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RIEMANN SURFACES

DMITRY JAKOBSON AND FRÉDÉRIC NAUD

For infinite-area, geometrically finite surfaces X = 0\H2, we prove new omega lower bounds on the
local density of resonances D(z) when z lies in a logarithmic neighborhood of the real axis. These lower
bounds involve the dimension δ of the limit set of 0. The first bound is valid when δ > 1

2 and shows
logarithmic growth of the number D(z) of resonances at high energy, that is, when |Re(z)| → +∞. The
second bound holds for δ > 3

4 and if 0 is an infinite-index subgroup of certain arithmetic groups. In
this case we obtain a polynomial lower bound. Both results are in favor of a conjecture of Guillopé and
Zworski on the existence of a fractal Weyl law for resonances.

1. Introduction and results

Resonances arise in spectral theory on noncompact Riemannian manifolds when one tries to figure out
what the natural replacement data should be for the missing eigenvalues of the Laplacian. The basic
problem of the mathematical theory of resonances is to relate the resonances spectrum (which is a discrete
set of complex numbers) to the geometry of the underlying manifold and its geodesic flow. In this paper
we will focus on a particular setting where the spectral and scattering theory are already well developed:
infinite-area surfaces with constant negative curvature. For a detailed account of the spectral theory of
infinite-area surfaces, we refer the reader to [Borthwick 2007]. Let H2 be the hyperbolic plane endowed
with its standard metric of constant Gaussian curvature−1. Let 0 be a geometrically finite discrete group
of isometries acting on H2. This means that 0 admits a finite sided polygonal fundamental domain in
H2. We will require that 0 has no elliptic elements different from the identity and that the quotient 0\H2

is of infinite hyperbolic area. Under these assumptions, the quotient space X = 0\H2 is a nice Riemann
surface whose geometry can be described as follows. The surface X can be decomposed into a finite area
surface with geodesic boundary N , called the Nielsen region, on which infinite-area ends Fi are glued :
the funnels. We assume throughout that the number of funnels f is not zero. Each funnel Fi is isometric
to a half-cylinder

Fi = (R/ li Z)θ × (R
+)t ,

where li > 0, with the warped metric

ds2
= dt2

+ cosh2 t dθ2.
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The Nielsen region N is itself decomposed into a compact surface K with geodesic and horocyclic
boundary on which c noncompact, finite area ends Ci are glued: the cusps. A cusp Ci is isometric to a
half-cylinder

Ci = (R/hi Z)θ × ([1,+∞))y,

where hi > 0, endowed with the familiar Poincaré metric

ds2
=

dθ2
+ dy2

y2 .

Let1X be the hyperbolic Laplacian on X . Its spectrum on L2(X) has been described by Lax and Phillips
[1984a; 1984b; 1985]:

[ 1
4 ,+∞

)
is the continuous spectrum, and there are no embedded eigenvalues.

The rest of the spectrum is made of a (possibly empty) finite set of eigenvalues, starting at δ(1−δ), where
0 ≤ δ < 1 is the Hausdorff dimension of the limit set of 0. The fact that the bottom of the spectrum is
related to the dimension δ was first pointed out by Patterson [1976] for convex cocompact groups (which
amounts to saying that there are no cusps on X or equivalently, no parabolic elements in 0). This result
was later extended for geometrically finite groups by Sullivan [1979; 1984].

The dimension δ has another important interpretation. Let S1 X denote the unit tangent bundle; then
the trapped set is defined as the set of points in S1 X whose orbit under the geodesic flow remains (after
projection on X ) in the Nielsen region N in the past and future. The Liouville measure of this set is
always zero, but its Hausdorff dimension is actually 2δ+ 1.

By the preceding description of the spectrum, the resolvent

R(λ)=
(
1X −

1
4 − λ

2)−1
: L2(X)→ L2(X),

is therefore well defined and analytic on the lower half-plane {Im λ < 0} except at a possible finite
set of poles corresponding to the finite point spectrum. Resonances are then defined as poles of the
meromorphic continuation of

R(λ) : C∞0 (X)→ C∞(X)

to the whole complex plane. The set of poles is denoted by RX . This continuation is usually performed
via the analytic Fredholm theorem after the construction of an adequate parametrix. The first result of this
kind in the more general setting of asymptotically hyperbolic manifolds is due to Mazzeo and Melrose
[1987]. A more precise parametrix for surfaces was constructed by Guillopé and Zworski [1995; 1997];
it allowed them to obtain global counting results for resonances of the following type. Let N (R) be the
number of resonances (counted with multiplicity) of modulus smaller than R. We have for all R ≥ 0,

C−1 R2
≤ N (R)≤ C +C R2,

for some C>0. Hence the set of resonances satisfies a quadratic growth law similar to the usual Weyl law
for finite area surfaces. These bounds are actually valid for compact perturbations of the hyperbolic metric
[Borthwick 2008], and in particular are not sensitive to the geometry of the trapped set. It is therefore nec-
essary to examine finer properties of RX to recover some geometrical information on X . The most natural
thing to do is to look at resonances that are close to the real axis. Physically, these are the most relevant
resonances, because they correspond to metastable states that live the longest (the imaginary part corre-
sponding to the decay rate). In the case of Schottky groups (equivalently, convex cocompact quotients
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in dimension 2), a “fractal” upper bound was obtained in [Zworski 1999; Guillopé et al. 2004], namely

NC(T )= O(T 1+δ), (1)
where

NC(T ) := #{z ∈RX : Im z ≤ C, |Re z| ≤ T }.

The first proof of a geometric bound of this type involving fractal dimension is due to Sjöstrand [1990]
for potential scattering. This upper bound, together with numerical experiments, has led to the following
conjecture, known as the fractal Weyl law.

Conjecture 1.1 (Guillopé–Zworski). There exist C > 0 and A > 0 such that for all T large enough,

A−1T 1+δ
≤ NC(T )≤ AT 1+δ.

The only existing lower bound can be found in [Guillopé and Zworski 1999], where the authors show
that for all ε > 0, one can find Cε > 0 such that

NCε (T )=�(T
1−ε),

where �( · ) means being not a O( · ); in other words, one can find a sequence (Ti )i∈N with Ti →∞

such that

lim
i→∞

NCε (Ti )

T 1−ε
i

=+∞.

This is a frustrating lower bound: not only it does not involve δ but it is not even optimal in the computable
case of elementary groups where NC(T ) grows linearly. Guillopé et al. [2004] actually prove a stronger
statement than (1). Let D(z) be the number of resonances in the disc centered at z and radius one:

D(z) := #{λ ∈RX : |λ− z| ≤ 1}.

Then if Im z ≤ C , we have D(z) = O(|Re z|δ), the implied constant depending solely on C . A similar
statement for semiclassical Schrödinger operators can be found in [Sjöstrand and Zworski 2007]. Note
that if the Guillopé–Zworski conjecture holds, then by the box principle, for all ε > 0, one can find a
sequence (zi ) with |Re zi | → +∞ and Im zi ≤ C such that for all i ∈ N,

D(zi )≥ |Re zi |
δ−ε . (2)

To state our results, we need one more piece of notation. Let A > 0 and set

WA = {λ ∈ C : Im λ≤ A log(1+ |Re λ|)}.

Guillopé and Zworski [1997] have shown that in logarithmic regions WA, the density of resonances grows
at least linearly. We shall prove the following thing.

