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A NON-SELF-ADJOINT LEBESGUE DECOMPOSITION

MATTHEW KENNEDY AND DILIAN YANG

We study the structure of bounded linear functionals on a class of non-self-adjoint operator algebras that
includes the multiplier algebra of every complete Nevanlinna–Pick space, and in particular the multiplier
algebra of the Drury–Arveson space. Our main result is a Lebesgue decomposition expressing every
linear functional as the sum of an absolutely continuous (i.e., weak-* continuous) linear functional and a
singular linear functional that is far from being absolutely continuous. This is a non-self-adjoint analogue
of Takesaki’s decomposition theorem for linear functionals on von Neumann algebras. We apply our
decomposition theorem to prove that the predual of every algebra in this class is (strongly) unique.

1. Introduction

The main result in this paper is a decomposition theorem for bounded linear functionals on a class of
operator algebras that includes the multiplier algebra of every complete Nevanlinna–Pick space. Results
of this kind can be seen as a noncommutative generalization of the Yosida–Hewitt decomposition of a
measure into completely additive and purely finitely additive parts, or more classically, the Lebesgue
decomposition of a measure into absolutely continuous and singular parts.

Takesaki [1958] proved that a bounded linear functional on a von Neumann algebra can be decomposed
uniquely into the sum of a normal (i.e., weak-* continuous) linear functional and a singular linear functional
that is far from being normal. Ando [1978] proved a direct analogue of Takesaki’s decomposition theorem
for linear functionals on the algebra H∞, of bounded analytic functions on the complex unit disk D.
More recently, Ueda [2009; 2011] proved a generalization of Ando’s result for finite maximal subdiagonal
algebras, which are “analytic” subalgebras of finite von Neumann algebras introduced by Arveson [1967]
as a noncommutative generalization of the algebra H∞.

A compelling case can be made that the natural function-theoretic generalization of H∞ is the
algebra H∞d of multipliers on the Drury–Arveson space H 2

d . The algebra H∞d is contained in the algebra
H∞(Bd) of bounded analytic functions on the complex unit ball Bd of Cd , but for d ≥ 2 this inclusion is
proper, and H∞d is seemingly much more tractable than H∞(Bd) (see, for example, [Arveson 1998]).
The Drury–Arveson space H 2

d and the multiplier algebra H∞d are universal in the following sense: Every
irreducible complete Nevanlinna–Pick space embeds into H 2

d , and the corresponding multiplier algebra
arises as the compression of H∞d onto this embedding (see [Agler and McCarthy 2000] for details).
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Examples of complete Nevanlinna–Pick spaces include the Hardy space and the Dirichlet space on the
disk, the Drury–Arveson space itself, and more generally the class of Besov–Sobolev spaces on Bd .

One explanation for the tractability of H∞d is the fact that H∞d arises as a quotient of the noncommutative
analytic Toeplitz algebra F∞d (see, for example, [Davidson and Pitts 1998b; Arias and Popescu 2000]).
This algebra, introduced in [Popescu 1989a], can be viewed as an algebra of noncommutative analytic
functions acting by left multiplication on a Hardy space F2

d of noncommutative analytic functions. The
operator-algebraic structure of F∞d , which is now well understood, turns out to be strikingly similar to
that of H∞ (see, for example, [Popescu 1989a; 1989b; 1991; 1995; Arias and Popescu 2000; Davidson
and Pitts 1998a; 1998b; 1999; Davidson and Yang 2008]).

For a weak-* closed two-sided ideal I of F∞d , we let AI denote the algebra AI= F∞d /I. These algebras
are the main objects of interest in this paper, for the following reason: The multiplier algebra of every
irreducible complete Nevanlinna–Pick space arises as the compression of F∞d to a coinvariant subspace,
and this compression is completely isometrically isomorphic and weak-* to weak-* homeomorphic to
a quotient of F∞d by a two-sided ideal (see [Davidson and Pitts 1998b; Arias and Popescu 2000] for
details).

Our main result is the following decomposition theorem for linear functionals on quotients of F∞d .
A functional is said to be absolutely continuous if it is weak-* continuous, and singular if it is, roughly
speaking, far from being weak-* continuous (we give a precise definition below).

Theorem 1.1 (Lebesgue decomposition for quotients of F∞d ). Let I be a weak-* closed two-sided ideal
of F∞d , and let φ be a bounded linear functional on AI. Then there are unique linear functionals φa

and φs on AI such that φ = φa +φs , where φa is absolutely continuous and φs is singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

If d = 1, then the constant
√

2 can be replaced with the constant 1. Moreover, these constants are optimal.

The following result for multiplier algebras of complete Nevanlinna–Pick spaces is an immediate
consequence of Theorem 1.1.

Corollary 1.2 (Lebesgue decomposition for multiplier algebras). Let A be the multiplier algebra of a
complete Nevanlinna–Pick space, and let φ be a bounded linear functional on A. Then there are unique
linear functionals φa and φs on A such that φ = φa + φs , where φa is absolutely continuous and φs is
singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

We first prove that Theorem 1.1 holds for F∞d . The proof for quotients of F∞d requires the following
generalization of the classical F. and M. Riesz theorem, which is similar in spirit to the noncommutative
F. and M. Riesz-type theorems proved in [Exel 1990] for operator algebras with the Dirichlet property
and in [Blecher and Labuschagne 2007; Ueda 2009] for maximal subdiagonal algebras.

