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C∞ SPECTRAL RIGIDITY OF THE ELLIPSE

HAMID HEZARI AND STEVE ZELDITCH

We prove that ellipses are infinitesimally spectrally rigid among C∞ domains with the symmetries of the
ellipse.

An isospectral deformation of a plane domain �0 is a one-parameter family �ε of plane domains
for which the spectrum of the Euclidean Dirichlet (or Neumann) Laplacian 1ε is constant (including
multiplicities). We say that �ε is a C1 curve of C∞ plane domains if there exists a C1 curve of
diffeomorphisms ϕε of a neighborhood of �0 ⊂R2 with ϕ0 = id and with �ε = ϕε(�0). The infinitesimal
generator X = dϕε/dε is a vector field in a neighborhood of �0 which restricts to a vector field along
∂�0; we denote by Xν = ρ̇ν its outer normal component. With no essential loss of generality we may
assume that ϕε |∂�0 is a map of the form

x ∈ ∂�0→ x + ρε(x)νx , (1)

where ρε ∈ C1([0, ε0],C∞(∂�0)), ε0 > 0 and ρ0 = 0. We put

ρ̇(x)= δρ (x) := d
dε

∣∣∣
ε=0
ρε(x).

An isospectral deformation is said to be trivial if �ε '�0 (up to isometry) for sufficiently small ε. A
domain �0 is said to be spectrally rigid if all isospectral deformations �ε are trivial. The domain �0 is
called infinitesimally spectrally rigid if ρ̇ = 0 (up to rigid motions) for all isospectral deformations.

In this article, we use the Hadamard variational formula of the wave trace (apparently for the first
time) to study spectral rigidity problems (Theorem 2). Our main application is the infinitesimal spectral
rigidity of ellipses among C1 curves of C∞ plane domains with the symmetries of an ellipse. We orient
the domains so that the symmetry axes are the x-y axes. The symmetry assumption is then that each ϕε is
invariant under (x, y)→ (±x,±y).

Theorem 1. Suppose that �0 is an ellipse and that �ε is a C1 Dirichlet (or Neumann) isospectral
deformation of �0 through C∞ domains with Z2×Z2 symmetry. Then Xν = 0 or equivalently ρ̇ = 0.

As discussed in Sections 0.2 and 3.2, Theorem 1 implies that ellipses admit no isospectral deformations
for which the Taylor expansion of ρε at ε = 0 is nontrivial. A function such as e−1/ε2

for which the Taylor
series at ε = 0 vanishes is called flat at ε = 0.
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Corollary 1. Suppose that �0 is an ellipse and that ε→�ε is a C∞ Dirichlet (or Neumann) isospectral
deformation through Z2×Z2 symmetric C∞ domains. Then ρε must be flat at ε = 0. In particular, there
exist no nontrivial real analytic curves ε→�ε of Z2×Z2 symmetric C∞ domains with the spectrum of
an ellipse.

Spectral rigidity of the ellipse has been expected for a long time and is a kind of model problem in
inverse spectral theory. Ellipses are special since their billiard flows and maps are completely integrable.
It was conjectured by G. D. Birkhoff that the ellipse is the only convex smooth plane domain with a
completely integrable billiard. We cannot assume that the deformed domains �ε have this property,
although the results of [Siburg 2000; Zelditch 1998] come close to showing that they do. The results are
somewhat analogous to the spectral rigidity of flat tori or the sphere in the Riemannian setting.

The main novel step in the proof is the Hadamard variational formula for the wave trace (Theorem 2),
which holds for all smooth Euclidean domains �⊂ Rn satisfying standard “cleanliness” assumptions. It
is of independent interest and may have applications to spectral rigidity beyond the setting of ellipses.
We therefore present the proof in detail. (See also [Golse and Lochak 2003], where a variational formula
for the Selberg’s trace formula on compact Riemann surfaces is derived.)

The main advance over prior results is that the domains �ε are allowed to be C∞ rather than real
analytic. Much less than C∞ could be assumed for the domains �ε , but we do not belabor the point. For
real analytic domains a length spectral rigidity result for analytic domains with the symmetries of the
ellipse was proved in [Colin de Verdière 1984]. The method does not apply directly to 1-isospectral
deformations of ellipses since the length spectrum of the ellipse may have multiplicities and the full
length spectrum might not be a 1-isospectral invariant. If it were, then Siburg’s results would imply that
the marked length spectrum is preserved [Siburg 1999; 2000; 2004]. In [Zelditch 2009; 2000] it is shown
that analytic domains with one symmetry are spectrally determined if the length of the minimal bouncing
ball orbit and one iterate is a 1-isospectral invariant. The prior results on 1-isospectral deformations
that we are aware of are contained in the articles [Guillemin and Melrose 1979a; Popov and Topalov
2003; 2012] and concern deformations of boundary conditions. To our knowledge, the only prior results
on 1-isospectral deformations of the domain are contained in [Marvizi and Melrose 1982]. Marvizi
and Melrose [1982] introduce new spectral invariants and prove certain rigidity results, but they do not
apparently settle the case of the ellipse (see also [Amiran 1993; 1996] for further attempts to apply them
to the ellipse). It would be desirable to remove the symmetry assumption (to the extent possible), but
symmetry seems quite necessary for our argument. Further discussion of prior results can be found in the
earlier arXiv posting of this article [Hezari and Zelditch 2010].

0.1. Theorem on variation of the wave trace. We now state a general result on the variation of the wave
trace on a domain with boundary under variations of the boundary.

To state the result, we need some notation. We denote by

EB(t)= cos
(
t
√
−1B

)
and SB(t)=

sin
(
t
√
−1B

)
√
−1B

(2)

the even and odd wave operators of a domain � with boundary conditions B. We recall that EB(t) has a
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distribution trace as a tempered distribution on R. That is, EB(ϕ)=
∫

R
ϕ(t)EB(t) dt is of trace class for

any ϕ ∈ C∞0 (R); we refer to [Guillemin and Melrose 1979b; Petkov and Stoyanov 1992] for background.
The Poisson relation of a manifold with boundary gives a precise description of the singularities of

this distribution trace in terms of periodic transversal reflecting rays of the billiard flow, or equivalently
periodic points of the billiard map. For the definitions of “billiard map”, “clean”, “transversal reflecting
rays”, etc., we refer to [Guillemin and Melrose 1979a; 1979b; Petkov and Stoyanov 1992]. A periodic
point of the billiard map β : B∗∂�→ B∗∂� on the unit ball bundle B∗∂�= {(q, ζ ) ∈ T ∗∂�; |ζ |< 1}
of the boundary corresponds to a billiard trajectory, i.e an orbit of the billiard flow 8t on S∗�. We define
the length of the periodic orbit of β to be the length of the corresponding billiard trajectory in S∗�. Note
that the period of a periodic point of β is ambiguous since it could refer to this length or to the power
of β. We also denote by Lsp(�) the length spectrum of �, that is, the set of lengths of closed billiard
trajectories. The perimeter of � is denoted by |∂�|.

In the following deformation theorem, the boundary conditions are fixed during the deformation and
we therefore do not include them in the notation. We also do not include ε in our notation for 1 even
though all Laplacians below are associated with �ε and hence dependent on ε.

Theorem 2. Let �0 ⊂ Rn be a C∞ convex Euclidean domain with the property that the fixed point sets of
the billiard map are clean. Then, for any C1 variation of �0 through C∞ domains �ε , the variation of the
wave traces δ Tr cos(t

√
−1), with Dirichlet (or Neumann) boundary conditions is a classical conormal

distribution for t 6= m|∂�0| (m ∈ Z) with singularities contained in Lsp(�0). For each T ∈ Lsp(�0) for
which the set FT of periodic points of the billiard map β of length T is a d-dimensional clean fixed point
set consisting of transverse reflecting rays, there exist nonzero constants C0 independent of ρ̇ such that,
near T , the leading order singularity is

δ Tr cos(t
√
−1)∼

t
2
<

{( ∑
0⊂FT

C0

∫
0

ρ̇ γ1 dµ0

)
(t − T + i0+)−2−(d/2)

}
,

modulo lower order singularities. The sum is over the connected components 0 of FT . Here δ = d
dε

∣∣∣
ε=0

and γ1(q, ζ )=
√

1− |ζ |2.

The function γ1 on B∗∂� is defined in (27) and appeared earlier in [Hassell and Zelditch 2004]. The
densities dµ0 on the fixed point sets of β and its powers are very similar to the canonical densities defined
in Lemma 4.2 of [Duistermaat and Guillemin 1975], and further discussed in [Guillemin and Melrose
1979a; Popov and Topalov 2003; 2012]. The constants C0 are explicit and depend on the boundary
conditions. We suppress the exact formulae since we do not need them, but their definition is reviewed in
the course of the proof.

To clarify the dimensional issues, we note that there are four closely related definitions of the set of
closed billiard trajectories (or closed orbits of the billiard map). The first is the fixed point set of the
billiard flow 8T at time T in T ∗�. The second is the set of unit vectors in the fixed point set. The third
is the fixed point set of the billiard flow restricted to T ∗∂��, the set of covectors with foot points at the
boundary. The fourth is the set of periodic points of the billiard map β on B∗∂� of length T , where as
above the length is defined by the length of the corresponding billiard trajectory. The dimension d refers
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to the dimension of the latter which we show by FT . In the case of the ellipse, for instance, d = 1; the
periodic points of a given length form invariant curves for β.

To prove Theorem 2, we use the Hadamard variational formula for the Green’s kernel to give an exact
formula for the wave trace variation (Lemma 1). We then prove that it is a classical conormal distribution
and calculate its principal symbol.

It is verified in [Guillemin and Melrose 1979a] that the ellipse satisfies the cleanliness assumptions.

Corollary 2. For any C1 variation of an ellipse through C∞ domains �ε , the leading order singularity
of the wave trace variation is

δ Tr cos(t
√
−1)∼

t
2
<

{( ∑
0⊂FT

C0

∫
0

ρ̇ γ1 dµ0

)
(t − T + i0+)−5/2

}
,

modulo lower-order singularities, where the sum is over the connected components 0 of the set FT of
periodic points of β (and its powers) of length T .