Theorem 1.2. Let 0 be a geometrically finite group as above. Assume that δ > 1
2 , and fix arbitrarily

small ε > 0 and A > 0. Then there exists a sequence (zi )i∈N with zi ∈WA and |Re zi | →+∞, such that
for all i ≥ 0,

D(zi )≥ (log |Re zi |)
(δ−1/2)/δ−ε .

In other words, the local density D(z) of resonances in logarithmic regions WA is not bounded, and
sensitive to the dimension of the trapped set. This implies in particular that the resonance set RX ∩WA
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is different from a lattice when δ > 1
2 , which clearly could not follow from the existing lower bound

in strips nor the global counting results. Building groups with δ > 1
2 is easy: if there is a parabolic

element this is always the case and if one wants to consider only convex-cocompact groups, pinching a
pair of pants will do it; see Section 4. We point out that the proof is based on Dirichlet box arguments,
a technique that has proved useful to obtain lower bounds for the remainder in Weyl’s law on compact
negatively curved manifolds; see [Jakobson et al. 2008; Jakobson and Polterovich 2007].

It is possible to obtain significantly better lower bounds that are closer to (2), by using infinite-index
subgroups of arithmetic groups. Arithmetic groups are algebraically defined discrete groups of isome-
tries of H2, the most celebrated being the modular group PSL2(Z). For more details on definitions and
references, see Section 3. Our result is as follows.

Theorem 1.3. Let 0 be a geometrically finite group as above, and assume that 0 is an infinite-index
subgroup of an arithmetic group 00 derived from a quaternion algebra. Suppose δ > 3

4 , and fix arbitrarily
small ε > 0 and A > 0. Then there exists a sequence (zk) ∈ WA with |Re zk | → +∞, such that for all
k ≥ 0,

D(zk)≥ |Re zk |
2δ−3/2−ε .

This improvement is based on the very special structure of closed geodesics on arithmetic surfaces: the
set of lengths has high multiplicities and good separation (see Section 3 for more details). We point
out that these techniques due to Selberg have been used recently by Anantharaman [2009] to obtain
some results on the spectral deviations for the damped wave equation on compact arithmetic surfaces.
This lower bound is clearly in favor of the Guillopé–Zworski conjecture, at least for the class of groups
considered above. One may wonder at this point if Theorem 1.3 is not empty: Gamburd [2002] has
shown in (see Section 4 for details) the existence of several geometrically finite subgroups 0 of PSL2(Z)

with dimension δ > 3
4 . Another natural question is can we give a bound on the sequence |Re zk |? We

explain at the end of Section 3 how one can obtain a polynomial upper bound: for each ε > 0 one can
find an exponent pε > 0 such that |Re zk | = O (k pε ).

The lower bounds obtained above are to our knowledge the first examples in the literature which are
related to the dimension of the trapped set, at least for fractal dimensions. Similar results should hold
for higher dimensional convex-compact manifolds, by applying a similar strategy of proof based on the
trace formula in [Guillarmou and Naud 2006].

The plan of the paper is as follows: in Section 2 we recall the necessary material for the proofs,
including the wave trace formula which is at the basis of our results. We then prove Theorem 1.2 by a
Dirichlet box-principle argument. Section 3 is devoted to the case of arithmetically built groups. The
heart of the proof is based on a trick of Selberg and Hejhal on mean square estimates. This is where
the high multiplicity and the separation play a key role. In Section 4 we discuss various examples
of geometrically finite groups with δ large, and we construct an explicit family of convex cocompact
subgroups of PSL2(Z) with δ > 3

4 .

2. Wave trace and log lower bounds

In this section, we prove Theorem 1.2. Some of the technical estimates below will be of some use in
the next section. We use the notation of the introduction. The constant A > 0 defining the logarithmic
region WA is set once for all.
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The variant of Selberg’s trace formula we need here is due to [Guillopé and Zworski 1999]. We denote
by P the set of primitive closed geodesics on the surface X = 0\H2, and if γ ∈ P, l(γ) is the length. In
the following, c is the number of cusps, and N is the Nielsen region. Let ϕ ∈ C∞0 ((0,+∞)), that is, a
smooth function, compactly supported in R∗

+
. We have the identity

∑
λ∈RX

ϕ̂(−λ)=−
Vol(N )

4π

∫
+∞

0

cosh(x/2)

sinh2(x/2)
ϕ(x)dx

+
c
2

∫
+∞

0

cosh(x/2)
sinh(x/2)

ϕ(x)dx +
∑
γ∈P

∑
k≥1

l(γ)
2 sinh(kl(γ)/2)

ϕ(kl(γ)), (3)

where ϕ̂ is the usual Fourier transform,

ϕ̂(ξ)=

∫
R

ϕ(x)e−i xξdx .

We recall that RX (except a possible finite number of term on the imaginary axis starting at λ= i
( 1

2−δ
)
)

is included in the upper half-plane. Note that we have omitted the main singular terms at t = 0 which
are not relevant for our problem; see [Guillopé and Zworski 1999] for the formula in full detail. Proofs
of Theorem 1.2 and 1.3 are based on the use of test functions of the form

ϕt,α(x)= e−i t xϕ0(x −α),

where t>0, α>0 will be large and ϕ0∈C∞0 (R) is a positive function, supported on the interval [−1,+1]
identical to 1 on

[
−

1
2 ,+

1
2

]
. The basic idea is to use the full-length spectrum (the set of lengths of closed

geodesics) in the contribution from the geometric side instead of one single, closed primitive geodesic
and its iterates as in the proof of Guillopé and Zworski [1999]. The price to pay for that is to lose
positivity and deal with oscillating contributions. We start with some useful lemmas that consist mainly
of brute force estimates. They will be used to control sums over resonances in the proof of Theorem 1.2
and 1.3. The reader can skip it for its first reading.

Lemma 2.1. For all N ≥ 0, one can find CN > 0 such that for all ξ ∈ C,

|ϕ̂t,α(ξ)| ≤ CN
eα Im ξ+|Im ξ |

(1+ |t + ξ |)N .

Proof. Write ϕ̂t,α(ξ) = e−iα(t+ξ)ϕ̂0(t + ξ), and integrate by parts N times. Notice that while estimating
|ϕ̂0(u)|with u ∈C, there is an extra factor e|Im u| coming out, which explain the presence of the (harmless)
extra term |Im ξ | in the exponents above. �

Lemma 2.2. Let f : R+→ R+ be either f (x) = (log(1+ x))β or f (x) = xβ with 0 < β < 1. Assume
that D(z)= O( f (|Re z|)) for all z ∈WA with |Re z| large enough. Then, for all α, t large and all k ≥ 0,
one has ∣∣∣∣ ∑

λ∈WA∩RX

ϕ̂α,t(−λ)

∣∣∣∣= O
(eα(δ−1/2)

tk

)
+ O( f (t)),

where the implied constants do not depend on α, t .
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Proof. Let us assume that D(z)= O( f (|Re z|)) whenever |Re(z)| ≥ p0 ≥ 1 and z ∈WA. Let t > 0 be so
large that t > p0+ 1, assume that α > 1. By absolute convergence one can write∑

λ∈WA∩RX

ϕ̂α,t(−λ)=
∑
p∈Z

∑
p≤Re λ≤p+1
λ∈WA∩RX

ϕ̂α,t(−λ).

Let us set
Sp(α, t)=

∑
p≤Re λ≤p+1
λ∈WA∩RX

ϕ̂α,t(−λ).

