

Supercuspidal representations of $\mathrm{GL}_{n}(\mathrm{~F})$ distinguished by a Galois involution

Vincent Sécherre

Abstract

Let $\mathrm{F} / \mathrm{F}_{0}$ be a quadratic extension of nonarchimedean locally compact fields of residual characteristic $p \neq 2$ and let σ denote its nontrivial automorphism. Let R be an algebraically closed field of characteristic different from p. To any cuspidal representation π of $\mathrm{GL}_{n}(\mathrm{~F})$, with coefficients in R , such that $\pi^{\sigma} \simeq \pi^{\vee}$ (such a representation is said to be σ-selfdual) we associate a quadratic extension $\mathrm{D} / \mathrm{D}_{0}$, where D is a tamely ramified extension of F and D_{0} is a tamely ramified extension of F_{0}, together with a quadratic character of D_{0}^{\times}. When π is supercuspidal, we give a necessary and sufficient condition, in terms of these data, for π to be $\mathrm{GL}_{n}\left(\mathrm{~F}_{0}\right)$-distinguished. When the characteristic ℓ of R is not 2 , denoting by ω the nontrivial R -character of F_{0}^{\times}trivial on $\mathrm{F} / \mathrm{F}_{0}$-norms, we prove that any σ-selfdual supercuspidal R-representation is either distinguished or ω-distinguished, but not both. In the modular case, that is when $\ell>0$, we give examples of σ-selfdual cuspidal nonsupercuspidal representations which are not distinguished nor ω-distinguished. In the particular case where R is the field of complex numbers, in which case all cuspidal representations are supercuspidal, this gives a complete distinction criterion for arbitrary complex cuspidal representations, as well as a purely local proof, for cuspidal representations, of the dichotomy and disjunction theorem due to Kable and Anandavardhanan, Kable and Tandon, when $p \neq 2$.

1. Introduction

1A. Let $\mathrm{F} / \mathrm{F}_{0}$ be a separable quadratic extension of nonarchimedean locally compact fields of residual characteristic p and let σ denote its nontrivial automorphism. Let \mathbf{G} be a connected reductive group defined over F_{0}, let G denote the locally profinite group $\mathbf{G}(\mathrm{F})$ equipped with the natural action of σ and $\mathrm{G}^{\sigma}=\mathbf{G}\left(\mathrm{F}_{0}\right)$ be the σ-fixed points subgroup. The study of those irreducible (smooth) complex representations of G which are G^{σ}-distinguished, that is which carry a nonzero G^{σ}-invariant linear form, goes back to the 1980's. We refer to [Harder et al. 1986; Jacquet and Ye 1996] for the initial motivation for distinguished representations in a global context and to [Hakim 1991; Flicker 1991] in a nonarchimedean context.

1B. In this work, we will consider the case where \mathbf{G} is the general linear group GL_{n} for $n \geq 1$. We thus have $\mathrm{G}=\mathrm{GL}_{n}(\mathrm{~F})$ and $\mathrm{G}^{\sigma}=\mathrm{GL}_{n}\left(\mathrm{~F}_{0}\right)$. In this case, it is well-known (see [Prasad 1990; 2001; Flicker 1991]) that any distinguished irreducible complex representation π of G is σ-selfdual, that is, the contragredient π^{\vee} of π is isomorphic to $\pi^{\sigma}=\pi \circ \sigma$, and the space $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\pi, 1)$ of all G^{σ}-invariant linear forms on π has dimension 1. Also, the central character of π is trivial on F_{0}^{\times}. This gives us two

[^0]necessary conditions for an irreducible complex representation of G to be distinguished and it is natural to ask whether or not they are sufficient.

1C. First, let us consider the case where $\mathrm{F} / \mathrm{F}_{0}$ is replaced by a quadratic extension $\boldsymbol{k} / \boldsymbol{k}_{0}$ of finite fields of characteristic p. In this case, Gow [1984] proved that an irreducible complex representation of $\mathrm{GL}_{n}(\boldsymbol{k})$ is $\mathrm{GL}_{n}\left(\boldsymbol{k}_{0}\right)$-distinguished if and only if π is σ-selfdual. (Note that the latter condition automatically implies that the central character is trivial on $\boldsymbol{k}_{0}^{\times}$.) Besides, if $p \neq 2$, the σ-selfdual irreducible representations of $\mathrm{GL}_{n}(\boldsymbol{k})$ are those which arise from some irreducible representation of the unitary group $\mathrm{U}_{n}\left(\boldsymbol{k} / \boldsymbol{k}_{0}\right)$ by base change (see Kawanaka [1977]).