Theorem 1.3 (extended F. and M. Riesz theorem). Let φ be a bounded linear functional on F∞d , and
let φ = φa +φs be the Lebesgue decomposition of φ into absolutely continuous and singular parts as in
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Theorem 1.1. Let I be a weak-* closed two-sided ideal of F∞d . If φ is zero on I, then φa and φs are both
zero on I.

Grothendieck [1955] proved that L1 is the unique predual of L∞ (up to isometric isomorphism). Sakai
[1956] generalized Grothendieck’s result by proving that the predual of every von Neumann algebra
is unique. In fact, this latter result follows from the proof of Sakai’s characterization of von Neumann
algebras as C∗-algebras which are dual spaces.

The uniqueness of the predual of a von Neumann algebra can also be proved using Takesaki’s decom-
position theorem [1958] (see, for example, the proof of Corollary 3.9 of [Takesaki 2002]). A similar idea
was used by Ando [1978] to prove the uniqueness of the predual of H∞, and more recently by Ueda
[2009] to prove that the predual of every maximal subdiagonal algebra is unique.

Inspired by these results, we apply Theorem 1.3 to prove that the predual of every quotient AI is
(strongly) unique.

Theorem 1.4. Let I be a weak-* closed two-sided ideal of F∞d . Then the algebra AI has a strongly
unique predual.

It follows immediately from Theorem 1.4 that the multiplier algebra of every complete Nevanlinna–Pick
space has a unique predual.

Corollary 1.5. The multiplier algebra of every complete Nevanlinna–Pick space has a strongly unique
predual.

In particular, Corollary 1.5 implies that the multiplier algebra H∞d on the Drury–Arveson space has
a unique predual. We believe this result is especially interesting in light of the fact that, for d ≥ 2, the
uniqueness of the predual of H∞(Bd) is an open problem.

In addition to this introduction, this paper has five other sections. In Section 2, we provide a brief
review of the requisite background material. In Section 3, we prove the Lebesgue decomposition for F∞d ,
and give an example showing that the constant in the statement of the theorem is optimal. In Section 4,
we prove the extended F. and M. Riesz theorem. In Section 5, we prove the Lebesgue decomposition
theorem for quotients of F∞d , and hence for multiplier algebras of complete Nevanlinna–Pick spaces. In
Section 6, we use the Lebesgue decomposition theorem to prove that the predual of every quotient of F∞d
is unique, and hence that the predual of the multiplier algebra of every complete Nevanlinna–Pick space
is unique.

2. Preliminaries

The noncommutative analytic Toeplitz algebra. For fixed 1≤ d ≤∞, let C〈Z〉 =C〈Z1, . . . , Zd〉 denote
the algebra of noncommutative polynomials in the variables Z1, . . . , Zd . As a vector space, C〈Z〉 is
spanned by the set of monomials

{Zw = Zw1 · · · Zwn | w = w1 · · ·wn ∈ F∗d , n ≥ 0},

where F∗d denotes the free semigroup generated by {1, . . . , d}. The noncommutative Hardy space F2
d is
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the Hilbert space obtained by completing C〈Z〉 in the natural inner product

〈Zw, Zw′〉 = δw,w′, w,w′ ∈ F∗d .

Equivalently, F2
d is the Hilbert space consisting of noncommutative power series with square summable

coefficients,

F2
d =

{∑
w∈F∗d

awZw

∣∣∣∣ ∑
w∈F∗d

|aw|2 <∞
}
.

We think of the elements of F2
d as noncommutative analytic functions.

Every element in F2
d gives rise to a multiplication operator on F2

d in the following way (note that in
this noncommutative setting, it is necessary to specify whether multiplication occurs on the left or the
right). For F in F2

d , the left multiplication operator L F is defined by

L F G = FG, G ∈ F2
d .

The operator L F is not necessarily bounded in general, simply because the product of two elements in
F2

d is not necessarily contained in F2
d . However, it is always densely defined on C〈Z〉.

The noncommutative analytic Toeplitz algebra F∞d is the noncommutative multiplier algebra of F2
d . It

consists precisely of the functions F in F2
d such that the corresponding left multiplication operator is

bounded,

F∞d = {F ∈ F2
d | FG ∈ F2

d for all G ∈ F2
d }.

Equivalently, if we identity F in F∞d with the left multiplication operator L F on the Hilbert space F2
d ,

then F∞d is obtained as the closure of C〈Z〉 in the weak-* topology on B(F2
d ). The noncommutative disk

algebra Ad is the closure of C〈Z〉 in the norm topology. Note that it is properly contained in F∞d .
The algebras Ad and F∞d were introduced by Popescu in [1996] and [1995], respectively. For d = 1,

F2
d can be identified with the classical Hardy space H 2, F∞d can be identified with the classical algebra

of bounded analytic functions H∞, and Ad can be identified with the classical disk algebra of functions
that are analytic on D with continuous extensions to the boundary.