0.2. Flatness issues. We now discuss an apparently new flatness issue in isospectral deformations. The
rather technical assumption that �ε is a C1 family of C∞ domains rather than a C∞ family in the ε
variable is made to deal with a somewhat neglected and obscure point about isospectral deformations.
Isospectral deformations are curves in the “manifold” of domains. The curve might be a nontrivial C∞

family in ε but the first derivative ρ̇ might vanish at ε = 0. Thus, infinitesimal spectral rigidity is at least
apparently weaker than spectral rigidity. We impose the C1 regularity to allow us to reparametrize the
family and show that the first derivative of any C1 reparametrization must be zero. This is not the primary
focus of Theorem 1, but with no additional effort the proof extends to the C1 case.

This flatness issue does not seem to have arisen before in inverse spectral theory, even when the main
conclusions are derived from infinitesimal rigidity. The main reason is that first-order perturbation theory
very often requires analytic perturbations (i.e., analyticity in the deformation parameter ε), and so most
(if not all) prior results on isospectral deformations assume that the deformation is real analytic. But our
proof is based on Hadamard’s variational formula, which is valid for C1 perturbations of domains and
so we can study this more general situation. Further, the prior spectral rigidity results [Guillemin and
Kazhdan 1980] are proved for an open set of domains and metrics and therefore flatness at all points
implies triviality of the deformations. We are only deforming the one-parameter family of ellipses and
therefore cannot eliminate flat isospectral deformations by that kind of argument. We also note that there
could exist continuous but nondifferentiable isospectral deformations.

0.3. Pitfalls and complications. The route taken in the proof of Theorem 1, and the flatness issues just
discussed, reflect certain technical issues that arise in the inverse problem.

First is the issue of multiplicities in the eigenvalue spectrum or in the length spectrum. The multiplicities
of the 1-eigenvalues of the ellipse (for either Dirichlet or Neumann boundary conditions) appear to be
almost completely unknown. If a sufficiently large portion of the eigenvalue spectrum were simple (i.e., of
multiplicity one), one could simplify the proof of Theorem 1 by working directly with the eigenfunctions
and their semiclassical limits (as in the first arXiv posting of this article, [Hezari and Zelditch 2010]).
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The dual multiplicity of the length spectrum is also largely unknown for the ellipse. Without length
spectral simplicity one cannot work with the wave trace invariants. Our proof relies on the observation in
[Guillemin and Melrose 1979a] that the multiplicities have to be one (modulo the symmetry) for periodic
orbits that creep close enough to the boundary.

Second is the issue of cleanliness. Theorem 2 and Corollary 2 would apply to any of the deformed
domains �ε if the fixed points sets were known to be clean. One could then use the conclusion of
Corollary 2 to rule out flat isospectral deformations. However, we do not know that the fixed point sets are
clean for the deformed domains even though we do know that they have the same wave trace singularities
as the ellipse. Equality of the wave traces for isospectral deformations of ellipses shows that the periodic
points of β of �ε can never be nondegenerate. Hence the deformations are very nongeneric. It is plausible
that equality of wave traces forces the sets of periodic points to be clean invariant curves of dimension
one. But we do not know how to prove this kind of inverse result at this time.

1. Hadamard variational formula for wave traces

In this section we consider the Dirichlet and Neumann eigenvalue problems for a C1 one-parameter family
of smooth Euclidean domains �ε ⊂ Rn ,{

−1Bε9 j (ε)= λ
2
j (ε)9 j (ε) in �ε,

Bε9 j (ε)= 0,
(3)

where the boundary condition Bε could be Bε9 j (ε)=9 j (ε)|∂�ε (Dirichlet) or ∂νε9 j (ε)|∂�ε (Neumann).
Here, λ2

j (ε) are the eigenvalues of −1Bε , enumerated in order and with multiplicity, and ∂νε is the interior
unit normal to �ε . We do not assume that λ2

j (ε) and 9 j (ε) are C1 in ε.
We will use Hadamard’s variational formula for the variation of Green’s kernels, and adapt the formula

to give the variation of the (regularized) trace of the wave kernel. Our references are [Garabedian 1964;
Peetre 1980; Fujiwara et al. 1978; Ozawa 1982; Fujiwara and Ozawa 1978].

To state our main variational Lemma 1 we introduce some notation. We denote by dq the surface
measure on the boundary ∂� of a domain �, and by ru = u|∂� the trace operator. We use Sb

B(t, q ′, q) ∈
D′(R×∂�×∂�) for the following boundary traces of the Schwartz kernel SB(t, x, y)∈D′(R×Rn

×Rn)

of SB(t) defined in (2):

Sb
B(t, q ′, q)=

{
rq ′rq∂νq′

∂νq SD(t, q ′, q) (Dirichlet),

∇
T
q ′∇

T
q rq ′rq SN (t, q ′, q)+ rq ′rq 1q ′ SN (t, q ′, q) (Neumann).

(4)

Here, the subscripts q ′, q refer to the variable involved in the differentiating or restricting. According
to convenience, we may also indicate this by subscripting with indices 1, 2, referring to the first and
second variables in the kernel. For instance,

∂

∂νq′
K (q ′, q)= ∂

∂ν1

K (q ′, q).

We may also use the notations ∂ν and ∂/∂ν interchangeably to refer to the inward normal derivative. Here,
∇

T corresponds to tangential differentiation which is the gradient associated to the hypersurface ∂�.
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Lemma 1. The variation of the wave trace with boundary conditions B is given by

δ Tr EB(t)=
t
2

∫
∂�0

Sb
B0
(t, q, q)ρ̇(q) dq.

We summarize by writing
δ Tr EB(t)=

t
2

Tr∂�0 ρ̇ Sb
B .

Here, δ = d
dε
|ε=0 and the equality is understood in the sense of distributions; meaning if ϕ ∈C∞0 (R) then

δ Tr
(∫

ϕ(t)EB(t) dt
)
=

∫
∂�0

(∫
t
2
ϕ(t)Sb

B0
(t, q, q) dt

)
ρ̇(q) dq.

We note that the right hand side is well defined because the kernel of the operator
∫
ϕ(t)SB0(t) dt is

smooth up to the boundary.
We prove the lemma by relating the variation of the wave trace to the known variational formula for

the Green’s function (resolvent kernel). We now review the latter.

1.1. Hadamard variational formula for Green’s function. Here by the Green’s function G Bε (λ, x, y) of
�ε , with the boundary condition Bε , we mean the integral kernel of the resolvent RB(λ)= (−1Bε−λ

2)−1

where =λ> 0. We also define RB(λ) for λ ∈R by RB(λ+ i0+) (that the limit exists follows, for example,
from Theorem 3.1.11 of [Hörmander 1983]). The variational formula below is valid for both of these
resolvents (also for =λ < 0). Since the domains of G Bε (λ, x, y) depend on ε we first have to make our
definition of δ precise.

Definition. Let uε ∈ C1([0, ε0],D′(�ε)) with ε0 > 0, be a C1 family of distributions in �ε . We use δuε
or u̇ to represent the first variation of uε at ε = 0 as a distribution in �0:

δuε =
d
dε

∣∣∣
ε=0

uε .

We note that if α ∈ C∞0 (�0) then for ε small supp(α)⊂�ε , and therefore we can define δuε by

(δuε)(α)=
d
dε

∣∣∣
ε=0
(uε(α)).

However, the problem with this definition is that it defines u̇ only in the interior of �0 and not at the
boundary even if uε is defined there. Below we will see another definition of u̇, using diffeomorphisms,
which resolves this issue.

In the statement of the formulas we will not include ε in our notation. In the Dirichlet case, the classical
Hadamard variational formula states that, under a C1 deformation �ε ,

δG D(λ, x, y)=
∫
∂�0

∂

∂ν2
G D(λ, x, q) ∂

∂ν1
G D(λ, q, y)ρ̇(q) dq. (5)

In the Neumann case,

δG N (λ, x, y)

=

∫
∂�0

∇
T
2 G N (λ, x, q) · ∇T

1 G N (λ, q, y)ρ̇(q) dq − λ2
∫
∂�0

G N (λ, x, q)G N (λ, q, y)ρ̇(q) dq. (6)
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We briefly review the proof of the Hadamard variational formula to clarify the definition of δG B(λ, x, y)
and of the other kernels. We give the proof for the variation of the resolvent RB(λ) with =λ > 0. From
this we can obtain the analogous formula for δRB(λ+ i0+) by taking =λ→ 0+. Following [Peetre 1980],
we write the inhomogeneous problem{

(−1− λ2)u = f in �(λ ∈ C, =λ > 0),
u = 0 (resp. ∂νu = 0) on ∂�,

in terms of the energy integral

E(u, v)=
∫
�

∇u · ∇v dx − λ2
∫
�

uv dx =
∫
�

v(−1− λ2)u dx −
∫
∂�

v∂νu dq,

where ∂ν is the inward unit normal. The inhomogeneous problem is to solve

E(u, v)=
∫
�

f v dx,

where v is a smooth test function which vanishes to order 1 (resp. 0) on ∂� for the Dirichlet (resp.
Neumann) problem. We denote the energy density by e(u, v)=∇u · ∇v− λ2uv.

We now vary the problems over a one-parameter family of domains. We use one-parameter families
of smooth diffeomorphisms ϕε of a neighborhood of �0 ⊂ Rn to define the one-parameter families
�ε = ϕε(�0) of domains. We assume ϕε to be a C1 curve of diffeomorphisms with ϕ0 = id.

The variational derivative of the solution is defined as follows: Let uε be a C1 curve of functions in
H s(�ε). Then ϕ∗ε uε ∈ H s(�0) and d(ϕ∗ε uε)/dε is a continuous curve in H s(�0). Put

X =
d
dε

∣∣
ε=0ϕε and θX u = d

dε

∣∣∣
ε=0
ϕ∗ε uε .