We split the above sum as∑
λ∈WA∩RX

ϕ̂α,t(−λ)=
∑

p<−p0

Sp(α, t)+
∑

−p0≤p≤p0

Sp(α, t)+
∑
p>p0

Sp(α, t).

The middle term involves only finitely many resonances λ∈WA, and they satisfy Im λ≥ 1
2−δ. Therefore

using Lemma 2.1, we have∣∣∣∣ ∑
−p0≤p≤p0

Sp(α, t)
∣∣∣∣≤ Ck

e(−α+1)(1/2−δ)

(1+ |t − p0− 1|)k
∑

λ∈RX∩WA
|Re λ|≤p0

1= O
(eα(δ−1/2)

tk

)
.

The first term can be estimated as∣∣∣∣ ∑
p<−p0

Sp(α, t)
∣∣∣∣≤ C2

∑
p<−p0

1
(1+ |p+ 1− t |)2

∑
p≤Re λ≤p+1
λ∈RX∩WA

e(−α+1) Im λ,

while the last term is of size∣∣∣∣∑
p>p0

Sp(α, t)
∣∣∣∣≤ C2

∑
p>p0

S̃p(α)

(1+min{|p− t |, |p+ 1− t |})2
,

where we have set
S̃p(α)=

∑
p≤Re λ≤p+1
λ∈WA∩RX

e(−α+1) Im λ.

The following lemma will be convenient (this is where the hypothesis on D(z) is used).

Lemma 2.3. Under the hypothesis of Lemma 2.2, there exists a constant M , independent of α, p and
such that for all |p| ≥ p0, we have

S̃p(α)≤ M f (|p|).

Let us postpone the proof of this result for a moment and show how to end the proof of Lemma 2.2.
Clearly, using Lemma 2.3, the sum of the first and last terms is smaller than

C
∑
p∈Z

f (|p|)
(1+ |p− t |)2

,
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for a constant C > 0 large enough. We can now write, denoting by [t] the integer part of t ,∑
p∈Z

f (|p|)
(1+ |p− t |)2

=

∑
q∈Z

f (|q + [t]|)
(1+ |q + [t] − t |)2

≤ C ′
∑
q∈Z

f (|q| + [t])
(1+ |q|)2

,

again for a well chosen C ′ > 0 (we have used the fact that f is increasing). To end the proof, simply
write ∑

q∈Z

f (|q| + [t])
(1+ |q|)2

=

∑
|q|≤[t]

f (|q| + [t])
(1+ |q|)2

+

∑
|q|>[t]

f (|q| + [t])
(1+ |q|)2

,

which yields ∑
q∈Z

f (|q| + [t])
(1+ |q|)2

≤ f (2[t])
∑
q∈Z

1
(1+ |q|)2

+

∑
|q|>[t]

f (2|q|)
(1+ |q|)2

.

Since f (2|q|) = O(|q|1−ε), the second term is clearly bounded in t and we get the upper bound of
size O( f (2t)). It remains to prove Lemma 2.3. It will follow from a standard covering argument. It
is enough to consider just the case p > p0. We recall that for all λ ∈ RX , then for Re λ 6= 0 we have
actually Im λ≥ 0 by definition. Let Ap denote the set

Ap = {z ∈WA : p ≤ Re z ≤ p+ 1},

let D(z) denote the unit disc centered at z ∈ C, and set

K (p)=max{k ≥ 0 : k
√

3≤ A log(1+ p)}.

For 1≤ k ≤ K (p), we define the rectangle R(k) by

R(k)= {z ∈Ap : (k− 1)
√

3≤ Im z ≤ k
√

3}.

Set l = A log(1+ p)− K (p)
√

3<
√

3. One can check that, for p large enough,

Ap ⊂

(K (p)⋃
k=1

R(k)
)
∪ D

(
p+ 1

2 + i(K (p)+ l/2)
)
∪ D

(
p+ 1

2 + i(K (p)+ l)
)
.

Indeed,

Ap
∖(K (p)⋃

k=1
R(k)

)
is exactly the set

{z ∈ C : p ≤ Re z ≤ p+ 1 and K (p)
√

3≤ Im z ≤ A log(1+Re z)},

which is clearly covered by the union of the two above discs as long as

A log(1+ p+ 1)− A log(1+ p)= A log
(

1+ 1
p+1

)
≤

√
3

2
.
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Note that for all k = 1, . . . , K (p), we have R(k)⊂ D
(

p+ 1
2 + i
√

3( 1
2 + k− 1)

)
. We can now conclude

by estimating

S̃p(α)=
∑

λ∈Ap∩RX

e(−α+1) Im λ

≤

K (p)−1∑
j=0

D
(

p+ 1
2+ i
√

3(1
2+ j)

)
e(−α+1) j

√
3
+D

(
p+ 1

2+ i(K (p))+ 1
2

)
+D

(
p+ 1

2+ i(K (p))+ 1
2

)
.

Recalling that α > 1 and D(z)≤ C f (|Re z|) for all z ∈WA with |Re z| ≥ p0, we thus obtain

S̃p(α)≤ 2C f (p+ 1
2)+C

f (p+ 1
2)

1− e(−α+1)
√

3
,

and therefore S̃p(α)= O( f (p)), uniformly in α. �

Before we start the proof of Theorem 1.2, we need one more lemma, which is the key observation
that motivates the definition of the region WA.

Lemma 2.4. There exist some constants α0,C0 > 0, independent of α, t such that for all α ≥ α0,∣∣∣∣ ∑
λ∈RX\WA

ϕ̂α,t(−λ)

∣∣∣∣≤ C0.

Proof. We assume first that α > 1. If λ 6∈WA, then Im λ≥ 0 and

|λ|2 = (Re λ)2+ (Im λ)2 ≤ e(2/A) Im λ
+ (Im λ)2 ≤ e(3/A) Im λ,

whenever Im λ≥CA where CA is a large enough constant depending on A. We can assume in the sequel
that CA ≥ 1. Using Lemma 2.1 with N = 0, we get∣∣∣∣ ∑

λ∈RX\WA

ϕ̂α,t(−λ)

∣∣∣∣≤ C0#{λ ∈RX \WA : Im λ≤ CA}+
∑

λ∈RX\WA
Im λ≥CA

1
|λ|(α−1)2A/3 .

The first term is clearly independent of α while the second can be bounded by the Stieltjes integral∑
λ∈RX\WA
Im λ≥CA

1
|λ|(α−1)2A/3 ≤

∫
+∞

1
u−(α−1)2A/3d N (u),

where N (u)= O(u2) is the counting function for resonances in discs defined in Section 1. By integration
by parts, the above integral is clearly convergent and bounded in α as long as

A(α− 1) > 3.

The proof is complete. �
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We can now start the proof of Theorem 1.2. Let’s test the trace formula (3) with the family ϕα,t , where
α is a large positive number:∑
λ∈RX

ϕ̂α,t(−λ)=−
Vol(N )

4π

∫ α+1

α−1

cosh(x/2)

sinh2(x/2)
ϕα,t(x)dx +

c
2

∫ α+1

α−1

cosh(x/2)
sinh(x/2)

ϕα,t(x)dx

+

∑
α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

e−i tkl(γ)ϕ0(kl(γ)−α).

The first two terms on the right side are clearly bounded with respect to α and t . To get an appropriate
control on the sum

Sα,t :=
∑

α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

e−i tkl(γ)ϕ0(kl(γ)−α),

we will use the following lemma, also known as the Dirichlet box theorem.

