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PAVING OVER ARBITRARY MASAS IN VON NEUMANN ALGEBRAS

SORIN POPA AND STEFAAN VAES

We consider a paving property for a maximal abelian ∗-subalgebra (MASA) A in a von Neumann
algebra M , that we call so-paving, involving approximation in the so-topology, rather than in norm (as in
classical Kadison–Singer paving). If A is the range of a normal conditional expectation, then so-paving
is equivalent to norm paving in the ultrapower inclusion Aω ⊂ Mω. We conjecture that any MASA in
any von Neumann algebra satisfies so-paving. We use work of Marcus, Spielman and Srivastava to check
this for all MASAs in B(`2N), all Cartan subalgebras in amenable von Neumann algebras and in group
measure space II1 factors arising from profinite actions. By earlier work of Popa, the conjecture also
holds true for singular MASAs in II1 factors, and we obtain here an improved paving size Cε−2, which
we show to be sharp.

1. Introduction

A famous problem of R. V. Kadison and I. M. Singer [1959] asked whether the diagonal MASA (maximal
abelian ∗-subalgebra) D in the algebra B(`2N) of all linear bounded operators on the Hilbert space `2N

satisfies the paving property, requiring that, for any x ∈B(`2N) with 0 on the diagonal and any ε > 0,
there exists a partition of 1 with projections p1, . . . , pn ∈ D such that

∥∥∑
i pi xpi

∥∥≤ ε‖x‖.
In striking work, A. Marcus, D. Spielman and N. Srivastava [Marcus et al. 2015] have settled this

question in the affirmative, while also obtaining an estimate for the minimal number of projections
necessary for such ε paving, n(x, ε)≤ 124ε−4 for all x = x∗ ∈B(`2N).

On the other hand, in [Popa 2014] the paving property for D⊂B(`2N) has been shown to be equivalent
to the paving property for the ultrapower inclusion Dω

⊂ Rω, where R is the hyperfinite II1 factor,
D is its Cartan subalgebra and ω is a free ultrafilter on N. (Recall from [Dixmier 1954; Feldman
and Moore 1977] that a subalgebra A in a von Neumann algebra M is a Cartan subalgebra if it is
a MASA, there exists a normal conditional expectation of M onto A, and the normalizer of A in M ,
NM(A)= {u ∈U(M) | u Au∗ = A}, generates M .) It was also shown in [Popa 2014] that if A is a singular
MASA in R, or, more generally, in an arbitrary II1 factor M , then Aω ⊂ Mω has the paving property,
with corresponding paving size majorized by Cε−3. (Recall from [Dixmier 1954] that a MASA A ⊂ M
is singular in M if its normalizer is trivial, that is, NM(A)⊂ A.)

Inspired by these results, we consider in this paper a new, weaker paving property for an arbi-
trary MASA A in a von Neumann algebra M that we call so-paving, which requires that, for any
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x ∈ Msa = {x ∈ M | x = x∗} and ε > 0, there exists n such that x can be (ε, n) so-paved, that is, for any
so-neighborhood V of 0 there exists a partition of 1 with projections p1, . . . , pn in A and an element a ∈ A
satisfying ‖a‖ ≤ ‖x‖ and

∥∥q
(∑

i pi xpi − a
)
q
∥∥≤ ε‖x‖ for some projection q ∈ M with 1− q ∈ V (see

Section 2). We prove that, if there exists a normal conditional expectation from M onto A, then so-paving
is equivalent to the property that, for any x ∈Msa and ε > 0, there exists n such that x can be approximated
in the so-topology with elements that can be (ε, n) norm paved (see Theorem 2.7). If in addition A is count-
ably decomposable, then so-paving with uniform bound on the number n necessary to (ε, n) so-pave any
x ∈Msa is equivalent to the ultrapower inclusion Aω ⊂Mω satisfying norm paving (with Mω as defined in
[Ocneanu 1985]). In particular, this shows that so-paving amounts to norm paving in the case D⊂B(`2N).

We conjecture that any MASA in any von Neumann algebra satisfies the so-paving property (see
Conjecture 2.8). We use [Marcus et al. 2015] to check this conjecture for all MASAs in B(`2N) (i.e.,
for the remaining case of the diffuse MASA L∞([0, 1])⊂B

(
L2([0, 1])

)
; see Section 3), for all Cartan

subalgebras in amenable von Neumann algebras, as well as for any Cartan subalgebra in a group measure
space II1 factor arising from a free ergodic measure-preserving profinite action (see Section 4). At the
same time, we prove that, for a von Neumann algebra M with separable predual, norm paving over a
MASA A ⊂ M occurs if and only if M is of type I and there exists a normal conditional expectation of
M onto A (see Theorem 3.3).

For singular MASAs A ⊂ M , where the conjecture already follows from results in [Popa 2014], we
improve upon the paving size obtained there, by showing that any finite number of elements in Mω can
be simultaneously ε paved over Aω with n < 1+ 16ε−2 projections (see Theorem 5.1). Moreover, this
estimate is sharp: given any MASA in a finite factor, A ⊂ M , and any ε > 0, there exists x ∈ Msa with
zero expectation onto A such that, if

∥∥∑n
i=1 pi xpi

∥∥≤ ε‖x‖ for some partition of 1 with projections in A,
then n must be at least ε−2 (see Proposition 5.4). We include a discussion on the multipaving size for
D⊂B(`2N) and, more generally, for Cartan subalgebras (see Remark 5.2).

2. A paving conjecture for MASAs

We will consider several paving properties for a MASA A in a von Neumann algebra M . For conve-
nience we first recall the initial Kadison–Singer paving property [1959], for which we use the following
terminology.

Definition 2.1. We say an element x ∈M is (ε, n) pavable over A if there exist projections p1, . . . , pn ∈ A
and a ∈ A such that ‖a‖≤‖x‖,

∑n
i=1 pi =1 and

∥∥∑n
i=1 pi xpi−a

∥∥≤ ε‖x‖. We denote by n(A⊂M; x, ε)
(or just n(x, ε), if no confusion is possible), the smallest such n. Also, we say that x is pavable (over A)
if, for every ε > 0, there exists an n such that x is (ε, n) pavable. We say that A ⊂ M has the paving
property if any x ∈ M is pavable. We will sometimes use the terminology norm pavable/paving instead
of just pavable/paving, when we need to underline the difference with other paving properties.

It is not really crucial to impose ‖a‖ ≤ ‖x‖. Indeed, without that assumption, the element a ∈ A in
an (ε, n) norm paving of x satisfies ‖a‖ ≤ (1+ ε)‖x‖, so that, replacing a by a′ = (1+ ε)−1a, we have
‖a′‖ ≤ ‖x‖ and

∥∥∑
i pi xpi − a′

∥∥≤ 2ε‖x‖.
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Also note that, if there exists a normal conditional expectation E of M onto A, then the element a ∈ A
in an (ε, n) norm paving of x satisfies ‖E(x)− a‖ ≤ ε‖x‖, so that

∥∥∑
i pi xpi − E(x)

∥∥≤ 2ε‖x‖. In the
presence of a normal conditional expectation, one often defines (ε, n) norm pavability by requiring the
partition p1, . . . , pn ∈ A to satisfy

∥∥∑
i pi xpi − E(x)

∥∥≤ ε‖x‖.
Finally note that, if y1, y2 ∈ Msa are (ε, n) pavable, then y1+ iy2 is (2ε, n2) pavable. Thus, in order to

obtain the paving property for A ⊂ M , it is sufficient to check pavability of self-adjoint elements in M .
We next define two weaker notions of paving, involving approximation in the so-topology rather than

in norm.

Definition 2.2. An element x ∈ M is (ε, n) so-pavable over A if, for every strong neighborhood V

of 0 in M , there exist projections p1, . . . , pn ∈ A, an element a ∈ A and a projection q ∈ M such that
‖a‖≤ ‖x‖,

∑n
i=1 pi = 1,

∥∥q
(∑

i pi xpi−a
)
q
∥∥≤ ε‖x‖ and 1−q ∈V. We denote by ns(x, ε) the smallest

such n. An element x ∈ M is so-pavable over A if, for any ε > 0, there exists n such that x is (ε, n)
so-pavable. We say that A ⊂ M has the so-paving property if any x ∈ Msa is so-pavable.

It is easy to see that, if M is a finite von Neumann algebra with a faithful normal trace τ and x ∈ Msa,
then x is (ε, n) so-pavable if and only if, given any δ > 0, there exist a partition of 1 with projections
p1, . . . , pn ∈ A and a ∈ Asa, ‖a‖≤‖x‖, such that the spectral projection q of

∑
i pi xpi−a corresponding

to [−ε‖x‖, ε‖x‖] satisfies τ(1− q) ≤ δ. As pointed out in [Popa 2014, Remark 2.4.1◦], if ω is a free
ultrafilter on N, then x ∈ Msa has this latter property if and only if, when viewed as an element in Mω, it
is pavable over the ultrapower MASA Aω of Mω.

Definition 2.3. An element x ∈ M is (ε, n; κ) app-pavable over A if it can be approximated in the
so-topology by a net of (ε, n) pavable elements in M bounded in norm by κ‖x‖. An element x ∈ M
is app-pavable over A if there exists κ0 such that, for any ε > 0, there exists n such that x is (ε, n; κ0)

app-pavable. We say that A ⊂ M has the app-paving property if any x ∈ Msa is app-pavable.

Obviously, norm paving implies so- and app-paving, with n(x, ε)≥ ns(x, ε) for all x . The next result
shows that, if a MASA is the range of a normal conditional expectation, then so- and app-pavability are
in fact equivalent.

Proposition 2.4. Let M be a von Neumann algebra and A ⊂ M a MASA with the property that there
exists a normal conditional expectation E : M→ A. Let x ∈ Msa, n ∈ N, ε > 0.