1D. We now go back to the nonarchimedean setting of Paragraph 1B and consider a σ-selfdual irreducible complex representation π of G whose central character is trivial on F_{0}^{\times}. When π is cuspidal and F / F_{0} is unramified, Prasad [2001] proved that, if $\omega=\omega_{\mathrm{F} / \mathrm{F}_{0}}$ denotes the nontrivial character of F_{0}^{\times}trivial on $\mathrm{F} / \mathrm{F}_{0}$-norms, then π is either distinguished or ω-distinguished, the latter case meaning that the complex vector space $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\pi, \omega \circ \operatorname{det})$ is nonzero.

When $p \neq 2$ and π is an essentially tame cuspidal representation, that is, when the number of unramified characters χ of G such that $\pi \chi \simeq \pi$ is prime to p, Hakim and Murnaghan [2002] gave sufficient conditions for π to be distinguished. These conditions are stated in terms of admissible pairs [Howe 1977], which parametrize essentially tame cuspidal complex representations of G [Howe 1977; Bushnell and Henniart 2005a]. Note that they assume F has characteristic 0, but their approach also works in characteristic p.

When π is a discrete series representation and F has characteristic 0, Kable [2004] proved that if π is σ-selfdual, then it is either distinguished or ω-distinguished: this is the Dichotomy Theorem. In addition, Anandavardhanan, Kable and Tandon [2004] proved that π can't be both distinguished and ω-distinguished: this is the Disjunction Theorem. The proofs use global arguments, which is why F was assumed to have characteristic 0 , and the Asai L-function of π. However, these results still hold when F has characteristic $p \neq 2$, as is explained in [Anandavardhanan et al. 2018, Appendix A]. Note that:

- The disjunction theorem implies that the sufficient conditions given by Hakim and Murnaghan in [Hakim and Murnaghan 2002] in the essentially tame cuspidal case are necessary conditions as well.
- The dichotomy theorem implies that, when n is odd, any σ-selfdual discrete series representation of G with central character trivial on F_{0}^{\times}is automatically distinguished. Indeed, an ω-distinguished irreducible representation has a central character whose restriction to F_{0}^{\times}is ω^{n}.
When $p \neq 2$ and π is cuspidal of level zero - in particular is essentially tame - Coniglio-Guilloton [2016] gave a necessary and sufficient condition of distinction in terms of admissible pairs. Her proof is purely local and does not use the disjunction theorem. (In fact, she considers the more general case where \mathbf{G} is an inner form of GL_{n} over F_{0} and representations of level zero of $\mathbf{G}(\mathrm{F})$ whose local Jacquet-Langlands transfer to $\mathrm{GL}_{n}(\mathrm{~F})$ is cuspidal.)

If one takes the classification of distinguished cuspidal representations of general linear groups for granted, and assuming F has characteristic 0, Anandavardhanan and Rajan [2005; Anandavardhanan 2008]
classified all distinguished discrete series representations of G in terms of the distinction of their cuspidal support (see also [Matringe 2009]) and Matringe [2011; 2014] classified distinguished generic, as well as distinguished unitary, representations of G in terms of the Langlands classification. This provides a class of representations for which the dichotomy and disjunction theorems do not hold: some σ-selfdual generic irreducible representations are nor distinguished nor ω-distinguished, and some are both.

Max Gurevich [2015] extended the dichotomy theorem to the class of ladder representations, which contains all discrete series representations: a σ-selfdual ladder representation of G is either distinguished or ω-distinguished, but it may be both (see [Gurevich 2015, Theorem 4.6]). Here again, F is assumed to have characteristic 0 .

Finally, one can deduce from these works the connection between distinction for generic irreducible representations of G and base change from a quasisplit unitary group; see [Gan and Raghuram 2013, Theorem 6.2; Anandavardhanan and Prasad 2018, Theorem 2.3; Gurevich et al. 2018].

1E. The discussion above leaves us with an open problem about cuspidal representations: find a distinction criterion for an arbitrary σ-selfdual cuspidal representation π, with no assumption on the characteristic of F , on the ramification of $\mathrm{F} / \mathrm{F}_{0}$, on n nor on the torsion number of π (that is, the number of unramified characters χ such that $\pi \chi \simeq \pi$).

In this paper, assuming that $p \neq 2$, we propose an approach which allows us to generalize both Hakim and Murnaghan's and Coniglio's distinction criteria to all cuspidal irreducible complex representations of G and which works:

- With no assumption on the characteristic of F (apart from the assumption " $p \neq 2$ ").
- With purely local methods.
- Not only for complex representations, but more generally for representations with coefficients in an algebraically closed field of arbitrary characteristic $\ell \neq p$.