Lemma 2.5. Let α1, . . . , αN ∈R, and D ∈N∗. For all Q ≥ 2 one can find an integer q ∈ {D, . . . , DQN
}

such that
max

1≤ j≤N
‖qα j‖ ≤

1
Q
,

where ‖x‖ =minn∈Z |x − n|.

Proof. We use the box principle. Set

Nα := #{(k, l(γ)) ∈ N∗×P : kl(γ) ∈ [α− 1, α+ 1]}.

Fix a constant ε0 > 0 and set Dα = [(4π)ε0 Nα ]. By Lemma 2.5 with Q = [4π ], for all α � 1, one can
find qα ∈ {Dα, . . . , DαQNα } such that

max
α−1≤kl(γ)≤α+1

‖qαkl(γ)‖ ≤ 1
Q
.

Set tα := 2πqα, we have for all α− 1≤ kl(γ)≤ α+ 1,∣∣ei tαkl(γ)
− 1

∣∣≤ 2π
Q
<

2
3
.

Hence we get

|Sα,tα | ≥
1
3

( ∑
α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

ϕ0(kl(γ)−α)
)
≥ C0e−α/2

∑
α− 1

2≤kl(γ)≤α+ 1
2

1,

for a well chosen constant C0 > 0. We now recall that by the prime geodesic theorem (see [Naud 2005]
for a proof and references in the case of infinite-area surfaces), one has, as T →+∞,

#{(k, l(γ)) ∈ N∗×P : kl(γ)≤ T } =
eδT

δT
(1+ o(1)) .

This yields, for α large,

|Sα,tα | ≥ C1
e(δ−1/2)α

α
,
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where C1 is again a suitable constant. Using the prime geodesic theorem, one shows also that

C−1
2

eδα

α
≤ Nα ≤ C2eδα,

with C2 > 0 and α large. We have therefore log log tα ≤ δα+constants, which can be more conveniently
restated as

log log tα ≤ (δ+ ε)α for all ε > 0 and α large.

Similarly we get the lower bound
log log tα ≥ (δ− ε)α.

We can now conclude the proof. Assume that δ > 1
2 . Suppose that for all z ∈ WA with |Re z| ≥ R0, one

has D(z)≤ (log |Re z|)β , where β > 0 will be determined later on. Then by Lemma 2.2 with k = 1, and
Lemma 2.4, one gets as α→+∞,

C1
e(δ−1/2)α

α
≤ |Sα,tα | ≤ O(1)+ O

(
eα(δ−1/2)

tα

)
+ O((log tα)β).

Now recall that
log log tα
δ+ ε

≤ α ≤
log log tα
δ− ε

,

so that we have

C1(δ+ ε)

log log tα
(log tα)(δ−1/2/δ+ε)

≤ O(1)+ O
(
(log tα)(δ−1/2/δ−ε)

tα

)
+ O((log tα)β).

We have a contradiction whenever β < (δ− 1
2)/(δ+ε). As a conclusion, for all ε > 0 and all R0 ≥ 0 one

can find z ∈WA with |Re z| ≥ R0 and D(z) > (log |Re z|)((δ−1/2)/(δ))−ε . This proves Theorem 1.2. �

3. Mean square lower bounds and arithmetic length spectrum

The goal of this section is to prove Theorem 1.3. First we need to a recall a few basic facts about arithmetic
group. Instead of detailing the construction of such groups, we refer the reader to the introductory book
[Katok 1992], and will use a characterization of arithmetic groups derived from quaternion algebra due
to Takeuchi [1975], which is all we need for this section.

We recall that a discrete group of isometries of the hyperbolic plane H2 can be viewed as a discrete
subgroup of PSL2(R). If M ∈ PSL2(R) corresponds to a hyperbolic isometry, then Tr M is related to the
translation length l of M by the formula 2 cosh(l/2)= |Tr M |. Takeuchi’s result is as follows.

Theorem 3.1 (Takeuchi). Let 0 be a discrete, cofinite subgroup of PSL2(R). Set

Tr0 := {Tr T : T ∈ 0}.

Then 0 is derived from a quaternion algebra if and only if

(1) the field K =Q(Tr0) is an algebraic field of finite degree and Tr0 is a subset of the ring of integers
of K , and

(2) for all embeddings ϕ : K → C, ϕ 6= I d , the set ϕ(Tr γ) is bounded in C.
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For a proof of this characterization, see [Katok 1992; Takeuchi 1975]. Condition (2) has some strong
implications on the structure of the trace set Tr0, as the next result shows. A similar statement can be
found in [Luo and Sarnak 1994].

Lemma 3.2. Let 00 be an arithmetic group derived from a quaternion algebra.

(1) There exists a constant C0 > 0 depending solely on 00 such that for all x, x ′ ∈ Tr00 with x 6= x ′,
|x − x ′| ≥ C0.

(2) There exists a constant M0 depending only on 00 such that for all R large,

50(x) := #{x ∈ Tr00 : |x | ≤ R} ≤ M0 R.

Proof. Clearly (1) implies (2) by a box argument. Let us prove (1). The field K =Q(Tr00) is a totally
real number field of degree say n = [K :Q]. Let ϕ1 = Id, ϕ2, . . . , ϕn be the n distinct embeddings of K
into C. The set Tr00 is a subset of the ring of integers OK of K . We denote by N K

Q
( · ) the norm on K .

We recall that if x ∈ OK then N K
Q
(x) ∈ Z. Let x 6= x ′ belong to Tr00, we have

1≤ |N K
Q (x − x ′)| =

n∏
i=1

|ϕi (x − x ′)| ≤ |x − x ′|Mn−1,

where M > 0 is given by property (2) of Takeuchi’s characterization. �

This important feature of the trace set was noticed by physicists working on quantum chaos [Bogo-
molny et al. 1997] and was clearly emphasized by Luo and Sarnak [1994] in their work on the number
variance of arithmetic surfaces. Selberg and Hejhal [1976], when trying to obtain sharp lower bounds
for the error term in Weyl’s law, had already noticed similar properties for some examples of cocompact
arithmetic groups.

In the rest of this section we will work with a geometrically finite group 0 as defined in Section 1,
and we assume in addition that 0 is an infinite-index subgroup of an arithmetic group 00, derived from a
quaternion algebra. The simplest examples of such groups 0 that one can think of are finitely generated
Schottky subgroups of PSL2(Z), but there are definitely many other examples, see the next section.

Given such a group 0, one can define the length spectrum of X = 0\H2 by

L0 := {kl(γ) : (k, γ) ∈ N∗×P},

where as in the preceding section, P is the set of primitive closed geodesics. We have the following key
properties.

Proposition 3.3. Let 0 be a fuchsian group as above, then we have:

(1) Let l1, l2 ∈ L0 with 2 cosh(li/2)= Tr Mi , i ∈ {1, 2}, then

|l1− l2| ≥ e−(max(l1,l2))/2 |Tr M1−Tr M2|.