Assume that u0 ∈ H s+1(�0). Then u̇, defined by

u̇ = θX u− Xu0,

exists in H s(�0). This gives a new definition of u̇ which has a well-defined restriction to ∂�0 (for s ≥ 1),
and it agrees with u̇ defined above in the interior of �0. Further, let v be a test function on �0 and use
ϕ−1∗
ε v as a test function on �ε . Now rewrite the boundary problems as∫

�ε

e(uε, (ϕ−1
ε )∗v) dx =

∫
�ε

fε((ϕ−1
ε )∗v) dx .

Changing variables, one pulls back the equation to �0 as∫
�0

eε(ϕ∗ε uε, v)ϕ∗ε dx =
∫
�0

(ϕ∗ε fε)vϕ∗ε dx,

where

eε(w, v) := ϕ∗ε (e(ϕ
−1∗
ε w, ϕ−1∗

ε v)).
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Then, by the computations of [Peetre 1980, (8) and (10)] we have∫
�0

u̇(−1− λ2)v dx

=

∫
�0

ḟ v dx +
∫
∂�0

f vρ̇ dq +
∫
∂�0

(∇u0 · ∇v− λ
2u0v)ρ̇ dq +

{
λ2
∫
∂�0

u0vρ̇dq (Dirichlet),
0 (Neumann).

(7)

To obtain (5)–(6), at least formally, one puts

uε(x)= G Bε (λ, z, x), v(x)= G B0(λ, y, x), fε(x)= δz(x)

where z ∈ �̊. Thus u̇(x)= δG B(λ, z, x) and ḟ = 0. Since z ∈ �̊ we have z ∈�ε for sufficiently small
ε and one easily verifies that (7) implies (5)–(6). The Green’s kernel depends on ε as smoothly as the
coefficients of operator 1̃ε on �0 defined by the pulled back energy form.

1.2. Proof of Lemma 1. Rather than the Green’s function, we are interested in the Hadamard variational
formula for the wave kernels EB(t), SB(t) in (2), or more precisely, for their distribution traces. We will
give two proofs for the lemma.

First proof. By the definition of the distribution trace, we only need the variational formula for traces
of variations δ

∫
R

eiλt ψ̂(t)EB(t) dt of integrals of these kernels against test functions ψ̂(t)eiλt
∈ C∞0 (R),

which are simpler because the Schwartz kernels are smooth.
We derive the Hadamard variational formula for wave traces from that of the Green’s function by using

the identities

−iλRB(λ)=

∫
∞

0
eiλt EB(t) dt, d

dt
SB(t)= EB(t). (8)

Using integration by parts (and =λ > 0), we get

RB(λ)=

∫
∞

0
eiλt SB(t) dt. (9)

We will assume that ψ̂ is supported in R+ since in the wave trace we localize its support to the length of
a closed geodesic. Hence by (8),∫

R

ψ̂(t)eiλt EB(t) dt =
∫

R

ψ(µ)

∫
∞

0
ei(λ−µ)t EB(t) dt dµ

=−i
∫

R

ψ(µ)(λ−µ)RB(λ−µ) dµ. (10)

This implies that

δ

∫
R

ψ̂(t)eiλt EB(t) dt =−i
∫

R

ψ(µ)(λ−µ)δRB(λ−µ) dµ.

That we can pass δ under the integral sign can be justified using the dominated convergence theorem and
we leave the proof to the reader. In the Dirichlet case, it follows from (10), (5), (8) and (9) that
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δ

∫
R

ψ̂(t)eiλt ED(t, x, y) dt

=−i
∫

R

(λ−µ)ψ(µ)

∫
∂�0

∂ν2 G D(λ−µ, x, q)∂ν1 G D(λ−µ, q, y)ρ̇(q) dq dµ

=

∫
R

∫
∞

0
ei(λ−µ)tψ(µ)

∫
∂�0

∂ν2 ED(t, x, q)∂ν1 G D(λ−µ, q, y)ρ̇(q) dq dµ dt

=

∫
R

∫
∞

0

∫
∞

0
ei(λ−µ)(t+t ′)ψ(µ)

∫
∂�0

∂ν2 ED(t, x, q)∂ν1 SD(t ′, q, y)ρ̇(q) dq dµ dt dt ′

=

∫
∞

0

∫
∞

0
eiλ(t+t ′)ψ̂(t + t ′)

∫
∂�0

∂ν2 ED(t, x, q)∂ν1 SD(t ′, q, y)ρ̇(q) dq dt dt ′

=

∫
∞

0

∫
∂�0

eiλτ ψ̂(τ )

(∫ τ

0
∂ν2 ED(τ − t ′, x, q)∂ν1 SD(t ′, q, y)dt ′

)
ρ̇(q) dq dτ.

The inner integral is the same if we change the argument of ED to t ′ and that of SD to τ − t ′. We then
average the two, set x = y, integrate over �0 and use the angle addition formula for sin to obtain

δ Tr
∫

R

ψ̂(t)eiλt ED(t) dt = 1
2

∫
∂�0

∫
R

tψ̂(t)eiλt∂ν1∂ν2 SD(t, q, q)ρ̇(q) dt dq. (11)

The proof in the Neumann case is similar and left to the reader. We notice that in the above argument we
have commuted the operations δ and Tr:

δ Tr
∫

R

ψ̂(t)eiλt ED(t) dt = Tr δ
∫

R

ψ̂(t)eiλt ED(t) dt. (12)

To show this we first put Kε(x, y)=
∫

R
ψ̂(t)eiλt ED(t, x, y) dt . We then note that Kε(x, y) is a C1 curve

in C∞(�ε ×�ε), in the sense that (d/dε)ϕ∗ε Kε(x, y) is a continuous curve in C∞(�0×�0). Therefore
both traces in (12) are the integrals of their corresponding kernels on the diagonal and hence (12) is
equivalent to

d
dε

∣∣∣
ε=0

∫
�ε

Kε(x, x) dx =
∫
�0

d
dε

∣∣∣
ε=0

Kε(x, x) dx .

However we have to be careful since the domain of integration on the left hand side depends on ε and under
the variation it contributes an integral along the boundary. More precisely, since (d/dε)ϕ∗ε (Kε(x, x)) is a
continuous curve in C∞(�0) and hence uniformly bounded, by the dominated convergence theorem

d
dε

∣∣∣
ε=0

∫
�ε

Kε(x, x) dx = d
dε

∣∣∣
ε=0

∫
�0

ϕ∗ε (Kε(x, x))ϕ∗ε (dx)

=

∫
�0

d
dε

∣∣∣
ε=0

Kε(x, x)dx +
∫
∂�0

K0(q, q)ρ̇(q) dq.

But the second integral is zero in the Dirichlet case because K0(q, q)= 0 for all q ∈ ∂�0. (Note: this
term does not vanish in the Neumann case but it cancels out with a term which appears in the analogous
computations). This concludes the first proof of Lemma 1. �
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Second proof. This derivation is based on the Hadamard variational formulas for eigenvalues. When λ2
j (0)

is a simple eigenvalue (i.e., of multiplicity one), Hadamard’s variational formula for Dirichlet eigenvalues
of Euclidean domains states that if ε→�ε is C1 then

δ(λ2
j (ε))=−

∫
∂�0

(∂ν9 j (q))2ρ̇(q) dq,

where 9 j is an L2 normalized eigenfunction for the eigenvalue λ2
j (0). See [Garabedian 1964]. However

if the eigenvalue λ2
j (0) is multiple with multiplicity m(λ j (0)) and if {λ2

j,k(ε)}
m(λ j (0))
k=1 is the perturbed set

of eigenvalues, then we cannot assume that λ2
j,k(ε) are C1 in ε (although this is known to be true for

symmetric operators on finite-dimensional spaces. See, for example, Theorem II.6.8 of [Kato 1980]). But
as we shall see, the sum

∑m(λ j (0))
k=1 λ2

j,k(ε) is C1 in ε and there exists a Hadamard’s variational formula
for it which can be derived from the one for Green’s function. In fact we prove a slightly more general
statement. For the sake of convenience we let R̃Bε (z) = (−1Bε − z)−1 where z /∈Spec(−1Bε ) and we
use G̃ Bε (z, x, y) for its integral kernel. Now let g(z) be a holomorphic function on the right half-plane
<(z) > 0. We will show that

δ

m(λ j (0))∑
k=1

g(λ2
j,k(ε))=−g′(λ2

j (0))
m(λ j (0))∑

k=1

∫
∂�0

(∂ν9 j,k(q))2ρ̇(q) dq, (13)

where {9 j,k}
m(λ j (0))
k=1 is an orthonormal basis for the eigenspace of the multiple eigenvalue λ2

j (0). Lemma 1
follows easily from (13) by putting g(z)= cos(t

√
z):

δ Tr EB(t)= δ
∑

cos(tλ j,k)=−t
∑

j

sin(tλ j (0))
2λ j (0)

( m(λ j (0))∑
k=1

∫
∂�0

(∂ν9 j,k)
2ρ̇(q) dq

)
=

t
2

∫
∂�0

∂ν1∂ν2 SB(t, q, q)ρ̇(q) dq.

We have pushed the operation δ under the sum. This can be done because for a test function ϕ(t) the sums∑∫
cos(tλ j,k(ε))ϕ(t) dt and

∑∫
d
dε

cos(tλ j,k(ε))ϕ(t)dt

are (by Weyl’s law) uniformly convergent in ε.
It remains to prove (13). Let γ be a circle in C centered at λ2

j (0) such that no other eigenvalues of
−1B0 are in the interior of γ or on γ . We define

Tg,ε =−
1

2π i

∫
γ

g(z)R̃Bε (z) dz.