(1) If x is (ε, n; κ) app-pavable for some κ ≥ 1, then x is (2κε′, n) so-pavable for any ε′ > ε.

(2) If x is (ε, n) so-pavable, then x is (ε′, n; 3) app-pavable for any ε′ > ε.

Proof. (1) Let x j ∈ Msa with ‖x j‖ ≤ κ‖x‖ for all j be such that x j is (ε, n) pavable for all j and
x j converges to x in the so-topology. Fix ε′ > ε. We prove that x is (2κε′, n) so-pavable, i.e., that, given
any so-neighborhood V of 0, there exist a partition of 1 with projections p1, . . . , pn ∈ A, an element
a ∈ A and q ∈ P(M) such that 1− q ∈ V and

∥∥q
(∑

i pi xpi − a
)
q
∥∥≤ 2κε′‖x‖.

Note that, if necessary by changing the multiplicity of the representation of M on the Hilbert space H,
we may assume that the given neighborhood V is of the form V= {x ∈ Msa | ‖xξ‖ ≤ α} for some unit
vector ξ ∈H and α > 0.
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For every j , choose a partition of 1 by projections p j,1, . . . , p j,n ∈ A and an element a j ∈ A such that∥∥∥∥ n∑
i=1

p j,i x j p j,i − a j

∥∥∥∥≤ ε‖x j‖ ≤ κε‖x‖.

Applying the conditional expectation E , it also follows that ‖E(x j )− a j‖ ≤ κε‖x‖. Therefore,∥∥∥∥ n∑
i=1

p j,i (x j − E(x j ))p j,i

∥∥∥∥≤ 2κε‖x‖.

Define the self-adjoint elements

T j =

n∑
i=1

p j,i (x − E(x))p j,i and S j =

n∑
i=1

p j,i (x j − E(x j ))p j,i .

Let δ = 2(ε′− ε)κ‖x‖. Recall that the normal conditional expectation E is automatically faithful because
its support is a projection in A′ ∩ M = A and thus equal to 1. So, we can apply Lemma 2.5 and,
since x j → x strongly, we get that T j − S j → 0 strongly. Thus, there exists j large enough such that
‖(T j − S j )ξ‖< αδ.

We claim that, if we denote by q the spectral projection of |T j− S j | corresponding to the interval [0, δ],
then ‖(1−q)ξ‖<α, and so 1−q ∈V. Indeed, if not, then ‖(1−q)ξ‖≥α and thus ‖|T j−S j |(1−q)ξ‖≥αδ,
implying that

‖(T j − S j )ξ‖ ≥ ‖|T j − S j |(1− q)ξ‖ ≥ αδ > ‖(T j − S j )ξ‖,

a contradiction.
On the other hand, a = E(x) satisfies ‖a‖ ≤ ‖x‖ and we also have the estimates∥∥∥∥q
( n∑

i=1

p j,i (x − E(x))p j,i

)
q
∥∥∥∥= ‖qT j q‖ ≤ ‖q(T j − S j )q‖+‖q S j q‖ ≤ δ+ 2κε‖x‖ = 2κε′‖x‖.

This finishes the proof of (1).

(2) Note that if ε′ ≥ 2 then there is nothing to prove. So, without any loss of generality, we may assume
0<ε < ε′< 2. Let α= 1−(ε′−ε)/2 and γ = 1−(αε′−ε)/6. Note that ε′< 2 implies αε′>ε, so γ < 1.
We clearly also have γ > α.

Let x ∈ Msa be (ε, n) so-pavable. Fix an open so-neighborhood W of 0 in M . We construct an (ε′, n)
pavable element y ∈ Msa with ‖y‖ ≤ 3‖x‖ and x − y ∈W. We may assume that x 6= 0.

By the lower semicontinuity of the norm with respect to the so-topology, it follows that the set

W1 =W∩ {h ∈ M | ‖x − h‖> γ ‖x‖}

is an open so-neighborhood of 0 in M . Choose an open so-neighborhood W0 of 0 such that W0+W0⊂W1.
Using Lemma 2.5 below to realize the second point, we can fix an so-neighborhood V1 of 0 such that,

for every projection q ∈ M with 1− q ∈ V1, we have that:
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• x − qxq ∈W0;

• qaq − a ∈W0 for all a ∈ A with ‖a‖ ≤ ‖x‖.

Again using Lemma 2.5 below, we can fix an so-neighborhood V0⊂V1 of 0 such that, for every projection
q ∈ M with 1− q ∈ V0, we have the following property:

• For any partition of 1 with projections p1, . . . , pn ∈ A, the spectral projection q ′ of
∑

i pi qpi

corresponding to the interval (1− ((αε′− ε)/(6n2))2, 1] satisfies 1− q ′ ∈ V1.

Since x is (ε, n) so-pavable, we can choose projections p1, . . . , pn ∈ A, an element a ∈ A and a projection
q ∈ M such that ‖a‖ ≤ ‖x‖,

∑n
i=1 pi = 1,

∥∥q
(∑

i pi xpi − a
)
q
∥∥≤ ε‖x‖ and 1− q ∈ V0.

Let ei be the spectral projection of pi qpi corresponding to the interval (1− ((αε′ − ε)/(6n2))2, 1]
for each i , and let q ′ =

∑
i ei . By the last of the above properties, we have 1 − q ′ ∈ V1. Define

y = q ′(x−a)q ′+a and note that ‖y‖ ≤ ‖x−a‖+‖a‖ ≤ 3‖x‖. We will prove that x− y ∈W and that y
is (ε′, n) pavable.

Indeed, because 1− q ′ ∈ V1, we have

x − y = (x − q ′xq ′)+ (q ′aq ′− a) ∈W0+W0 ⊂W1.

So, x− y ∈W and ‖y‖ ≥ γ ‖x‖. Since this implies ‖γ a‖ ≤ ‖y‖, in order to prove that y is (ε′, n) pavable
it is sufficient to prove that

∥∥∑
i pi ypi − γ a

∥∥≤ ε′‖y‖. To see this, note first that we have∑
i

pi ypi − γ a =
∑

i

pi q ′(x − a)q ′ pi + (1− γ )a =
∑

i

ei (x − a)ei + (1− γ )a,

and thus ∥∥∥∥∑
i

pi ypi − γ a
∥∥∥∥≤ ∥∥∥∥∑

i

ei (x − a)ei

∥∥∥∥+ (1− γ )‖x‖.
Since, by the definition of ei , we have

‖ei − ei q‖2 = ‖ei − ei qei‖ = ‖ei − ei (pi qpi )‖ ≤

(
αε′− ε

6n2

)2

,

it follows that ‖q ′− q ′q‖ ≤
∑

i ‖ei − ei q‖ ≤ n(αε′− ε)/(6n2)= (αε′− ε)/(6n). Thus, since ei = q ′ pi ,
we get that

‖ei − q ′qpi‖ = ‖(q ′− q ′q)pi‖ ≤ ‖q ′q − q ′‖ ≤
αε′− ε

6n
,

implying that∥∥∥∥∑
i

pi ypi − γ a
∥∥∥∥

≤

∥∥∥∥∑
i

ei (x − a)ei

∥∥∥∥+ (1− γ )‖x‖
≤

∑
i

‖ei − q ′qpi‖‖x − a‖+‖q ′q
(∑

i

pi xpi − a
)

qq ′‖+
∑

i

‖x − a‖‖ei − pi qq ′‖+ (1− γ )‖x‖
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≤
αε′− ε

3
‖x − a‖+ ε‖x‖+ (1− γ )‖x‖ ≤

5αε′+ ε
6
‖x‖

≤
5αε′+ ε

6
γ−1
‖y‖ ≤ αγ−1ε′‖y‖< ε′‖y‖ ,

where the two last inequalities hold true because ε < αε′ and αγ−1 < 1. �

In the proof of the above Proposition 2.4, we used the following elementary lemma:

Lemma 2.5. Let M ⊂B(H) be a von Neumann algebra and P ⊂ M a von Neumann subalgebra. Assume
that P is finite and that E : M→ P is a normal faithful conditional expectation. If (xk) is a bounded net
in M that strongly converges to 0, then the nets (xka) converge strongly to 0 uniformly over all a ∈ (P)1:

lim
k

(
sup

a∈(P)1
‖xkaξ‖

)
= 0 for every ξ ∈ H.

Proof. Since P is finite, we can fix a normal semifinite faithful (nsf) trace Tr on P with the property
that the restriction of Tr to the center Z(P) is still semifinite. Define the nsf weight ϕ = Tr ◦E on M
and the corresponding space Nϕ = {x ∈ M | ϕ(x∗x) <∞}. We complete Nϕ into a Hilbert space Hϕ: to
every x ∈ Nϕ corresponds a vector x̂ ∈ Hϕ , and M is faithfully represented on Hϕ by πϕ(x)ŷ = x̂ y.

Whenever z ∈Z(P) is a projection with Tr(z)<∞, we consider the normal positive functional ϕz ∈M∗
given by ϕz(x)= ϕ(zxz). Since these ϕz form a faithful family of normal positive functionals on M , it
suffices to prove that

lim
k

(
sup

a∈(P)1
ϕz(a∗x∗k xka)

)
= 0 for all projections z ∈ Z(P) with Tr(z) <∞. (2-1)

We denote by Jϕ the modular conjugation on Hϕ . Since P belongs to the centralizer of the weight ϕ,
we have that x̂a = Jϕπϕ(a)∗ Jϕ x̂ for all x ∈Nϕ and a ∈ P . For z ∈ Z(P) with Tr(z) <∞ and a ∈ P , we
then find that

ϕz(a∗x∗k xka)= ‖x̂kaz‖2 = ‖Jϕπϕ(a)∗ Jϕ x̂kz‖2 ≤ ‖a‖2ϕz(x∗k xk).