(2) There exists a constant C1 > 0 depending only on 00 such that for all α large,

#{l ∈ L0 : α− 1≤ l ≤ α+ 1} ≤ C1eα/2.
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Proof. The set of closed geodesics on X=0\H2 is in one-to-one correspondence with the set of conjugacy
classes of hyperbolic elements in the fundamental group 0, each closed geodesic γ having its length l(γ)
given by the formula

2 cosh(l(γ)/2)= |Tr Tγ|,

where Tγ ∈ 0 is an hyperbolic isometry. The length spectrum L0 is therefore in one-to-one corre-
spondence with the trace set Tr0 via the above formula (except for the conjugacy classes of parabolic
elements with trace 2). Since we have Tr0⊂ Tr00, we can use the preceding Lemma and crude bounds
to prove estimate (2). To obtain the first lower bound (1), one simply writes (assuming l2 > l1),

l2− l1 = 2
∫ x2

x1

dt
t
≥ 2

x2− x1

x2
,

where we have
xi = eli/2 = 1

2

(
Tr Mi +

√
(Tr Mi )2− 4

)
.

Clearly one gets

x2− x1 =
1
2

∫ Tr M2

Tr M1

(
1+

u
√

u2− 4

)
du ≥

1
2
(Tr M2−Tr M1),

and the proof is done. �

When compared with the prime geodesic theorem (see Section 2), estimate (2) in the proposition
shows that whenever δ > 1

2 there must be some exponentially large multiplicities in the length spectrum.
This is the key observation of Selberg and Hejhal [Hejhal 1976, Section 18, Chapter 2] that will allow
us to produce a better lower bound than in Section 2. More precisely:

Proposition 3.4. Let 0 be a group as above, δ being the dimension of its limit set. Let Sα,t be the sum
defined by

Sα,t :=
∑

α−1≤kl(γ)≤α+1

l(γ)
2 sinh(kl(γ)/2)

e−i tkl(γ)ϕ0(kl(γ)−α).

There exists a constant A> 0 such that for all T large, if one sets α= 2 log T − A then the integral I(T )
defined by

I(T )=
∫ 3T

T

(
1−
|t − 2T |

T

)
|Sα,t |

2dt,

enjoys the lower bound

I(T )≥ C2
T 1+4δ−3

(log T )2
,

for some constant C2 > 0 independent of T .

Let us show how Theorem 1.3 follows from this lower bound. First we assume that for all z ∈ WA

with |Re z| ≥ R0, we have
D(z)≤ |Re z|β,

for some 0< β < 1. Set α = 2 log T − A, where A is given by the above proposition. We have

C2
T 1+4δ−3

(log T )2
≤ I(T )≤

∫ 3T

T
|Sα,t |

2dt.
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By the trace formula (3) applied to ϕα,t , and Lemma 2.2 with k = 2, Lemma 2.4, we have

|Sα,t | ≤ O(1)+ O
(T 2δ−1

T 2

)
+ O(tβ);

therefore
∫ 3T

T |Sα,t |
2dt=O(T 2β+1), which produces a contradiction whenever β <2δ−3/2. This proves

Theorem 1.3. �

Proof of Proposition 3.4. We start with an elementary observation. For all λ ∈ R and T > 0 set

J (T, λ)=
∫ 3T

T

(
1−
|t − 2T |

T

)
e−iλt dt.

Lemma 3.5. With the preceding notation, we have |J (T, λ)| ≤ 4
λ2T

for all λ 6= 0, while J (T, 0)= T .

Proof. This follows by direct computation. �

At this point we need some more notation. If ` ∈ L0, we denote by µ(`) the multiplicity of ` as the
length of a closed geodesic. If ` ∈ L0, then let ˜̀ denote the primitive length of `, that is, if ` = kl(γ)
with γ a primitive closed geodesic, then ˜̀ = l(γ). Using this notation, we have

I(T )=
∑

`,`′∈L0

˜̀ ˜̀′µ(`)µ(`′)

4 sinh(`/2) sinh(`′/2)
J (T, `− `′)ϕ0(`−α)ϕ0(`

′
−α).

We now set I(T )= I1(T )+I2(T ), where

I1(T )= T
∑
`∈L0

( ˜̀µ(`))2

4 sinh2(`/2)
ϕ2

0(`−α)

and

I2(T )=
∑

`,`′∈L0
6̀=`′

˜̀ ˜̀′µ(`)µ(`′)

4 sinh(`/2) sinh(`′/2)
J (T, `− `′)ϕ0(`−α)ϕ0(`

′
−α).

By Lemma 3.5, we have

|I2(T )| ≤
4
T

∑
`,`′∈L0
6̀=`′

˜̀ ˜̀′µ(`)µ(`′)ϕ0(`−α)ϕ0(`
′
−α)

4 sinh(`/2) sinh(`′/2)(`− `′)2
.

Using the inequality ab ≤ 1
2(a

2
+ b2) for all a, b ∈ R, we get by the symmetry of the summation

|I2(T )| ≤
4
T

∑
`,`′∈L0
6̀=`′

( ˜̀µ(`))2ϕ2
0(`−α)

4 sinh(`/2) sinh(`′/2)(`− `′)2
.

Therefore, one can find a constant C > 0 such that, for all α and T large,

|I2(T )| ≤ C
e−α

T

∑
`∈L0

( ˜̀µ(`))2ϕ2
0(`−α)

∑
`′∈L0∩[α−1,α+1]

`′ 6=`

1
(`− `′)2

.
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By Proposition 3.3(1), we can write x = 2 cosh(`/2), where x ∈ Tr0, and thus∑
`′∈L0∩[α−1,α+1]

`′ 6=`

1
(`− `′)2

≤ eα+1
∑

x ′∈Tr0

1
(x − x ′)2

.

We can now bound ∑
x ′∈Tr0

1
(x − x ′)2

≤

∫ x−C0

2

d50(u)
(x − u)2

+

∫
+∞

x+C0

d50(u)
(x − u)2

,

where 50 is the counting function for the trace set of the arithmetic group 00 and the constant C0 is
given by Lemma 3.2. Using the fact that the growth 50(u) = O(u), two Stieltjes integration by parts
show that there exists a constant C̃0 depending only on 00 such that for all x ∈ Tr0,∑

x ′∈Tr0

1
(x − x ′)2

≤ C̃0.

Going back to I2(T ), we have obtained for T and α large,

|I2(T )| ≤
C ′

T

∑
`∈L0

( ˜̀µ(`))2ϕ2
0(`−α).

Recall that

I1(T )= T
∑
`∈L0

( ˜̀µ(`))2

4 sinh2(`/2)
ϕ2

0(`−α)≥ C ′′e−αT
∑
`∈L0

( ˜̀µ(`))2ϕ2
0(`−α),

again for α large and some C ′′ > 0. Therefore |I2| ≤
1
2 I1 as long as

eα ≤
1
2

C ′′

C ′
T 2,

which is definitely achieved if one sets α = 2 log T − A, where A� 1. We have thus

|I(T )| ≥ 1
2 |I1(T )| ≥ C ′′e−αT

∑
`∈L0∩[α−1,α+1]

( ˜̀µ(`))2ϕ2
0(`−α)≥ C̃ ′′e−αT

∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

(µ(`))2,

for some C̃ ′′ > 0. By Schwarz inequality we get( ∑
α− 1

2≤kl(γ)≤α+ 1
2

1
)2

=

( ∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

µ(`)

)2

≤

( ∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

(µ(`))2
)( ∑

`∈L0∩[α−
1
2 ,α+

1
2 ]

1
)
.

By Proposition 3.3(2), ∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

1= O(eα/2),

while the prime geodesic theorem yields ∑
α− 1

2≤kl(γ)≤α+ 1
2

1≥ B
eδα

α
,
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where B > 0. Hence we have obtained∑
`∈L0∩[α−

1
2 ,α+

1
2 ]

(µ(`))2 ≥ B2 e(2δ−1/2)α

α2 .

