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ON THE CONTINUOUS RESONANT EQUATION FOR NLS
II: STATISTICAL STUDY

PIERRE GERMAIN, ZAHER HANI AND LAURENT THOMANN

We consider the continuous resonant (CR) system of the 2-dimensional cubic nonlinear Schrödinger
(NLS) equation. This system arises in numerous instances as an effective equation for the long-time
dynamics of NLS in confined regimes (e.g., on a compact domain or with a trapping potential). The
system was derived and studied from a deterministic viewpoint in several earlier works, which uncovered
many of its striking properties. This manuscript is devoted to a probabilistic study of this system. Most
notably, we construct global solutions in negative Sobolev spaces, which leave Gibbs and white noise
measures invariant. Invariance of white noise measure seems particularly interesting in view of the
absence of similar results for NLS.

1. Introduction

Presentation of the equation. The purpose of this manuscript is to construct some invariant measures
for the so-called continuous resonant (CR) system of the cubic nonlinear Schrödinger equation. This
system can be written as �

i@tuD T.u;u;u/; .t;x/ 2 R�R2;

u.0;x/D f .x/;
(CR)

where the operator T defining the nonlinearity has several equivalent formulations corresponding to
different interpretations/origins of this system. In its original formulation [Faou et al. 2013] as the large-
box limit1 of the resonant cubic NLS,2 T can be written as follows: for z 2 R2 and x D .x1;x2/ 2 R2,
letting x? D .�x2;x1/, we have

T.f1; f2; f3/.z/ WD

Z
R

Z
R2

f1.xC z/f2.�x?C z/f3.xC�x?C z/ dx d�:

This integral can be understood as an integral over all rectangles having z as a vertex. It has the equivalent
formulation [Germain et al. 2015]

T.f1; f2; f3/D 2�

Z
R

e�i��Œ.ei��f1/.ei��f2/.ei��f3/� d�:
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1Starting with the equation on a torus of size L and letting L!1.
2This is NLS with only the resonant interactions retained (also known as the first Birkhoff normal form). It gives an

approximation of NLS for sufficiently small initial data.
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It was shown in [Faou et al. 2013] that the dynamics of (CR) approximate that of the cubic NLS equation
on a torus of size L (with L large enough) over time scales �L2="2 (up to logarithmic loss in L), where
" denotes the size of the initial data.

Another formulation of (CR) comes from the fact that it is also the resonant system for the cubic
nonlinear Schrödinger equation with harmonic potential given by

i@tu��uCjxj2uD �juj2u; � 2 R constant: (1-1)

In this picture, T can be written as follows: denoting by H WD ��Cjxj2 D�@2
x1
� @2

x2
Cx2

1
Cx2

2
the

harmonic oscillator on R2,

T.f1; f2; f3/D 2�

Z �
4

��
4

ei�H Œ.e�i�Hf1/.e�i�Hf2/.e�i�Hf3/� d�:

As a result, the dynamics of (CR) approximate the dynamics of (1-1) over long nonlinear time scales for
small enough initial data.

The equation (CR) is Hamiltonian. Indeed, introducing the functional

E.u1;u2;u3;u4/ WD hT.u1;u2;u3/ ; u4iL2

D 2�

Z �
4

��
4

Z
R2

.e�itH u1/.e�itH u2/.e�itH u3/.e�itH u4/ dx dt

and setting
E.u/ WD E.u;u;u;u/;

(CR) derives from the Hamiltonian E given the symplectic form !.f;g/D�4Imhf;giL2.R2/ on L2.R2/,
so that (CR) is equivalent to

i@tf D
1

2

@E.f /

@ Nf
:

In addition to the two instances mentioned above in which (CR) appears to describe the long-time
dynamics of the cubic NLS equation — with or without potential — we mention the following:

� The equation (CR) appears as a modified scattering limit of the cubic NLS on R3 with harmonic tapping
in two directions. Here, (CR) appears as an asymptotic system and any information on the asymptotic
dynamics of (CR) directly gives the corresponding behavior for NLS with partial harmonic trapping. We
refer to [Hani and Thomann 2015] for more details.

� When restricted to the Bargmann–Fock space (see below), the equation (CR) turns out to be the
lowest-Landau-level equation, which describes fast-rotating Bose–Einstein condensates (see [Aftalion
et al. 2006; Nier 2007; Gérard et al. � 2015]).

� The equation (CR) can also be interpreted as describing the effective dynamics of high-frequency
envelopes for NLS on the unit torus T2. This means that, if the initial data '.0/ for NLS has its Fourier
transform given by3 f O'.0; k/� g0.k=N /gk2Z2 and if g.t/ evolves according to (CR) with initial data g0

3Up to a normalizing factor in H s , s > 1.
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and '.t/ evolves according to NLS with initial data '.0/, then g.t; k=N / approximates the dynamics
of O'.t; k/ in the limit of large N (see [Faou et al. 2013, Theorem 2.6]).

Some properties and invariant spaces. We review some of the properties of the (CR) equation that will
be useful in this paper. For a more detailed study of the equation we refer to [Faou et al. 2013; Germain
et al. 2015].

First, (CR) is globally well-posed in L2.R2/. Amongst its conserved quantities, we noteZ
R2

juj2 dx and
Z

R2

.jxj2juj2Cjruj2/ dx D

Z
R2

NuHu dx;

(recall that H denotes the harmonic oscillator H D��Cjxj2). This equation also enjoys many invariant
spaces, in particular:

� The eigenspaces .EN /N�0 of the harmonic oscillator are stable (see [Faou et al. 2013; Germain et al.
2015]). This is a manifestation of the fact that (CR) is the resonant equation associated to (1-1). Recall
that H admits a complete basis of eigenvectors for L2.R2/; each eigenspace EN (N D 0; 1; 2; : : : ) has
dimension N C 1.

� The set of radial functions is stable, as follows from the invariance of H under rotations (see [Germain
et al. 2015]). Global dynamics on L2

rad.R
2/, the radial functions of L2.R2/, can be defined. A basis of

normalized eigenfunctions of H for L2
rad.R

2/ is given by

'rad
n .x/D

1
p
�

L.0/n .jxj2/e�jxj
2=2 with L.0/n .x/D ex 1

n!

�
d

dx

�n

.e�xxn/ for n 2 N:

We record that H'rad
n D .4nC 2/'rad

n .

� If O.C/ stands for the set of entire functions on C (with the identification zD x1C ix2), the Bargmann–
Fock space L2

hol.R
2/DL2.R2/\ .O.C/e�jzj

2=2/ is invariant under the flow of (CR). Global dynamics
on L2

hol.R
2/ can be defined. A basis of normalized eigenfunctions of H for L2

hol.R
2/ is given by the

“holomorphic” Hermite functions, also known as the “special Hermite functions”, namely

'hol
n .x/D

1
p
�n!

.x1C ix2/
ne�jxj

2=2 for n 2 N:

Notice that H'hol
n D 2.nC 1/'hol

n . It is proved in [Germain et al. 2015] that

T.'hol
n1
; 'hol

n2
; 'hol

n3
/D ˛n1;n2;n3;n4

'hol
n4
; n4 D n1C n2� n3; (1-2)

with

˛n1;n2;n3;n4
DH.'hol

n1
; 'hol

n2
; 'hol

n3
; 'hol

n4
/D

�

8

.n1C n2/!