Since limk ϕz(x∗k xk)= 0, we get (2-1) and the lemma is proved. �

Remark 2.6. For Lemma 2.5 to hold, both the finiteness of P and the existence of the normal faithful
conditional expectation E : M→ P are crucial. First note that the lemma fails for the diffuse MASA
in B(H). It suffices to take M =B(L2(T)) and P = L∞(T), with respect to the normalized Lebesgue
measure on T. Consider the unitary operators an ∈ P given by an(z) = zn . We can also consider the
(an)n∈Z as an orthonormal basis of L2(T) and define xk as the orthogonal projection onto the closure of
span{an | n ≥ k}. Then, xk→ 0 strongly. With ξ(z)= 1 for all z ∈ T, we find that supn ‖xkanξ‖2 = 1 for
every k. So, the existence of the conditional expectation E is essential.

The previous paragraph implies in particular that the lemma fails if M = P = B(H). So, also, the
finiteness of P is essential.

We will now relate so- and app-pavability properties for a MASA A ⊂ M having a normal condi-
tional expectation E A : M → A, with the norm-pavability for the associated inclusion of ultrapower
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algebras Aω ⊂ Mω. We will only consider the case when A is countably decomposable, i.e., when there
exists a normal faithful state ϕ on A. We still denote by ϕ its extension to M given by ϕ ◦ E A.

For the reader’s convenience, we recall Ocneanu’s [1985] definition of the ultrapower of a von
Neumann algebra. Given a free ultrafilter ω on N, one lets Iω be the C∗-algebra of all bounded sequences
(xn)n ∈ `

∞(N,M) that are s∗-convergent to 0 along the ultrafilter ω. One denotes by M0,ω the multiplier
(also called the binormalizer) of Iω in `∞(N,M) (which is easily seen to be a C∗-algebra) and one defines
Mω to be the quotient M0,ω/Iω. This is shown in [Ocneanu 1985] to be a von Neumann algebra, called
the ω-ultrapower of M . Since the constant sequences are in the multiplier M0,ω, we have a natural
embedding M ⊂ Mω. It is easy to see that, if M is an atomic von Neumann algebra, then Mω

= M ; in
particular, B(`2N)ω =B(`2N).

To define the ultrapower MASA Aω ⊂ Mω, one proceeds as in [Popa 1995, Section 1.3]. One lets
E0,ω

A : `
∞(N,M)→ `∞(N, A) be the conditional expectation defined by E0,ω

A ((xn)n)= (E A(xn))n . One
notices that E0,ω

A (Iω)= Iω∩`∞(N, A)={(an)∈ `
∞(N, A) | limω ϕ(a∗nan)=0} and that `∞(N, A)⊂M0,ω.

Finally, one defines Aω= (`∞(N, A)+ Iω)/Iω'`∞(N, A)/Iω∩`∞(N, A). It follows that Aω, defined this
way, is a von Neumann subalgebra of Mω, with E0,ω

A implementing a normal conditional expectation E Aω

that sends the class of (xn)n to the class of (E A(xn))n . Moreover, by [Popa 1995, Theorem A.1.2], it
follows that Aω is a MASA in Mω. Note also that E Aω coincides with E A when restricted to constant
sequences in M⊂Mω. From the above remark, the ultrapower of D⊂B(`2N) coincides with D⊂B(`2N)

itself.

Theorem 2.7. Let M be a von Neumann algebra and A ⊂ M a MASA with the property that there exists
a normal conditional expectation E A : M→ A. Let ω be a free ultrafilter on N and denote by Aω ⊂ Mω

the corresponding ultrapower inclusion.

(1) An element x ∈ Msa is so-pavable over A if and only if x is app-pavable over A. So, A ⊂ M has the
so-paving property if and only if it has the app-paving property.

(2) Assume that A is countably decomposable. Then x ∈ Msa is so-pavable over A if and only if x is
norm pavable over Aω. More precisely, if x ∈ Msa is (ε, n) so-pavable, then x is (ε, n) norm pavable
over Aω; conversely, if x ∈ Msa is (ε, n) norm pavable over Aω, then x is (ε′, n) so-pavable for
all ε′ > ε.

(3) Still assume that A is countably decomposable. Then the uniform so-paving property of A ⊂ M is
equivalent to the uniform paving property of Aω ⊂ Mω. More precisely, if every x ∈ Msa is (ε, n)
so-pavable, then every x ∈ Mω

sa is (ε, n) norm pavable.

Proof. (1) follows immediately from Proposition 2.4.
To prove (2) and (3), we assume that A is countably decomposable and it suffices to prove the following

two statements for given 0< ε < ε′ and n ∈ N:

• If x ∈ Mω
sa is represented by the sequence (xm) ∈ M0,ω of self-adjoint elements xm ∈ Msa satisfying

‖xm‖ ≤ ‖x‖, and if every xm is (ε, n) so-pavable, then x is (ε, n) norm pavable over Aω.

• If x ∈ Msa is (ε, n) norm pavable over Aω, then x is (ε′, n) so-pavable.
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Since A is countably decomposable, we can fix a normal faithful state ϕ on A and still denote by ϕ its
extension ϕ ◦ E A to M . Note that the s∗-topology on the unit ball of Msa coincides with the so-topology,
both being implemented by the norm ‖ · ‖ϕ .

We start by proving the first of the two statements above. For every m, the self-adjoint element xm is
(ε, n) so-pavable. So we can take a partition of 1 with projections pm

1 , . . . , pm
n ∈ A, a projection qm ∈ M

and an element am ∈ A such that ‖am‖ ≤ ‖xm‖ ≤ ‖x‖ and such that
∥∥qm

(∑
i pm

i xpm
i − am

)
qm
∥∥ ≤

ε‖x‖ and ϕ(1 − qm) ≤ 2−m . Since (xm) and `∞(N, A) are both contained in M0,ω, the sequences
((1− qm)pm

i (xm − am)pm
i )m and (pm

i (xm − am)pm
i (1− qm))m belong to Iω.

Thus, if we let a = (am) and pi = (pm
i )m ∈ Aω, 1 ≤ i ≤ n, then p1, . . . , pn is a partition of 1

with projections in Aω and pi (x − a)pi coincides with (qm pm
i (xm − am)pm

i qm)m in Mω. It follows
that

∑
i pi (x − a)pi coincides with

(
qm
∑

i pm
i (xm − am)pm

i qm
)

m in Mω, and thus has norm majorized
by ε‖x‖. So we have proved that x is (ε, n) norm pavable over Aω.

To prove the second of the two statements above, let x ∈ Msa be (ε, n) norm pavable over Aω (as an
element in Mω). Let δ > 0 be arbitrary. We have to prove that there exists an a′ ∈ A with ‖a′‖ ≤ ‖x‖,
a partition of 1 with projections e1, . . . , en ∈ A and a projection q ∈ M such that ϕ(1− q) ≤ δ and∥∥q
∑

i ei (x − a′)ei q
∥∥≤ ε′‖x‖.

Take projections p1, . . . , pn ∈ Aω and a ∈ Aωsa such that ‖a‖ ≤ ‖x‖,
∑

i pi = 1 and
∥∥∑

i pi xpi −a
∥∥≤

ε‖x‖. Represent the pi by sequences (pm
i )m with projections pm

i ∈ A such that
∑

i pm
i = 1 for all m, and

represent a by a sequence (am)m with am ∈ Asa and ‖am‖ ≤ ‖a‖ for all m.
We conclude that there exists a sequence of self-adjoint elements (ym)m ∈ Iω of norm at most 3‖x‖ such

that the sequence (bm)m =
(∑

i pm
i (x−am)pm

i − ym
)

m satisfies ‖bm‖≤ ε‖x‖ for all m. Since (ym)m ∈ Iω,
we have limω ϕ(|ym |)= 0, so that there exists a neighborhood V of ω such that the spectral projection qm

of |ym | corresponding to [0, (ε′− ε)‖x‖] satisfies ϕ(1− qm)≤ δ for any m ∈V. Thus, for any such m, if
we let a′ = am , ei = pm

i and q = qm , then we have∥∥∥∥q
∑

i

ei (x − a′)ei q
∥∥∥∥≤ ‖qmbmqm‖+‖qm ymqm‖ ≤ ε‖x‖+ (ε′− ε)‖x‖ ≤ ε′‖x‖. �

Conjecture 2.8. (1) Any MASA in a von Neumann algebra, A ⊂ M , with the property that there exists
a normal conditional expectation of M onto A has the so-paving property (equivalently the app-paving
property). Also, while the equivalence between so- and app-pavability for an arbitrary MASA A in a von
Neumann algebra M is still to be clarified, any MASA A ⊂ M (not necessarily the range of a normal
expectation) ought to satisfy both these properties.

(2) Going even further, we expect that the paving size satisfies the estimate ns(x, ε)≤Cε−2 for all x ∈Msa

for some universal constant C > 0, independent of A ⊂ M .

Remark 2.9. (i) There is much evidence for 1◦ in the above conjecture. By Theorem 2.7(3) and the
fact that the ultrapower of D⊂B(`2N) coincides with D⊂B(`2N), so-pavability for this inclusion is
equivalent to Kadison–Singer paving, proved to hold true in [Marcus et al. 2015]. It was already noticed
in [Popa 2014] that so-pavability over the Cartan MASA of the hyperfinite II1 factor D ⊂ R is equivalent
to pavability of D ⊂ B(`2N), and thus holds true by [Marcus et al. 2015]. In fact, more cases of the
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conjecture can be deduced from [Marcus et al. 2015]. Thus, we note in Section 3 that any MASA in a
type I von Neumann algebra (such as a diffuse MASA in B(`2N)) satisfy both so- and app-pavability.
Then in Section 4, we use [Marcus et al. 2015] to prove that any Cartan MASA in an amenable von
Neumann algebra, or in a group measure space II1 factor arising from a free ergodic profinite action,
has the so-pavability property. On the other hand, the conjecture had already been checked for singular
MASAs in II1 factors in [Popa 2014], and Cyril Houdayer and Yusuke Isono pointed out that, modulo
some obvious modifications, the proof in [Popa 2014] works as well for any singular MASA A in an
arbitrary von Neumann algebra M , once A is the range of normal conditional expectation from M . Finally,
in Remark 5.3, we prove that so-pavability also holds for a certain class of MASAs that are neither Cartan,
nor singular.

