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SHARP MODULUS OF CONTINUITY FOR PARABOLIC EQUATIONS ON
MANIFOLDS AND LOWER BOUNDS FOR THE FIRST EIGENVALUE

BEN ANDREWS AND JULIE CLUTTERBUCK

We derive sharp estimates on the modulus of continuity for solutions of the heat equation on a compact
Riemannian manifold with a Ricci curvature bound, in terms of initial oscillation and elapsed time. As an
application, we give an easy proof of the optimal lower bound on the first eigenvalue of the Laplacian on
such a manifold as a function of diameter.

1. Introductory comments

In our previous papers [Andrews and Clutterbuck 2009a; 2009b] we proved sharp bounds on the modulus
of continuity of solutions of various parabolic boundary value problems on domains in Euclidean space.
In this paper, our aim is to extend these estimates to parabolic equations on manifolds. Precisely, let
(M, g) be a compact Riemannian manifold with induced distance function d , diameter

sup{d(x, y) : x, y ∈ M} = D,

and lower Ricci curvature bound Ric(v, v)≥ (n− 1)κg(v, v). Let a : T ∗M→ Sym2(T
∗M) be a parallel

equivariant map (so that a(S∗ω)(S∗µ, S∗ν) = a(ω)(µ, ν) for any ω, µ, ν in T ∗x M and S ∈ O(Tx M),
while ∇ (a(ω)(µ, ν))= 0 whenever ∇ω = ∇µ= ∇ν = 0). Then we consider solutions to the parabolic
equation

∂u
∂t
= ai j (Du)∇i∇ j u. (1)

Our assumptions imply that the coefficients ai j have the form

a(Du)(ξ, ξ)= α(|Du|)
(Du · ξ)2

|Du|2
+β(|Du|)

(
|ξ |2−

(Du · ξ)2

|Du|2

)
(2)

for some smooth positive functions α and β. Of particular interest are the cases of the heat equation
(with α = β = 1) and the p-laplacian heat flows (with α = (p− 1)|Du|p−2 and β = |Du|p−2). Here we
are principally concerned with the case of manifolds without boundary, but can also allow M to have a
nontrivial convex boundary (in which case we impose Neumann boundary conditions Dνu = 0). Our
main aim is to provide the following estimates on the modulus of continuity of solutions in terms of the
initial oscillation, elapsed time, κ , and D.
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Theorem 1 (modulus of continuity estimate). Let (M, g) be a compact Riemannian manifold (possibly
with smooth, uniformly locally convex boundary) with diameter D and Ricci curvature bound Ric ≥
(n− 1)κg for some constant κ ∈ R. Let u : M ×[0, T )→ R be a smooth solution to (1) with Neumann
boundary conditions if ∂M 6=∅. Suppose that

• u( · , 0) has a smooth modulus of continuity ϕ0 : [0, D/2] → R with ϕ0(0)= 0 and ϕ′0 ≥ 0;

• ϕ : [0, D/2]×R+→ R satisfies

(i) ϕ(z, 0)= ϕ0(z) for each z ∈ [0, D/2];
(ii) ∂ϕ/∂t ≥ α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′;

(iii) ϕ′ ≥ 0 on [0, D/2]×R+.

Then ϕ( · , t) is a modulus of continuity for u( · , t) for each t ∈ [0, T ):

|u(x, t)− u(y, t)| ≤ 2ϕ
(

d(x, y)
2

, t
)
.

Here we use the notation

Cκ(τ )=


cos
√
κτ, κ > 0,

1, κ = 0,
cosh
√
−κτ, κ < 0

and Sκ(τ )=


(1/
√
κ) sin

√
κτ, κ > 0,

τ, κ = 0,
(1/
√
−κ) sinh

√
−κτ, κ < 0,

(3)

and

Tκ(s) := κ
Sκ(s)
Cκ(s)

=


√
κ tan

(√
κs
)
, κ > 0,

0, κ = 0,
−
√
−κ tanh

(√
−κs

)
, κ < 0.

These estimates are sharp, holding exactly for certain symmetric solutions on particular warped product
spaces. The modulus of continuity estimates also imply sharp gradient bounds which hold in the same
situation. The central ingredient in our argument is a comparison result for the second derivatives of
the distance function (Theorem 3) which is a close relative of the well-known Laplacian comparison
theorem. We remark that the assumption of smoothness can be weakened: for example, in the case of the
p-laplacian heat flow, we do not expect solutions to be smooth near spatial critical points, but nevertheless
solutions are smooth at other points, and this is sufficient for our argument.