2n1Cn2
p

n1!n2!n3!n4!
1n1Cn2Dn3Cn4

:

As a result, the (CR) system reduces to the following infinite-dimensional system of ODEs when
restricted to Spanf'ngn2N:

i@tcn.t/D
X

n1;n2;n32N
n1Cn2�n3Dn

˛n1;n2;n3;ncn1
.t/cn2

.t/ Ncn3
.t/:



1736 PIERRE GERMAIN, ZAHER HANI AND LAURENT THOMANN

Statistical solutions. In this paper we construct global probabilistic solutions on each of the above-
mentioned spaces which leave invariant either Gibbs or white noise measures. More precisely, our main
results can be summarized as follows:

� We construct global strong flows on

X 0
rad.R

2/D
\
�>0

H��rad .R
2/

and on

X 0
hol.R

2/ WD

� \
�>0

H�� .R2/

�
\ .O.C/e�jzj

2=2/;

which leave the Gibbs measures invariant (see Theorem 2.5).

� We construct global weak probabilistic solutions on

X�1
hol .R

2/ WD

� \
�>1

H�� .R2/

�
\ .O.C/e�jzj

2=2/;

and this dynamics leaves the white noise measure invariant (see Theorem 2.6).

Since the ’90s, there have been many works devoted to the construction of Gibbs measures for dispersive
equations and, more recently, much attention has been paid to the well-posedness of these equations with
random initial conditions. We refer to the introduction of [Poiret et al. 2014] for references on the subject.
In particular, concerning the construction of strong solutions for the nonlinear harmonic oscillator (which
is related to (CR)), we refer to [Thomann 2009; Burq et al. 2013; Deng 2012; Poiret 2012a; 2012b; Poiret
et al. 2014].

Let us define what we mean by white noise measure in our context. Denote by .en/n�0 a Hilbert
basis of L2.0; 1/ and consider independent standard Gaussians .gn/n�0 on a probability space .�;F;p/.
Then it is well known (see, e.g., [Hida 1980, Chapter 2]) that the random series

Bt D

C1X
nD0

gn

Z t

0

en.s/ ds

converges in L2.�;F;p/ and defines a Brownian motion. The white noise measure is then defined by
the map

! 7!W .t; !/D
dBt

dt
.!/D

C1X
nD0

gn.!/en.t/: (1-3)

Now consider a Hilbert space K which is a space of functions on a manifold M and consider a Hilbert
basis .en/n�0 of K. We define the mean-zero Gaussian white noise (measure) on K as �D p ıW �1,
where

W .x; !/D

C1X
nD0

gn.!/en.x/:
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Notice that this measure is independent of the choice of the Hilbert basis of K. It is clear that, for
all x 2M , EpŒW .x; � /�D 0. Moreover, for all x, y 2M we have

EpŒW .x; � /W .y; � /�D

C1X
nD0

en.x/en.y/D ı.x�y/;

since the sum in the previous line is the kernel of the identity projector on K. For more details on Gaussian
measures on Hilbert spaces, we refer to [Janson 1997].

Construction of flows invariant under white noise measures is much trickier due to the low regularity
of the support of such measures, and there seem to be no results of this sort for NLS equations. We
construct weak solutions on the support of the white noise measure on X�1

hol .R
2/ using a method based on

a compactness argument in the space of measures (the Prokhorov theorem) combined with a representation
theorem of random variables (the Skorohod theorem). This approach has been first applied to the Navier–
Stokes and Euler equations in [Albeverio and Cruzeiro 1990; Da Prato and Debussche 2002] and extended
to dispersive equations by Burq, Thomann and Tzvetkov [Burq et al. 2014], who give a self-contained
presentation of the method.

Notations. Define the harmonic Sobolev spaces for s 2 R and p � 1 by

Ws;p
DWs;p.R2/D fu 2Lp.R2/ WH s=2u 2Lp.R2/g; Hs

DWs;2:

They are endowed with the natural norms kukWs;p . Up to equivalence of norms we have, for s � 0

and 1< p <C1 (see [Yajima and Zhang 2004, Lemma 2.4]),

kukWs;p D kH s=2ukLp � k.��/s=2ukLp CkhxisukLp : (1-4)

Consider a probability space .�;F;p/. Throughout the paper, fgn Wn�0g and fgn;k Wn�0; 0�k�ng

are independent standard complex Gaussians NC.0; 1/ (their probability density function is .1=�/e�jzj
2

dz,
dz being Lebesgue measure on C). If X is a random variable, we denote by L .X / its law (or distribution).

We will sometimes use the notation L
p
T
DLp.�T;T / for T > 0. If E is a Banach space and � is a

measure on E, we write L
p
�DLp.d�/ and kukLp

�E D


kukE

L

p
�

. We define X � .R2/D
T
�<� H� .R2/

and, if I � R is an interval, with an abuse of notation we write C.I IX � .R2//D
T
�<� C.I IH� .R2//.

Finally, N denotes the set of natural integers including 0; c, C > 0 denote constants, the value of which
may change from line to line. These constants will always be universal or uniformly bounded with respect
to the other parameters. For two quantities A and B, we write A. B if A� CB and A� B if A. B

and A& B.

2. Statement of the results

As mentioned above, we will construct strong solutions on the support of Gibbs measures and prove the
invariance of such measures. For white noise measures, solutions are weak and belong to the space CT X�1.
We start by discussing the former case.
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Global strong solutions invariant under Gibbs measure.

Measures and dynamics on the space EN . The operator H is self-adjoint on L2.R2/ and has the
discrete spectrum f2N C 2 W N 2 Ng. For N � 0, denote by EN the eigenspace associated to the
eigenvalue 2N C 2. This space has dimension N C 1. Consider any orthonormal basis .'N;k/0�k�N

of EN . Define 
N 2L2.�IEN / by


N .!;x/D
1

p
N C 1

NX
kD0

gN;k.!/'N;k.x/:

The distribution of the random variable 
N does not depend on the choice of the basis, and observe that
the law of large numbers gives

k
N k
2
L2.R2/

D
1

N C 1

NX
kD0

jgN;k.!/j
2
! 1 a.s. when N !C1:

Then we define the probability measure �N D 
#p WD p ı 
�1
N

on EN .

The Lp properties of the measures �N have been studied in [Poiret et al. 2015] with an improvement
in [Robert and Thomann 2015]. We mention in particular the following result:

Theorem 2.1 [Poiret et al. 2015; Robert and Thomann 2015]. There exist c, C1, C2 > 0 such that, for
all N �N0,

�N

�
u2EN WC1N�1=2.log N /1=2kukL2.R2/�kukL1.R2/�C2N�1=2.log N /1=2kukL2.R2/

�
�1�N�c :

This proposition is a direct application of [Robert and Thomann 2015, Theorem 3.8] with hDN�1

and d D 2. Notice that, for all u 2EN , we have kukHs D .2N C 2/s=2kukL2 . The best (deterministic)
L1 bound for an eigenfunction u 2EN is given by [Koch and Tataru 2005]:

kukL1.R2/ � CkukL2.R2/; (2-1)

and this estimate is optimal, since it is saturated by the radial Hermite functions. Therefore, the result
of Theorem 2.1 shows that there is almost a gain of one derivative compared to the deterministic
estimate (2-1).