(ii) The estimate on the paving size ns(x, ε) ∼ ε−2 for all x ∈ Msa in point (2) of the conjecture is
more speculative, and there is less evidence for it. Based on results in [Popa 2014], we will show in
Theorem 5.1 that this estimate does hold true for singular MASAs. We will also show in Proposition 5.4
that this is the best one can expect for the so-paving size of any MASA in a II1 factor, and thus, since
ns(D ⊂ R, ε) = n(D ⊂ B(`2N), ε), the best one can expect for the paving size in the Kadison–Singer
problem as well (a fact already shown in [Casazza et al. 2007]). For the inclusions D ⊂ B(`2N), the
order of magnitude of the ε pavings obtained in [Marcus et al. 2015] is Cε−4, but the techniques used
there seem to allow obtaining the paving size Cε−2. However, in order to prove Conjecture 2.8 in its
full generality, in particular unifying the singular and the Cartan MASA cases (including the diagonal
inclusions Dk ⊂B(`2

k), 2≤ k ≤∞), which are quite different in nature, a new idea may be needed.

(iii) The (ε, n) so-paving in the case of a MASA A⊂M with a normal conditional expectation E A :M→ A
and a normal faithful state ϕ on M with ϕ ◦ E A = ϕ should be compared with (ε, n) L2-paving in the
Hilbert norm ‖ · ‖ϕ , which, for x ∈M , E A(x)= 0, requires the existence of a partition of 1 with projections
p1, . . . , pn ∈ A such that

∥∥∑
i pi xpi

∥∥
ϕ
≤ ε‖x‖ϕ . This condition is obviously weaker than so-paving,

with n(x, ε) ≥ ns(x, ε) bounded from below by the L2-paving size of x for all x ∈ Msa. It was shown
in [Popa 2014, Theorem 3.9] to always occur, with paving size majorised by ε−2 (in fact the proof in
[Popa 2014] is for MASAs in II1 factors, but the same proof works in the general case; see also [Popa
1995, Theorem A.1.2] in this respect). The proof of Proposition 5.4 at the end of this paper shows that
the paving size is bounded from below by ε−2 for all MASAs in II1 factors.

3. Paving over MASAs in type I von Neumann algebras

Marcus et al. [2015] proved that, for every self-adjoint matrix T ∈ Mk(C) with zeros on the diagonal
and for every ε > 0, there exist r projections p1, . . . , pr ∈ Dk(C) with r ≤ (6/ε)4,

∑r
i=1 pi = 1

and ‖pi T pi‖ ≤ ε‖T ‖ for all i (see also [Tao 2013; Valette 2015] for alternative presentations of the
proof). Thus, if D is the diagonal MASA in B = B(`2N), then D ⊂ B has the paving property, with
n(D⊂B; x, ε)≤ 124ε−4 for all x = x∗ ∈B.

In this section, we deduce from this that any MASA A in a type I von Neumann algebra M has the so-
and app-paving property.
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We also prove that a MASA A in a von Neumann algebra M with separable predual has the norm
paving property if and only if M is of type I and there exists a normal conditional expectation of M
onto A.

We start by deducing the following lemma from [Marcus et al. 2015]:

Lemma 3.1. Let (X, µ) be a standard probability space and B = Mk(C) or B = B(`2N) with the
diagonal MASA D ⊂ B. Consider the unique normal conditional expectation E of B⊗ L∞(X) onto
D⊗ L∞(X). If T ∈ B⊗ L∞(X) is a self-adjoint element with E(T ) = 0 and if ε > 0, there exist r
projections p1, . . . , pr ∈ D⊗ L∞(X) with r ≤ (6/ε)4,

∑r
i=1 pi = 1 and ‖pi T pi‖ ≤ ε‖T ‖ for all i .

Proof. It suffices to consider B=B(`2N). Fix a self-adjoint T ∈B⊗ L∞(X) with E(T )= 0 and ε > 0.
Denote by r the largest integer satisfying r ≤ (6/ε)4. We represent T as a Borel function T : X → B

satisfying ‖T (x)‖ ≤ ‖T ‖ and E(T (x)) = 0 for all x ∈ X . Define Y as the compact Polish space
Y := {1, . . . , r}N. For every y ∈ Y and i ∈ {1, . . . , r}, we denote by py

i ∈ D the projection given by
py

i (k)= 1 if y(k)= i and py
i (k)= 0 if y(k) 6= i . Clearly, the projections py

1 , . . . , py
r with y ∈ Y describe

precisely all partitions of D. Also, for every i ∈ {1, . . . , r}, the map y 7→ py
i is strongly continuous.

Define the Borel map

V : Y × X→ [0,+∞), V(y, x)= max
i=1,...,r

‖py
i T (x)py

i ‖

and the Borel set Z ⊂ Y × X given by Z := {(y, x) ∈ Y × X |V(y, x)≤ ε‖T ‖}. For every x ∈ X , we have
that T (x) ∈B with ‖T (x)‖ ≤ ‖T ‖ and E(T (x))= 0. So, by [Marcus et al. 2015], for every x ∈ X there
exists a y ∈ Y such that (y, x) ∈ Z . Defining π : Y × X→ X by π(y, x)= x , this means that π(Z)= X .
By von Neumann’s measurable selection theorem [1949] (or see [Kechris 1995, Theorem 18.1]), we can
take a Borel set X0 ⊂ X and a Borel function F : X0→ Y such that µ(X \ X0)= 0 and (F(x), x) ∈ Z
for all x ∈ X0.

The Borel functions pi : X0→ D, pi (x) = pF(x)
i , then define a partition p1, . . . , pr of D⊗ L∞(X)

with the property that ‖pi T pi‖ ≤ ε‖T ‖ for all i . �

Proposition 3.2. Let M be a von Neumann algebra of type I with separable predual and A ⊂ M an
arbitrary MASA. Then A ⊂ M has both the so- and the app-paving properties.

More precisely, for every x ∈ Msa and ε > 0, we have that ns(x, ε) ≤ 124ε−4. Also, there exists a
strongly dense ∗-subalgebra M0 ⊂ M with A ⊂ M0 such that, for every x ∈ (M0)sa and ε > 0, we have
that n(x, ε)≤ 124ε−4.

Proof. Fix an arbitrary MASA A⊂M . There exist standard probability spaces (Xk, µk)k∈N and (Xd , µd),
(Xc, µc) such that, writing Ak = L∞(Xk), and Ad , Ac similarly, the MASA A ⊂ M is isomorphic to a
direct sum of MASAs of the form

Dk(C)⊗ Ak ⊂ Mk(C)⊗ Ak,

`∞(N)⊗ Ad ⊂B(`2(N))⊗ Ad ,

and L∞([0, 1])⊗ Ac ⊂B
(
L2([0, 1])

)
⊗ Ac.

(3-1)



PAVING OVER ARBITRARY MASAS IN VON NEUMANN ALGEBRAS 1011

For the first two of these MASAs, by Lemma 3.1, we get that n(x, ε) ≤ 124ε−4 for every self-adjoint
element x .

For the rest of the proof, we consider M =B
(
L2([0, 1])

)
⊗ L∞(X) and A= L∞([0, 1])⊗ L∞(X) for

some standard probability space (X, µ). Fix x ∈ Msa and ε > 0. Let n be the largest integer satisfying
n ≤ 124ε−4. We prove that x is (ε, n) so-pavable. Choose an so-neighborhood V of 0 in M . For
every r > 0, denote by qr ∈B(L2([0, 1])) the orthogonal projection on to the subspace Hr ⊂ L2([0, 1])
defined as

Hr = {ξ ∈ L2([0, 1]) | ξ is constant on every interval [r−1(i − 1), r−1i) for i = 1, . . . , r}.

Define ξr,i =
√

rχ[r−1(i−1),r−1i), so that (ξr,i )i=1,...,r is an orthonormal basis of Hr .
When r→∞, we have that qr → 1 strongly. So we can fix r large enough such that 1− (qr ⊗ 1) ∈V.

Denote by ei ∈ L∞([0, 1]) the projection ei = χ[r−1(i−1),r−1i). Define the vector functionals ωi j in
B
(
L2([0, 1])

)
∗

by ωi j (T )= 〈T ξr,i , ξr, j 〉. Define a ∈ A by

a =
r∑

i=1

ei ⊗ (ωi i ⊗ id)(x).

By construction, ‖a‖ ≤ ‖x‖.
Define the isometry V ∈B(Cr , L2([0, 1])) by V (δi )= ξr,i for i = 1, . . . , r . Define y ∈Mr (C)⊗L∞(X)

by y := (V ∗⊗1)x(V⊗1). We also put b= (V ∗⊗1)a(V⊗1). Denoting the natural conditional expectation
by E : Mr (C)⊗ L∞(X)→ Dr (C)⊗ L∞(X), we have E(y)= b. By Lemma 3.1, we thus find projections
f1, . . . , fn ∈ Dr (C) ⊗ L∞(X) such that f1 + · · · + fn = 1 and ‖ fk(y − b) fk‖ ≤ ε‖y‖ ≤ ε‖x‖ for
all k = 1, . . . , n.