The structure of an isometric tuple.

Definition 2.1. Let V = (V1, . . . , Vd) be an isometric tuple.

(1) V is a unilateral shift if it is unitarily equivalent to a multiple of L Z = (L Z1, . . . , L Zd ).

(2) V is absolutely continuous if the unital weak operator closed algebra W(V1, . . . , Vd) generated by
V1, . . . , Vd is algebraically isomorphic to the noncommutative analytic Toeplitz algebra F∞d .

(3) V is singular if the weakly closed algebra W (V1, . . . , Vd) is a von Neumann algebra.

(4) V is of dilation type if it has no summand that is absolutely continuous or singular.
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Theorem 2.2 (Lebesgue–von Neumann–Wold decomposition [Kennedy 2013]). Let V = (V1, . . . , Vd)

be an isometric d-tuple. Then V can be decomposed as

V = Vu ⊕ Va ⊕ Vs ⊕ Vd ,

where Vu is a unilateral d-shift, Va is an absolutely continuous unitary d-tuple, Vs is a singular unitary
d-tuple and Vd is a unitary d-tuple of dilation type.

Theorem 2.3 (structure theorem for free semigroup algebras [Davidson et al. 2001]). Let V = (V1, . . . , Vd)

be an isometric d-tuple, and let V = W(V1, . . . , Vd) denote the unital weak operator closed algebra
generated by V1, . . . , Vd . Then there is a maximal projection P in V with the range of P coinvariant for
V such that

(1) VP =
⋂
k≥1
(V0)

k , where (V0)
k denotes the ideal (V0)

k
=

∑
|w|=k

VwV.

(2) If P⊥ 6= 0, then the restriction of V to the range of P⊥ is an analytic free semigroup algebra.

(3) The compression of V to the range of P is a von Neumann algebra.

(4) V= P⊥VP⊥+W∗(V )P.

Let V = Vu ⊕ Va ⊕ Vs ⊕ Vd be the Lebesgue–von Neumann–Wold decomposition of an isometric
tuple V , as in Theorem 2.2, where Vu is a unilateral n-shift, Va is an absolutely continuous unitary
n-tuple, Vs is a singular unitary n-tuple and Vd is a unitary n-tuple of dilation type. Suppose that V is
defined on a Hilbert space H , and let H = Hu ⊕ Ha ⊕ Hs ⊕ Hd denote the corresponding decomposition
of H . By Corollary 2.7 of [Davidson et al. 2001], there is a maximal invariant subspace K for Vd

such that the restriction of Vd to K is analytic. The projection P in Theorem 2.3 is determined by
P⊥ = PHu ⊕ PHa ⊕ PK .

Remark 2.4. For d = 1, an isometry is the direct sum of a unilateral shift, an absolutely continuous
unitary and a singular unitary. Theorem 2.3 implies that, in this case, the structure projection P is the
projection onto the singular unitary part. In particular, this implies that P is reducing. For d ≥ 2, the
proof of Theorem 2.3 shows that P is reducing if and only if there is no summand of dilation type.

The universal representation. We require the universal representation πu : F∞d →B(Hu) of F∞d . This
can be constructed as in 2.4.4 of [Blecher and Le Merdy 2004], as the restriction of the universal
representation of C∗max(F

∞

d ). By [ibid., 3.2.12], we can identify the double dual (F∞d )∗∗ of F∞d with the
algebra obtained as the weak-* closure of πu(F∞d ). We will require the operator algebra structure on
(F∞d )∗∗ provided by this identification. By replacing πu by π (∞)u if necessary, we can suppose that πu

has infinite multiplicity, and hence that the weak operator topology coincides with the weak-* topology
on (F∞d )∗∗.

Let φ be a bounded linear functional on F∞d . By the Hahn–Banach theorem, we can extend φ to a
functional on C∗max(F

∞

d ) with the same norm. Hence by the construction of the universal representation
of C∗max(F

∞

d ), there are vectors x and y in Hu with ‖x‖‖y‖ = ‖φ‖ such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .
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If we identify F∞d with its image πu(F∞d ) in (F∞d )∗∗, then the functional φ has a unique weak-* continuous
extension to a functional on (F∞d )∗∗ with the same norm. We will use this fact repeatedly.

Since πu is the restriction of a *-homomorphism of C∗max(F
∞

d ), and since the d-tuple (L Z1, . . . , L Zd )

is isometric, it follows that the d-tuple (πu(L Z1), . . . , πu(L Zd )) is also isometric. Since (F∞d )∗∗ contains
πu(Ad), it necessarily contains the weak operator closed algebra generated by (πu(L Z1), . . . , πu(L Zd )).
Let Pu denote the projection in (F∞d )∗∗ guaranteed by Theorem 2.3. We will refer to Pu as the universal
structure projection in (F∞d )∗∗.

Remark 2.5. Let S denote the unital weak operator closed algebra generated by πu(L Z1), . . . , πu(L Zd ).
From above we have S⊆ (F∞d )∗∗, and one might guess that S= (F∞d )∗∗. However, this is not the case.
Indeed, let φ be a bounded nonzero functional on F∞d that is zero on the noncommutative disk algebra Ad .
Then as above, there are vectors x and y in Hu such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

Let ψ denote the weak operator continuous functional on S defined by

ψ(S)= 〈Sx, y〉 for all S ∈ S.