As an immediate application of the modulus of continuity estimates, we provide a new proof of the
optimal lower bound on the smallest positive eigenvalue of the Laplacian in terms of D and κ . Precisely,
if we define

λ1(M, g)= inf
{∫

M
|Du|2g dVol(g) :

∫
M

u2 dVol(g)= 1,
∫

M
u dVol(g)= 0

}
and

λ1(D, κ, n)= inf{λ1(M, g) : dim(M)= n, diam(M)≤ D,Ric≥ (n− 1)κg},

then we characterize λ1(D, κ) precisely as the first eigenvalue of a certain one-dimensional Sturm–
Liouville problem.
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Theorem 2 (lower bound on the first eigenvalue). Let µ be the first eigenvalue of the Sturm–Liouville
problem

1

Cn−1
κ

(
8′Cn−1

κ

)′
+µ8= 0 on [−D/2, D/2],

8′(±D/2)= 0.
(4)

Then λ1(D, κ, n)= µ.

Previous results in this direction include those derived from gradient estimates in [Li 1979; Li and Yau
1980], with the sharp result for nonnegative Ricci curvature first proved in [Zhong and Yang 1984]. The
complete result as stated above is implicit in [Kröger 1992, Theorem 2]. Chen and Wang [1994] used
stochastic methods to prove an apparently equivalent result. The result appears to have been first explicitly
stated in the form above in by Bakry and Qian [2000, Theorem 14], who also used gradient estimate
methods. Our contribution is the rather simple proof using the long-time behavior of the heat equation (a
method which was also central in our work on the fundamental gap conjecture [Andrews and Clutterbuck
2011], and which has also been employed successfully in [Ni 2013]), which seems considerably easier
than the previously available arguments. In particular, the complications arising in previous works from
possible asymmetry of the first eigenfunction are avoided in our argument. A similar argument proving
the sharp lower bound for λ1 on a Bakry–Emery manifold may be found in [Andrews and Ni 2012].

The estimate in Theorem 2 is sharp (that is, we obtain an equality and not just an inequality), since, for
a given diameter D and Ricci curvature bound κ , we can construct a sequence of manifolds satisfying
these bounds on which the first eigenvalue approaches µ1; see the remarks after Corollary 1 in [Kröger
1992]. We include a discussion of these examples in Section 5, since the examples required for our
purposes are a simpler subset of those constructed in [Kröger 1992]. We also include in Section 6 a
discussion of the implications for a conjectured inequality of Li.

2. A comparison theorem for the second derivatives of distance

Theorem 3. Let (M, g) be a complete connected Riemannian manifold with a lower Ricci curvature
bound Ric≥ (n− 1)κg, and let ϕ be a smooth function with ϕ′ ≥ 0. Then on (M ×M) \ {(x, x) : x ∈ M}
the function v(x, y)= 2ϕ(d(x, y)/2) is a viscosity supersolution of

L[∇2v,∇v] = 2[α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′]|d/2,

where

L[B, ω] = inf

tr(AB) :

A ∈ Sym2(T
∗

x,y(M ×M)),

A ≥ 0,

A|T ∗x M = a(ω|Tx M),

A|T ∗y M = a(ω|Ty M)


for any B ∈ Sym2(Tx,y(M ×M) and ω ∈ T ∗(x,y)(M ×M).
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Proof. By approximation it suffices to consider the case where ϕ′ is strictly positive. Let x and y be
fixed, with y 6= x and d = d(x, y), and let γ : [−d/2, d/2] → M be a minimizing geodesic from x to y
(that is, with γ (−d/2)= x and γ (d/2)= y) parametrized by arc length. Choose an orthonormal basis
{Ei }1≤i≤n for Tx M with En = γ

′(−d/2). Use parallel transport along γ to produce an orthonormal basis
{Ei (s)}1≤i≤n for Tγ (s)M with En(s)= γ ′(s) for each s ∈ [−d/2, d/2]. Let {E i

∗
}1≤i≤n be the dual basis

for T ∗γ (s)M .
To prove the theorem, consider any smooth function ψ defined on a neighborhood of (x, y) in M ×M

such that ψ ≤ v and ψ(x, y)= v(x, y). We must prove that

L[∇2ψ,∇ψ]|(x,y) ≤ 2[α(ϕ′)ϕ′′− (n− 1)β(ϕ′)ϕ′Tκ ]|d(x,y)/2.