We thus give a complete solution to the problem above for cuspidal complex representations when $p \neq 2$. We actually do more: we solve this problem in the larger context of supercuspidal representations with coefficients in an algebraically closed field of arbitrary characteristic $\ell \neq p$.

1F. First, let us say a word about the third item above. The theory of smooth representations of $\mathrm{GL}_{n}(\mathrm{~F})$ with coefficients in an algebraically closed field of characteristic $\ell \neq p$ has been initiated by Vignéras [1996; 1998] in view to extend the local Langlands programme to representations with coefficients in a field — or a ring — as general as possible (see for instance [Vignéras 2001; Helm and Moss 2018]). Inner forms have also been taken into account [Mínguez and Sécherre 2014a; Sécherre and Stevens 2016] and the congruence properties of the local Jacquet-Langlands correspondence have been studied in [Dat 2012b; Mínguez and Sécherre 2017]. It is thus natural to extend the study of distinguished representations to this wider context, where the field of complex numbers is replaced by a more general field. Very little has been done about distinction of modular representations so far: a first study can be found in [Sécherre and Venketasubramanian 2017].

An important phenomenon in the modular case, that is when $\ell>0$, is that a cuspidal representation π may occur as a subquotient of a proper parabolically induced representation (see [Vignéras 1989, Corollaire 5]). When this is not the case, that is when π does not occur as a subquotient of a proper parabolically induced representation, π is said to be supercuspidal.

1G. From now on, we fix an algebraically closed field R of arbitrary characteristic $\ell \neq p$, and consider irreducible smooth representations of G with coefficients in R . Note that ℓ can be 0 .

We first notice that, as in the complex case, any distinguished irreducible representation π of G with coefficients in R is σ-selfdual and $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\pi, 1)$ is 1-dimensional (see Theorem 4.1).

We prove that, if $\ell \neq 2 \neq p$, the dichotomy and disjunction theorems hold for all supercuspidal representations with coefficients in R. In particular, when R is the field of complex numbers, in which case any cuspidal representation is supercuspidal, we get a purely local proof of the dichotomy and disjunction theorems for cuspidal representations in the case where $p \neq 2$.

When $\ell=2 \neq p$, in which case there is no character of order 2 on F_{0}^{\times}, the dichotomy theorem takes a simplified form: any σ-selfdual supercuspidal representation is distinguished. Let us summarize this first series of results in the theorem below.

Theorem 1.1 (Theorem 10.8). Suppose that $p \neq 2$ and let π be a σ-selfdual supercuspidal irreducible R -representation of G .
(1) If $\ell=2$, then π is distinguished.
(2) If $\ell \neq 2$, then π is either distinguished or ω-distinguished, but not both.

In the modular case, for $\ell>2$, we give examples of σ-selfdual cuspidal, nonsupercuspidal representations which are not distinguished nor ω-distinguished (see Remarks 7.5 and 2.8).

From now on, until the end of this introduction, we will assume that $p \neq 2$.
1H. The dichotomy and disjunction theorem stated in Theorem 1.1 relies on a distinction criterion, which we state in Theorem 1.2. The basic idea is that we canonically associate to any σ-selfdual supercuspidal representation π of G a finite extension D of F equipped with an F_{0}-involution extending σ and a quadratic character δ_{0} of the fixed points of D^{\times}; it is these data which govern the distinction of π. The character δ_{0} refines the information given by the central character of π in the sense that they coincide on F_{0}^{\times}, the latter one being not enough in general to determine whether π is distinguished or not. To state our distinction criterion, let us write D_{0} for the fixed points subfield of D.

Theorem 1.2 (Theorem 10.9). A σ-selfdual supercuspidal R -representation of G is distinguished if and only if either
(1) $\ell=2$, or
(2) $\ell \neq 2$ and
(a) if $\mathrm{F} / \mathrm{F}_{0}$ is ramified, $\mathrm{D} / \mathrm{D}_{0}$ is unramified and $\mathrm{D}_{0} / \mathrm{F}_{0}$ has odd ramification order, then the character δ_{0} is nontrivial,
(b) otherwise, δ_{0} is trivial.

Even in the complex case, this is the first time a necessary and sufficient distinction criterion is exhibited for an arbitrary cuspidal representation of $\mathrm{GL}_{n}(\mathrm{~F})$ in odd residual characteristic, in the spirit of [Hakim and Murnaghan 2002; 2008; Coniglio-Guilloton 2016].