Since φ is zero on Ad , ψ must be zero on πu(Ad). Then, since πu(Ad) is weak operator dense in S,
it follows that ψ(S) = 〈Sx, y〉 = 0 for all S in S. But, by assumption, there is A in F∞d such that
φ(A)= 〈πu(A)x, y〉 6= 0. So we see that πu(A) /∈ S, and hence that the inclusion S⊆ (F∞d )∗∗ is proper.

3. The Lebesgue decomposition

In this section, we introduce the definitions of absolutely continuous and singular linear functionals
on the noncommutative analytic Toeplitz algebra F∞d , and establish the first version of the Lebesgue
decomposition. In [Davidson et al. 2005], Davidson, Li and Pitts proved a Lebesgue-type decomposition
for functionals on the noncommutative disk algebra Ad . Although the algebra F∞d is bigger than Ad , the
next definition is closely related to (and directly inspired by) the corresponding definition for Ad .

Definition 3.1. Let φ be a bounded linear functional on F∞d . Then

(1) φ is absolutely continuous if it is weak-* continuous, and

(2) φ is singular if ‖φ‖ = ‖φk
‖ for every k ≥ 1, where φk denotes the restriction of φ to the ideal of

F∞d generated by {L Zw | |w| = k}.

Let φ be a bounded linear functional on F∞d . Then as in Section 2, there are vectors x and y in Hu

with ‖x‖‖y‖ = ‖φ‖ such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

We will write Puφ and P⊥u φ for the linear functionals defined on F∞d by

(Puφ)(A)= 〈πu(A)Pu x, y〉 for all A ∈ F∞d ,

(P⊥u φ)(A)= 〈πu(A)P⊥u x, y〉 for all A ∈ F∞d ,
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where Pu denotes the universal structure projection from Section 2. The purpose of the next result is to
verify that Puφ and P⊥u φ are well defined.

Lemma 3.2. Let φ be a bounded linear functional on F∞d . Then the functionals Puφ and P⊥u φ, as defined
above, do not depend on the choice of vectors x and y.

Proof. Let x1, y1 and x2, y2 be pairs of vectors in Hu such that

〈πu(A)x1, y1〉 = 〈πu(A)x2, y2〉 for all A ∈ F∞d .

Since πu(F∞d ) is weak-* dense in the algebra (F∞d )∗∗, which contains Pu , it follows immediately that

〈πu(A)Pu x1, y1〉 = 〈πu(A)Pu x2, y2〉 for all A ∈ F∞d ,

and similarly that
〈πu(A)P⊥u x1, y1〉 = 〈πu(A)P⊥u x2, y2〉 for all A ∈ F∞d . �

Proposition 3.3. A bounded functional φ on F∞d is singular if and only if φ = Puφ.

Proof. Let φ be a singular functional on F∞d . We can assume that ‖φ‖ = 1. As in Section 2, there are
vectors x and y in Hu such that ‖x‖‖y‖ = 1 and

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

By the singularity of φ, we can find a sequence (Ak) of elements in F∞d such that limφ(Ak)→ 1, and
such that each Ak belongs to the unit ball of (F∞d,0)

k
=
∑
|w|=k F∞d L Zw . Let T be an accumulation point of

the sequence (πu(Ak)) in (F∞d )∗∗, and let S denote the unital weak operator closed algebra generated by
(πu(L Z1), . . . , πu(L Zd )). It is clear that the weak-* closure of the image πu((F∞d,0)

k) of the ideal (F∞d,0)
k

can be written as (F∞d )∗∗Sk
0, where S0 denotes the ideal in S generated by πu(L Z1), . . . , πu(L Zd ). Thus

πu(Ak) belongs to (F∞d )∗∗Sk
0. By Theorem 2.3, SPu =

⋂
k≥1

Sk
0. Hence T belongs to the unit ball of

⋂
k≥1

(F∞d )∗∗Sk
0 = (F

∞

d )∗∗
⋂
k≥1

Sk
0 = (F

∞

d )∗∗Pu .

In particular, this means that T = T Pu . Since φ(T )= 1, this gives

‖x‖‖y‖ = 1= 〈T x, y〉 = 〈T Pu x, y〉 ≤ ‖Pu x‖‖y‖ ≤ ‖x‖‖y‖.

Hence Pu x = x , and it follows that φ = Puφ.
Conversely, let φ be a functional on F∞d such that φ = Puφ. As before, we can assume that ‖φ‖ = 1,

and there are vectors x and y in Hu such that ‖x‖‖y‖ = 1 and

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

The fact that Puφ = φ implies that we can choose x satisfying x = Pu x , and hence that

φ(A)= 〈πu(A)Pu x, y〉 for all A ∈ F∞d .
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Let ψ denote the functional on (F∞d )∗∗ defined by

ψ(T )= 〈T Pu x, y〉 for all T ∈ (F∞d )∗∗,

and for k ≥ 1, let ψk denote the restriction of ψ to (F∞d )∗∗Sk
0. Then as above,

(F∞d )∗∗Pu =
⋂
k≥1

(F∞d )∗∗Sk
0.