It turns out that the measures �N are invariant under the flow of (CR), and we have the following:

Theorem 2.2. For all N � 1, the measure �N is invariant under the flow ˆ of (CR) restricted to EN .
Therefore, by the Poincaré theorem, �N -almost all u 2 EN are recurrent in the following sense: for
�N -almost all u0 2EN there exists a sequence of times tn!C1 such that

lim
n!C1

kˆ.tn/u0�u0kL2.R2/ D 0:

In the previous result, one only uses the invariance of the probability measure �N under the flow and
no additional property of the equation (CR).
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Gibbs measure on the space X 0
? .R

2/ and a well-posedness result. In the sequel we either consider
the family .'rad

n /n�0 of the radial Hermite functions which are eigenfunctions of H associated to the
eigenvalue �rad

n D 4nC 2, or the family .'hol
n /n�0 of the holomorphic Hermite functions which are

eigenvalues of H associated to the eigenvalue �hol
n D 2nC 2. Set

X 0
rad.R

2/D
\
�>0

H��rad .R
2/;

X 0
hol.R

2/ WD

� \
�>0

H�� .R2/

�
\ .O.C/e�jzj

2=2/:

In the following, we write X 0
? .R

2/ for X 0
rad.R

2/ or X 0
hol.R

2/, '?n for 'rad
n or 'hol

n , etc.
Now define 
? 2L2.�IX 0

? .R
2// by


?.!;x/D

C1X
nD0

gn.!/p
�?n

'?n .x/

and consider the Gaussian probability measure �? D .
?/#p WD p ı 
�1
? .

Lemma 2.3. In each of the previous cases, the measure �? is a probability measure on X 0
? .R

2/.

Notice that, since (CR) conserves the H1 norm, �? is formally invariant under its flow. More generally,
we can define a family .�?;ˇ/ˇ�0 of probability measures on X 0

? .R
2/ which are formally invariant

under (CR) in the following way: define, for ˇ � 0, the measure �? D �?;ˇ by

d�?.u/D Cˇe�ˇE.u/ d�?.u/; (2-2)

where Cˇ > 0 is a normalizing constant. In Lemma 3.2, we will show that E.u/ <C1 �?-a.s., which
enables us to define this probability measure.

For all ˇ � 0, �?.X 0
? .R

2//D 1 and �?.L2
?.R

2//D 0.

Remark 2.4. We could also give sense to a generalized version of (2-2) when ˇ<0 using the renormalizing
method of Lebowitz, Rose and Speer. We do not give the details and refer to [Burq et al. 2013] for such a
construction.

We are now able to state the following global existence result:

Theorem 2.5. Let ˇ � 0. There exists a set †�X 0
? .R

2/ of full �? measure such that, for every f 2†,
the equation (CR) with initial condition u.0/D f has a unique global solution u.t/Dˆ.t/f such that,
for any 0< s < 1

2
,

u.t/�f 2 C.RIHs.R2//:

Moreover, for all � > 0 and t 2 R,

ku.t/kH�� .R2/ � C.ƒ.f; �/C ln1=2.1Cjt j//

and the constant ƒ.f; �/ satisfies the bound �?.f Wƒ.f; �/ > �/� C e�c�2

:
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Furthermore, the measure �? is invariant under ˆ: for any �?-measurable set A�† and any t 2 R,
�?.A/D �?.ˆ.t/.A//.

White noise measure on the space X�1
hol .R

2/ and weak solutions. Our aim is now to construct weak
solutions on the support of the white noise measure. Consider the Gaussian random variable


 .!;x/D

C1X
nD0

gn.!/'
hol
n .x/D

1
p
�

�C1X
nD0

.x1C ix2/
ngn.!/

p
n!

�
e�jxj

2=2 (2-3)

and the measure �Dpı
�1. As in Lemma 2.3, we can show that the measure � is a probability measure
on

X�1
hol .R

2/ WD

� \
�>1

H�� .R2/

�
\ .O.C/e�jzj

2=2/:

Since kukL2.R2/ is preserved by (CR), � is formally invariant under (CR). We are not able to define
a flow at this level of regularity; however, using compactness arguments combined with probabilistic
methods, we will construct weak solutions.

Theorem 2.6. There exists a set†�X�1
hol .R

2/ of full � measure such that, for every f 2†, the equation
(CR) with initial condition u.0/D f has a solution

u 2
\
�>1

C.RIH�� .R2//:

The distribution of the random variable u.t/ is equal to � (and thus independent of t 2 R):

LX�1.R2/.u.t//DLX�1.R2/.u.0//D � for all t 2 R:

Remark 2.7. One can also define the Gaussian measure �D p ı 
�1 on X�1.R2/D
T
�>1 H�� .R2/

by


 .!;x/D

C1X
nD0

1
p
�n

nX
kD�n

gn;k.!/'n;k.x/; �n D 2nC 2;

(where the 'n;k are an orthonormal basis of eigenfunctions of the harmonic oscillator and the angular
momentum operator). Since kukH1.R2/ is preserved by (CR), � is formally invariant under (CR), but we
are not able to obtain an analogous result in this case.

The same comment holds for the white noise measure �D p ı 
�1 on X�1
rad .R

2/D
T
�>1 H��rad .R

2/

with


 .!;x/D

C1X
nD0

gn.!/'
rad
n .x/;

which is also formally invariant under (CR).

Plan of the paper. The rest of the paper is organized as follows. In Section 3 we prove the results
concerning the strong solutions and in Section 4 we construct the weak solutions.



ON THE CONTINUOUS RESONANT EQUATION FOR NLS, II 1741

3. Strong solutions

Proof of Theorem 2.2. The proof of Theorem 2.2 is an application of the Liouville theorem. Indeed,
write uN D

PN
kD0 cN;k'N;k 2EN ; then

d�N D
.N C 1/NC1

�NC1
exp

�
�.N C 1/

NX
kD0

jcN;k j
2

� NY
kD0

daN;k dbN;k ;

where cN;k D aN;k C ibN;k .
The Lebesgue measure

QN
kD0 daN;k dbN;k is preserved since (CR) is Hamiltonian and

PN
kD0 jcN;k j

2D

kuN k
2
L2 is a constant of motion.

Proof of Theorem 2.5. We start with the proof of Lemma 2.3.