Define the projections aki ∈ L∞(X) such that fk =
∑r

i=1 Ei i⊗aki . Then, let pk ∈ A be the projections
given by pk =

∑r
i=1 ei ⊗ aki . By construction, we have

(V ∗⊗ 1)pk xpk(V ⊗ 1)= fk y fk for all k = 1, . . . , n.

Therefore,∥∥∥∥(qr ⊗ 1)
( n∑

k=1

pk xpk − a
)
(qr ⊗ 1)

∥∥∥∥= ∥∥∥∥ n∑
k=1

(V ∗⊗ 1)pk xpk(V ⊗ 1)− b
∥∥∥∥= ∥∥∥∥ n∑

k=1

fk y fk − b
∥∥∥∥≤ ε‖x‖.

Since 1− (qr ⊗ 1) ∈ V, we have shown that x is (ε, n) so-pavable.
For the final part of the proof, for notational convenience, we replace the interval [0, 1] by the circle T.

We define M0 ⊂ B(L2(T)) as the ∗-algebra generated by L∞(T) and the periodic rotation unitaries.
By construction, M0 ⊂ M is a dense ∗-subalgebra containing A. By Lemma 3.1, every x ∈ (M0)sa is
(ε, 124ε−4) pavable for all ε > 0. �

We finally prove that for a MASA A in a von Neumann algebra M with separable predual, the classical
Kadison–Singer paving holds if and only if M is of type I and A is the range of a normal conditional
expectation.
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Theorem 3.3. Let M be a von Neumann algebra with separable predual and A ⊂ M a MASA. Then,
A ⊂ M satisfies the norm paving property if and only if M is of type I and A is the range of a normal
conditional expectation.

Also, unless M is of type I and A is the range of a normal conditional expectation, there exist singular
conditional expectations of M onto A.

Proof. If M is of type I and A is the range of a normal conditional expectation, then A⊂ M is isomorphic
to a direct sum of the first two types of MASAs given by (3-1). It then follows from Lemma 3.1 that
A ⊂ M satisfies the norm paving property.

Conversely, assume that A ⊂ M satisfies the norm paving property. Then there is a unique conditional
expectation E : M → A. By [Akemann and Sherman 2012, Corollary 3.3], this unique conditional
expectation E is normal.

Decomposing M as a direct sum of von Neumann algebras of different types, it remains to prove the
following: if M has a separable predual and is of type II, type III1 or type III without a type III1 direct
summand, and if A ⊂ M is a MASA that is the range of a normal conditional expectation E : M→ A,
then there also exists a singular conditional expectation of M onto A. When M is of type II, the existence
of a normal conditional expectation of M onto A implies that A is generated by finite projections. By
reducing with a projection in A, we may thus assume that M is of type II1, and, in this case, singular
conditional expectations were constructed in [Popa 2014, Remark 2.4.3◦] (see also [Popa 1999, Proof of
Corollary 4.1.(iii) and Remark 4.3.3◦]).

To settle the type III cases, fix a normal faithful state ϕ on M satisfying ϕ = ϕ ◦ E . First assume that
M is of type III1 and fix n ∈N. We prove that there exist matrix units {ei j | 1≤ i , j ≤ 2n

} in M such that
‖[ϕ, ei j ]‖ ≤ 8−n for all i , j . To prove this statement, we use the following nonfactorial version of the
Connes–Størmer transitivity theorem [1978, Theorem 4]: if ϕ and ρ are normal positive functionals on a
type III1 von Neumann algebra M with separable predual and if ϕ(a)= ρ(a) for all a ∈ Z(M), then, for
every ε > 0, there exists a unitary u ∈ M such that ‖ϕ− uρu∗‖< ε.

Since A is diffuse relative to Z(M)⊂ A, we can choose a partition ei i , i = 1, . . . , 2n , of A satisfying
ϕ(aei i ) = 2−nϕ(a) for all a ∈ Z(M) and i = 1, . . . , 2n . In particular, the projections ei i have central
support 1 and are thus equivalent in M . Put v1 = e11 and choose partial isometries vi , i = 2, . . . , 2n ,
such that viv

∗

i = e11 and v∗i vi = ei i for all i . Define the positive functionals ψi on e11 Me11 given by
ψi (x)= ϕ(v∗i xvi ). Whenever z ∈ Z(e11 Me11), write z = ae11 with a ∈ Z(M), so that

ψi (z)= ϕ(v∗i avi )= ϕ(av
∗

i vi )= ϕ(aei i )= 2−nϕ(a)= ϕ(ae11)= ψ1(z).

By the Connes–Størmer transitivity theorem, we can take unitaries ui ∈e11 Me11 such that ‖ψ1−uiψi u
∗

i ‖≤

8−n−1 for all i . Replacing vi by uivi , this means that we may assume that ‖ψ1−ψi‖ ≤ 8−n−1 for all i .
Define the matrix units ei j = v

∗

i v j . Since ϕ = ϕ ◦ E , we know that [ϕ, ei i ] = 0 for all i . We then find that
‖[ϕ, ei j ]‖ ≤ 8−n for all i , j .

We now proceed as in [Popa 2014, Remark 2.4.3◦]. Define the projection pn = 2−n ∑
i, j ei j . Since

all ei i belong to A, we get that E(ei j )= δi, j ei i and thus E(pn)= 2−n1. Since ‖[ϕ, ei j ]‖ ≤ 8−n for all i , j ,
we also have ‖[ϕ, pn]‖ ≤ 4−n . Define the normal states ϕn on M given by ϕn(x)= 2nϕ(pnxpn), x ∈ M .
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Also define the normal functionals ηn on M given by ηn(x)= 2nϕ(xpn). Note that ‖ϕn − ηn‖ ≤ 2−n and
that ηn(a)= ϕ(a) for all a ∈ A. So, if ψ denotes a weak∗ limit point of the sequence ϕn in M∗, it follows
that ψ is a state on M satisfying ψ(a)= ϕ(a) for all a ∈ A. Defining the projection qn =

∨
∞

k=n+1 pk , we
get that ϕ(qn)≤ 2−n and thus qn→ 0 strongly. By construction, ψ(1− qn)= 0 for every n. Therefore,
ψ is a singular state. Then, averaging ψ by a countable subgroup U0 ⊂ U(A) with the property that
U′′0 = A, we get, as in the proof of [Popa 1999, Corollary 4.1.(iii)], a singular state ψ0 on M that is
A-central and whose restriction to A equals ϕ. Then ψ0=ϕ◦E, where E :M→ A is a singular conditional
expectation (see, e.g., [de Korvin 1971]).

Finally, assume that M is of type III but without a direct summand of type III1. We prove that there
exists an intermediate von Neumann algebra A⊂ P ⊂ M such that P is of type II and P is the range of a
normal conditional expectation M→ P . (We are grateful to Masamichi Takesaki for useful discussions
on the discrete decomposition involved in this part of the proof.) The first part of the proof then shows
the existence of singular conditional expectations P→ A, which, composed with the normal expectation
of M onto P , provides singular conditional expectations M→ A.

The intermediate type II von Neumann algebra A ⊂ P ⊂ M can be constructed using the discrete
decomposition for von Neumann algebras of type IIIλ, λ ∈ [0, 1) (see [Takesaki 2003, Theorems XII.2.1
and XII.3.7]). To avoid the measure-theoretic complications of a direct integral decomposition of M , we
use the following “global” discrete decomposition. Denote by (σt)t∈R the modular automorphism group
of ϕ and by N = M oσ R the continuous core of M (see [Takesaki 2003, Theorem XII.1.1]). Denote
by (θt)t∈R the dual action of R on N . Write Z(N )= L∞(Z , µ), where (Z , µ) is a standard probability
space. Note that θ restricts to a nonsingular action of R on (Z , µ). The assumption that M has no direct
summand of type III1 is reflected by the possibility of choosing Z in such a way that no x ∈ Z is stabilized
by all t ∈ R. This means that the flow R y (Z , η) can be built as a flow under a ceiling function (i.e., a
nonergodic version of [Takesaki 2003, Theorem XII.3.2]). More concretely, we find a nonsingular action
of Z×R on a standard probability space � with the following properties:

• The actions of Z and R on � are separately free and proper, that is, Z y � is conjugate with
Z y�0×Z given by n · (x,m)= (x, n+m), and R y� is conjugate with R y�1×R given by
t · (y, s)= (y, t + s).

• The action R y Z is conjugate with R y�/Z. So, we can identify �0 = Z and thus �= Z ×Z

with the action R y� given by t · (x, n)= (t · x, ω(t, x)+ n), where ω : R× Z→ Z is a 1-cocycle.

Since L∞(Z) = Z(N ), the 1-cocycle ω gives rise to a natural action R y N ⊗ `∞(Z). We define
N := (N ⊗ `∞(Z))oR and consider the action Z y N given by translation on `∞(Z) and the identity
on N and L(R). As in [Takesaki 2003, Lemma XII.3.5], it follows that N is of type II and that NoZ is
naturally isomorphic with M ⊗B(L2(R))⊗B(`2(Z)).

Since ϕ = ϕ ◦ E , we get that every a ∈ A belongs to the centralizer of ϕ. We can then view A⊗ L(R)
as a MASA of N = M oσ R. Also Z(N ) ⊂ A⊗ L(R). So, the above action R y N ⊗ `∞(Z) globally
preserves A⊗ L(R)⊗ `∞(Z). We can then define A := (A⊗ L(R)⊗ `∞(Z))o R as a von Neumann
subalgebra of N.
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The dual action R y L(R) is conjugate with the translation action R y L∞(R). Therefore, the
1-cocycle ω trivializes on A⊗ L(R). This yields the natural surjective ∗-isomorphism

9 : A⊗B(L2(R))⊗ `∞(Z)→A.