Hence ‖ψ‖ = ‖ψk
‖ for every k ≥ 1. It follows that ‖φ‖ = ‖φk

‖, where φk is defined as in Definition 3.1,
and hence that φ is singular. �

Lemma 3.4. The range of the projection P⊥u is invariant for (F∞d )∗∗.

Proof. It suffices to show that whenever x and y are vectors in F2
d such that x = P⊥u x and y = Pu y, and

the functional φ on F∞d is defined by

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d ,

then φ = 0. By Theorem 2.3, the range of P⊥u is invariant for πu(Ad). Hence φ is zero on Ad . Let A be
an element of F∞d . By Corollary 2.6 of [Davidson and Pitts 1998a], for k ≥ 1, we can write A uniquely as

A =
∑
|w|<k

awL Zw + A′,

where the aw are scalars, and A′ belongs to (F∞d,0)
k . The fact that φ is zero on Ad implies that φ(A)=φ(A′).

It follows from Definition 3.1 that φ is singular. Hence by Proposition 3.3, φ = Puφ, i.e.,

φ(A)= 〈πu(A)Pu x, y〉 for all A ∈ F∞d .

Since x = P⊥u x , it follows that φ = 0, as required. �

Proposition 3.5. Let φ be a bounded linear functional on F∞d . Then φ is absolutely continuous if and
only if φ = P⊥u φ.

Proof. Suppose first that φ is absolutely continuous. Then it is weak-* continuous, so there are sequences
of vectors (xk) and (yk) in F2

d such that

φ(A)=
∑
〈Axk, yk〉 for all A ∈ F∞d .

Since the d-tuple (L Z1, . . . , L Zd ) is equivalent to a restriction of the unilateral shift part of the d-tuple
(πu(L Z1), . . . , πu(L Zd )), F2

d can be identified with a subspace of Hu , and it follows that φ = P⊥u φ.
Conversely, suppose that φ= P⊥u φ. As in Section 2, there are vectors x and y in Hu with ‖x‖‖y‖=‖φ‖

such that
φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

The fact that φ = P⊥u φ implies that we can choose x satisfying P⊥u x = x . Since, by Lemma 3.4, the
range of P⊥u is invariant for πu(F∞d ), it follows that for every A in F∞d , we have

φ(A)= 〈πu(A)x, y〉 = 〈P⊥u πu(A)P⊥u x, y〉 = 〈πu(A)P⊥u x, P⊥u y〉.
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Hence we can also choose y satisfying P⊥u y = y.
By the construction of Pu , the restriction of the operators πu(L Z1), . . . , πu(L Zd ) to the cyclic subspace

generated by x and y is analytic. Thus, by the main result of [Kennedy 2013], the weak-* closed algebra
generated by this restriction is completely isometrically isomorphic and weak-* to weak-* homeomorphic
to F∞d . It follows that φ is weak-* continuous on F∞d . �

Theorem 3.6 (Lebesgue decomposition for F∞d ). Let φ be a bounded linear functional on F∞d . Then there
are unique bounded linear functionals φa and φs on F∞d such that φ = φa +φs , where φa is absolutely
continuous and φs is singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

If d = 1, then the constant
√

2 can be replaced with the constant 1.

Proof. As in Section 2, there are vectors x and y in Hu such that ‖x‖‖y‖ = ‖φ‖ and

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

Define φa and φs by φa = P⊥u φ and φs = Puφ, respectively. Then φa is absolutely continuous by
Proposition 3.5, and φs is singular by Proposition 3.3. We clearly have φ = φa+φs . To see that φa and φs

are unique, suppose that
φa +φs = ψa +ψs,

where ψa is absolutely continuous and ψs is absolutely continuous. Then

φa −ψa = ψs −φs .

It is clear that the functional φa − ψa is absolutely continuous, and Proposition 3.3 implies that the
functional ψs−φs is singular. Applying Proposition 3.5 and Proposition 3.3 again, we can therefore write

φa −ψa = P⊥u (φa −ψa)= P⊥u (ψs −φs)= Pu P⊥u (ψs −φs)= 0.

Hence φa = ψa , and it follows similarly that φs = ψs . Finally, we compute

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤ ‖Px‖‖y‖+‖P⊥x‖‖y‖ ≤
√

2‖x‖‖y‖ =
√

2‖φ‖.

If d = 1, then Remark 2.4 implies that (F∞d )∗∗ is the direct sum of two algebras reduced by Pu . If we
identify F∞d with its image in (F∞d )∗∗, then the functionals φ, φa and φs extend uniquely to weak-*
continuous functionals on (F∞d )∗∗ with the same norm. Since φa = P⊥u φa and φs = Puφs , it follows that
in this case, ‖φ‖ = ‖φa‖+‖φs‖. �

The next example is based on Example 5.10 from [Davidson et al. 2005]. It establishes that for d ≥ 2,
the constant

√
2 in the statement of Theorem 3.6 is the best possible.