By definition of L, it suffices to find a nonnegative A∈Sym2(T
∗
x,y(M×M)) such that A|Tx M =a(∇ψ |Tx M)

and A|Ty M = a(∇ψ |Ty M), with tr(AD2ψ)≤ 2[α(ϕ′)ϕ′′− (n− 1)β(ϕ′)ϕ′Tκ ]|d/2.
Before choosing this, we observe that ∇ψ is determined by d and ϕ: We have ψ ≤ 2ϕ ◦ d/2 with

equality at (x, y). In particular, we have (since ϕ is nondecreasing)

ψ(γ (s), γ (t))≤ 2ϕ(d(γ (s), γ (t))/2)≤ 2ϕ(L[γ |[s,t]]/2)≤ 2ϕ(|t − s|/2)

for all s 6= t , with equality when t = d/2 and s = −d/2. This gives ∇ψ(En, 0) = −ϕ′(d/2) and
∇ψ(0, En)= ϕ

′(d/2). To identify the remaining components of ∇ψ , we define

γ
y

i (r, s)= expγ (s)(r(1/2+ s/d)Ei (s))

for 1≤ i ≤ n− 1. Then we have

ψ(x, expy(r Ei ))≤ 2ϕ(L[γ y
i (r, · )]/2)

with equality at r = 0. The right-hand side is a smooth function of r with derivative zero, from which it
follows that ∇ψ(0, Ei )= 0. Similarly, we have ∇ψ(Ei , 0)= 0 for i = 1, . . . , n− 1. Therefore we have

∇ψ |(x,y) = ϕ
′(d(x, y)/2)(−En

∗
, En
∗
).

In particular, by (2), we have

a(∇ψ |Tx M)= α(ϕ
′)En ⊗ En +β(ϕ

′)

n−1∑
i=1

Ei ⊗ Ei ,

and similarly for y.
Now we choose A as follows:

A = α(ϕ′)(En,−En)⊗ (En,−En)+β(ϕ
′)

n−1∑
i=1

(Ei , Ei )⊗ (Ei , Ei ). (5)

This is manifestly nonnegative, and agrees with a on Tx M and Ty M as required. This choice gives

tr(A∇2ψ)= α(ϕ)∇2ψ((En,−En), (En,−En))+β(ϕ
′)

n−1∑
i=1

∇
2ψ((Ei , Ei ), (Ei , Ei )). (6)
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For each i ∈ {1, . . . , n − 1} let γi : (−ε, ε)× [−d/2, d/2] → M be any smooth one-parameter family
of curves with γi (r,±d/2) = expγ (±d/2)(r Ei (±d/2)) for i = 1, . . . , n − 1, and γi (0, s) = γ (s). Then
d(expx(r Ei ), expy(r Ei ))≤ L[γi (r, · )], and hence

ψ(expx(r Ei ), expy(r Ei ))≤ v(expx(r Ei ), expy(r Ei ))

= 2ϕ
(d(expx(r Ei ), expy(r Ei ))

2

)
≤ 2ϕ

(
L[γi (r, · )]

2

)
,

since ϕ is nondecreasing. Since the functions on the left and the right are both smooth functions of r and
equality holds for r = 0, it follows that

∇
2ψ((Ei , Ei ), (Ei , Ei ))≤ 2

d2

dr2

(
ϕ

(
L[γi (r, · )]

2

))∣∣∣
r=0
. (7)

Similarly, since d − 2r = L[γ |[−d/2+r,d/2−r ]] ≥ d(γ (−d/2+ r), γ (d/2− r)), we have

∇
2ψ(En,−En), (En,−En))≤ 2

d2

dr2

(
ϕ

(
d
2
− r

))∣∣∣
r=0
= 2ϕ′′

(
d
2

)
. (8)

Now we make a careful choice of the curves γi (r, · ), motivated by the situation in the model space, in
order to get a useful result on the right-hand side in inequality (7): To begin with, if K > 0, we assume
that d < π/

√
K (we will return to deal with the equality case later). We choose

γi (r, s)= expγ (s)

(
r Cκ(s)Ei

Cκ(d/2)

)
,

where Cκ is given by (3). Now we proceed to compute the right-hand side of (7): Denoting s derivatives
of γi by γ ′ and r derivatives by γ̇ , we find

d
dr

(
L[γi (r, · )]

)
=

d
dr

(∫ d/2

−d/2
‖γ ′(r, s)‖ ds

)
=

∫ d/2

−d/2

〈γ ′,∇rγ
′
〉

‖γ ′‖
ds.