Going back to I(T ) and recalling that α = 2 log T − A we get

|I(T )| ≥ B ′
T 1+4δ−3

(log T )2
.

The proof is now complete. �

It is now time to indicate how to get upper bounds on the sequence |Re zk | as k→∞. First, we can
notice that the above Proposition 3.4 still holds on shorter intervals. Indeed, pick any 0< ρ < 1 and set

Iρ(T )=
∫ 2T+T ρ

2T−T ρ

(
1−
|t − 2T |

T ρ

)
|Sα,t |

2dt,

then one can show that taking α = 2ρ log T − A, for some A� 1, there exists a constant Cρ > 0 such
that for T large one has

Iρ(T )≥ Cρ
T (4δ−3)ρ+ρ

(log T )2
.

The assumption of Lemma 2.2 can be weakened: indeed to get the desired upper bound on |Sα,t |=O(tβ),
it is enough to assume that

D(z)= O(|Re z|β)

for all z ∈ WA and Re z ∈ [2t − tµ, 2t + tµ], for some 0< µ < 1. These two minor modifications allow
to obtain a more precise statement (by following the same line of proof). For all ε > 0, one can find an
exponent 1> ρε > 0 such that for all T large, there exists z ∈WA with the property

Re z ∈ [2T − T ρε , 2T + T ρε ] and D(z)≥ Re z2δ−3/2−ε .

Choose 1 > µε > ρε and define by induction a sequence (Tk) by T0 � 1 and for all k ≥ 0, Tk+1 =

Tk + (Tk)
µε . For all k ≥ 0, set

Ik = [2Tk − (Tk)
ρε , 2Tk + (Tk)

ρε ].

For all k ≥ 0, one can find zk ∈WA with

Re zk ∈ Ik and D(zk)≥ (Re zk)
2δ−3/2−ε .

Moreover because µε > ρε , we have D(zk)∩ D(zk+1) = ∅ for k large. To obtain the leading behavior
of Tk as k→+∞, one can perform a change of variable xk = 1/Tk and consider the dynamical system
on the real line given by

fµε (x)=
x

1+ x1−µε
.

Clearly 0 is a neutral fixed point for fµε and for all x0 > 0,

xk = f (k)µε
(x0) > 0
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tends to 0 as k→+∞. Remark that since we have for x ≤ 1,

fµε (x)≤
x

1+ x
,

we get the crude upper bound

xk = O
(1

k

)
.

To obtain an asymptotic estimate, we set uk = (xk)
α, where α will be determined later on. Writing

uN − u0 =

N−1∑
k=0

fµ(xk)
α
− xαk ,

and since we have the local expansion at x = 0

fµ(x)α − xα =−αx1−µ+α
+ O(x2−2µ+α),

the choice of α = µ− 1 yields as N →+∞,

uN = (1−µ)N + O
( N∑

k=1

1
k1−µ

)
= (1−µ)N + O(Nµ).

Therefore
lim

k→∞
(1−µε)1/(1−µε)k1/(1−µε)xk = 1.

Thus we have the polynomial bound |Re zk | = O(k1/(1−µε)). Clearly the exponent pε =
1

1−µε
will tend

to infinity as ε goes to 0.

4. Examples

In this section with discuss briefly examples of surfaces X = 0\H2 satisfying the assumptions of Theo-
rems 1.2 and 1.3. We assume that the reader has some basic knowledge in fuchsian groups and hyperbolic
geometry, for which we refer to [Katok 1992]. By the work of Patterson [1976], we know that if X has
at least one cusp, that is, if 0 has at least one nontrivial parabolic element, then the dimension δ > 1

2 . If
one wants examples without cusps, then δ can be made arbitrarily close to 1 by “pinching” the geodesic
boundary of Nielsen’s region. Let us explain what we mean. By [Patterson 1976] and the spectral
analysis in [Lax and Phillips 1984a; 1984b; 1985], we have δ > 1

2 if and only if λ0(X) < 1
4 , where λ0(X)

is the bottom of the spectrum of the Laplacian 1X . In that case λ0(X) = δ(1− δ). Hence to get δ > 1
2 ,

it is enough to show that the Rayleigh quotient

λ0(X)= inf
f 6=0

∫
X |∇ f |2dVol∫

X f 2dVol
< 1

4 ,

where f is an L2 function on X with an L2 gradient ∇ f . Based on the above formula, Pignataro and
Sullivan proved the following, where `(X) denotes the maximum length of the closed geodesics which
are the boundary of the Nielsen region of X (the convex core):



LOWER BOUNDS FOR RESONANCES OF INFINITE-AREA RIEMANN SURFACES 223

Proposition 4.1 [Pignataro and Sullivan 1986]. There exists a constant C(X) > 0 depending only the
topology of X such that

λ0(X)≤ C(X)`(X).

Therefore if `(X) is small enough, one definitely has δ > 1
2 . Applying the same strategy to find

examples satisfying the hypothesis of Theorem 1.3 is harder. Indeed, the discreteness of arithmetic
groups makes it difficult to perform deformations. What we are looking for are geometrically finite,
infinite-index subgroups 0 of arithmetic groups derived from quaternion algebras with δ(0) > 3

4 . The
easiest thing to do is to consider first PSL2(Z) and look at some of its subgroups.

Let us first consider the group 3N obtained as

3N := 〈g0, g1, . . . , gN 〉,

where

g0(z)=
−1
z
'

( 0 −1
1 0

)
, gk = τ

k g0τ
−k, τ (z)= z+ 2'

( 1 2
0 1

)
.

Let D j , j = 0, . . . , N be the unit closed disc centered at 2 j . A fundamental domain for the action of
3N on H2 is given by

F= H2 \ (D0 ∪ · · · ∪ DN ).

The group 3N is therefore geometrically finite and has no parabolic elements, despite the presence of
(false) “cusps” in the fundamental domain. The elliptic elements are the conjugacy classes of g0, . . . , gN ,
which are of order 2. Up to a covering of order 2, we can get rid of them.

For k = 1, . . . , N , set hk = g0gk , and consider the subgroup

0N = 〈h1, . . . , hN ; h−1
1 , . . . , h−1

N 〉,

then it is easy to see that 0N is a subgroup of3N of index 2 and has no elliptic elements, hence a convex
cocompact group. Because 0N is of finite index the critical exponents δ(0N ) and δ(3N ) are the same:
the critical exponent is defined as the infimum of positive real numbers σ such that the Poincaré series

P(σ ) :=
∑
γ∈0

e−σd(i,γi),

are convergent. Here d is the hyperbolic distance in the half-plane model. A classical result of Sullivan
[1984] shows that for geometrically finite groups, the critical exponent is also the Hausdorff dimension of
the limit set, hence3N and 0N have same dimension for their limit set. The group3N is also considered
in [Gamburd 2002], where he shows using a min-max argument and a suitable test function that δ(3N )

can be made as close to 1 as we want, provided N is large enough (estimates are effective).
An alternative way to construct similar convex cocompact subgroups of PSL2(Z) with δ close to

1 is given in [Bourgain and Kontorovich 2010]. The idea is to start with the free subgroup 0(2) =
〈A, B, A−1, B−1

〉 generated by

A =
( 1 2

0 1

)
, B =

( 1 0
2 1

)
.
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Its commutator subgroup is a free, infinitely generated subgroup with critical exponent 1. Moreover it has
no parabolic elements. This commutator subgroup contains finitely generated (hence convex cocompact)
subgroups with critical exponent δ arbitrarily close to 1.