Example 3.7. Define φ on C〈Z〉 by setting

φ(L Zw)=

{
1/
√

2 if w =∅ or w = 21n for n ≥ 0,
0 otherwise,
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and extending by linearity. We will first show that φ extends to a bounded linear functional on the
noncommutative disk algebra A2. Let Hφ denote the Hilbert space Ce ⊕ F2

2 ,/ and define a 2-tuple
S = (S1, S2) on Hφ by setting

S1 =

(
I 0
0 L1

)
, S2 =

(
0 0

ξ∅e∗ L2

)
.

It is easy to check that S is isometric. By the universal property of the noncommutative disk algebra, we
obtain a completely isometric representation πφ of A2 satisfying

πφ(L Zw)= Sw1 · · · Swn , w = w1 · · ·wn ∈ F∗d ,

and we can extend φ to A2 by

φ(A)= 〈πφ(A)(e+ ξ∅)/
√

2, ξ∅〉, A ∈ A2.

From this, it is easy to check that ‖φ‖ ≤ 1.
Let S denote the unital weakly closed algebra generated by S1 and S2. The structure projection

from Theorem 2.3 is the projection P onto Ce, which is contained in S. Hence S contains the element
B = (S2 P + P⊥)/

√
2. The results of [Kennedy 2011] imply that Theorem 5.4 of [Davidson et al. 2005]

applies to the unital weak operator closed algebra generated by any isometric tuple. Thus there is a net
(Bλ) of elements in the unit ball of Ad such that w*-limπφ(Bλ)= B in S. It is easy to check that ‖B‖= 1
and 〈B(e+ ξ∅)/

√
2, ξ∅〉 = 1, so it follows that ‖φ‖ = 1.

By the Hahn–Banach theorem, we can extend φ to a functional on F∞d with the same norm, which we
continue to denote by φ. Let φ = φa+φs be the Lebesgue decomposition of φ into absolutely continuous
and singular parts as in Theorem 3.6. Then restricted to Ad , we can write

φa(A)= (P⊥φ)(A)= 〈π(A)ξ∅/
√

2, ξ∅〉, A ∈ A2,

φs(A)= (Pφ)(A)= 〈π(A)e/
√

2, ξ∅〉, A ∈ A2.

Letting B be as above, an easy computation gives

〈Bξ∅/
√

2, ξ∅〉 = 〈Be/
√

2, ξ∅〉 = 1/
√

2.

Arguing as before, this implies ‖φa‖ ≥ 1/
√

2 and ‖φs‖ ≥ 1/
√

2. By Theorem 3.6, it follows that
‖φa‖+‖φs‖ =

√
2‖φ‖.

Remark 3.8. It is well known that the algebra H∞ is completely isometrically isomorphic to a subalgebra
of L∞(T). Ando [1978] used this fact to define a notion of absolute continuity and singularity for
functionals on H∞. Namely, a functional on H∞ is absolutely continuous in the sense of [ibid.] if it
extends to a normal functional on L∞(T), and singular in the sense of [ibid.] if it extends to a singular
functional on L∞(T) (see Chapter 2 of [Takesaki 2002] for the definition of a singular functional on a
von Neumann algebra). We now show that these definitions agree with Definition 3.1.

It is clear that a functional on H∞ that is absolutely continuous in the sense of Definition 3.1 is also
absolutely continuous in the sense of [Ando 1978]. Let φ be a functional on H∞ that is singular in the
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sense of Definition 3.1. A Lebesgue decomposition theorem also holds for H∞ using the definition of
absolute continuity and singularity from [Ando 1978] (see, for example, [Ueda 2009]). Hence there are
functionals φ̃a and φ̃s on F∞d such that φ = φ̃a + φ̃s , where φ̃a is absolutely continuous in the sense of
[Ando 1978], and φ̃s is singular in the sense of [ibid.]. Moreover, ‖φ‖ = ‖φ̃a‖+‖φ̃s‖. Note that φ̃a is
absolutely continuous (in our sense). This implies that

‖φ̃s‖ ≤ ‖φ‖ = lim sup ‖φk
‖ ≤ lim sup(‖φ̃k

a‖+‖φ̃
k
s ‖)= lim sup ‖φ̃k

s ‖ ≤ ‖φ̃s‖.

Hence φ = φ̃s and φ is singular in the sense of [ibid.].
Now let φ be an arbitrary functional on H∞, let φ= φa+φs be the Lebesgue decompositions of φ as in

Theorem 3.6, and let φ= φ̃a+φ̃s be the Lebesgue decomposition of φ as in [ibid.]. Then φa−φ̃a = φ̃s−φs .
From above, φa − φ̃a is absolutely continuous in the sense of [ibid.], and φ̃s −φs is singular in the sense
of [ibid.]. Hence by the uniqueness of the Lebesgue decomposition, φa = φ̃a and φs = φ̃s .

We note that Definition 3.1 gives an intrinsic characterization of singular functionals on H∞, which
answers (at least in this classical setting) a question from [Ueda 2009]. For d ≥ 2, it would be interesting to
know if there is an appropriate noncommutative analogue of L∞(T) with a subalgebra that is completely
isometrically isomorphic to F∞d .