Choose a minimal projection q ∈ B(L2(R)) ⊗ `∞(Z) and put p = 9(1 ⊗ q). We then get that
A ⊂ pNp ⊂ p(NoZ)p. Using the natural isomorphism of NoZ with M ⊗B(L2(R))⊗B(`2(Z)), we
can identify p(NoZ)p=M and have found pNp as an intermediate type II von Neumann algebra sitting
between A and M . Because there is a natural normal conditional expectation of NoZ onto N, we also
have a normal conditional expectation of M onto pNp. �

4. Paving over Cartan subalgebras

The paving property for the diagonal MASA D⊂B(`2N)was shown in [Popa 2014] to be equivalent to the
paving property for the ultrapower inclusion Dω

⊂ Rω, where D is the Cartan MASA in the hyperfinite II1

factor R. As we have seen in Theorem 2.7, this is equivalent, in turn, to the (uniform) so-paving property
for D ⊂ R. Thus, [Marcus et al. 2015] implies that so-paving holds true for D ⊂ R. We will now use
[Marcus et al. 2015] to prove that, in fact, so-paving holds true for any Cartan subalgebra of an amenable
von Neumann algebra as well as for Cartan inclusions arising from a free ergodic profinite probability
measure-preserving (pmp) action of a countable group, 0y X , i.e., A = L∞(X)⊂ L∞(X)o0 = M .

Theorem 4.1. (1) If M is an amenable von Neumann algebra and A ⊂ M is a Cartan MASA of M , then
A ⊂ M has the so-paving property, with ns(A ⊂ M; x, ε)≤ 254ε−4 for all x ∈ Msa.

(2) Let 0 be a countable group and 0y (X, µ) an essentially free, ergodic, pmp action that is profinite.
Then A= L∞(X)⊂ L∞(X)o0=M is so-pavable and, for every x ∈Msa, ns(A⊂M; x, ε)≤ 134ε−4. So,
also, Aω ⊂ Mω satisfies the norm paving property and, for every x ∈ Mω

sa, n(Aω ⊂ Mω
; x, ε)≤ 134ε−4.

Proof. (1) By [Connes et al. 1981], given any x ∈ Msa and any so-neighborhood V of 0, there exists
a finite-dimensional von Neumann subalgebra B0 ⊂ M , having the diagonal A0 contained in A and
NB0(A0) ⊂ NM(A), and an element y0 = y∗0 ∈ B0, ‖y0‖ ≤ ‖x‖, such that x − y0 ∈ V. But, by [Marcus
et al. 2015] (see Lemma 3.1), y0 can be (ε0, n) paved over A0 (thus also over A⊃ A0) for some ε0 slightly
smaller than ε/2 and n ≤ 254ε−4. By Proposition 2.4, we conclude that x can be (ε, n) so-paved for every
ε > 0.

(2) Take a decreasing sequence of finite-index subgroups 0n < 0 such that (X, µ) is the inverse limit of
the spaces 0/0n equipped with the normalized counting measure. Write rn : X→ 0/0n . The essential
freeness of 0y (X, µ) means that, for every g ∈ 0−{e}, we have

lim
n

|{x ∈ 0/0n | gx = x}|
[0 : 0n]

= 0. (4-1)

Write An = `
∞(0/0n). View A1 ⊂ A2 ⊂ · · · as an increasing sequence of subalgebras of A with dense

union. Fix a free ultrafilter ω on N. For every n ∈N, define Mn ∼= M[0,0n](C) as the matrix algebra with
entries indexed by elements of 0/0n . Consider An ⊂ Mn as the diagonal subalgebra. For g ∈ 0, denote
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by ug,n ∈ Mn the corresponding permutation unitary. Denote by τn the normalized trace on Mn and by
‖ · ‖2 the corresponding 2-norm. By (4-1), we have that ‖E An (ug,n)‖2→ 0 for all g ∈ 0−{e}.

Denote by M=
∏
ω(Mn, τn) the ultraproduct of the matrix algebras Mn , with MASA A⊂M defined

as A=
∏
ω An . We can then define a normal faithful ∗-homomorphism π : M→M, where π(aug) ∈M

is represented by the sequence (aug,n)n≥m whenever a ∈ Am .
Fix ε > 0 and denote by r the largest integer that is smaller than or equal to (12/ε)4. We claim that, for

every self-adjoint x ∈Mω, there exists a partition p1, . . . , pr of Aω such that ‖pi (x−E Aω(x))pi‖≤ ε‖x‖
for all i . To prove this claim, it suffices to prove the following local statement: for every self-adjoint
x ∈ M with ‖x‖ ≤ 1, and for all δ > 0, m ∈ N, there exists a partition p1, . . . , pr of A (thus independent
of m and δ, since r was fixed in the beginning) such that the element y =

∑r
i=1 pi (x−E A(x))pi satisfies

|τ(yk)| ≤ εk
+ δ for all k = 1, . . . ,m. (4-2)

Indeed, once this local statement is proved and given a self-adjoint element x ∈ Mω represented by a
sequence (xm)m with xm = x∗m and ‖xm‖ ≤ ‖x‖ for all m, we find partitions pm

1 , . . . , pm
r of A such that

the elements ym =
∑r

i=1 pm
i (xm − E A(xm))pm

i satisfy

|τ(yk
m)| ≤ (ε‖xm‖)

k
+

1
m
≤ (ε‖x‖)k + 1

m
for all k = 1, . . . ,m.

Defining the projections pi ∈ Aω by the sequences pi = (pm
i )m and putting y =

∑r
i=1 pi (x − E Aω(x))pi ,

this means that |τ(yk)| ≤ (ε‖x‖)k for all k ∈N. Since y is self-adjoint, it follows from the spectral radius
formula that ‖y‖ ≤ ε‖x‖, so that the claim is proved. This means that every self-adjoint x ∈ Mω can be
(ε, n) paved for some n ≤ 124ε−4. So, by Theorem 2.7, also every x ∈ Msa can be (ε, n) so-paved for
some n ≤ 134ε−4.

We now deduce the above local statement from [Marcus et al. 2015]. Fix x ∈ Msa with ‖x‖ ≤ 1
and fix δ > 0 and m ∈ N. By the Kaplansky density theorem, we can take n0 ∈ N, a finite subset
F ⊂ 0 and a self-adjoint x0 ∈ span{aug | a ∈ An0, g ∈ F} with ‖x0‖ ≤ 1 and ‖x − x0‖2 ≤ δ/(m2m).
We may assume that e ∈ F. We prove below that we can find a partition p1, . . . , pr of A such that
the element y0 :=

∑r
i=1 pi (x0 − E A(x0))pi satisfies |τ(yk

0)| ≤ ε
k
+ δ/2 for all k = 1, . . . ,m. Writing

y :=
∑r

i=1 pi (x − E A(x))pi , we find that ‖y− y0‖2 ≤ ‖x − x0‖2 and also ‖y‖ ≤ 2, ‖y0‖ ≤ 2. Therefore,

‖yk
− yk

0‖2 ≤ m2m−1
‖x − x0‖2 ≤

δ

2
for all k = 1, . . . ,m.

Thus |τ(yk)− τ(yk
0)| ≤ δ/2, so that (4-2) follows.

We now must find a good paving for x0. For this, we use the ultraproduct M and the injective
homomorphism π : M → M defined above. Write x0 =

∑
g∈F agug with ag ∈ An0 . Then, π(x0) is

represented by the bounded sequence of self-adjoint elements Tn :=
∑

g∈F agug,n . Since ‖π(x0)‖ =

‖x0‖ ≤ 1, we can take a bounded sequence of self-adjoint elements Sn ∈ Mn such that limn→ω ‖Sn‖2 = 0
and ‖Tn − Sn‖ ≤ 1 for all n. Take K > 0 such that ‖Tn‖ ≤ K and ‖Sn‖ ≤ K for all n. Take n1 ≥ n0

close enough to ω such that ‖Sn1‖2 ≤ δ/(4m(2K )m−1) and such that (using (4-1)) the projection q ∈ An1
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defined by the set
{x ∈ 0/0n1 | gx 6= x for all g ∈ Fm

\ {e}}

satisfies ‖1− q‖2 ≤ δ/2m+2. Write R = Tn1 − Sn1 . Since R = R∗ and ‖R‖ ≤ 1, by [Marcus et al. 2015],
there exists a partition p1, . . . , pr of An1 such that the element Y :=

∑r
i=1 pi (R− E An1

(R))pi satisfies

‖Y‖ ≤ 1
2ε‖R− E An1

(R)‖ ≤ ε.

We define Z :=
∑r

i=1 pi (Tn1−E An1
(Tn1))pi . Note that ‖Y‖≤ 2 and ‖Z‖≤ 2K . Also, ‖Y−Z‖2≤‖Sn1‖2,

so that, for all k = 1, . . . ,m, we have

‖Y k
− Z k
‖2 ≤ m(2K )m−1

‖Sn1‖2 ≤
δ

4
.

Then also ‖Y kq − Z kq‖2 ≤ δ/4. Because ‖Y kq‖ ≤ ‖Y‖k ≤ εk , we conclude that

|τn1(Z
kq)| ≤ εk

+
δ

4
for all k = 1, . . . ,m.

By our choice of q, whenever 1≤ k ≤ m, a1, . . . , ak ∈ An1 and g1, . . . , gk ∈ F, we have

τn1(a1ug1,n1 · · · akugk ,nk q)= τ(a1ug1 · · · akugk q),

where the left-hand side uses the trace in Mn1 , while the right-hand side uses the trace in M . Writing
y0 =

∑r
i=1 pi (x0− E A(x0))pi , we find that

|τ(yk
0q)| = |τn1(Z

kq)| ≤ εk
+
δ

4
for all k = 1, . . . ,m.