Proof of Lemma 2.3. We only consider the case X 0
? .R

2/ D X 0
hol.R

2/. It is enough to show that

hol 2X 0

hol.R
2/ p-a.s. First, for all � > 0, we haveZ

�

k
holk
2
H�� .R2/

dp.!/D

Z
�

C1X
nD0

jgnj
2

.�hol
n /�C1

dp.!/D C

C1X
nD0

1

.nC 1/�C1
<C1; (3-1)

therefore 
hol 2
T
�>0 L2.�IH�� .R2//. Next, by [Colliander and Oh 2012, Lemma 3.4], for all A� 1

there exists a set �A �� such that p.�c
A
/� exp .�Aı/ and, for all ! 2�A, " > 0 and n� 0,

jgn.!/j � CA.nC 1/":

Then, for ! 2
S

A�1�A, we have
PC1

nD0 zngn.!/=
p
�hol

n n! 2 O.C/. �

We first define a smooth version of the usual spectral projector. Choose �2C1
0
.�1; 1/ so that 0���1

with �D 1 on
�
�

1
2
; 1

2

�
. We define the operators SN D �.H=�N / as

SN

� 1X
nD0

cn'
?
n

�
D

1X
nD0

�

�
�?n
�?

N

�
cn'

?
n :

Then, for all 1< p <C1, the operator SN is bounded in Lp.R2/ (see [Deng 2012, Proposition 2.1] for
a proof).

Local existence. It will be useful to work with an approximation of (CR). We consider the dynamical
system given by the Hamiltonian HN .u/ WDH.SN u/. This system reads�

i@tuN D TN .uN /; .t;x/ 2 R�R2;

uN .0;x/D f;
(3-2)

with TN .uN / WD SN T.SN u;SN u;SN u/. Observe that (3-2) is a finite-dimensional dynamical system
on
LN

kD0 Ek and that the projection of uN .t/ on its complement is constant. For ˇ � 0 and N � 0, we
define the measures �N

? by
d�N
? .u/D C N

ˇ e�ˇHN .u/ d�?.u/;
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where C N
ˇ
> 0 is a normalizing constant. We have the following result:

Lemma 3.1. The system (3-2) is globally well-posed in L2.R2/. Moreover, the measures �N
? are invariant

under its flow, denoted by ˆN .

Proof. The global existence follows from the conservation of kuN kL2.R2/. The invariance of the measures
is a consequence of the Liouville theorem and the conservation of

P1
kD0 �k jck j

2 by the flow of (CR)
(see [Faou et al. 2013]). We refer to [Burq et al. 2013, Lemma 8.1 and Proposition 8.2] for the details. �

We now state a result concerning dispersive bounds of Hermite functions.

Lemma 3.2. For all 2� p �C1,

k'hol
n kLp.Rd / � C n

1
2p
� 1

4 ; (3-3)

k'rad
n kL4.Rd / � C n�

1
4 .ln n/

1
4 : (3-4)

Proof. By Stirling, we easily get that k'hol
n kL1.Rd / � C n�1=4, which is (3-3) for p D1; the estimate

for 2 � p � 1 follows by interpolation. For the proof of (3-4), we refer to [Imekraz et al. 2015,
Proposition 2.4]. �

Lemma 3.3. (i) We have

9C > 0 9c > 0 8�� 1 8N � 1

�?
�
u 2X 0

? .R
2/ W ke�itH SN ukL4.Œ��=4;�=4��R2/ > �

�
� Ce�c�2

: (3-5)

(ii) There exists ˇ > 0 such that

9C > 0 9c > 0 8�� 1 8N �N0 � 1

�?
�
u 2X 0

? .R
2/ W ke�itH .SN �SN0

/ukL4.Œ��=4;�=4��R2/ > �
�
� Ce�cN

ˇ

0
�2

: (3-6)

(iii) In the holomorphic case, for all 2� p <C1 and s < 1
2
�

1
p

,

9C > 0 9c > 0 8�� 1 8N � 1

�hol
�
u 2X 0

hol.R
2/ W ke�itH ukLp.Œ��=4;�=4�/Ws;p.R2/ > �

�
� Ce�c�2

;

�hol
�
u 2X 0

hol.R
2/ W ke�itH ukL8=3.Œ��=4;�=4��R2/ > �

�
� Ce�c�2

:
(3-7)

(iv) In the radial case, for all s < 1
2

,

9C > 0 9c > 0 8�� 1 8N � 1

�rad
�
u 2X 0

rad.R
2/ W ke�itH ukL4.Œ��=4;�=4�/Ws;4.R2/ > �

�
� Ce�c�2

: (3-8)

Proof. We have that

�?
�
u 2X 0

? .R
2/ W ke�itH SN ukL4.Œ��=4;�=4��R2/ > �

�
D p

�



 1X
nD0

e�it�n�

�
�n

�N

�
gn.!/
p
�n

'?n .x/






L4.Œ��=4;�=4��R2/

> �

�
:
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Set

F.!; t;x/�

1X
nD0

e�it�?n�

�
�?n
�?

N

�
gn.!/p
�?n

'?n .x/:

Let q � p � 2 and s � 0. Recall here the Khintchine inequality (see, e.g., [Burq and Tzvetkov 2008,
Lemma 3.1] for a proof): there exists C > 0 such that, for all real k � 2 and .an/ 2 `

2.N/,



X
n�0

gn.!/ an






Lk

p

� C
p

k

�X
n�0

janj
2

�1
2

(3-9)

if the gn are i.i.d. normalized Gaussians. Applying it to (3-9) we get

kH s=2F.!; t;x/kLq
!
� C
p

q

� 1X
nD0

�2

�
�?n
�?

N

�
j'?n .x/j

2

�?1�s
n

�1
2

� C
p

q

� 1X
nD0

j'?n .x/j
2

hni1�s

�1
2

and using the Minkowski inequality for q � p twice gives

kH s=2F.!; t;x/kLq
!L

p
t;x
� kH s=2F.!; t;x/kLp

t;xL
q
!
� C
p

q

� 1X
nD0

k'?n .x/k
2
Lp.R2/

hni1�s

�1
2

: (3-10)

We are now ready to prove (3-5). Set pD 4 and sD 0. By Lemma 3.2 we have k'?nkL4.R2/ �C n�1=8,
so we get, from (3-10),

kF.!; t;x/kLq
!L4

t;x
� C
p

q:

The Bienaymé–Chebyshev inequality then gives

p
�
kF.!; t;x/kL4

t;x
> �

�
� .��1

kF.!; t;x/kLq
!L4

t;x
/q � .C��1pq/q:

Thus, by choosing q D ı�2 � 4, for ı small enough we get the bound

p
�
kF.!; t;x/kL4

t;x
> �

�
� Ce�c�2

;

which is (3-5).
For the proof of (3-6), we analyze the function

G.!; t;x/�

1X
nD0

e�it�?n

�
�

�
�?n
�?

N

�
��

�
�?n
�?