4. The extended F. and M. Riesz theorem

The results in this section can be viewed as noncommutative generalizations of the classical results
referred to as the F. and M. Riesz theorem. As mentioned in the introduction, results of this kind have
been established in different settings by Exel [1990], by Blecher and Labuschagne [2007], and by Ueda
[2009]. In fact, Blecher and Labuschagne seem to have anticipated that an F. and M. Riesz-type theorem
should hold for F∞d (see the introduction of [Blecher and Labuschagne 2007]).

Theorem 4.1 (extended F. and M. Riesz theorem). Let φ be a bounded linear functional on F∞d , and
let φ = φa +φs be the Lebesgue decomposition of φ into absolutely continuous and singular parts as in
Theorem 3.6. Let I be a two-sided ideal of F∞d . If φ is zero on I, then φa and φs are both zero on I.

Proof. As in Section 2, there are vectors x and y in Hu such that

φ(A)= 〈πu(A)x, y〉 for all A ∈ F∞d .

By Proposition 3.5 we can write φa = P⊥u φ, and by Proposition 3.3 we can write φs = Puφ. If we
identify F∞d with its image πu(F∞d ) in (F∞d )∗∗, then the functionals φ, φa and φs each have unique
weak-* continuous extensions to functionals on (F∞d )∗∗ with the same norm.

Let J denote the ideal in (F∞d )∗∗ obtained by taking the weak-* closure of πu(I). Since φ is zero
on I, it is zero on J. For A in I, πu(A)P⊥u belongs to J, which implies

0= (P⊥u φ)(A)= φa(A).

Hence φa is zero on I, and it follows immediately that φs is also zero on I. �
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Corollary 4.2 (F. and M. Riesz theorem). Let φ be a bounded linear functional on F∞d . If φ is zero on
F∞d,0, where F∞d,0 denotes the ideal of F∞d generated by L Z1, . . . , L Zd , then φ is absolutely continuous.

Proof. Let φ = φa+φs be the Lebesgue decomposition of φ into absolutely continuous and singular parts
as in Theorem 3.6. By Theorem 4.1, φa and φs are both zero on F∞d,0. By Definition 3.1, if φs is zero on
F∞d,0, it is necessarily zero on all of F∞d . Hence φ = φa and φ is absolutely continuous. �

5. Quotient algebras

For a weak-* closed two-sided ideal I of F∞d , let AI denote the quotient algebra F∞d /I.

Definition 5.1. Let I be a weak-* closed two-sided ideal of F∞d , and let φ be a bounded functional
on AI. Then

(1) φ is absolutely continuous if it is weak-* continuous, and

(2) φ is singular if ‖φ‖ = ‖φk
‖ for every k ≥ 1, where φk denotes the restriction of φ to the ideal of AI

generated by {L Zw | |w| = k}, where for a word w in F∗d , L Zw denotes the image in AI of L Zw .

Theorem 5.2 (Lebesgue decomposition for quotients of F∞d ). Let I be a weak-* closed two-sided ideal
of F∞d , and let φ be a bounded linear functional on AI. Then there are unique linear functionals φa

and φs on AI such that φ = φa +φs , where φa is absolutely continuous and φs is singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.

If d = 1, then the constant
√

2 can be replaced with the constant 1.

Proof. By basic functional analysis, we can lift the functional φ to a functional ψ on F∞d with the
same norm. Let ψ = ψa + ψs be the Lebesgue decomposition of ψ into absolutely continuous and
singular parts as in Theorem 3.6. The functional ψ annihilates I, so by Theorem 4.1, both ψa and ψs

annihilate I. Hence ψa and ψs induce functionals φa and φs on AI, respectively, with the same norm.
Clearly φ = φa +φs , and the inequality

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖

follows from the corresponding inequality in Theorem 3.6. The functional φa is absolutely continuous
since ψa is absolutely continuous on F∞d . To see that φs is singular, simply note that for every k ≥ 1, the
ideal (AI,0)

k is the image in AI of the ideal (F∞d,0)
k . �

Corollary 5.3 (Lebesgue decomposition for multiplier algebras). Let A be the multiplier algebra of a
complete Nevanlinna–Pick space, and let φ be a bounded linear functional on A. Then there are unique
linear functionals φa and φs on A such that φ = φa + φs , where φa is absolutely continuous and φs is
singular, and such that

‖φ‖ ≤ ‖φa‖+‖φs‖ ≤
√

2‖φ‖.
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6. Uniqueness of the predual

Let X and Y be Banach spaces such that X∗ = Y . Then X is said to be a predual for Y . Every predual X
of Y naturally embeds into the dual space Y ∗, and a subspace X of Y ∗ is a predual of Y if and only if it
satisfies the following properties:

(1) The subspace X norms Y , i.e., sup{|x(y)| | x ∈ X, ‖x‖ ≤ 1} = ‖y‖ for all y in Y .

(2) The closed unit ball of Y is compact in the σ(Y, X) topology.

The space Y is said to have a strongly unique predual if there is a unique subspace X of Y ∗ such that
Y = X∗. For a survey on uniqueness results for preduals, we refer the reader to [Godefroy 1989].