1I. The starting point of our strategy for proving Theorem 1.2 is to use Bushnell and Kutzko's construction of cuspidal representations of G via compact induction. This construction, elaborated in the complex case by Bushnell and Kutzko [1993], has been extended to the modular case by Vignéras [1996] and Minguez and Sécherre [2014b]. There is a family of pairs ($\mathbf{J}, \boldsymbol{\lambda}$), made of certain compact mod center open subgroups \mathbf{J} of G and certain irreducible representations λ of \mathbf{J}, such that:

- For any such pair $(\mathbf{J}, \boldsymbol{\lambda})$, the compact induction of $\boldsymbol{\lambda}$ to G is irreducible and cuspidal.
- Any irreducible cuspidal representation of G occurs in this way, for a pair ($\mathbf{J}, \boldsymbol{\lambda}$) uniquely determined up to G-conjugacy.

Such pairs are called extended maximal simple types in [Bushnell and Kutzko 1993], which we will abbreviate to types for simplicity. We need to give more details about the structure of these types:
(1) The group \mathbf{J} has a unique maximal compact subgroup J , and a unique maximal normal pro- p-group J^{1}.
(2) There is a group isomorphism $\mathrm{J} / \mathrm{J}^{1} \simeq \mathrm{GL}_{m}(\boldsymbol{l})$ for some divisor m of n and finite extension \boldsymbol{l} of the residual field \boldsymbol{k} of F .
(3) The restriction of λ to J^{1} is made of copies of a single irreducible representation η, which extends (not uniquely, nor canonically) to \mathbf{J}.
(4) Given a representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η, there is a unique irreducible representation ρ of \mathbf{J} trivial on J^{1} such that λ is isomorphic to $\boldsymbol{\kappa} \otimes \rho$, and ρ restricts irreducibly to J .
(5) The representation of $\mathrm{GL}_{m}(\boldsymbol{l})$ obtained by restricting ρ to J is cuspidal.

The integer m, called the relative degree of π, is uniquely determined by π. There is another typetheoretical invariant called the tame parameter field of π : this is a tamely ramified extension T of F , uniquely determined up to F-isomorphism, whose degree divides n / m and whose residual field is \boldsymbol{l} (see [Bushnell and Henniart 2014] for more details). Note that π if essentially tame if and only if [T:F] $=n / m$.

1J. Now consider a σ-selfdual cuspidal R-representation π of G. The starting point of all our work is [Anandavardhanan et al. 2018, Theorem 4.1], which asserts that among all the types contained in π, there is a type ($\mathbf{J}, \boldsymbol{\lambda}$) which is σ-selfdual, that is \mathbf{J} is σ-stable and λ^{\vee} is isomorphic to λ^{σ}. Moreover, the tame parameter field T of π is equipped with an F_{0}-involution. If T_{0} denotes the fixed points subfield of T , then T / T_{0} is a quadratic extension, uniquely determined up to F_{0}-isomorphism. The invariants m and $\mathrm{T} / \mathrm{T}_{0}$ associated with π will play a central role in what follows.

First, the following result says that the distinction of π can be detected by a σ-selfdual type.
Theorem 1.3 (Theorem 6.1). Let π be a σ-selfdual cuspidal representation of G . Then π is distinguished if and only if it contains a distinguished σ-selfdual type, that is a σ-selfdual type (\mathbf{J}, λ) such that $\operatorname{Hom}_{\mathbf{J}^{\prime} \mathrm{G}^{\sigma}}(\lambda, 1)$ is nonzero.

The proof of this theorem - which occupies Section 6-is the most technical part of the paper: starting with a σ-selfdual type $(\mathbf{J}, \boldsymbol{\lambda})$ contained in π and $g \in \mathrm{G}$, one has to prove that, if the type ($\mathbf{J}^{g}, \boldsymbol{\lambda}^{g}$) is distinguished, then it is σ-selfdual, that is $\sigma(g) g^{-1} \in \mathbf{J}$. First, one determines the set of the $g \in G$ such that η^{g} is distinguished, as well as the dimension of the space of invariant linear forms (Paragraphs $6 \mathrm{~A}-6 \mathrm{C}$); then, one analyzes the distinction of $\boldsymbol{\kappa}^{g}$ (Paragraphs 6D and 6E); one obtains the final statement by using the cuspidality of the representation of $\mathrm{GL}_{m}(\boldsymbol{l})$ induced by ρ (see Theorem 6.21).