By the Cauchy integral formula, it is clear that at ε = 0 we have Tg,0 = g(Pλ2
j (0)
) where Pλ2

j (0)
is the

orthogonal projector on the eigenspace of λ2
j (0). Since the eigenvalues λ2

j,k(ε) vary continuously in ε, for
ε small these are the only eigenvalues of −1Bε in γ . Therefore Tg,ε is the total projector (the direct sum
of projectors) associated with {λ2

j,k(ε)}
m
k=1. The operator Tg,ε is C1 in ε. See, for example, Theorem II.5.4
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of [Kato 1980]. Although this theorem is stated for operators on finite dimensional spaces but the same
proof works for our case. It is basically because the resolvent (and so the Green’s function) is C1 in ε.
We now write

δ

m(λ j (0))∑
k=1

g(λ2
j,k(ε))= δ Tr(Tg,ε)=−Tr 1

2π i

∫
γ

g(z)δ R̃Dε
(z) dz

=−

∫
�0

∫
∂�0

∫
γ

1
2π i

g(z) ∂
∂ν2

G D(z, x, q) ∂
∂ν1

G D(z, q, x)ρ̇(q) dz dq dx

=−

∫
�0

∫
∂�0

∫
γ

1
2π i

g(z)
(λ2

j (0)−z)2

m∑
k=1

(∂ν9 j,k(q))2(9 j,k(x))2ρ̇(q) dz dq dx

=−g′(λ2
j (0))

m(λ j (0))∑
k=1

∫
∂�0

(∂ν9 j,k |∂�0)
2ρ̇(q) dq.

We leave it to the reader to show that, on the first line one can commute δ with Tr by means of the
dominated convergence theorem.

There exist similar Hadamard variational formulas in the Neumann case. When the eigenvalue is
simple, we have

δ(λ2
j )=

∫
∂�0

(
|∇

T
q (9 j (q))|2− λ2

j (0)(9 j (q))2
)
ρ̇(q) dq, (14)

For a multiple eigenvalue we sum over the expressions over an orthonormal basis of the eigenspace. The
result does not depend on a choice of orthonormal basis. Similar computation using (14) follows to show
Lemma 1 for the Neumann case. �

2. Proof of Theorem 2

We now study the singularity expansion of δ Tr cos(t
√
−1B) and prove Theorem 2. At first sight, one

could do this in two ways: by taking the variation of the spectral side of the formula, or by taking the
variation of the singularity expansion. It seems simpler and clearer to do the former since we do not
know how the invariant tori of the integrable elliptical billiard deform under an isospectral deformation.
For example, one difficulty in taking the variation of the singularity expansion is that we do not know
whether the fixed point set of an isospectral deformation �ε of domain �0 (satisfying the conditions of
Theorem 2) is necessarily clean. Hence, even though we know that the wave trace of �ε has the same
type of singularity as the one for �0, but we cannot apply the method of stationary phase and compute
the principal term in the singularity expansion of the wave trace of �ε .

In this section we will drop the subscript 0 in �0 and we assume � is a smooth convex domain.
The variational formula for δ Tr cos(t

√
−1B) is given in Lemma 1. In the Dirichlet case, by (4),

Tr∂� ρ̇ Sb
D = π∗ 1

∗ρ̇ (r1r2 Nν1 Nν2 SD(t, x, y)), (15)
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where Nν is any smooth vector field in � extending ν, and where the subscripts indicate the variables on
which the operator acts. In the Neumann case by (4),

Tr∂� ρ̇ Sb
N = π∗ 1

∗ρ̇
(
(∇T

1 ∇
T
2 r1r2+ r1r2 1x)SN (t, x, y)

)
. (16)

Here, 1 : ∂�→ ∂�× ∂� is the diagonal embedding q→ (q, q) and π∗ (the pushforward of the natural
projection π : ∂�×R→ R) is the integration over the fibers with respect to the surface measure dq.
The duplication in notation between the Laplacian and the diagonal is regrettable, but both are standard
and should not cause confusion. Since SB(t, x, y) is microlocally a Fourier integral operator near the
transversal periodic reflecting rays of FT , it will follow from (15) that the trace is locally a Fourier integral
distribution near t = T .

We are assuming that the set of periodic points of the billiard map corresponding to space-time billiard
trajectories of length T ∈ Lsp(�) is a submanifold FT of B∗∂�. We thus fix T ∈ Lsp(�) consisting
only of periodic reflecting rays, that is, we assume T 6= m|∂�| (|∂�| being the perimeter) for m ∈ Z.
In order to study the singularity of the boundary trace near a component FT of the fixed point set, we
construct a pseudo-differential cutoff χT = χT (t, Dt , q, Dq) ∈ 9

0(R× ∂�) whose complete symbol
χT (t, τ, q, ζ ) has the form χT (q, ζ/τ) with χT (y, ζ ) supported in a small neighborhood of the fixed
point set FT ⊂ B∗∂�, equals one in a smaller neighborhood, and in particular vanishes in a neighborhood
of the glancing directions in S∗∂� = ∂(B∗∂�). Since the symbol of χT is independent of t we will
instead use χT (Dt , q, Dq). We may assume that the support of the cutoff is invariant under the billiard
map β. Therefore we need to study the operator

π∗1
∗ ρ̇ χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb

B, (17)

and compute its symbol. To do this we first study the operators r and SB(t) and review their basic
properties. Next we study the composition

χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B,

and compute its symbol. Finally in Lemma 7 we take composition with π∗1∗ ρ̇ and calculate the symbol
of (17).

2.1. FIOs and their symbol. We recall that the principal symbol σI of a Fourier integral distribution

I =
∫

RN
eiϕ(x,θ)a(x, θ) dθ, I ∈ I m(M,3ϕ),

of order m is defined in terms of the parametrization

ιϕ : Cϕ = {(x, θ) : dθϕ = 0} → (x, dxϕ) ∈3ϕ ⊂ T ∗M

of the associated Lagrangian 3ϕ . It is a half-density on 3ϕ given by σI = (ιϕ)∗(a0|dCϕ |
1/2), where a0 is

the leading term of the classical symbol a ∈ Sm+n
4−

N
2 (M ×RN ), n = dim M and

dCϕ :=
dc

|D(c, ϕ′θ )/D(x, θ)|
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is the Gelfand–Leray form on Cϕ , where c is a system of coordinates on Cϕ . For notation and background
we refer to [Hörmander 1985b, Chapter XXV]. When I (x, y) ∈ I m(X ×Y,3) is the kernel of an FIO it
is very standard to use the symplectic form ωX −ωY on X × Y and define

ιϕ : Cϕ = {(x, y, θ) : dθϕ = 0} → (x, dxϕ, y,−dyϕ) ∈3ϕ ⊂ T ∗X × T ∗Y.

We will call 3ϕ the canonical relation of I (x, y).

2.2. The restriction operator r as an FIO. The restriction r to the boundary lies in I 1/4(∂�×Rn, 0∂�),
with the canonical relation

0∂� =
{
(q, ζ, q, ξ) ∈ T ∗∂�× T ∗∂�Rn

; ξ |Tq∂� = ζ
}
. (18)

The adjoint then satisfies r∗ ∈ I 1/4(Rn
× ∂�,0∗∂�), where

0∗∂� =
{
(q, ξ, q, ζ ) ∈ T ∗∂�Rn

× T ∗∂�; ξ |Tq∂� = ζ
}
.

Here, T ∗∂�Rn is the set of covectors to Rn with footpoint on ∂�. We parametrize 0∂� (18) by T ∗+∂� (�),
the inward pointing covectors, using the Lagrange immersion

ι0∂�(q, ξ)= (q, ξ |Tq (∂�), q, ξ). (19)

To prove these statements, we introduce Fermi normal coordinates (q, xn) along ∂�, that is, x=expq(xnνq)

where νq is the interior unit normal at q . Let ξ= (ζ, ξn)∈T ∗(q,xn)
Rn denote the corresponding symplectically

dual fiber coordinates. In these coordinates, the kernel of r is given by

r(q, (q ′, x ′n))= Cn

∫
Rn

ei〈q−q ′,ζ 〉−i x ′nξn dξndζ. (20)

The phase ϕ(q, (q ′, x ′n), (ζ, ξn)) = 〈q − q ′, ζ 〉 − x ′nξn is nondegenerate and its critical set is Cϕ =
{(q, q ′, x ′n, ξn, ζ ); q ′ = q, x ′n = 0}. The Lagrange map ιϕ : (q, q, 0, ξn, ζ )→ (q, ζ, q, ζ, ξn) embeds
Cϕ → T ∗∂�× T ∗Rn and maps onto 0∂�. The adjoint kernel has the form K ∗(x, q) = K (q, x) and
therefore has a similar oscillatory integral representation. It is clear from ((20)) that the order of r as an
FIO is 1

4 . Also, in the parametrization (19), the principal symbol of r is σr = |dq ∧ dζ ∧ dξn|
1/2.

2.3. Background on parametrices for SB(t). We first review the Fourier integral description of EB(t),
SB(t) microlocally near transversal reflecting rays. This is partly for the sake of completeness, but mainly
because we need to compute their principal symbols (and related ones) along the boundary. Although
the principal symbols are calculated in the interior in [Guillemin and Melrose 1979b, Proposition 5.1;
Marvizi and Melrose 1982, Section 6; Petkov and Stoyanov 1992, Section 6], the results do not seem
to be stated along the boundary (i.e., the symbols are not calculated at the boundary). The statements
we need are contained in Theorem 3.1 of [Chazarain 1976] (and its proof), and we largely follow its
presentation.

We need to calculate the canonical relation and principal symbol of the wave group, its derivatives and
their restrictions to the boundary. We begin by recalling that the propagation of singularities theorem for
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the mixed Cauchy–Dirichlet (or Neumann) problem for the wave equation states that the wave front set
of the wave kernel satisfies

WF(SB(t, x, y))⊂
⋃
±

3±,

where 3± = {(t, τ, x, ξ, y, η) : (x, ξ) = 8t(y, η), τ = ±|η|y} ⊂ T ∗(R×�×�) is the graph of the
generalized (broken) geodesic flow, that is, the billiard flow 8t . For background we refer to [Guillemin
and Melrose 1979b; Petkov and Stoyanov 1992; Chazarain 1973; 1976; Hörmander 1985a, Theorem
23.1.4; 1985b, Proposition 29.3.2]. For the application to spectral rigidity, we only need a microlocal
description of wave kernels away from the glancing set, that is, in the hyperbolic set microlocally near
periodic transversal reflecting rays. In these regions, there exists a microlocal parametrix due to Chazarain
[1976], which is more fully analyzed in [Guillemin and Melrose 1979b; Petkov and Stoyanov 1992] and
applied to the ellipse in [Guillemin and Melrose 1979a].