In the operator-theoretic setting, the results of Sakai [1956], Ando [1978] and Ueda [2009] mentioned
in the introduction established that von Neumann algebras and maximal subdiagonal algebras have unique
preduals. Ruan [1992] proved that an operator algebra with a weak-* dense subalgebra of compact
operators has a unique predual, which applies to, for example, nest algebras and atomic CSL algebras.
Effros, Ozawa and Ruan proved in [Effros et al. 2001] that a W∗TRO (i.e., a corner of a von Neumann
algebras) has a unique predual. More recently, Davidson and Wright [2011] proved that a free semigroup
algebra has a unique predual. Note that Davidson and Wright’s result applies to F∞d , but not to quotients
of F∞d .

The following definition is closely related to the notion of an M-ideal in a Banach space (see [Harmand
et al. 1993] for more information).

Definition 6.1. A Banach space X is L-embedded if there is a projection P on the bidual X∗∗ with
range X such that

‖x‖ = ‖Px‖+‖x − Px‖ for all x ∈ X∗∗.

The following result of Pfitzner implies that every separable L-embedded space has Godefroy and
Talagrand’s property (X), and hence by a result of Godefroy and Talagrand [1981], that it is the unique
predual of its dual.

Theorem 6.2 [Pfitzner 2007]. Separable L-embedded spaces have property (X).

The results of Sakai, Ando and Ueda on decompositions of linear functionals imply that the preduals
of von Neumann algebras and maximal subdiagonal algebras are L-embedded, and hence by Pfitzner’s
theorem, that they are unique. However, Example 3.7 shows that preduals of quotients of F∞d are not,
in general, L-embedded, so we are unable to use Pfitzner’s result. Instead, we give a direct proof that
quotients of F∞d have (strongly) unique preduals.

Theorem 6.3. Let I be a weak-* closed two-sided ideal of F∞d . Then the algebra AI has a strongly
unique predual.

Proof. Suppose E is a predual for AI, identified with a subspace of (AI)
∗. By Theorem 5.2,

(AI)
∗
= (AI)

∗

a ⊕ (AI)
∗

s ,
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where (AI)
∗
a and (AI)

∗
s denote the set of absolutely continuous and singular functionals on AI, respec-

tively. We want to prove that E = (AI)
∗
a .

Let φ be a functional in E , and let φ = φa+φs be the Lebesgue decomposition of φ as in Theorem 5.2.
We will prove that φs = 0. Suppose to the contrary that φs 6= 0. By basic functional analysis, we can lift the
functional φ to a functional ψ on F∞d that is zero on I. Let ψ =ψa+ψs be the Lebesgue decomposition
of ψ as in Theorem 3.6. By Theorem 4.1, ψa and ψs are both zero on I, and by construction they induce
the functionals φa and φs , respectively, on the quotient AI.

It follows from the results of [Kennedy 2011] that Theorem 5.4 of [Davidson et al. 2005] applies to
the unital weak operator closed algebra generated by any isometric tuple. Thus there is a net (Bλ) of
elements in the unit ball of F∞d such that w*-limπu(Bλ)= Pu in (F∞d )∗∗. Since the net (Bλ) is weak-*
convergent in (F∞d )∗∗, it is weakly Cauchy in F∞d . Since the closed unit ball of F∞d is compact in the
weak-* topology, and in particular is complete, this implies that there is B in the closed unit ball of
F∞d such that w*-lim Bλ = B in F∞d . For every weak-* continuous functional τ on F∞d , Proposition 3.5
implies that

τ(B)= lim
λ
τ(Bλ)= (Puτ)(1)= 0.

Hence B = 0.
Let A be an element in the unit ball of F∞d such that ψs(A) 6= 0. Since the net (Bλ) is weakly Cauchy

in F∞d , the image (Bλ) is weakly Cauchy in AI. It follows that the net (ABλ) is also weakly Cauchy
in AI. Since E is a predual of AI, the closed unit ball of AI is compact in the σ(AI, E) topology, and
in particular is complete. Thus, the net (ABλ) converges in the σ(AI, E) topology to an element C in
the unit ball of AI. By Proposition 3.3, we have

φ(C)= lim
λ
φ(ABλ)= lim

λ
ψ(ABλ)= (Puψ)(A)= ψs(A) 6= 0,

so that C 6= 0. But since w*-lim Bλ = 0 in F∞d , it follows that w*-lim ABλ = 0 in AI. So for every τ in
(AI)

∗
a , we necessarily have

τ(C)= lim
λ
τ(ABλ)= 0.

Since (AI)
∗
a separates points, this implies that C = 0, which gives a contradiction. Thus φ = φa , meaning

φ is absolutely continuous.
Since φ was arbitrary, it follows from above that every functional in E is absolutely continuous, i.e.,

that E is contained in (AI)
∗
a . If it were the case that E 6= (AI)

∗
a , then we could apply the Hahn–Banach

theorem to separate E from (AI)
∗
a with an element of AI. But the fact that E is a predual of AI means

in particular it must norm AI, so this is impossible. Therefore, we conclude that E = (AI)
∗
a , and hence

that (AI)
∗
a is the unique predual of AI. �

Corollary 6.4. The multiplier algebra of every complete Nevanlinna–Pick space has a strongly unique
predual.
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