As a conclusion, we have found several examples of convex cocompact subgroups of PSL2(Z) with
δ > 3

4 . By a similar technique, one can produce several examples with cusps. In that direction, let us
point out that the Hecke group 03 generated by g : z 7→ −1/z and h : z 7→ z + 3 is a good candidate:
its Hausdorff dimension was estimated by Phillips and Sarnak [1985] to be δ = 0.753± 0.003. Can one
prove (or disprove) rigorously that δ > 0.75?

It would be interesting in itself to find similar constructions for arithmetic groups that were not con-
sidered in this paper. In a sequel, the authors plan to address the case of arithmetic groups derived
from quaternion division algebras (which are cocompact surface groups). It would also be interesting to
consider groups acting on higher-dimensional hyperbolic spaces, for example arithmetic Kleinian groups.

Acknowledgments

Both authors thank the Banff International Research Station, where part of this work was done, for its
hospitality. This paper benefited from interesting discussion with Nalini Anantharaman. We also thank
Iosif Polterovich and Julie Rowlett for the stimulating discussions that led to this paper.

References

[Anantharaman 2009] N. Anantharaman, “Spectral deviations for the damped wave equation”, preprint, 2009. arXiv 0904.1736

[Bogomolny et al. 1997] E. B. Bogomolny, B. Georgeot, M.-J. Giannoni, and C. Schmit, “Arithmetical chaos”, Phys. Rep.
291:5-6 (1997), 219–324. MR 99c:11062

[Borthwick 2007] D. Borthwick, Spectral theory of infinite-area hyperbolic surfaces, Progress in Mathematics 256, Birkhäuser,
Boston, MA, 2007. MR 2008h:58056 Zbl 1130.58001

[Borthwick 2008] D. Borthwick, “Upper and lower bounds on resonances for manifolds hyperbolic near infinity”, Comm.
Partial Differential Equations 33:7-9 (2008), 1507–1539. MR 2009i:58039 Zbl 1168.58012

[Bourgain and Kontorovich 2010] J. Bourgain and A. Kontorovich, “On representations of integers in thin subgroups of
SL2(Z)”, preprint, 2010. arXiv 1001.4534

[Gamburd 2002] A. Gamburd, “On the spectral gap for infinite index “congruence” subgroups of SL2(Z)”, Israel J. Math. 127
(2002), 157–200. MR 2003b:11050

[Guillarmou and Naud 2006] C. Guillarmou and F. Naud, “Wave 0-trace and length spectrum on convex co-compact hyperbolic
manifolds”, Comm. Anal. Geom. 14:5 (2006), 945–967. MR 2008f:58032 Zbl 1127.58028

[Guillopé and Zworski 1995] L. Guillopé and M. Zworski, “Upper bounds on the number of resonances for non-compact
Riemann surfaces”, J. Funct. Anal. 129:2 (1995), 364–389. MR 96b:58116 Zbl 0841.58063

[Guillopé and Zworski 1997] L. Guillopé and M. Zworski, “Scattering asymptotics for Riemann surfaces”, Ann. of Math. (2)
145:3 (1997), 597–660. MR 98g:58181 Zbl 0898.58054

[Guillopé and Zworski 1999] L. Guillopé and M. Zworski, “The wave trace for Riemann surfaces”, Geom. Funct. Anal. 9:6
(1999), 1156–1168. MR 2001a:11086 Zbl 0947.58022

[Guillopé et al. 2004] L. Guillopé, K. K. Lin, and M. Zworski, “The Selberg zeta function for convex co-compact Schottky
groups”, Comm. Math. Phys. 245:1 (2004), 149–176. MR 2005f:11193 Zbl 1075.11059

[Hejhal 1976] D. A. Hejhal, The Selberg trace formula for PSL(2, R), I, Lecture Notes in Math. 548, Springer, Berlin, 1976.
MR 55 #12641 Zbl 0347.10018

[Jakobson and Polterovich 2007] D. Jakobson and I. Polterovich, “Estimates from below for the spectral function and for the
remainder in local Weyl’s law”, Geom. Funct. Anal. 17:3 (2007), 806–838. MR 2009h:35302 Zbl 1161.58012

http://arxiv.org/abs/0904.1736
http://dx.doi.org/10.1016/S0370-1573(97)00016-1
http://www.ams.org/mathscinet-getitem?mr=99c:11062
http://www.ams.org/mathscinet-getitem?mr=2008h:58056
http://www.emis.de/cgi-bin/MATH-item?1130.58001
http://dx.doi.org/10.1080/03605300802031598
http://www.ams.org/mathscinet-getitem?mr=2009i:58039
http://www.emis.de/cgi-bin/MATH-item?1168.58012
http://arxiv.org/abs/1001.4534
http://dx.doi.org/10.1007/BF02784530
http://www.ams.org/mathscinet-getitem?mr=2003b:11050
http://projecteuclid.org/getRecord?id=euclid.cag/1175790874
http://projecteuclid.org/getRecord?id=euclid.cag/1175790874
http://www.ams.org/mathscinet-getitem?mr=2008f:58032
http://www.emis.de/cgi-bin/MATH-item?1127.58028
http://dx.doi.org/10.1006/jfan.1995.1055
http://dx.doi.org/10.1006/jfan.1995.1055
http://www.ams.org/mathscinet-getitem?mr=96b:58116
http://www.emis.de/cgi-bin/MATH-item?0841.58063
http://dx.doi.org/10.2307/2951846
http://www.ams.org/mathscinet-getitem?mr=98g:58181
http://www.emis.de/cgi-bin/MATH-item?0898.58054
http://dx.doi.org/10.1007/s000390050110
http://www.ams.org/mathscinet-getitem?mr=2001a:11086
http://www.emis.de/cgi-bin/MATH-item?0947.58022
http://dx.doi.org/10.1007/s00220-003-1007-1
http://dx.doi.org/10.1007/s00220-003-1007-1
http://www.ams.org/mathscinet-getitem?mr=2005f:11193
http://www.emis.de/cgi-bin/MATH-item?1075.11059
http://www.ams.org/mathscinet-getitem?mr=55:12641
http://www.emis.de/cgi-bin/MATH-item?0347.10018
http://dx.doi.org/10.1007/s00039-007-0605-z
http://dx.doi.org/10.1007/s00039-007-0605-z
http://www.ams.org/mathscinet-getitem?mr=2009h:35302
http://www.emis.de/cgi-bin/MATH-item?1161.58012


LOWER BOUNDS FOR RESONANCES OF INFINITE-AREA RIEMANN SURFACES 225

[Jakobson et al. 2008] D. Jakobson, I. Polterovich, and J. A. Toth, “A lower bound for the remainder in Weyl’s law on negatively
curved surfaces”, Int. Math. Res. Not. 2008:2 (2008). MR 2009f:58038

[Katok 1992] S. Katok, Fuchsian groups, University of Chicago Press, Chicago, 1992. MR 93d:20088 Zbl 0753.30001

[Lax and Phillips 1984a] P. D. Lax and R. S. Phillips, “Translation representation for automorphic solutions of the wave
equation in non-Euclidean spaces, I”, Comm. Pure Appl. Math. 37:3 (1984), 303–328. MR 86c:58148 Zbl 0549.10024

[Lax and Phillips 1984b] P. D. Lax and R. S. Phillips, “Translation representations for automorphic solutions of the wave
equation in non-Euclidean spaces, II”, Comm. Pure Appl. Math. 37:6 (1984), 779–813. MR 86h:58140 Zbl 0549.10019