N0

��
gn.!/p
�?n

'?n .x/

and we use that a negative power of N0 can be gained in the estimate. Namely, there is 
 > 0 such that

kG.!; t;x/kLq
!L4

t;x
� C
p

qN
�

0
;

which implies (3-6).
To prove (3-7)–(3-8), we come back to (3-10) and argue similarly. This completes the proof of

Lemma 3.3. �
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Lemma 3.4. Let ˇ � 0. Let p 2 Œ1;1Œ; then, when N !C1,

C N
ˇ e�ˇHN .u/! Cˇe�ˇH.u/ in Lp.d�?.u//:

In particular, for all measurable sets A�X 0
? .R

2/,

�N
? .A/! �?.A/:

Proof. Let GN
ˇ
.u/ D e�ˇHN .u/ and Gˇ.u/ D e�ˇH.u/. By (3-6), we deduce that HN .u/! H.u/ in

measure with respect to �?. In other words, for " > 0 and N � 1, we let

AN;" D fu 2X 0
? .R

2/ W jGN
ˇ .u/�Gˇ.u/j � "g;

then �?.Ac
N;"
/! 0 when N !C1. Since 0�G, GN � 1,

kGˇ �GN
ˇ kL

p
�?
� k.Gˇ �GN

ˇ /1AN;"
kLp

�?
Ck.Gˇ �GN

ˇ /1Ac
N;"
kLp

�?

� ".�?.AN;"//
1=p
C 2.�?.A

c
N;"//

1=p

� C "

for N large enough. Finally, we have, when N !C1,

C N
ˇ D

�Z
e�ˇHN .u/ d�?.u/

��1

!

�Z
e�ˇH.u/ d�?.u/

��1

D Cˇ;

and this ends the proof. �

We look for a solution to (CR) of the form uD f C v; thus v has to satisfy�
i@tv D T.f C v/; .t;x/ 2 R�R2;

v.0;x/D 0;
(3-11)

with T.u/D T.u;u;u/. Similarly, we introduce�
i@tvN D TN .f C vN /; .t;x/ 2 R�R2;

v.0;x/D 0:
(3-12)

Recall that X 0
? .R

2/ equals X 0
hol.R

2/ or X 0
rad.R

2/. Define the sets, for s < 1
2

,

As
rad.D/D ff 2X 0

rad.R
2/ W ke�itHf kL4.Œ��=4;�=4�/Ws;4.R2/ �DgI

choosing p.s/D 4=.1� 2s/, so that s < 1
2
�

1
p

,

As
hol.D/

D ff 2X 0
hol.R

2/ W ke�itHf kL8=3.Œ��=4;�=4�/L8=3.R2/Cke
�itHf kLp.s/.Œ��=4;�=4�/Ws;p.s/.R2/ �Dg:

In the sequel, we write As
?.D/ for As

hol.D/ or As
rad.D/. Then we have the following result:

Lemma 3.5. Let ˇ � 0. There exist c, C > 0 such that, for all N � 0,

�N
? .A

s
?.D/

c/� C e�cD2

; �?.A
s
?.D/

c/� C e�cD2

and �?.A
s
?.D/

c/� C e�cD2

:
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Proof. Since ˇ � 0, we have �N
? .A

s
?.D/

c/; �?.A
s
?.D/

c/� C�?.A
s
?.D/

c/. The result is therefore given
by (3-7) and (3-8). �

Proposition 3.6. Let s < 1
2

. There exists c > 0 such that, for any D � 0, setting �.D/D cD�2, for any
f 2As

?.D/ there exists a unique solution v 2L1.Œ��; � �IL2.R2// to the equation (3-11) and a unique
solution vN 2L1.Œ��; � �IL2.R2// to the equation (3-12), which furthermore satisfy

kvkL1.Œ��;��IHs.R2//; kvN kL1.Œ��;��IHs.R2// �D:

The key ingredient in the proof of this result is the following trilinear estimate:

Lemma 3.7. Assume that, for 1� j � 3 and 1� k � 4, .pjk ; qjk/ 2 Œ2;C1Œ
2 are Strichartz admissible

pairs, that is, they satisfy
1

qjk

C
1

pjk

D
1

2
;

and they are such that, for 1� j � 4,

1

pj1

C
1

pj2

C
1

pj3

C
1

pj4

D
1

qj1

C
1

qj2

C
1

qj3

C
1

qj4

D 1:

Then, for all s � 0, there exists C > 0 such that

kT.u1;u2;u3/kHs.R2/ � Cke�itH u1kLp11 Ws;q11ke�itH u2kLp12 Lq12ke�itH u3kLp13 Lq13

CCke�itH u1kLp21 Lq21ke�itH u2kLp22 Ws;q22ke�itH u3kLp23 Lq23

CCke�itH u1kLp31 Lq31ke�itH u2kLp32 Lq32ke�itH u3kLp33 Ws;q33 ;

with the notation LpWs;q DLp.Œ��=4; �=4�IWs;q.R2//.

Proof. By duality,

kT.u1;u2;u3/kHs.R2/

D sup
kuk

L2.R2/
D1

hH s=2T.u1;u2;u3/;uiL2.R2/

D 2� sup
kuk

L2.R2/
D1

Z �
4

��
4

Z
R2

H s=2
�
.e�itH u1/.e�itH u2/.e�itH u3/

�
.e�itH u/ dx dt:

Then, by Strichartz, for all u of unit norm in L2 and for any admissible pair .p4; q4/,

kT.u1;u2;u3/kHs.R2/ � Ck.e�itH u1/.e�itH u2/.e�itH u3/k
L

p0
4 W

s;q0
4
ke�itH ukLp4 Lq4

� Ck.e�itH u1/.e�itH u2/.e�itH u3/k
L

p0
4 W

s;q0
4
:

We then conclude using (1-4) and applying the following lemma twice. �

We have the following product rule:
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Lemma 3.8. Let s � 0, then

ku vkWs;q � CkukLq1kvk
W

s;q0
1
CCkvkLq2kuk

W
s;q0

2

for 1< q <1, 1< q1, q2 <1 and 1� q0
1
, q0

2
<1 such that

1

q
D

1

q1

C
1

q0
1

D
1

q2

C
1

q0
2

:

For the proof with the usual Sobolev spaces, we refer to [Taylor 2000, Proposition 1.1, p. 105]. The
result in our context follows by using (1-4).

Proof of Proposition 3.6. We only consider (3-11), the other case being similar by the boundedness of SN

on Lp.R2/. For s < 1
2

, we define the space

Zs.�/D
˚
v 2 C.Œ��; � �IHs.R2// W v.0/D 0 and kvkZs.�/ �D

	
;

with kvkZs.�/ D kvkL1
Œ��;��

Hs.R2/ and, for f 2As
?.D/, we define the operator

K.v/D�i

Z t

0

T.f C v/ ds:

We will show that K has a unique fixed point v 2Zs.�/.