The microlocal parametrices for EB and SB are constructed in the ambient space R×Rn
×Rn . Since

EB=d SB/dt it suffices to consider the latter. Then there exists a Fourier integral (Lagrangian) distribution,

S̃B(t, x, y)=
∞∑

j=−∞

S j (t, x, y), with S j ∈ I−
1
4−1(R×Rn

×Rn, 0
j
±),

which microlocally approximates SB(t, x, y) modulo a smooth kernel near a transversal reflecting ray.
The sum is locally finite hence well-defined. The canonical relation of S̃B is contained in a union

0 =
⋃
±, j∈Z

0
j
± ⊂ T ∗(R×Rn

×Rn)

of canonical relations 0 j
± corresponding to the graph of the broken geodesic flow with j reflections.

Notice we let j ∈ Z which is different from [Chazarain 1976] where j goes from 0 to∞ and where the
two graphs 0 j

± and 0− j
± are combined.

We know discuss these graphs more precisely. We first recall some useful notation from [Chazarain
1976] with a slight adjustment. We have two Hamiltonian flows g±t corresponding to the Hamiltonians
±|η|. For (y, η) in T ∗� or (y, η) in T ∗∂�Rn where η is transversal to ∂� and is pointing inward, we define

t1
±
(y, η)= inf

{
t > 0 : πg±t(y, η) ∈ ∂�

}
,

t−1
±
(y, η)= sup

{
t < 0 : πg±t(y, η) ∈ ∂�

}
.

In this notation we have t−1
± =−t1

∓
. We define t j

± inductively for j > 0 (resp. j < 0) to be the time of
j-th reflection for the flow g±t as t increases (resp. decreases). Then we put

λ1
±
(y, η)= g±t1

±(y,η)(y, η) ∈ T ∗∂�Rn,

λ−1
±
(y, η)= g±t−1

± (y,η)(y, η) ∈ T ∗∂�Rn.

Next we define ̂λ1
±(y, η) to be the reflection of λ1

±
(y, η) at the boundary. That is, it has the same

foot point y and the same tangential projection as λ1
±
(y, η) but opposite normal component. Similarly
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we define ̂
λ−1
± (y, η). Flowing ̂λ1

±(y, η) (resp. ̂
λ−1
± (y, η)) by g±t as t increases (resp. decreases) and

continuing the same procedure we get t j
±(y, η) and λ j

±(y, η) for all j ∈ Z. We also set T j
± =

∑ j
k=1 tk

±
for

j > 0 and T j
± =

∑ j
k=−1 tk

±
for j < 0.

The canonical graph 0 j
± can now be written as

0
j
± =

{{
(t, τ, g±t(y, η), y, η) : τ =±|η|y

}
j = 0,{

(t, τ, g±(t−T j
±(y,η)) ̂

λ
j
±(y, η), y, η) : τ =±|η|y

}
j ∈ Z, j 6= 0.

(21)

For each j ∈ Z,
⋃
±
0

j
± is the union of two canonical graphs, which we refer to as its branches or

components (see Figure 3.2 of [Guillemin and Melrose 1979b] for an illustration). These two branches
arise because

SB(t)=
1

2i
√
−1B

(
ei t
√
−1B − e−i t

√
−1B

)
is the sum of two terms whose canonical relations are respectively the graphs of the forward/backward
broken geodesic flow and which correspond to the two halves τ > 0, τ < 0 of the characteristic variety
τ 2
− |η|2 = 0 of the wave operator.

2.3.1. Symbol of SB(t, x, y) in the interior. In the boundaryless case of [Duistermaat and Guillemin
1975], the half-density symbol of ei t

√
−1g is a constant multiple (Maslov factor) of the canonical graph

volume half-density σcan = |dt ∧ dy ∧ dη|1/2 on 0+ in the graph parametrization (t, y, η)→ 0+ =

(t, |η|g, gt(y, η), y, η). In the boundary case for EB(t) the symbol in the interior is computed in Corollary
4.3 of [Guillemin and Melrose 1979b] as a scalar multiple of the graph half-density. It is a constant
multiple of the graph half-density

σcan,± = |dt ∧ dy ∧ dη|1/2 (22)

in the obvious graph parametrization of 0 j
± in (21); the constant equals 1

2 in the Neumann case and
1
2(−1) j in the Dirichlet case. However in [Guillemin and Melrose 1979b] the symbols are not calculated
at the boundary.

Remark. We will have four modes of propagation at the boundary: in addition to the two ± branches
corresponding to τ > 0 and τ < 0, at the boundary, the boundary condition requires two modes of
propagation corresponding to the two “sides” of ∂�. To illustrate this we first discuss a simple model of
the upper half space.

2.3.2. Upper half space; a local model for one reflection. Let Rn
+
= {(x ′, xn) ∈ Rn−1

×R : xn ≥ 0} be
the upper half space. Denote by S0(t, x, y) the kernel of sin(t

√
−1)/

√
−1 of Euclidean Rn . Then{

SD(t, x, y)= S0(t, x, y)− S0(t, x, y∗),

SN (t, x, y)= S0(t, x, y)+ S0(t, x, y∗),

where y∗ ∈ Rn
−

is the reflection of y through the boundary Rn−1
×{0}. Indeed, y→ y∗ is an isometry,

so both kernels satisfy �EB = 0 (in either the x or y variable) and have the correct initial conditions
since y∗ /∈ Rn

+
. Further they satisfy the correct boundary conditions: it is clear that SD(t, x, y) = 0 if
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y ∈ Rn−1
+ × {0} since y∗ = y for such points. Also, if xn = 0 then SD(t, x, y) = 0 since SD(t, x, y) is

a function of the distance |x − y| and |x − y| = |x − y∗| if xn = 0. Similarly, the normal derivative is
∂/∂yn , so the normal derivatives cancel for SN (t, x, y) when yn = 0. Also, S0(t, x, y∗) = S0(t, x∗, y)
and S0(t, x, y) = S0(t, y, x), so the same calculation applies in the x variable. The canonical relation
associated to SN and SD is the union of the canonical relations of S0 and of S∗0 = S0(t, x, y∗). More
precisely, by our notation in (21),

WF(SB(t, x, y))⊂ 00
±
∪01
±
∪0−1
±
.

Note that this example is asymmetric in past and future: the forward trajectory may intersect boundary,
but then backward one does not. Also, in this example for j > 1 and j <−1 the graphs 0 j

± are empty.

2.3.3. Symbol of SB(t, x, y) at the boundary. Since we want to restrict kernels and symbols to the
boundary, we introduce further notation for the subset of the canonical relations lying over boundary
points. Following [Chazarain 1976], we denote by

A0
±
= {(0, τ, y, η, y, η) : τ =±|η|y}

the subset of 00
±

with t = 0. Under the flow ψ t
±

of the Hamiltonian τ ± |ξ |x on R×Rn , it flows out to
the graph 00

±
(denoted by C0

±
in [loc. cit., (2.11)]). One then defines A1

±
⊂ 00

±
(resp. A−1

± ⊂ 0
0
±

) as the
subset lying over R+× ∂�×� (resp. R−× ∂�×�). Still following Chazarain, we denote by ξ→ ξ̂ the
reflection map for (q, ξ) ∈ T ∗q Rn, q ∈ ∂�. That is, ξ̂ has the same tangential projection as ξ but opposite
normal component. We then have

01
±
=

⋃
t∈R

ψ t
±

Â1
±

and 0−1
±
=

⋃
t∈R

ψ t
±

Â−1
±
,

as the flow out under the Euclidean space-time geodesic flow of Â1
±

and Â−1
± . Thus, along the boundary,

for t > 0 (resp. t < 0) A1
±

and Â1
±

(resp. A−1
± and Â−1

± ) both lie in the canonical relation of EB(t), SB(t).
In a similar way one defines A2

±
to be the subset of 01

±
lying over R+×∂�×� and Â2

±
to be its reflection.

Then also A2
±
∪ Â2
±

lies in the canonical relation. Similarly one defines A j
± and Â j

± for all j ∈ Z.

Remark. Since we are interested in the singularity of the trace at t = T > 0 we will only consider the
graphs 0 j

± for j ≥ 0. Regardless of this, because δ Tr EB(t) is even in t it has the same singularity at
t = T and t =−T .

The symbols of EB(t) and SB(t) are half-densities on the associated canonical relations, and therefore
are sums of four terms at boundary points, that is, there is a contribution from each of A j

± and Â j
±. In the

interior, there is only a contribution from the ± components.
The following lemma gives formulas for the principal symbol of SB (and therefore EB) on 0 j

± and its
restriction to 0∂� ◦ (A

j
± ∪ Â j

±).

Lemma 2. Let e± be the principal symbol of S̃B when restricted to 0± =
⋃

j 0
j
±. Let σr be the principal

symbol of the boundary restriction operator r .
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1. In the interior, on 0 j
±, up to Maslov factors we have:

Dirichlet case: e± =
(−1) j

2τ
σcan,± =±

(−1) j

2|η|
σcan,±.

Neumann case: e± =
1

2τ
σcan,± =±

1
2|η|

σcan,±.

2. At the boundary, on 0∂� ◦ A j
± = 0∂� ◦ Â j

± we have:

Dirichlet case: σr ◦ e±(t
j
±,±τ,

̂
λ

j
±(y, η), y, η)=−σr ◦ e±(t

j
±,±τ, λ

j
±(y, η), y, η).

Neumann case: σr ◦ e±(t
j
±,±τ,

̂
λ

j
±(y, η), y, η)= σr ◦ e±(t

j
±,±τ, λ

j
±(y, η), y, η).