[Lax and Phillips 1985] P. D. Lax and R. S. Phillips, “Translation representations for automorphic solutions of the wave
equation in non-Euclidean spaces, III”, Comm. Pure Appl. Math. 38:2 (1985), 179–207. MR 86j:58150 Zbl 0578.10033

[Luo and Sarnak 1994] W. Luo and P. Sarnak, “Number variance for arithmetic hyperbolic surfaces”, Comm. Math. Phys. 161:2
(1994), 419–432. MR 95k:11076 Zbl 0797.58069

[Mazzeo and Melrose 1987] R. R. Mazzeo and R. B. Melrose, “Meromorphic extension of the resolvent on complete spaces
with asymptotically constant negative curvature”, J. Funct. Anal. 75:2 (1987), 260–310. MR 89c:58133 Zbl 0636.58034

[Naud 2005] F. Naud, “Precise asymptotics of the length spectrum for finite-geometry Riemann surfaces”, Int. Math. Res. Not.
2005 (2005), 299–310. Zbl 1073.37021

[Patterson 1976] S. J. Patterson, “The limit set of a Fuchsian group”, Acta Math. 136:3-4 (1976), 241–273. MR 56 #8841
Zbl 0336.30005

[Phillips and Sarnak 1985] R. S. Phillips and P. Sarnak, “On the spectrum of the Hecke groups”, Duke Math. J. 52:1 (1985),
211–221. MR 86j:11042 Zbl 0564.30030

[Pignataro and Sullivan 1986] T. Pignataro and D. Sullivan, “Ground state and lowest eigenvalue of the Laplacian for noncom-
pact hyperbolic surfaces”, Comm. Math. Phys. 104:4 (1986), 529–535. MR 87m:58178

[Sjöstrand 1990] J. Sjöstrand, “Geometric bounds on the density of resonances for semiclassical problems”, Duke Math. J.
60:1 (1990), 1–57. MR 91e:35166 Zbl 0702.35188

[Sjöstrand and Zworski 2007] J. Sjöstrand and M. Zworski, “Fractal upper bounds on the density of semiclassical resonances”,
Duke Math. J. 137:3 (2007), 381–459. MR 2008e:35037 Zbl 05154881

[Sullivan 1979] D. Sullivan, “The density at infinity of a discrete group of hyperbolic motions”, Inst. Hautes Études Sci. Publ.
Math. 50 (1979), 171–202. MR 81b:58031 Zbl 0439.30034

[Sullivan 1984] D. Sullivan, “Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups”,
Acta Math. 153:3-4 (1984), 259–277. MR 86c:58093 Zbl 0566.58022

[Takeuchi 1975] K. Takeuchi, “A characterization of arithmetic Fuchsian groups”, J. Math. Soc. Japan 27:4 (1975), 600–612.
MR 53 #2842 Zbl 0311.20030

[Zworski 1999] M. Zworski, “Dimension of the limit set and the density of resonances for convex co-compact hyperbolic
surfaces”, Invent. Math. 136:2 (1999), 353–409. MR 2002d:58038 Zbl 1016.58014

Received 24 Sep 2009. Accepted 10 Feb 2010.

DMITRY JAKOBSON: jakobson@math.mcgill.ca
Department of Mathematics and Statistics, McGill Uuniversity, Montreal, QC H3A 2K6, Canada

FRÉDÉRIC NAUD: frederic.naud@univ-avignon.fr
Laboratoire d’Analyse Non-linéaire et Géométrie (EA 2151), Université d’Avignon et des pays de Vaucluse, 84018 Avignon,
France

http://dx.doi.org/10.1093/imrn/rnm142
http://dx.doi.org/10.1093/imrn/rnm142
http://www.ams.org/mathscinet-getitem?mr=2009f:58038
http://www.ams.org/mathscinet-getitem?mr=93d:20088
http://www.emis.de/cgi-bin/MATH-item?0753.30001
http://dx.doi.org/10.1002/cpa.3160370304
http://dx.doi.org/10.1002/cpa.3160370304
http://www.ams.org/mathscinet-getitem?mr=86c:58148
http://www.emis.de/cgi-bin/MATH-item?0549.10024
http://dx.doi.org/10.1002/cpa.3160370604
http://dx.doi.org/10.1002/cpa.3160370604
http://www.ams.org/mathscinet-getitem?mr=86h:58140
http://www.emis.de/cgi-bin/MATH-item?0549.10019
http://dx.doi.org/10.1002/cpa.3160380205
http://dx.doi.org/10.1002/cpa.3160380205
http://www.ams.org/mathscinet-getitem?mr=86j:58150
http://www.emis.de/cgi-bin/MATH-item?0578.10033
http://projecteuclid.org/getRecord?id=euclid.cmp/1104269909
http://www.ams.org/mathscinet-getitem?mr=95k:11076
http://www.emis.de/cgi-bin/MATH-item?0797.58069
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://dx.doi.org/10.1016/0022-1236(87)90097-8
http://www.ams.org/mathscinet-getitem?mr=89c:58133
http://www.emis.de/cgi-bin/MATH-item?0636.58034
http://www.emis.de/cgi-bin/MATH-item?1073.37021
http://dx.doi.org/10.1007/BF02392046
http://www.ams.org/mathscinet-getitem?mr=56:8841
http://www.emis.de/cgi-bin/MATH-item?0336.30005
http://dx.doi.org/10.1215/S0012-7094-85-05212-3
http://www.ams.org/mathscinet-getitem?mr=86j:11042
http://www.emis.de/cgi-bin/MATH-item?0564.30030
http://projecteuclid.org/getRecord?id=euclid.cmp/1104115165
http://projecteuclid.org/getRecord?id=euclid.cmp/1104115165
http://www.ams.org/mathscinet-getitem?mr=87m:58178
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://www.ams.org/mathscinet-getitem?mr=91e:35166
http://www.emis.de/cgi-bin/MATH-item?0702.35188
http://dx.doi.org/10.1215/S0012-7094-07-13731-1
http://www.ams.org/mathscinet-getitem?mr=2008e:35037
http://www.emis.de/cgi-bin/MATH-item?05154881
http://www.numdam.org/item?id=PMIHES_1979__50__171_0
http://www.ams.org/mathscinet-getitem?mr=81b:58031
http://www.emis.de/cgi-bin/MATH-item?0439.30034
http://dx.doi.org/10.1007/BF02392379
http://www.ams.org/mathscinet-getitem?mr=86c:58093
http://www.emis.de/cgi-bin/MATH-item?0566.58022
http://dx.doi.org/10.2969/jmsj/02740600
http://www.ams.org/mathscinet-getitem?mr=53:2842
http://www.emis.de/cgi-bin/MATH-item?0311.20030
http://dx.doi.org/10.1007/s002220050313
http://dx.doi.org/10.1007/s002220050313
http://www.ams.org/mathscinet-getitem?mr=2002d:58038
http://www.emis.de/cgi-bin/MATH-item?1016.58014
mailto:jakobson@math.mcgill.ca
mailto:frederic.naud@univ-avignon.fr


Analysis & PDE
pjm.math.berkeley.edu/apde

EDITORS

EDITOR-IN-CHIEF

Maciej Zworski
University of California

Berkeley, USA

BOARD OF EDITORS

Michael Aizenman Princeton University, USA Nicolas Burq Université Paris-Sud 11, France
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