In particular this gives zero when r = 0. Differentiating again, we obtain (using ‖γ ′(0, s)‖ = 1 and the
expression γ̇ (0, s)= (Cκ(s)/Cκ(d/2))Ei )

d2

dr2 (L[γi (r, · )])|r=0 =

∫ d/2

−d/2
‖∇rγ

′
‖

2
−〈γ ′,∇rγ

′
〉

2
+〈γ ′,∇r∇rγ

′
〉 ds.

Now we observe that

∇rγ
′
=∇s γ̇ =∇s

(
Cκ(s)

Cκ(d/2)
Ei

)
=

C ′κ(s)
Cκ(d/2)

Ei ,
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while

∇r∇rγ
′
=∇r∇s γ̇ =∇s∇r γ̇ − R(γ̇ , γ ′)γ̇ =−

Cκ(s)2

Cκ(d/2)2
R(Ei , En)Ei ,

since by the definition of γi (r, s) we have ∇r γ̇ = 0. This gives

d2

dr2 (L[γi (r, · )])|r=0 =
1

Cκ(d/2)2

∫ d/2

−d/2
{C ′κ(s)

2
−Cκ(s)2 R(Ei , En, Ei , En)} ds.

Summing over i from 1 to n− 1 gives

n−1∑
i=1

d2

dr2 (L[γi (r, · )])|r=0 =
1

Cκ(d/2)2

∫ d/2

−d/2

{
(n− 1)C ′κ(s)

2
−Cκ(s)2

n−1∑
i=1

R(Ei , En, Ei , En)

}
ds

=
1

Cκ(d/2)2

∫ d/2

−d/2
{(n− 1)C ′κ(s)

2
−Cκ(s)2 Ric(En, En)} ds

≤
n− 1

Cκ(d/2)2

∫ d/2

−d/2
{C ′κ(s)

2
− κCκ(s)2} ds.

In the case κ = 0, the integral is zero; in the case κ < 0, or the case κ > 0 with d < π/
√
κ , we have

1
Cκ(d/2)2

∫ d/2

−d/2
{C ′κ(s)

2
− κCκ(s)2} ds =

1
Cκ(d/2)2

∫ d/2

−d/2
(−κSκC ′κ − κS′κCκ) ds

=−
κ

Cκ(d/2)2

∫ d/2

−d/2
(Cκ Sκ)′ ds

=−
2κCκ(d/2)Sκ(d/2)

Cκ(d/2)2

=−2Tκ(d/2).

Finally, we have
d
dr

(
ϕ

(
L[γi (r, · )]

2

))∣∣∣
r=0
= ϕ′

d
dr

(
L[γi (r, · )]

2

)∣∣∣
r=0
= 0,

and so

n−1∑
i=1

d2

dr2

(
ϕ

(
L[γi (r, · )]

2

))∣∣∣
r=0
=

n−1∑
i=1

(
ϕ′

d2

dr2

(
L[γi (r, · )]

2

)∣∣∣
r=0
+ϕ′′

(
d
dr

(
L[γi (r, · )]

2

)∣∣∣
r=0

)2)
≤−(n− 1)ϕ′Tκ |d/2.

Now, using the inequalities (7) and (8), we have from (6) that

L[∇2ψ,∇ψ] ≤ trace(A∇2ψ)≤ 2[α(ϕ′)ϕ′′− (n− 1)β(ϕ′)ϕ′Tκ ]|d/2, (9)

as required.
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In the case d = π/
√

K , we instead choose γi (r, s) = expγ (s) (r Cκ ′(s)Ei/(Cκ ′(d/2))), for arbitrary
κ ′ < κ . Then the computation above gives

n−1∑
i=1

∇
2ψ((Ei , Ei ), (Ei , Ei ))≤−2(n− 1)ϕ′Tκ .