The case of radial Hermite functions: By Lemma 3.7 with .pjk ; qjk/D .4; 4/, we have, for all v 2Zs.�/,

kK.v/kZs.�/ � �kT.f C v/kZs.�/

� C�


ke�isH .f C v/.t/k3

L4.s2Œ��=4;�=4�/Ws;4.R2/




L1

t2Œ��;��

: (3-13)

Next, by Strichartz and since v 2Zs.�/,

ke�isH .f C v/.t/kL4.s2Œ��=4;�=4�/Ws;4.R2/

� ke�isHf kL4.s2Œ��=4;�=4�/Ws;4.R2/Cke
�isH v.t/kL4.s2Œ��=4;�=4�/Ws;4.R2/

� C.DCkv.t/kHs.R2//

� 2CD:

Therefore, from (3-13) we deduce

kK.v/kZs.�/ � C�D3;

which implies that K maps Zs.�/ into itself when � � cD�2 for c > 0 small enough.
Similarly, for v1, v2 2Zs.�/, we have the bound

kK.v2/�K.v1/kZs.�/ � C�D2
kv2� v1kZs.�/; (3-14)

which shows that if � � cD�2 then K is a contraction of Zs.�/. The Picard fixed point theorem gives
the desired result.
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The case of holomorphic Hermite functions: For s < 1
2

, recall that we set p D p.s/ D 4=.1� 2s/, so
that s < 1

2
�

1
p

. We have

kK.v/kZs.�/ � �kT.f C v/kZs.�/

� C�
�
kT.f; f; f /kZs CkT.f; f; v/kZs CkT.f; v; v/kZs CkT.v; v; v/kZs

�
:

We estimate each term, thanks to Lemma 3.7 and Strichartz. The conjugation plays no role, so we forget
it.

For the trilinear term in v,

kT.v; v; v/kHs � Cke�it 0H vk3
L4

t02Œ��=4;�=4�
Ws;4.R2/

� Ckvk3
Hs.R2/

:

For the quadratic term in v, for ı > 0 such that 2
ı�

8
3
C ı

�
C

1
p
C

1
4
D 1,

kT.v; v; f /kHs � Cke�it 0H vk2
L8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/

ke�it 0Hf kLp.t 02Œ��=4;�=4�/Ws;p.R2/

Cke�it 0H vkL4.t 02Œ��=4;�=4�/Ws;4.R2/ke
�it 0H vkL4.t 02Œ��=4;�=4�/L4.R2/

�ke�it 0Hf kL4.t 02Œ��=4;�=4�/L4.R2/

� CDkvk2
Hs.R2/

:

For the linear term in v, with the same ı as above,

kT.v;f;f /kHs �Cke�it 0HvkL8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/ke
�it 0Hf kL8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/

�ke�it 0Hf kLp.t 02Œ��=4;�=4�/Ws;p.R2/

Cke�it 0H vkL4.t 02Œ��=4;�=4�/Ws;4.R2/ke
�it 0Hf k2

L4.t 02Œ��=4;�=4�/L4.R2/

� CD2
kvkHs.R2/:

For the constant term in v,

kT.f;f;f /kHs � Cke�it 0Hf k2
L8=3Cı.t 02Œ��=4;�=4�/L8=3Cı.R2/

ke�it 0Hf kLp.t 02Œ��=4;�=4�/Ws;p.R2/

� CD3:

With these estimates at hand, the result follows by the Picard fixed point theorem. �

Approximation and invariance of the measure.

Lemma 3.9. Fix D � 0 and s < 1
2

. Then, for all " > 0, there exists N0 � 0 such that, for all f 2As
?.D/

and N �N0,
kˆ.t/f �ˆN .t/f kL1.Œ��1;�1�IHs.R2// � ";

where �1 D cD�2 for some c > 0.

Proof. Denoting for simplicity T.f /D T.f; f; f /,

v� vN D�i

Z t

0

�
SN .T.f C v/�T.f C vN //C .1�SN /T.f C v/

�
ds:



1748 PIERRE GERMAIN, ZAHER HANI AND LAURENT THOMANN

As in (3-14), we get

kv� vN kZs.�/ � C�D2
kv� vN kZs.�/C

Z �

��

k.1�SN /T.f C v/kHs.R2/ ds;

which in turn implies, when C�D2 �
1
2

,

kv� vN kZs.�/ � 2

Z �

��

k.1�SN /T.f C v/kHs.R2/ ds:

Choose �> 0 so that sC�< 1
2

. Then, by the proof of Proposition 3.6, kT.f Cv/kL1
Œ��;��

HsC�.R2/�CD3

if � � c0D�2 and, therefore, there exists N0 DN0.";D/ which satisfies the claim. �

In the next result, we summarize the results obtained by de Suzzoni [2011, Sections 3.3 and 4]. Since
the proofs are very similar in our context, we skip them.

Let Di;j D .i C j 1=2/1=2, with i , j 2 N, and set Ti;j D
Pj

`D1
�1.Di;`/. Let

†N;i WD ff WˆN .˙Ti;j /f 2As
?.Di;jC1/ for all j 2 Ng

and

†i WD lim sup
N!C1

†N;i ; † WD
[
i2N

†i :

Proposition 3.10. Let ˇ � 0; then:

(i) The set † is of full �? measure.

(ii) For all f 2†, there exists a unique global solution uD f C v to (CR). This define a global flow ˆ
on †

(iii) For all measurable set A�† and all t 2 R,

�?.A/D �?.ˆ.t/.A//:

4. Weak solutions: proof of Theorem 2.6

Definition of T.u;u;u/ on the support of �. For N � 0, denote by …N the orthogonal projector on
the space

LN
kD0 Ek (in this section, we do not need the smooth cut-offs SN ). In the sequel, we write

T.u/D T.u;u;u/ and TN .u/D…N T.…N u;…N u;…N u/.

Proposition 4.1. For all p � 2 and all � > 1, the sequence .TN .u//N�1 is a Cauchy sequence in
Lp.X�1.R2/;B; d�IH�� .R2//. Namely, for all p � 2, there exist ı > 0 and C > 0 such that, for
all 1�M <N , Z

X�1.R2/

kTN .u/�TM .u/k
p

H�� .R2/
d�.u/� CM�ı:

We denote by T.u/D T.u;u;u/ the limit of this sequence and we have, for all p � 2,

kT.u/kLp
�H�� .R2/ � Cp: (4-1)
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Before we turn to the proof of Proposition 4.1, let us state two elementary results which will be needed
in the sequel.

Lemma 4.2. For all n 2 N,
C1X
kDn

1

2k

�
k

n

�
D

C1X
kDn

k!

2kn!.k � n/!
D 2:

Proof. For jzj< 1 we have 1=.1� z/D
PC1

kD0 zk . If we differentiate this formula n times we get

n!

.1� z/nC1
D

C1X
kDn

k!

.k � n/!
zk�n;

which implies the result, taking z D 1
2

. �

Lemma 4.3. Choose 0< " < 1 and p, L� 1 so that p �L". Then

L!

2L.L�p/!
� C 2�L=2:

Proof. The proof is straightforward. By the assumption p �L",

L!

.L�p/!
�Lp

� C 2L=2;

which was the claim. �

Proof of Proposition 4.1. By the result [Thomann and Tzvetkov 2010, Proposition 2.4] on the Wiener
chaos, we only have to prove the statement for p D 2.

Firstly, by definition of the measure �,Z
X�1.R2/

kTN .u/�TM .u/k2
H�� .R2/

d�.u/D

Z
�

kTN .
 .!//�TM .
 .!//k2
H�� .R2/

dp.!/:

Therefore, it is enough to prove that .TN .
 //N�1 is a Cauchy sequence in L2.�IH�� .R2//. Let
1�M <N and fix ˛ > 1

2
. By (1-2), we get

H�˛TN .
 /D
1

2˛

X
AN

gn1
gn2
Ngn3

.n1C n2� n3C 1/˛
T.'hol

n1
; 'hol

n2
; 'hol

n3
/

D
�

8 � 2˛

X
AN

.n1C n2/!