Since ‖yk
0q − yk

0‖2 ≤ 2m
‖q − 1‖2 ≤ δ/4, we get the required estimate

|τ(yk
0)| ≤ ε

k
+
δ

2
for all k = 1, . . . ,m. �

Remark 4.2. We believe that [Marcus et al. 2015] can be used to settle Conjecture 2.8 (so-pavability) for
all Cartan subalgebras in II1 factors A⊂M , and in fact for any Cartan subalgebra in a von Neumann algebra.
The following could be an approach to a solution, but we could not make it work. Consider the abelian von
Neumann algebra A= A∨J AJ acting on L2(M). This is a MASA in M=〈M, eA〉= (J AJ )′∩B(L2(M))
and there exists a normal conditional expectation from the type I von Neumann algebra M onto A (see
[Feldman and Moore 1977]). Therefore, A⊂M satisfies the norm-paving property. If, now, x ∈ M , we
can pave x by a partition pi ∈ A∨ J AJ . Taking a very fine partition q j ∈ A, we can so-approximate pi

by
∑

j pi, j Jq j J . It should be possible to choose the pi, j as “almost partitions” of 1 in A such that, for
many j (or at least one j), the p1, j , . . . , pr, j approximately pave x (in the so-paving sense).

In relation to the approach to proving so-pavability for Cartan subalgebras suggested above, let us
mention that the [Marcus et al. 2015] paving property for discrete MASAs in type I von Neumann algebras
allows the following new characterization for a MASA to be Cartan:

Corollary 4.3. Let M be a von Neumann algebra with separable predual and A⊂M a MASA in M that is
the range of a normal conditional expectation. Let M= 〈M, eA〉 = (J AJ )′∩B(L2 M) and A= A∨ J AJ .
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The following conditions are equivalent:

(1) A is a Cartan subalgebra of M.

(2) A is a Cartan subalgebra of M.

(3) A⊂M has the paving property.

Proof. The equivalence of (1) and (2) follows from [Feldman and Moore 1977]. Since M is of type I,
a MASA in M is a Cartan subalgebra if and only if it is the range of a normal conditional expectation.
Also, an abelian subalgebra of M can only satisfy the paving property if it is maximal abelian. Therefore,
the equivalence of (2) and (3) follows from Theorem 3.3 (and, thus, uses [Marcus et al. 2015]). �

5. Paving size for one or more elements

In [Marcus et al. 2015], it is shown that every self-adjoint element T in B(`2
k), 1 ≤ k ≤ ∞, can be

(ε, 124ε−4) paved over its diagonal MASA. In the previous section, we have used this result to prove
that any amenable von Neumann algebra M with a Cartan subalgebra A ⊂ M is (ε, 254ε−4) so-pavable
over A; equivalently, any self-adjoint element in Mω is (ε, 254ε−4) norm pavable over Aω.

On the other hand, it has been shown in [Popa 2014] that, if A is a singular MASA in a II1

factor M , then n(Aω ⊂ Mω
; x, ε) ≤ 252ε−2(ε−1

+ 1) ≤ 1250ε−3 for all x ∈ Mω
sa. Or, equivalently,

ns(A⊂ M; x, ε)≤ 1250ε−3 for all x ∈ Msa (see [Popa 2014], Corollary 4.3 and the last lines of the proof
of Proposition 2.3). This is shown by first proving that, given any ε > 0 and any finite set of projections
in M that have scalar expectation onto A, one can find a simultaneous so-paving for all of them with at
most 2ε−2 projections in A (see [Popa 2014, Corollary 4.2]), then using a dilation argument to deduce it
for arbitrary self-adjoint elements.

We will now show that, in fact, the so-paving size for self-adjoint elements over singular MASAs, and
respectively the norm-paving size over an ultraproduct of singular MASAs, can be improved to 42ε−2 (the
order of magnitude ε−2 for the paving size is optimal; see Proposition 5.4 below). Moreover, we show
that one can (ε, n) so-pave simultaneously any number of self-adjoint elements with n < 1+ 42ε−2 many
projections over a singular MASA, a phenomenon that does not occur in the classical Kadison–Singer
case D⊂B(`2N), nor in fact for any Cartan subalgebra in a II1 factor A ⊂ M (see Remark 5.2 below).
The proof combines the uniform paving of projections that have scalar expectation onto A in [Popa 2014,
Corollary 4.2] with a better dilation argument that allows us not to lose on the paving size, while still
dealing simultaneously with several self-adjoint elements.

Theorem 5.1. Let An ⊂ Mn be a sequence of singular MASAs in finite von Neumann algebras. Put
M =

∏
ω Mn and A=

∏
ω An .

Let ε > 0. For every finite set of self-adjoint elements F⊂ M 	 A, there exists a decomposition of the
identity 1= p1+ · · ·+ pn with n < 1+ 16ε−2 projections p j ∈ A such that∥∥∥∥ n∑

j=1

p j xp j

∥∥∥∥≤ ε‖x‖ for all x ∈ F.
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Proof. Fix ε > 0 and let n be the unique integer satisfying 16ε−2
≤ n < 1+ 16ε−2. Also fix a finite

subset {x1, . . . , xm} ⊂ M	 A of self-adjoint elements. We may assume that ‖xk‖ = 1 for all k. Define
yk = (1+ xk)/2. Note that 0≤ yk ≤ 1 and E A(yk)=

1
2 . Let (B, τ ) be any diffuse abelian von Neumann

algebra. Write
M̃ =

∏
ω

(M2(C)⊗ (Mn ∗ B))

and consider the von Neumann subalgebra Ã⊂ M̃ given by

Ã=
∏
ω

(An ⊕ B)= A⊕ Bω.

Note that, for every n, we have that An⊕ B ⊂ M2(C)⊗ (Mn ∗ B) is a singular MASA. Therefore, Ã⊂ M̃
is the ultraproduct of a sequence of singular MASAs.

Define the orthogonal projections Qk ∈ M̃ given by

Qk =

(
yk

√

yk − y2
k

√

yk − y2
k 1− yk

)
.

Note that E Ã(Qk)=
1
2 .

Applying [Popa 2014, Theorem 4.1.(a)] to X =
{

Qk −
1
2 | k = 1, . . . ,m

}
, we find a diffuse von

Neumann subalgebra B0 ⊂ Ã such that every product with factors alternatingly from B0	C1 and X has
zero expectation on Ã. In particular, for all k, we have that B0 and C1+CQk are free von Neumann
subalgebras of (M̃, τ ).

Choose any decomposition of the identity 1 = P1+ · · · + Pn with n projections Pj ∈ B0 satisfying
τ(Pj ) = 1/n. Fix j ∈ {1, . . . , n} and k ∈ {1, . . . ,m}. Since the projections Pj and Qk are free, with
traces respectively given by 1/n and 1

2 , it follows from [Voiculescu 1987, Example 2.8] that∥∥Pj Qk Pj −
1
2 Pj

∥∥≤ 2
√

n
.

Write Pj = p j ⊕q j , where p j ∈ A and q j ∈ Bω are projections. The upper left corner of Pj Qk Pj −
1
2 Pj

equals p j (xk/2)p j , and we conclude that

‖p j xk p j‖ ≤
4
√

n
≤ ε.

This ends the proof. �

Remark 5.2. (1) As shown in Theorem 5.1 above, in the case that A ⊂ M is singular, any finite number
of elements can be simultaneously (ε, n) norm paved over Aω with n < 1+ 16ε−2. By [Popa 2014,
Theorem 3.7], any finite number of elements can also be simultaneously (ε, n) L2-paved over Aω with
n < 1+ ε−2. But this is no longer true for norm paving over a MASA that has “large normalizer”. For
instance, one cannot pave multiple matrices in B(`2N) over its diagonal D. This can be seen as follows:
Assume M is a finite von Neumann algebra and A⊂ M is a MASA whose normalizer NM(A) generates a
II1 von Neumann algebra. Then, for any m ≥ 1, there exists a unitary u ∈NM(A) such that E A(uk)= 0 for
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all 1≤ k ≤m−1, um
= 1. Denote by σ the automorphism Ad(u) of A. Assume now that p1, . . . , pn is a

partition of A that simultaneously c paves the set of m−1 unitaries {uk
|k=1, . . . ,m−1} for some 0<c<1.

Then ‖pi uk pi‖ ≤ c for all i = 1, . . . , n and all k = 1, . . . ,m − 1. But ‖pi uk pi‖ = ‖piσ
k(pi )‖ and

piσ
k(pi ) is a projection. Thus, piσ

k(pi ) must be zero for all i and k. So, for every fixed i , we find
that pi , σ (pi ), . . . , σ

m−1(pi ) are orthogonal. Thus, τ(pi ) ≤ 1/m. Since
∑

i pi = 1, it follows that
n ≥ m. Note that, by replacing the cyclic group Z/mZ' {uk

| 0≤ k ≤ m− 1} ⊂ NM(A) with the group
(Z/2Z)t ↪→ NM(A), acting freely on A, one gets the same result for m = 2t , but with a set of m − 1
self-adjoint unitaries.

We conclude that if the normalizer of a MASA generates a type II1 von Neumann algebra then, given
any m, there exists a set of m− 1 unitaries in M such that, in order to simultaneously c pave all of them,
with c< 1, we need at least m projections (in the case m= 2t , the set can be taken of self-adjoint unitaries).
Note that, if u ∈ NM(A) is as before and we let X = {(uk

+ u−k)/2, (uk
− u−k)/(2i) | 1 ≤ k ≤ m − 1},

then any partition of 1 with projections p1, . . . , pn ⊂ A that simultaneously (c/2) paves all x ∈ X must
satisfy n ≥ m = |X |/2+ 1. Thus, under the same assumptions on A ⊂ M as before, given any m0 and
any c0 <

1
2 , there exists a set X0 ⊂ Msa with |X0| = m0 such that, in order to simultaneously c0 pave all

x ∈ X0, we need at least m0/2 projections.