Proof. These formulas are obtained from the transport equations in [Chazarain 1976, (b′0)–(e
′

0), p. 175].
We now sketch the proof.

The transport equations for the symbols of EB, SB determine how they propagate along broken
geodesics. As in the boundaryless case, the principal symbol has a zero Lie derivative, LHτ+|ξ |σE = 0,
in the interior along geodesics. The important point for us is the rule by which they are reflected at the
boundary. Let σB be the principal symbol of the boundary restriction operator B defined in (3) (B = r
under Dirichlet and B = r N under Neumann boundary conditions) and let σ0 be the principal symbol of
the restriction operator to t = 0. Then:

(b0) : (d2/dt2
−1B)S̃B ∼ 0 =⇒ (b′0) : Lψ t

±
e± = 0;

(c0) : S̃B |t=0 ∼ 0 =⇒ (c′0) : σ0 ◦ e+(0,τ, y,η, y,η)+ σ0 ◦ e−(0,−τ, y,η, y,η)= 0;

(d0) :
d
dt

∣∣∣
t=0

S̃B ∼ δ(x − y) =⇒ (d ′0) : τ
(
σ0 ◦ e+(0,τ, y,η, y,η)− σ0 ◦ e−(0,−τ, y,η, y,η)

)
= σI ;

(e0) : BS̃B ∼ 0 =⇒ (e′0) : σB ◦ e± = σB ◦
(
e±|A j

±

)
+ σB ◦

(
e±| Â j

±

)
= 0.

(23)

Here σI is the principal symbol of the identity operator. The implication (b0) H⇒ (b′0) follows, for
example, from Theorem 5.3.1 of [Duistermaat and Hörmander 1972]. The other implications are obvious.
From (c′0) and (d ′0) we get

(σ0 ◦ e±)(y, η, y, η)= (−1) j

2τ
σI on T ∗�.

But by (b′0), the symbol e± is invariant under the flow ψ t
±

and therefore the first part of the lemma follows
but only on 00

±
. The second part of the lemma follows from (e′0). The first term of (e′0) is known from the

previous transport equations. Hence (e′0) determines the “reflected symbol” at the j-th impact time and
impact point. In the Dirichlet case, B is just r the restriction to the boundary and so the reflected principal
symbol is simply the opposite of the direct principal symbol. In the Neumann case, B is the product of
the symbol 〈λ1

±
(y, η), νy〉 of the inward normal derivative times restriction r . The reflected symbol thus
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equals the direct symbol since the sign is canceled by the sign of the 〈 ̂λ1
±(y, η), νy〉 = −〈λ

1
±
(y, η), νy〉

factor. Thus, the volume half-density is propagated unchanged in the Neumann case and has a sign change
at each impact point in the Dirichlet case. Thus on 0 j

± and after j reflections, the Dirichlet wave group
symbol is (−1) j times 1/2τ times the graph half-density and the Neumann symbol is 1/2τ times the
graph half-density. �

2.4. χT (Dt, q′, Dq′)χT (Dt, q, Dq)Sb
B(t, q′, q) is a Fourier integral operator.

Lemma 3. We have

χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B(t, q ′, q) ∈ I (1/2)+1−(1/4)(R× ∂�× ∂�,0∂,±).

Here, 0∂,± =
⋃

j∈Z 0
j
∂,±, with

0
j
∂,± :=

{
(t, τ, q ′, ζ ′, q, ζ ) ∈ T ∗(R× ∂�× ∂�) : ∃ ξ ′ ∈ T ∗q ′R

n, ξ ∈ T ∗q Rn
:

(t, τ, q ′, ξ ′, q, ξ) ∈ 0 j
±, ξ

′
|Tq′∂�

= ζ ′, ξ |Tq∂� = ζ
}
.

Proof. We only show the proof in the Dirichlet case. The Neumann case is very similar. The kernel
χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb

D(t, q ′, q) for fixed t is the Schwartz kernel of the composition

χT ◦ (r N ) ◦ SD(t) ◦ (N ∗ r∗) ◦χ∗T : L
2(∂�)→ L2(∂�), (24)

where r∗ is the adjoint of r : H 1/2(�)→ L2(∂�).
To prove the lemma, we use that r is a Fourier integral operator with a folding canonical relation, and

that the composition (24) is transversal away from the tangential directions to ∂�, where SB(t) fails to
be a Fourier integral operator. The cutoff χT removes the part of the canonical relation near the fold
locus and near the normal directions N ∗∂� (where the composition (r N ) ◦ SD(t) ◦ (N ∗ r∗) fails to be
well-behaved as an FIO), hence the composition is a standard Fourier integral operator.

By the results cited above in [Chazarain 1976; Guillemin and Melrose 1979b; Petkov and Stoyanov
1992; Marvizi and Melrose 1982], microlocally away from the gliding directions, the wave operator SB(t)
is a Fourier integral operator associated to the canonical relations 0 j

±. Since 0 j
± is a union of graphs of

canonical transformations, its composition (away from the normal bundle N ∗∂�), with the canonical
relation of r D

:= r N is automatically transversal. The further composition with the canonical relation of
r D∗ is also transversal. Hence, the composition is a Fourier integral operator with the composed wave
front relation and the orders add. Taking into account that we have two boundary derivatives, we need to
add 1

2 to the order.
To determine the composite relation, we note that

8± : R× T ∗∂�Rn
→ T ∗R× T ∗�× T ∗∂�Rn,

8±(t, q, ζ, ξn) := (t,±|ζ + ξn|,8
t(q, ζ, ξn), q, ζ, ξn)

(25)

parametrizes the graph of the (space-time) billiard flow with initial condition on T ∗∂�Rn . Here, ζ ∈ T ∗∂�
and ξn ∈ N ∗

+
∂�, the inward pointing (co)normal bundle. 8± is a homogeneous folding map with folds
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along R× T ∗∂� (see, e.g., [Hörmander 1985a] for background). It follows that SD(t) ◦ (N ∗r∗)χ∗T is a
Fourier integral operator of order one associated to the canonical relation{

(t,±|ξ |,8t(q, ξ), q, ξ |T ∗∂�
}
⊂ T ∗(R×�× ∂�),

and is a local canonical graph away from the fold singularity along T ∗∂�. Composing on the left by
the restriction relation produces a Fourier integral operator with the stated canonical relation. The two
normal derivatives N of course do not change the relation. �

2.5. Symbol of χT (Dt, q′, Dq′)χT (Dt, q, Dq)Sb
B(t, q′, q). The next step is to compute the principal

symbols of the operators in Lemma 3.
To state the result, we need some further notation. We denote points of T ∗∂�Rn by (q, 0, ζ, ξn) as

above, and put τ =
√
|ζ |2+ ξ 2

n . We note that ξn is determined by (q, ζ, τ ) by ξn =
√
τ 2− |ζ |2, since it is

inward pointing. The coordinates q, ζ are symplectic, so the symplectic form on T ∗∂� is dσ = dq ∧ dζ.
Also, below when we write |β j (q, ζ/τ)| we mean the norm of the fiber component of β j (q, ζ/τ) or
when we write τβ j (q, ζ/τ) we mean that τ is multiplied in the fiber component only. We now relate the
graph of the billiard flow (25) with initial and terminal point on the boundary to the billiard map (after j
reflections) by the formula

8T j (q, 0, ζ, ξn)=
(
τβ j

(
q, ζ
τ

)
, ξ ′n(q, ζ, ξn)

)
, (26)

where ξ ′n = τ
√

1−
∣∣β j (q, ζ/τ)

∣∣2. We also put

γ (q, ζ, τ )=

√
1−
|ζ |2

τ 2 and γ1(q, ζ )=
√

1− |ζ |2. (27)

It is the homogeneous (of degree zero) analogue of the function denoted by γ in [Hassell and Zelditch
2004].

Further, we parametrize the canonical relation 0 j
∂,+ of Lemma 3 using the billiard map β and its

powers. We define the j -th return time T j (q, ξ) of the billiard trajectory in a codirection (q, ξ) ∈ T ∗q � to
be the length the j-link billiard trajectory starting at (q, ξ) and ending at a point 8T j (q,ξ)(q, ξ) ∈ T ∗∂��.
It is the same as T j

+(q, ξ). Then we define

ι∂, j,+ : R+× T ∗∂�→ T ∗(R× ∂�× ∂�),

ι∂, j,+(τ, q, ζ )=
(

T j (q, ξ(q, ζ, τ )), τ,
(
τβ j

(
q, ζ
τ

))
, q, ζ

)
, (28)

where
ξ(q, ζ, τ )= ζ + ξnνq , |ζ |

2
+ |ξn|

2
= τ 2.

The map (28) parametrizes 0 j
∂,+ of Lemma 3.

Proposition 4. In the coordinates (τ, q, ζ ) ∈ R+× T ∗∂� of (28), the principal symbol of

χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B(t, q ′, q)
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on 0 j
∂,+ is as follows:

• in the Dirichlet case:

σ j,+(q, ζ, τ )= C D
j,+χT

(
q, ζ
τ

)
χT

(
β j
(

q, ζ
τ

))
γ 1/2(q, ζ, τ )γ 1/2

(
τβ j

(
q, ζ
τ

)
, τ
)
τ |dq ∧ dζ ∧ dτ |1/2;

• in the Neumann case:

σ j,+(q, ζ, τ )= C N
j,+χT

(
q, ζ
τ

)
χT

(
β j
(

q, ζ
τ

))
γ−1/2(q, ζ, τ )γ−1/2

(
τβ j

(
q, ζ
τ

)
, τ
)

×

(〈
ζ, β j

(
q, ζ
τ

)〉
− τ

)
|dq ∧ dζ ∧ dτ |1/2, (29)

where the C B
j,+ are certain constants (Maslov factors).

Proof. We only show the computations in the Dirichlet case. The Neumann case is very similar and uses
(4) which will produce an additional factor of τ 〈ζ, β j (q, ζ/τ)〉− τ 2.

