aı D

˚
f 2H s

0 .D/ W kf kH s �Mı

	
:

Clearly, Aı is closed and bounded in H s
0 .D/. In light of the fact that the embedding H s

0 .D/ ,!L2.D/ is
compact [Palatucci et al. 2013], we note that Aı is a compact set of L2.D/. Now for any fixed " 2 .0; 1/,
applying Chebyshev’s inequality, we find

PX
"

.Aı/D P
�˚
X" 2H s

0 .D/; kX
"
kH s �Mı

	�
D 1�P.fkX"kH s >Mıg/

� 1�
EkX"kH s

Mı

� 1�
C

Mı

D 1� ı:

Since ı and " are arbitrary, the above shows that fPX
"

g"2.0;1/ is tight. �

Next we give a similar tightness criterion for probability measures fPX
"

g"2.0;1/ on H�1.D/ induced
by fX". � ; !/g which belong to a smoother space.

Theorem A.2 (tightness in H�1.D/). Let fX". � ; !/g"2.0;1/ be a family of random fields on the proba-
bility space .�;F ;P/, with X". � ; !/ 2H�s.D/ for some 0� s < 1, for each fixed " 2 .0; 1/ and ! 2�.
Suppose there exists a constant C > 0, independent of " and !, such that

EkX"kH�s � C: (A-2)

Then the probability measures fPX
"

g"2.0;1/ on H�1.D/ are tight.

Proof. Since D is a bounded open set with regular boundary, the embedding H 1
0 .D/ ,!H s

0 .D/, for any
0� s < 1, is compact [Grisvard 1985, Theorem 1.4.3.2]. By duality, the embeddingH�s.D/ ,!H�1.D/

is also compact. The rest of the proof is exactly the same as in the proof of the theorem above. �

Functions of long-range correlated Gaussian random fields. Here we record some results for the ran-
dom potential �.x; !/Dˆ.g.x; !// that is constructed in (L). In particular, we express the asymptotic
behavior of its correlation function R.x/, and derive a (partial) fourth-order moment for �.

Autocorrelation function of the long-range model.

Lemma A.3. Assume (L1) and (L2) hold and let �.x; !/ be as constructed there. Set V1 D Efg0ˆ.g0/g,
where gx is the underlying Gaussian random field in (L). Then there exist constants T; C > 0, depending
only on the universal parameters, such that the autocorrelation function R.x/ of q satisfies

jR.x/�V 21 Rg.x/j � CR
2
g.x/ for all jxj � T; (A-3)

where Rg is the correlation function of g. Further,ˇ̌
Efg.y/q.yC x/g�V1Rg.x/

ˇ̌
� CR2g.x/ for all jxj � T: (A-4)

The proof of this result can be found in [Bal et al. 2008; 2012]. It says that �.x; !/ inherits the heavy
tail from the underlying Gaussian random field. The next result describes estimates on the integrals of R,
possibly against some potential function that has singularity at the origin.
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Fourth-order moments of �.x; !/. Finally, we present a nonasymptotic estimate for the four-moments of
�.x; !/ constructed in (L1) and (L2), with the additional assumption (L3). In the following, we denote
by U the collections of two pairs of unordered numbers in the set f1; 2; 3; 4g,

U WD
˚
p D f.p.1/; p.2//; .p.3/; p.4//g W p.i/ 2 f1; 2; 3; 4g; p.1/¤ p.2/; p.3/¤ p.4/

	
: (A-5)

As members in a set, the pairs .p.1/; p.2// and .p.3/; p.4// are required to be distinct; however, the two
pairs can have one common index. There are three elements in U that collect all four numbers. They
are precisely f.1; 2/; .3; 4/g, f.1; 3/; .2; 4/g and f.1; 4/; .2; 3/g. Let U� denote the subset formed by these
three elements, and let U� be its complement.

Lemma A.4. Assume (L) holds and let �.x; !/ be as constructed there. Then there exists # W Rd ! RC,
bounded and satisfying #.x/ � jxj�˛ as jxj ! 1, and some C > 0, depending only on the universal
parameters, such that for any four points fxi 2 Rd W 1� i � 4g,ˇ̌̌̌

E

4Y
iD1

�.xi /�
X
p2U�

R.xp.1/�xp.2//R.xp.3/�xp.4//

ˇ̌̌̌
�C

X
p2U�

#.xp.1/�xp.2//#.xp.3/�xp.4//: (A-6)

We refer to [Bal and Jing 2011, Proposition 4.1] for the proof of this result. In particular, # above can
be chosen as the autocorrelation function R.x/ of �.x; !/. As discussed earlier, (A-6) can be viewed as
an alternative for the estimates in Lemma 4.3.
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