Since the right-hand side approaches −∞ as κ ′ increases to κ , we have a contradiction to the assumption
that ψ is smooth. Hence no such ψ exists and there is nothing to prove. �

3. Estimate on the modulus of continuity for solutions of heat equations

In this section we prove Theorem 1, which extends the oscillation estimate from domains in Rn to compact
Riemannian manifolds. The estimate is analogous to [Andrews and Clutterbuck 2009b, Theorem 4.1], the
modulus of continuity estimate for the Neumann problem on a convex Euclidean domain.

Proof of Theorem 1. Recall that (M, g) is a compact Riemannian manifold, possibly with boundary (in
which case we assume that the boundary is locally convex). Define an evolving quantity, Z , on the product
manifold M ×M ×[0,∞):

Z(x, y, t) := u(y, t)− u(x, t)− 2ϕ(d(x, y)/2, t)− ε(1+ t)

for small ε > 0.
We have assumed that ϕ is a modulus of continuity for u at t = 0, and so Z( · , · , 0)≤−ε < 0. Note

also that Z is continuous on M × M × [0,∞), and Z(x, x, t) = −ε(1+ t) < 0 for each x ∈ M and
t ∈ [0, T ). It follows that if Z ever becomes positive, there exists a first time t0 > 0 and points x0 6= y0 in
M such that Z(x0, y0, t0)= 0. There are two possibilities: either both x0 and y0 are in the interior of M ,
or at least one of them (say x0) lies in the boundary ∂M .

We deal with the first case first: Clearly Z(x, y, t)≤ 0 for all x, y ∈ M and t ∈ [0, t0]. In particular, if
we let v(x, y)= 2ϕ(d(x, y)/2, t0) and ψ(x, y)= u(y, t0)− u(x, t0)− ε(1+ t0), then

ψ(x, y)≤ v(x, y)

for all x, y ∈ M , while ψ(x0, y0)= v(x0, y0). Since ψ is smooth, by Theorem 3 we have

L[∇2ψ,∇ψ] ≤ 2[α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′]|d(x0,y0)/2.

Now we observe that since the mixed partial derivatives of ∇2ψ all vanish, we have for any admissible A
in the definition of L that

tr(A∇2ψ)= (a(Du)i j
∇i∇ j u)|(y0,t0)− (a(Du)i j

∇i∇ j u)|(x0,t0),

and therefore
L[∇2ψ,∇ψ] = (a(Du)i j

∇i∇ j u)|(y0,t0)− (a(Du)i j
∇i∇ j u)|(x0,t0).

It follows that

a(Du)i j
∇i∇ j u|(y0,t0)− a(Du)i j

∇i∇ j u|(x0,t0) ≤ 2[α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′]|d(x0,y0)/2. (10)
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We also know that the time derivative of Z is nonnegative at (x0, y0, t0), since Z(x0, y0, t)≤ 0 for t < t0:

∂Z
∂t
|(x0,y0,t0) = a(Du)i j

∇i∇ j u|(y0,t0)− a(Du)i j
∇i∇ j u|(x0,t0)− 2

∂ϕ

∂t
− ε ≥ 0. (11)

Combining the inequalities (10) and (11), we obtain

∂ϕ

∂t
< α(ϕ′)ϕ′′− (n− 1)Tκβ(ϕ′)ϕ′,

where all terms are evaluated at the point d(x0, y0)/2. This contradicts assumption (ii) in Theorem 1.
Now we consider the second case, where x0 ∈ ∂M . Under the assumption that ∂M is convex, there

exists [Bartolo et al. 2002] a length-minimizing geodesic γ : [0, d] → M from x0 to y0, such that γ (s) is
in the interior of M for 0< s < d and γ ′(0) · ν(x0) > 0, where ν(x0) is the inward-pointing unit normal
to ∂M at x0. We compute

d
ds

Z(expx0
(sν(x0)), y0, t0)=−∇ν(x0)u−ϕ

′(d/2)∇d(ν(x0), 0)= ϕ′(d/2)γ ′(0) · ν(x0)≥ 0.

In particular, Z(expx0
(sν(x0)), y0, t0)>0 for all small positive s, contradicting the fact that Z(x, y, t0)≤0

for all x, y ∈ M .
Therefore Z remains negative for all (x, y) ∈ M and t ∈ [0, T ). Letting ε approach zero proves the

theorem. �

4. The eigenvalue lower bound

Now we provide the proof of the sharp lower bound on the first eigenvalue (Theorem 2), which follows
very easily from the modulus of continuity estimate from Theorem 1.