By Lemma 2, the principal symbol of SB(t) consists of four pieces at the boundary, one for each mode
A j
±, Â j

±. The symbol for the − mode of propagation is equal to that for the + mode of propagation under
the time reversal map ξ →−ξ . Further by part 2 of Lemma 2, the symbol at the boundary (adjusted by
taking normal derivatives in the Dirichlet case) is invariant under the reflection map ξ→ ξ̂ at the boundary
due to the boundary conditions. Hence we only calculate the A j

+ component and use the invariance
properties to calculate the symbol on the other components.

We therefore assume that the symbol of SB is 1/2τ times the graph half-density |dt ∧ dx ∧ dξ |1/2

on 0 j
+. We need to compose this graph half-density on the left by the symbol ξn |dq ∧ dζ ∧ dξn|

1/2 of
r D
= r N , and on the right by the symbol ξ ′n |dq ′ ∧ dζ ′ ∧ dξ ′n|

1/2 of the adjoint r D∗
= N ∗r∗. Therefore

we compute the restriction of the 0 j
+ component onto 0 j

∂,+ and we remember to multiply the symbol by
ξnξ
′
n = τ

2γ (q, ζ, τ )γ (τβ j (q, ζ
τ
), τ )) and also by 1/2τ at the end.

It is simplest to use symbol algebra and pullback formulae to calculate it [Duistermaat and Guillemin
1975]. One can also try to compute the symbol of this composition directly by using the oscillatory
integral representations of these operators but that computation is more complicated. The composition is
equivalent to the pullback of the symbol under the pullback

0
j
∂ = (i∂�× i∂�)∗0 j , (30)

of the canonical relation of the SB by the canonical inclusion map

i∂�× i∂� : R× ∂�× ∂�→ R×Rn
×Rn.

We recall that a map f : X→ Y is transversal to W ⊂ T ∗Y if d f ∗η 6= 0 for any η ∈W . If f : X→ Y is
smooth and 0 ⊂ T ∗Y is Lagrangian, and if f and π : T ∗Y → Y are transverse then f ∗0 is Lagrangian.
Since

(i∂�× i∂�)∗(t, τ,8t(q, ξ), q, ξ)= (t, τ,8t(q, ξ)|T ∂�, q, ξ |T ∂�)

at a point over (i∂�× i∂�)(t, q ′, q), and since τ = |ξ | 6= 0, it is clear that i∂�× i∂� is transversal to π .
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We now claim that on the pullback of 0 j , using the parametrization (28),

(i∂�× i∂�)∗|dt ∧ dx ∧ dξ |1/2 = γ−1/2(q, ζ, τ )γ−1/2
(
τβ j

(
q,
ζ

τ

)
, τ
)
|dq ∧ dζ ∧ dτ |1/2, (31)

where γ is defined in (27). To see this, we use the pullback diagram

0 j
≺

π
F

α
� (i∂�× i∂�)∗0 j

⊂ T ∗(R× ∂�× ∂�)

T ∗(R×Rn
×�)

i

g
≺
π

N∗(graph(i∂�× i∂�))

π

g

Here, F is the fiber product, N∗ graph(i∂� × i∂�) is the conormal bundle to the graph, and the map
α : F→ (i∂�× i∂�)∗0 j is the natural projection to the composition [Duistermaat and Guillemin 1975].
Since the composition is transversal, Dα is an isomorphism [loc. cit.]. The graph of i∂�× i∂� is the set
{(t, q, q ′, t, q, q ′) : (t, q, q ′)∈R×∂�×∂�} and its conormal bundle is (in the Fermi normal coordinates),

N∗(graph(i∂�× i∂�))=
{
(t, τ, q, ζ, q ′, ζ ′, t,−τ, q,−ζ+ξn, q ′,−ζ ′+ξ ′n), (q, ζ, ξn), (q ′, ζ ′, ξ ′n) ∈ T ∗∂�Rn

}
⊂ T ∗(R× ∂�× ∂�×R×Rn

×Rn).

The half-density produced by the pullback diagram takes the exterior tensor product of the canonical
half-density ∣∣dt ∧ dτ ∧ dq ∧ dζ ∧ dξn ∧ dξ ′n ∧ dq ′ ∧ dζ ′

∣∣1/2
on N∗(graph(i∂�× i∂�)) and

|dt ′ ∧ dx ′ ∧ dξ ′|1/2 on 0 j
⊂ T ∗(R×Rn

×Rn)

at a point of the fiber product (where the T ∗(R×Rn
×Rn) components are equal) and divides by the

canonical half-density ∣∣dt ′ ∧ dτ ′ ∧ dq ′ ∧ dζ ′ ∧ dx ′n ∧ dξ ′n ∧ dx ′ ∧ dξ ′
∣∣1/2

on the common T ∗R× T ∗Rn
× T ∗Rn component.

Since τ ′= τ , the factors of |dt ′∧dτ ′∧dq ′∧dζ ′∧dξ ′n∧dx ′∧dξ ′|1/2 cancel in the quotient half-density,
leaving the half-density

|dt ∧ dq ∧ dζ ∧ dξn|
1/2

|dx ′n|1/2

on the composite. The numerator is a half-density on R× T ∗∂�Rn . We write it more intrinsically in the
following lemma. Note that it explains the first of our two γ factors.

Lemma 5. Let 8=8+ be the parametrization (25). Then

|dt ∧ dq ∧ dζ ∧ dξn|
1/2
=

∣∣∣∣ ξn√
|ζ |2+ ξ 2

n

∣∣∣∣−1/2 ∣∣8∗�T ∗Rn
∣∣1/2

as half-densities on R× T ∗∂�Rn .
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Proof. We have

8∗�T ∗Rn

dt ∧ dq ∧ dζ ∧ dξn
=�T ∗Rn

( d
dt
8t(q, ζ, ξn), d8t ∂

∂q j
, d8t ∂

∂ζ j
, d8t ∂

∂ξn

)
=�T ∗Rn

(
Hg,

∂

∂q j
,
∂

∂ζ j
,
∂

∂ξn

)
=

ξn√
|ζ |2+ ξ 2

n

�T ∗Rn

(
∂

∂xn
,
∂

∂q j
,
∂

∂ζ j
,
∂

∂ξn

)
=

ξn√
|ζ |2+ ξ 2

n

,

since
d
dt
8t(q, η, ξn)= Hg =

ξn√
|ζ |2+ ξ 2

n

∂

∂xn
+ · · ·

is the Hamilton vector field of g =
√

g2, g2
= ξ 2

n + (g
′)2 where · · · represent vector fields in the span

of ∂/∂q j , ∂/∂ζ j , ∂/∂ξn . Finally, we use that d8t is a symplectic linear map and that q, xn, ζ, ξn are
symplectic coordinates. Note that we have evaluated the symplectic volume form at the domain point, not
the image point. �

Next we consider the points in the image of 8 on R× T ∗∂�Rn where x ′n = 0 and take the quotient by
|dx ′n|

1/2, resulting in a half-density on 0 j
∂ . The next result explains the origin of the second γ factor.

Lemma 6. In the subset0 j
∂ ⊂8(R×T ∗∂�Rn)where x ′n=0 and where t=T j , we have (in the parametrizing

coordinates (28)),

|dt ∧ dq ∧ dζ ∧ dξn|
1/2

|dx ′n|1/2
=
∣∣((β j )∗γ−1) dq ∧ dη∧ dτ

∣∣1/2 .
Proof. By Lemma 5, it suffices to rewrite

|dx ′n|
−1/2 ∣∣8∗�T ∗Rn

∣∣1/2
in the coordinates (τ, q, η) of ι∂, j,+ in (28). We observe that x ′n =8

∗xn . Hence

|dx ′n|
−1/2∣∣8∗�T ∗Rn

∣∣1/2 = ∣∣∣∣8∗�T ∗Rn

|dxn|

∣∣∣∣1/2= ∣∣((β j )∗γ−1) dq ∧ dζ ∧ dτ
∣∣1/2.

In the last equality, we have used (26), the equality
�T ∗Rn

|dxn|
= |dq ∧ dζ ∧ dξn|, and the fact that β is

symplectic. Indeed, by (26),

8∗(dq ∧ dζ ∧ dξn)=
(
τ(β j )∗

(
dq ∧ d ζ

τ

)
∧8∗dξn

)
=

(
τ(β j )∗

(
dq ∧ d ζ

τ

)
∧8∗d

√
τ 2− |ζ |2

)
= dq ∧ dζ ∧8∗ τdτ√

τ 2−|ζ |2
=
(
(β j )∗γ−1) dq ∧ dζ ∧ dτ.

Note that τ(β j )∗(dq ∧ d ζ
τ
)= dq ∧ dζ |β j (q,ζ ). �

Combining Lemma 6 with Lemma 5 completes the proof of (31) and Proposition 4. �
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2.6. Trace along the boundary: composition with π∗1∗. We now take the trace along the boundary of
this operator. Analogously to [Duistermaat and Guillemin 1975; Guillemin and Melrose 1979a; Marvizi
and Melrose 1982], we define 1 : R× ∂�→ R× ∂�× ∂� to be the diagonal embedding and π∗ to be
integration over ∂�.

Lemma 7. If the fixed point sets of period T of βk are clean for all k and form a submanifold FT of
B∗∂� of dimension d (with connected components 0), then

π∗1
∗ρ̇ χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb

B(t, q ′, q) ∈ I (d/2)+(1/2)+1−(1/4)(R, T ∗T R),

where
T ∗T R=

⋃
±
3T,± =

⋃
±
{(T,±τ) : τ ∈ R+},

and its principal symbol on 3T,± is given by

c±τ (d+2)/2
√

dτ ,

where

c± =
∑
0⊂FT

C±0

∫
0

ρ̇ γ1 dµ0

and c− = c̄+ the complex conjugate of c+.

Proof. The calculation of the principal symbol of the trace of a Fourier integral operator in [Duistermaat
and Guillemin 1975] is valid for the boundary restriction of the wave kernel, since it only uses that it is
π∗1

∗ composed with a Fourier integral kernel with a known symbol and canonical relation. Hence we
follow the proof closely and refer there for further details.