2n1Cn2

p
n1!n2!n3!.n1C n2� n3/!

gn1
gn2
Ngn3

.n1C n2� n3C 1/˛
'hol

n1Cn2�n3

D
�

8 � 2˛

NX
pD0

1

.pC 1/˛

�X
A
.p/

N

.n1C n2/!

2n1Cn2

p
n1!n2!n3!p!

gn1
gn2
Ngn3

�
'hol

p

with
AN D fn 2 N3

W 0� nj �N; 0� n1C n2� n3 �N g;

A
.p/
N
D fn 2 N3

W 0� nj �N; n1C n2� n3 D pg if 0� p �N:
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Therefore,

kTN .
 /�TM .
 /k2
H�˛.R2/

D
�2

64 � 22˛

NX
pD0

1

.pC 1/2˛

X
.n;m/2A

.p/

M;N
�A

.p/

M;N

.n1C n2/!.m1Cm2/!gn1
gn2
Ngn3
Ngm1

gm2
gm3

2n1Cn22m1Cm2p!
p

n1!n2!n3!
p

m1!m2!m3!
;

where A
.p/
M;N

is the set defined by

A
.p/
M;N

D
˚
n 2 N3

W 0� nj �N; n1C n2� n3 D p 2 f0; : : : ;N g and maxfn1; n2; n3;pg>M
	
:

Now we take the integral over �. Since .gn/n�0 are independent and centered Gaussians, we deduce that
each term in the right-hand side vanishes unless one of two cases holds:

Case 1: .n1; n2; n3/D .m1;m2;m3/ or .n1; n2; n3/D .m2;m1;m3/.

Case 2: We have one of

.n1; n2;m1/D .n3;m2;m3/; .n1; n2;m2/D .n3;m1;m3/;

.n1; n2;m3/D .m1; n3;m2/; .n1; n2;m3/D .m2; n3;m1/:

We write Z
�

kTN .
 /�TM .
 /k2
H�2˛.R2/

dp D J1CJ2;

where J1 and J2 correspond to the contribution in the sum of each of cases 1 and 2, respectively.

Contribution in case 1: By symmetry, we can assume that .n1; n2; n3/D .m1;m2;m3/. Define

B
.p/
M;N

D
˚
n 2 N2

W 0� nj �N and maxfn1; n2; n1C n2�p;pg>M
	
:

Then

J1 � C
X
p�0

1

.1Cp/2˛

X
B
.p/

M;N

..n1C n2/!/
2

22.n1Cn2/p!n1!n2!.n1C n2�p/!
:

In the previous sum, we make the change of variables LD n1C n2 and we observe that on B
.p/
M;N

we
have L�M ; then

J1 � C
X
p�0

1

.1Cp/2˛

X
L�pCM

LX
n1D0

.L!/2

22Lp!n1!.L� n1/!.L�p/!

D C
X
p�0

1

.1Cp/2˛

X
L�pCM

L!

2Lp!.L�p/!
;
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where we used the fact that
PL

n1D0

�
L
n1

�
D 2L. Let " > 0 and split the previous sum into two pieces:

J1 � C

M "X
pD0

1

.1Cp/2˛

C1X
LDM

L!

2Lp!.L�p/!
CC

C1X
pDM "C1

1

.1Cp/2˛

C1X
LDp

L!

2Lp!.L�p/!

� C

M "X
pD0

1

.1Cp/2˛

C1X
LDM

L!

2Lp!.L�p/!
C 2C

C1X
pDM "C1

1

.1Cp/2˛
DW J11CJ12;

by Lemma 4.2. For the first sum, we can use Lemma 4.3, since p �M " �L"; thus

J11 � C

M "X
pD0

1

.1Cp/2˛p!

C1X
LDM

1

2L=2
� C

C1X
LDM

1

2L=2
� CM�ı:

Next, clearly, J12 � CM�ı because ˛ > 1
2

, and this gives J1 � CM�ı.

Contribution in case 2: We can assume that .n1; n2;m1/D .n3;m2;m3/. Then, for n, m 2 A
.p/
M;N

, we
have n2 Dm2 D p. Moreover, by symmetry, we can assume that n1 >M or p >M . Thus,

J2 � C
X
p�0

1

.1Cp/2˛

C1X
n1DMC1

C1X
m1D0

.n1Cp/!.m1Cp/!

2n1Cp2m1Cpn1!m1!.p!/2

CC
X

p�MC1

1

.1Cp/2˛

C1X
n1D0

C1X
m1D0

.n1Cp/!.m1Cp/!

2n1Cp2m1Cpn1!m1!.p!/2
DW J21CJ22:

To begin with, by Lemma 4.2, we have

J22 D C
X

p�MC1

1

.1Cp/2˛

� C1X
n1D0

.n1Cp/!

2n1Cpn1!p!

�� C1X
m1D0

.m1Cp/!

2m1Cpm1!p!

�

D 4C
X

p�MC1

1

.1Cp/2˛
� cM�ı:

Then, by Lemma 4.2 again,

J21 D C
X
p�0

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�� C1X
m1D0

.m1Cp/!

2m1Cpm1!p!

�

D 2C
X
p�0

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�

D 2C

M "X
pD0

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�
C 2C

C1X
pDM "C1

1

.1Cp/2˛

� C1X
n1DMC1

.n1Cp/!

2n1Cpn1!p!

�
DWK1CK2:
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On the one hand, by Lemma 4.3,

K1 � C

� M "X
pD0

1

.1Cp/2˛p!

�� C1X
n1DMC1

2�n1=2

�
� CM�ı

and, on the other hand, by Lemma 4.2, since ˛ > 1
2

,

K2 � C

C1X
pDM "C1

1

.1Cp/2˛
� CM�ı:

Putting all the estimates together, we get J2 � CM�ı, which concludes the proof. �

Study of the measure �N . Let N � 1. We then consider the following approximation of (CR):�
i@tuD TN .u/; .t;x/ 2 R�R2;

u.0;x/D f .x/ 2X�1.R2/:
(4-2)

The equation (4-2) is an ODE in the frequencies less than N and .1�…N /u.t/D .1�…N /f for
all t 2 R.

The main reason to introduce this system is the following proposition, whose proof we omit.

Proposition 4.4. The equation (4-2) has a global flow ˆN . Moreover, the measure � is invariant
under ˆN : for any Borel set A�X�1.R2/ and for all t 2 R, �.ˆN .t/.A//D �.A/.