Proposition 4. For M and u as in Theorem 1 applied to the heat equation (α ≡ β ≡ 1 in (2)), we have
the oscillation estimate

|u(y, t)− u(x, t)| ≤ Ce−µt ,

where C depends on the modulus of continuity of u( · , 0), and µ is the smallest positive eigenvalue of the
Sturm–Liouville equation

8′′− (n− 1)Tκ8′+µ8=
1

Cn−1
κ

(8′Cn−1
κ )′+µ8= 0 on [−D/2, D/2],

8′(±D/2)= 0.
(12)

Proof. The eigenfunction-eigenvalue pair (8,µ) is defined as follows: For any σ ∈ R we define 8σ (x)
to be the solution of the initial value problem

8′′σ − (n− 1)Tκ8′σ + σ8σ = 0;

8σ (0)= 0;

8′σ (0)= 1.
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Then µ= sup{σ : x ∈ [−D/2, D/2] H⇒8′σ (x) > 0}. In particular, for σ < µ the function 8σ is strictly
increasing on [−D/2, D/2], and 8σ (x) is decreasing in σ and converges smoothly to 8(x)=8µ(x) as
σ approaches µ for x ∈ (0, D/2] and 0< σ < µ.

Now we apply Theorem 1: Since 8 is smooth, has positive derivative at x = 0 and is positive for
x ∈ (0, D/2], there exists C > 0 such that C8 is a modulus of continuity for u( . , 0). Then, for each
σ ∈ (0, µ), ϕ0 = C8σ is also a modulus of continuity for u( . , 0), with ϕ0(0)= 0 and ϕ′0 > 0. Defining
ϕ(x, t) = C8σ (x)e−σ t , all the conditions of Theorem 1 are satisfied, and we deduce that ϕ( . , t) is a
modulus of continuity for u( . , t), each t ≥ 0. Letting σ approach µ, we deduce that C8e−µt is also a
modulus of continuity. That is, for all x, y and t ≥ 0,

|u(y, t)− u(x, t)| ≤ Ce−µt8

(
d(x, y)

2

)
≤ C sup8e−µt . �

Proof of Theorem 2. Observe that if (ϕ, λ) is the first eigenfunction-eigenvalue pair, then u(x, t)=e−λtϕ(x)
satisfies the heat equation on M for all t > 0. From Proposition 4, we have |u(y, t)− u(x, t)| ≤ Ce−µt ,
and so |ϕ(y)− ϕ(x)| ≤ Ce−(µ−λ)t for all x, y ∈ M and t > 0. Since ϕ is nonconstant, letting t →∞
implies that µ− λ≤ 0. �

5. Sharpness of the estimates

In the previous section we proved that λ1(D, κ, n)≥ µ. To complete the proof of Theorem 2, we must
prove that λ1(D, κ, n) ≤ µ. To do this, we construct examples of Riemannian manifolds with given
diameter bounds and Ricci curvature lower bounds such that the first eigenvalue is as close as desired to
µ. The construction is similar to that given in [Kröger 1992; Bakry and Qian 2000], but we include it
here because the construction also produces examples proving that the modulus of continuity estimates of
Theorem 1 are sharp.

Fix κ and D, and let M = Sn−1
×[−D/2, D/2] with the metric

g = ds2
+ aC2

κ(s)ḡ,

where ḡ is the standard metric on Sn−1, and a > 0. The Ricci curvatures of this metric are given by

Ric(∂s, ∂s)= (n− 1)κ;

Ric(∂s, v)= 0 for v ∈ T Sn−1
;

Ric(v, v)=
(
(n− 1)κ + (n− 2)

1/a− κ
C2
κ

)
|v|2 for v ∈ T Sn−1.

In particular, the lower Ricci curvature bound Ric≥ (n−1)κ is satisfied for any a if κ ≤ 0 and for a≤ 1/κ
if κ > 0.

To demonstrate the sharpness of the modulus of continuity estimate in Theorem 1, we construct solutions
of (1) on M which satisfy the conditions of Theorem 1 and satisfy the conclusion with equality for positive
times: Let ϕ0 : [0, D/2] be as given in Theorem 1, and extend by odd reflection to [−D/2, D/2] and
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define ϕ to be the solution of the initial-boundary value problem

∂ϕ

∂t
= α(ϕ′)ϕ′′+ (n− 1)Tκβ(ϕ′)ϕ′;

ϕ(x, 0)= ϕ0(x);

ϕ′(±D/2, t)= 0.