As in [Guillemin and Melrose 1979a], the composition of π∗1∗ with

ρ̇χT (Dt , q ′, Dq ′)χT (Dt , q, Dq)Sb
B(t, q, q ′) (32)

is clean if and only if the fixed point set of βk corresponding to periodic orbits of period T is clean. When
the fixed point set has dimension d in the ball bundle B∗∂�, composition with π∗1∗ adds d/2 to the
order [Duistermaat and Guillemin 1975, (6.6)]. Combining with Lemma 3, we obtain the order

d
2
+

1
2
+ 1− 1

4
.

Hence under the cleanliness assumption, it follows that δ Tr cos t
√
−1B is a Lagrangian distribution

on R with singularities at t ∈ Lsp(�). As discussed in [loc. cit.] for the upper/lower half lines 3T,± in
T ∗T R, I

d
2+

5
4 (R,3T,±) consists of multiples of the distribution∫

∞

0
τ (d+2)/2e±iτ(t−T )dτ = (t − T ± i0)−(d+4)/2.

The principal symbol of this Fourier integral distribution is τ (d+2)/2
√

dτ . Therefore to conclude the
Lemma we only need to compute the coefficients of this symbol in the trace.
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This coefficient is computed in a universal way from the principal symbol of (32) computed from
Proposition 4. Following the proof in [loc. cit.], the coefficient of τ (d+2)/2

√
dτ is

c± =
∑
0⊂FT

C±0

∫
0

ρ̇ γ1 dµ0,

where FT is the fixed point set of β (and its powers) in B∗∂�. The sum is over the connected components
0 of FT . Here, dµ0 is the restriction to 0 of a density dµ on FT which is the pushforward (under the
natural projection map) of the canonical density defined on the fixed point set of 8T on S∗∂��. This
canonical density is defined in Lemma 4.2 of [Duistermaat and Guillemin 1975]. We note that the
distribution c+(t − T + i0)−(d+4)/2

+ c−(t − T − i0)−(d+4)/2 is real only if c− = c̄+. This completes the
proof of the lemma. �

The lemma also completes the proof of the Theorem 2.

Remark. As a check on the order, we note that for the wave trace in the interior and for nondegenerate
closed trajectories, the singularities are of order (t − T + i0)−1. When the periodic orbits are degenerate
and the unit vectors in the fixed point sets have dimension d , the singularity increases to order

(t − T + i0)−1−d
2 .

If we formally take the variation of the wave trace, the singularity should increase to order

(t − T + i0)−1−d
2−1.

In comparison, the boundary trace in the Dirichlet case involves two extra derivatives of the wave
kernel and composition with (−1)−1/2. Compared to the interior trace, this adds one net derivative and
order to the trace singularity. We claim that the restriction to the boundary does not further change the
order compared to the interior trace. This can be seen by considering the method of stationary phase
for oscillatory integrals with Bott–Morse phase functions, whose nondegenerate critical manifolds are
transverse to the boundary. If we restrict the integral to the boundary, we do not change the number
of phase variables in the integral, but we simultaneously decrease the number of variables by one and
the dimension of the fixed point set by one. The number of nondegenerate directions stays the same. It
follows that the singularity order of the variational trace goes up by one overall unit compared to the
interior trace, consistently with the formal variational calculation.

3. Case of the ellipse and the proof of Theorem 1

In this section we let �0 be an ellipse. In this case, the fixed point sets are clean fixed point sets for 8t in
T ∗�0 and for β in B∗∂�0 [Guillemin and Melrose 1979a, Proposition 4.3]. In fact the fixed point sets
FT of β in B∗∂�0 form a one dimensional manifold. Thus d = 1 and Corollary 2 follows.

As is well-known, both the billiard flow and billiard map of the ellipse are completely integrable. In
particular, except for certain exceptional trajectories, the periodic points of period T form a Lagrangian
tori in S∗�0, and the homogeneous extensions of the Lagrangian tori are cones in T ∗�0. The exceptions
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are the two bouncing ball orbits through the major/minor axes and the trajectories which intersect the
foci or glide along the boundary. The fixed point sets of 8T intersect the coball bundle B∗∂�0 of the
boundary in the fixed point sets of the billiard map β : B∗∂�0→ B∗∂�0 (for background we refer to
[Petkov and Stoyanov 1992; Guillemin and Melrose 1979a; 1979b; Hassell and Zelditch 2004; Toth and
Zelditch 2012] for instance). Except for the exceptional orbits, the fixed point sets are real analytic curves.
For the bouncing ball rays, the associated fixed point sets are nondegenerate fixed points of β.

Since the final step of the proof uses results of [Guillemin and Melrose 1979a], we briefly review the
description of the billiard map of the ellipse �0 := x2/a+ y2/b = 1 (with a > b > 0) in that article. In
the interior, there exist for each 0< Z ≤ b a caustic set given by a confocal ellipse

x2

E + Z
+

y2

Z
= 1,

where E = a− b, or for −E < Z < 0 by a confocal hyperbola. Let (q, ζ ) be in B∗∂�0 and let (q, ξ) in
S∗�0 be the unique inward unit normal to boundary that projects to (q, ζ ). The line segment (q, rξ) will
be tangent to a unique confocal ellipse or hyperbola (unless it intersects the foci). We then define the
function Z(q, ζ ) on B∗∂�0 to be the corresponding Z . Then Z is a β-invariant function and its level
sets {Z = c} are the invariant curves of β. The invariant Leray form on the level set is denoted by duZ
[loc. cit., (2.17)]; thus the symplectic form of B∗∂�0 is dq ∧ dζ = d Z ∧ duZ . A level set has a rotation
number and the periodic points live in the level sets with rational rotation number. As it is explained in
[loc. cit., p. 143] the Leray form duZ restricted to a connected component 0 of FT is a constant multiple
of the canonical density dµ0.

As mentioned in the introduction, the well-known obstruction to using trace formula calculations such
as in Theorem 2 is multiplicity in the length spectrum, that is, existence of several connected components
of FT . A higher dimensional component is not itself a problem, but there could exist cancellations among
terms coming from components with different Morse indices, since the coefficients C0 are complex. This
problem arose earlier in the spectral theory of the ellipse in [loc. cit.]. The key Proposition 4.3 there shows
that there is a sufficiently large set of lengths T for which FT has one component up to (q, ζ )→ (q,−ζ )
symmetry. Since it is crucial here as well, we state the relevant part:

Proposition 8 [Guillemin and Melrose 1979a, Proposition 4.3]. Let T0 = |∂�0|. Then for every interval
(mT0− ε, mT0), for m = 1, 2, 3, . . . , there exist infinitely many periods T ∈ Lsp(�0) for which FT is the
union of two invariant curves which are mapped to each other by (q, ζ )→ (q,−ζ ).

Since for an isospectral deformation δ Tr cos(t
√
−1)= 0, we obtain from Theorem 2:

Corollary 9. Suppose we have an isospectral deformation of an ellipse �0 with velocity ρ̇. Then for each
T in Proposition 8 for which FT is the union of two invariant curves 01 and 02 which are mapped to each
other by (q, ζ )→ (q,−ζ ) we have ∫

0 j

ρ̇ γ1 duZ = 0, j = 1, 2.

Proof. From Theorem 2 we get
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<

{( 2∑
j=1

C0 j

∫
0 j

ρ̇ γ1 dµ0 j

)
(t − T + i0)−2−(d/2)

}
= 0.

Since ρ̇ and γ1 are invariant under the time reversal map (q, ζ )→ (q,−ζ ), the two integrals are identical.
Also by directly looking at the stationary phase calculations it can be shown that the Maslov coefficients
C01 and C02 are also the same. Thus the corollary follows. �

3.1. Abel transform. The remainder of the proof of Theorem 1 is identical to that of Theorem 4.5 of
[Guillemin and Melrose 1979a] (see also [Popov and Topalov 2003]). For the sake of completeness, we
sketch the proof.

Proposition 10. The only Z2×Z2 invariant function ρ̇ satisfying the equations of Corollary 9 is ρ̇ = 0.

Proof. First, we may assume ρ̇ = 0 at the endpoints of the major/minor axes, since the deformation
preserves the Z2 × Z2 symmetry and we may assume that the deformed bouncing ball orbits will not
move and are aligned with the original ones. Thus ρ̇(±

√
a)= ρ̇(±

√
b)= 0.

The Leray measure may be explicitly evaluated [Guillemin and Melrose 1979a, eq. 2.18]. By a change
of variables with Jacobian J , and using the symmetric properties of ρ̇, the integrals become

A(Z)=
∫ a

b

ρ̇(t) γ1 J (t) dt
√

t − (b− Z)
, (33)

for an infinite sequence of Z accumulating at b. The function A(Z) is smooth in Z for Z near b. It
vanishes infinitely often in each interval (b− ε, b), hence is flat at b. The k-th Taylor coefficient at b is

A(k)(b)=
∫ a

b
ρ̇(t) γ1 J (t)t−k−(1/2)dt = 0. (34)

Since the functions t−k span a dense subset of C[b, a], it follows that ρ̇ ≡ 0. �

3.2. Infinitesimal rigidity and flatness. We now show that infinitesimal rigidity implies flatness and
prove Corollary 1. As mentioned, the Hadamard variational formula is valid for any C1 parametrization
�α(ε) of the domains �ε . For each one we have δρα(ε)(x)≡ 0.

Assume ρε(x) is not flat at ε = 0 and let εk be the first nonvanishing term in the Taylor expansion of
ρε(x) at ε = 0. Then

ρε(x)= εk ρ
(k)(x)
k!
+ εk+1ρ

(k+1)(x)
(k+ 1)!

+ · · · . (35)

We then reparametrize the family by ε→ α(ε) := ε1/k so that

ρα(ε)(x)=
ρ(k)(x)

k!
ε+ O(ε1+1/k).

By Hadamard’s variational formulae we get δρα(ε)(x)= ρ(k)(x)≡ 0, a contradiction.
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