In particular, if LX�1.v/D � then, for all t 2 R, LX�1.ˆN .t/v/D �.
We denote by �N the measure on C.Œ�T;T �IX�1.R2//, defined as the image measure of � under the

map
X�1.R2/! C.Œ�T;T �IX�1.R2//;

v 7!ˆN .t/.v/:

Lemma 4.5. Let � > 1 and p � 2. Then there exists C > 0 such that, for all N � 1,

kuk
W

1;p

T
H��x




L

p
�N

� C:

Proof. Firstly, we have that, for � > 1, p � 2 and N � 1,

kukLp

T
H��x




L

p
�N

� C:

Indeed, by the definition of �N and the invariance of � under ˆN , we have

kukLp
�N

L
p

T
H��x
D .2T /1=pkvkLp

�H��x
D .2T /1=pk
kLp

p H��x
:

Then, by the Khintchine inequality (3-9) and (3-1), for all p � 2,

k
kLp
p H��x

� C
p

pk
kL2
p H��x

� C:

We refer to [Burq et al. 2014, Proposition 3.1] for the details.
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Next, we show that


k@tukLp

T
H��x




L

p
�N

� C: By definition of �N ,

k@tuk
p

L
p
�N

L
p

T
H��x
D

Z
C.Œ�T;T �IX�1.R2//

k@tuk
p

L
p

T
H��x

d�N .u/D

Z
X�1.R2/

k@tˆN .t/.v/k
p

L
p

T
H��x

d�.v/:

Now, since ˆN .t/.v/ satisfies (4-2) and by the invariance of �, we have

k@tuk
p

L
p
�N

L
p

T
H��x
D

Z
X�1.R2/

kTN .ˆN .t/.v//k
p

L
p

T
H��x

d�.v/D 2T

Z
X�1.R2/

kTN .v/k
p

H��x
d�.v/

and we conclude with (4-1) and Proposition 4.1. �

The convergence argument. The importance of Lemma 4.5 above comes from the fact that it allows us to
establish the following tightness result for the measures �N . We refer to [Burq et al. 2014, Proposition 4.11]
for the proof.

Proposition 4.6. Let T > 0 and � > 1. Then the family of measures

.�N /N�1 with �N DLCT H�� .uN .t/I t 2 Œ�T;T �/

is tight in C.Œ�T;T �IH�� .R2//.

The result of Proposition 4.6 enables us to use the Prokhorov theorem: for each T > 0 there exists
a subsequence �Nk

and a measure � on the space C.Œ�T;T �IX�1.R2// such that, for all � > 1 and all
bounded continuous functions F W C.Œ�T;T �IH�� .R2//! R,Z

C.Œ�T;T �IH�� .R2//

F.u/ d�Nk
.u/!

Z
C.Œ�T;T �IH�� .R2//

F.u/ d�.u/:

By the Skorohod theorem, there exists a probability space .e�;eF; Qp/, a sequence of random variables . QuNk
/

and a random variable Qu with values in C.Œ�T;T �IX�1.R2// such that

L . QuNk
I t 2 Œ�T;T �/DL .uNk

I t 2 Œ�T;T �/D �Nk
; L . QuI t 2 Œ�T;T �/D �; (4-3)

and, for all � > 1,
QuNk
! Qu Qp-a.s. in C.Œ�T;T �IH�� .R2//: (4-4)

We now claim that LX�1.uNk
.t//DLX�1. QuNk

.t//D � for all t 2 Œ�T;T � and k � 1. Indeed, for
all t 2 Œ�T;T �, the evaluation map

Rt W C.Œ�T;T �IX�1.R2//!X�1.R2/;

u 7! u.t; � /;

is well-defined and continuous.
Thus, for all t 2 Œ�T;T �, uNk

.t/ and QuNk
.t/ have same distribution .Rt /#�Nk

. By Proposition 4.4,
we obtain that this distribution is �.

Thus, from (4-4) we deduce that

LX�1. Qu.t//D � for all t 2 Œ�T;T �: (4-5)
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Let k � 1 and t 2 R and consider the random variable Xk given by

Xk D uNk
.t/�R0.uNk

.t//C i

Z t

0

TNk
.uNk

/ ds:

Define eX k similarly to Xk , with uNk
replaced by QuNk

. Then, by (4-3),

LCT X�1.eX Nk
/DLCT X�1.XNk

/D ı0:

In other words, eX k D 0 Qp-a.s. and QuNk
satisfies the following equation Qp-a.s.:

QuNk
.t/DR0. QuNk

.t//� i

Z t

0

TNk
. QuNk

/ ds: (4-6)

We now show that we can pass to the limit k!C1 in (4-6) in order to show that Qu is Qp-a.s. a solution
to (CR), written in integral form as

Qu.t/DR0. Qu.t//� i

Z t

0

T. Qu/ ds: (4-7)

Firstly, from (4-4) we deduce the convergence of the linear terms in (4-6) to those in (4-7). The
following lemma gives the convergence of the nonlinear term:

Lemma 4.7. Up to a subsequence,

TNk
. QuNk

/! T. Qu/ Qp-a.s. in L2.Œ�T;T �IH�� .R2//:

Proof. In order to simplify the notations, in this proof we drop the tildes and write Nk D k. Let M � 1

and write

Tk.uk/�T.u/D .Tk.uk/�T.uk//C .T.uk/�TM .uk//C .TM .uk/�TM .u//C .TM .u/�T.u//:

To begin with, by continuity of the product in finite dimensions, when k!C1,

TM .uk/! TM .u/ Qp-a.s. in L2.Œ�T;T �IH�� .R2//:

We now deal with the other terms. It is sufficient to show the convergence in the space X WD

L2.�� Œ�T;T �IH�� .R2//, since the almost sure convergence follows after extraction of a subsequence.
By definition and the invariance of �, we obtain

kTM .uk/�T.uk/k
2
X D

Z
C.Œ�T;T �IX�1/

kTM .v/�T.v/k2
L2

T
H��x

d�k.v/

D

Z
X�1.R2/



TM .ˆk.t/.f //�T.ˆk.t/.f //


2

L2
T

H��x
d�.f /

D

Z
X�1.R2/

kTM .f /�T.f /k2
L2

T
H��x

d�.f /

D 2T

Z
X�1.R2/

kTM .f /�T.f /k2H��x
d�.f /;

which tends to 0 uniformly in k � 1 when M !C1, according to Proposition 4.1.
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The term kTM .u/�T.u/kX is treated similarly. Finally, with the same argument, we show

kTk.uk/�T.uk/kX � CkTk.f /�T.f /kL2
�H��x

;

which tends to 0 when k!C1. This completes the proof. �

Conclusion of the proof of Theorem 2.6. Define Qf D Qu.0/ WDR0. Qu/. Then, by (4-5), LX�1. Qf /D �

and, by the previous arguments, there exists e�0 � e� such that Qp.e�0/ D 1 and, for each !0 2 e�0, the
random variable Qu satisfies the equation

QuD Qf � i

Z t

0

T. Qu/ dt; .t;x/ 2 R�R2: (4-8)

Set †D Qf .�0/; then �.†/D Qp.e�0/D 1. It remains to check that we can construct a global dynamics.
Take a sequence TN !C1 and perform the previous argument for T D TN . For all N � 1, let †N be
the corresponding set of initial conditions and set †D

T
N2N†N . Then �.†/D 1 and, for all Qf 2†,

there exists
Qu 2 C.RIX�1.R2//

which solves (4-8). This completes the proof of Theorem 2.6.
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