Now define u(z, s, t)= ϕ(s, t) for s ∈ [−D/2, D/2], z ∈ Sn−1, and t ≥ 0. Then a direct calculation shows
that u is a solution of (1) on M . If ϕ0 is concave on [0, D/2], we have |ϕ0(a)−ϕ0(b)| ≤ 2ϕ0(|b− 1|/2)
for all a and b in [−D/2, D/2]. For our choice of ϕ, this also remains true for positive times. Note also
that for any w, z ∈ Sn−1 and a, b ∈ [−D/2, D/2] we have d((w, a), (z, b))≥ |b−a|. Therefore we have

|u(w, a, t)− u(z, b, t)| = |ϕ(a, t)−ϕ(b, t)| ≤ 2ϕ
(
|b− a|

2
, t
)
≤ 2ϕ

(
d((w, a), (z, b))

2
, t
)
,

so that ϕ( . , t) is a modulus of continuity for u( . , t) as claimed. Furthermore, this holds with equality
whenever w = z and b =−a, so there is no smaller modulus of continuity and the estimate is sharp.

Now we proceed to the sharpness of the eigenvalue estimate. On the manifold constructed above, we
have an explicit eigenfunction of the Laplacian, given by ϕ(z, s)=8(s), where8 is the first eigenfunction
of the one-dimensional Sturm–Liouville problem given in Proposition 4. That is, we have λ1(M, g)≤ µ.
In this example we have the required Ricci curvature lower bound, and the diameter approaches D as
a→ 0. Since µ depends continuously on D, the result follows.

A slightly more involved construction shows that the bound is sharp even in the smaller class of
manifolds without boundary. This is achieved by smoothly attaching spherical caps to the ends of the
above examples; see the similar construction in [Andrews and Ni 2012, Section 2].

6. Implications for the “Li conjecture”

In this section we mention some implications of the sharp eigenvalue estimate and a conjecture attributed
to Peter Li. The result of Lichnerowicz [1958] is that λ1 ≥ nκ whenever Ric≥ (n− 1)κgi j (so that, by
the Bonnet–Myers estimate, D ≤ π/

√
κ). An estimate from [Zhong and Yang 1984] gives λ1 ≥ π

2/D2

for Ric≥ 0. Both of these are sharp, and the latter estimate should also be sharp as D→ 0 for any lower
Ricci curvature bound. Interpolating linearly (in κ) between these estimates, we obtain Li’s conjecture:

λ1 ≥
π2

D2 + (n− 1)κ.

By construction this holds precisely at the endpoints κ→ 0 and κ→ π2/D2.
Several previous attempts to prove such inequalities have been made, particularly towards proving

inequalities of the form λ1 ≥ π
2/D2

+aκ for some constant a, which are linear in κ and have the correct
limit as κ→ 0. These include works of DaGang Yang [1999], Jun Ling [2006] and Ling and Lu [2010],
the latter showing that α = 34

100 holds. These are all superseded by the result of Shi and Zhang [2007]
which proves λ1 ≥ sups∈(0,1){4s(1− s)π2/D2

+ (n− 1)sκ}, so in particular λ1 ≥ π
2/D2

+ ((n− 1)/2)κ
by taking s = 1

2 .



EIGENVALUES AND MODULUS OF CONTINUITY FOR PARABOLIC EQUATIONS 1023

We remark here that the inequality with a = (n−1)/2 is the best possible of this kind, and in particular
the Li conjecture is false. This can be seen by computing an asymptotic expansion for the sharp lower
bound µ given by Theorem 2. For fixed D = π we perturb about κ = 0 (as in [Andrews and Ni 2012,
Section 4]), obtaining

µ= 1+
(n− 1)

2
κ + O(κ2).

By scaling, this amounts to the estimate

µ=
π2

D2 +
(n− 1)

2
κ + O(κD2).

Since the lower bound λ1 ≥ µ is sharp, this shows that the inequality λ1 ≥ π
2/D2

+ aκ is false for any
a > (n− 1)/2, and in particular for a = n− 1.
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