(2) If A⊂M is a MASA in a von Neumann algebra, X ⊂M and ε>0, we define n(A⊂M; X, ε) in the ob-
vious way. Also, for m a positive integer, we let n(A⊂M;m, ε)=sup{n(A⊂M; X, ε) | X⊂Msa, |X |=m},
and call it the multipaving size of A⊂ M . One always has the estimate n(A⊂ M;m, ε)≤ n(A⊂ M; ε)m .
By Theorem 5.1, if A is a singular MASA in a II1 factor M , then n(Aω ⊂ Mω

;m, ε) < 1+ 16ε−2 for all
m ≥ 1, ε > 0. By 5.2.1◦ above, if NM(A)′′ is of type II1, then n(A ⊂ M;m− 1, c) ≥ m for all m = 2t ,
0< c< 1, while for arbitrary m0 (not of the form 2t ) and c0 <

1
2 , we have n(A⊂ M;m0, c0)≥m0/2. At

the same time, by [Marcus et al. 2015], we have n(A ⊂ M;m, ε)≤ (12/ε)4m .
It would be interesting to find estimates for this multipaving size in this last case (when NM(A)

is large). By arguing as in the proof of [Popa 2014, Theorem 2.2], we see that n(D ⊂ B;m, ε) =
n(Dω

⊂ Rω;m, ε) = n(D ⊂ M;m, ε) for all ε > 0, m ∈ N, where D ⊂ M denotes the ultraproduct
inclusion 5ωDk ⊂5ωMk×k(C). Thus, estimating the multipaving size for Dω

⊂ Rω, or for D ⊂ M, is
the same as doing it for D⊂B. From Remark 5.2(1) and [Marcus et al. 2015], for each fixed 1> ε > 0,
the growth in m of the multiple paving size n(D ⊂ B;m, ε) is between m and (ε−4)m . Calculating its
order of magnitude seems a very challenging problem. It would already be interesting to decide whether
this growth is linear (more generally, polynomial), or exponential.

Remark 5.3. Exactly the same proof as that of [Popa 2014, Theorem 4.1.(a)] shows the following more
general result. Let (M, τ ) be a von Neumann algebra with a normal faithful tracial state, A ⊂ M a
MASA in M and A⊂ N ⊂ M an intermediate von Neumann subalgebra with the following malnormality
property: the only A-N -subbimodule of L2(M 	 N ) that is finitely generated as a right N -module is {0}.
Then, given any ‖ · ‖2-separable subspace X ⊂ M 	 N and any free ultrafilter ω on N, there exists a
diffuse von Neumann subalgebra B0 ⊂ Aω such that every “word” with alternating “letters” from B0	C1
and X has trace zero. Note that [Popa 2014, Theorem 4.1.(a)] corresponds to the case N = A because,
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by [Popa 2006, Section 1.4], the singularity of A in M implies that L2(M 	 A) contains no nonzero
A-A-subbimodule that is finitely generated as a right A-module.

By combining this result with the dilation argument as in the proof of Theorem 5.1 above, it follows that
any x ∈ M 	 N can be so-paved, with ns(A ⊂ M; x, ε) < 52ε−2. Thus, if A ⊂ N satisfies the so-paving
property, then so does A ⊂ M , and we have the estimate ns(A ⊂ M; ε)≤ 202ε−2ns(A ⊂ N ; ε/2).

This observation allows us to derive the so-paving property (and thus the validity of Conjecture 2.8(1)
for a class of MASAs that are neither singular nor Cartan. More precisely, assume that A ⊂ M is a
MASA in a II1 factor such that the normalizer NM(A) generates a von Neumann algebra N satisfying the
conditions: (1) either N is amenable, or A ⊂ N can be obtained as a group measure space construction
from a free ergodic profinite action of a countable group; (2) N ⊂ M satisfies the above malnormality
condition. Then, A ⊂ M has the so-paving property.

Concrete such examples can be easily derived from [Popa 1983]. For instance, [Popa 1983, Theorem 5.1]
provides an example of a MASA A in the hyperfine II1 factor M ' R such that the normalizer of A in M
generates a subfactor N ⊂ M with the property that N L2(M 	 N )N is an infinite multiple of the coarse
N -N -bimodule L2(N )⊗ L2(N ), and thus N ⊂ M satisfies the malnormality condition. Other examples
come from free product constructions: let A ⊂ N be a Cartan subalgebra of a (separable) amenable
von Neumann algebra of type II1 (e.g., the hyperfinite II1 factor, N ' R); let (B, τ ) be a diffuse finite
von Neumann algebra and denote M = N ∗ B; then, A is a MASA in M , the normalizer of A in M
generates N , and again, by [Popa 1983, Remark 6.3], N L2(M 	 N )N is an infinite multiple of the coarse
N -N -bimodule, so that N ⊂ M satisfies the malnormality condition.

We end with a result showing that the order of magnitude of the paving size obtained in Theorem 5.1 is
optimal. More generally, we show that, for any MASA in any II1 factor, the ε paving size is at least ε−2,
i.e., sup{n(ε, x) | x ∈ Msa} ≥ ε

−2. The proof is very similar to [Casazza et al. 2007, Theorem 6], where it
was shown that one needs at least ε−2 projections to ε pave self-adjoint unitary matrices.

Proposition 5.4. Let M be a II1 factor and A ⊂ M a diffuse abelian von Neumann subalgebra. Let ε > 0
and n < ε−2. There exists a self-adjoint unitary x ∈ M with E A(x)= 0 and∥∥∥∥ n∑

k=1

pk xpk

∥∥∥∥≥ ∥∥∥∥ n∑
k=1

pk xpk

∥∥∥∥
2
> ε (5-1)

for every decomposition of the identity 1= p1+ · · ·+ pn with n projections pk ∈ A.
So, if A ⊂ M is a MASA in a II1 factor, then the uniform L2 paving size of Aω ⊂ Mω is exactly equal

to the smallest integer that is greater than or equal to ε−2.

Proof. Fix ε > 0 and n < ε−2. Take r large enough such that

r
r − 1

1
n
−

1
r − 1

> ε2 (5-2)

and such that there exists a conference matrix C ∈ Mr (R) of size r , that is,

Ci j =±1 if i 6= j, Ci i = 0 for all i, and (r − 1)−1/2C is a self-adjoint unitary.
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Since A is diffuse, we can choose projections e1, . . . , er ∈ A with 1= e1+ · · ·+ er and τ(ei )= 1/r for
every i . Since M is a II1 factor, we can choose partial isometries v1, . . . , vr ∈ M such that viv

∗

i = e1 and
v∗i vi = ei for all i . Define

x =
1

√
r − 1

r∑
i, j=1

Ci jv
∗

i v j .

Note that x is a self-adjoint unitary. Since A is abelian, we have for all i 6= j that

0= ei e j E A(v
∗

i v j )= ei E A(v
∗

i v j )e j = E A(eiv
∗

i v j e j )= E A(v
∗

i v j ).

Since Ci i = 0 for all i , we get that E A(x)= 0.
Choose an arbitrary decomposition of the identity 1= p1+ · · ·+ pn with n projections pk ∈ A. We

prove that (5-1) holds. First note that∥∥∥∥ n∑
k=1

pk xpk

∥∥∥∥2

2
=

n∑
k=1

‖pk xpk‖
2
2 =

n∑
k=1

τ(pk xpk x). (5-3)

Since A is abelian, we can define the projections pik = ei pk . Writing pk =
∑r

i=1 pik , we get for every
k ∈ {1, . . . , n} that

τ(pk xpk x)=
r∑

i, j=1

τ(pik xp jk x)=
r∑

i, j=1

τ(pik xp jk xei )

=
1

r − 1

r∑
i, j=1

C2
i jτ(pikv

∗

i v j p jkv
∗

jvi )

=
1

r − 1

( r∑
i, j=1

τ(vi pikv
∗

i v j p jkv
∗

j )−

r∑
i=1

τ(vi pikv
∗

i vi pikv
∗

i )

)

=
1

r − 1
(τ (T 2

k )− τ(pk)), where Tk =

r∑
i=1

vi pikv
∗

i .

In combination with (5-3), it follows that∥∥∥∥ n∑
k=1

pk xpk

∥∥∥∥2

2
=

1
r − 1

τ

( n∑
k=1

T 2
k

)
−

1
r − 1

. (5-4)

We next observe that, as positive operators, we have

n∑
k=1

T 2
k ≥

1
n

( n∑
k=1

Tk

)2

. (5-5)

Indeed, defining the elements T, R ∈ M1,n(C)⊗M given by

T = (T1 T2 · · · Tn) and R = (1 1 · · · 1),
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we get that ( n∑
k=1

Tk

)2

= T R∗RT ∗ ≤ ‖R‖2T T ∗ = n
n∑

k=1

T 2
k .

So, (5-5) follows. By construction, we have that
∑n

k=1 Tk = re1. So, in combination with (5-4) and (5-2),
we find that ∥∥∥∥ n∑

k=1

pk xpk

∥∥∥∥2

2
≥

1
r − 1

1
n
τ(r2e1)−

1
r − 1

=
1

r − 1
r
n
−

1
r − 1

> ε2.

Thus we have proved (5-1).
Now assume that A ⊂ M is a MASA in the II1 factor M . It follows that the uniform L2-paving size of

Aω ⊂ Mω is at least ε−2. On the other hand, if n is an integer and n ≥ ε−2, it was proved in [Popa 2014,
Section 3] that every element x ∈ Mω can be (ε, n) L2-paved. �
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