1K. When T is unramified over T_{0}, the σ-selfdual types contained in π form a single G^{σ}-conjugacy class. When T is ramified over T_{0}, the σ-selfdual types contained in π form $\lfloor m / 2\rfloor+1$ different G^{σ}-conjugacy classes, characterized by an integer $i \in\{0, \ldots,\lfloor m / 2\rfloor\}$ called the index of the class. Since the space $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\pi, 1)$ has dimension 1 , only one of these conjugacy classes can contribute to distinction: we prove that it is the one with maximal index. This gives us the following refinement of Theorem 1.3.
Proposition 1.4 (Corollary 6.24 and Proposition 7.1). Let π be a σ-selfdual cuspidal representation of G . Let m be its relative degree and $\mathrm{T} / \mathrm{T}_{0}$ be its associated quadratic extension.
(1) If T is unramified over T_{0}, then π is distinguished if and only if any of its σ-selfdual types is distinguished.
(2) If T is ramified over T_{0}, then π is distinguished if and only if any of its σ-selfdual types of index $\lfloor m / 2\rfloor$ is distinguished.

Note that this proposition is proved in [Anandavardhanan et al. 2018] in a different manner, based on a result of Ok [1997]. However, the proof given in the present article is more likely to generalize to other situations.

When $\mathrm{T} / \mathrm{T}_{0}$ is ramified, one can be more precise (see Proposition 7.1): if π is distinguished, m is either even or equal to 1 . It is not difficult to construct σ-selfdual cuspidal representations of G such that $\mathrm{T} / \mathrm{T}_{0}$ is ramified and $m>1$ is odd: such cuspidal representations are not distinguished nor ω-distinguished (see Remark 7.5).

In the case where $\mathrm{T} / \mathrm{T}_{0}$ is unramified, m is odd for any supercuspidal σ-selfdual representation (see Proposition 9.8). This does not hold for σ-selfdual cuspidal representations (which is easy to see), and this does not even hold for distinguished cuspidal representations: Kurinczuk and Matringe recently proved that, when $\mathrm{F} / \mathrm{F}_{0}$ is unramified and $n=\ell=2$, any σ-selfdual nonsupercuspidal cuspidal representation of $\mathrm{GL}_{2}(\mathrm{~F})$ of level zero (thus of relative degree 2) is distinguished.

1L. As in the previous paragraph, π is a σ-selfdual cuspidal R-representation of G. The following definition will be convenient to us (see Remark 10.2 for the connection with the usual notion of a generic representation).

Definition 1.5 (Definition 10.1). A σ-selfdual type $(\mathbf{J}, \boldsymbol{\lambda})$ in π is generic if either $\mathrm{T} / \mathrm{T}_{0}$ is unramified, or $\mathrm{T} / \mathrm{T}_{0}$ is ramified and this type has index $\lfloor m / 2\rfloor$.

Proposition 1.4 thus says that, up to G^{σ}-conjugacy, a σ-selfdual cuspidal representation π contains a unique generic σ-selfdual type, and that π is distinguished if and only if such a type is distinguished (see Theorem 10.3). This uniqueness property is crucial to the proof of the disjunction part of Theorem 1.1.

Let us fix a generic σ-selfdual type (\mathbf{J}, λ) in π. Recall that, by construction, λ can be decomposed (noncanonically) as $\boldsymbol{\kappa} \otimes \rho$. However, not any of these decompositions are suitable for our purpose. It is not difficult to prove that $\boldsymbol{\kappa}$ can be chosen to be σ-selfdual, but this is not enough: we need to prove that κ can be chosen to be both σ-selfdual and distinguished. The strategy of the proof depends on the ramification of T over T_{0}. This is why we treat separately the ramified and the unramified cases, in Sections 7 and 9 , respectively.

The easiest case is when T / T_{0} is ramified. Using the fact that m is either even or equal to 1 , we prove that $\boldsymbol{\kappa}$ can be chosen to be distinguished by adapting a result of Matringe [2012] (which we do in Paragraph 2C).

When $\mathrm{T} / \mathrm{T}_{0}$ is unramified, the existence of a distinguished κ is more difficult to establish. Our proof requires π to be supercuspidal, since in that case m is known to be odd, thus $\mathrm{GL}_{m}(\boldsymbol{l})$ has $\mathrm{GL}_{m}\left(\boldsymbol{l}_{0}\right)$ distinguished supercuspidal representations in characteristic 0 , where \boldsymbol{l}_{0} is the residual field of T_{0} (see the proof of Proposition 9.4).

In both cases, a distinguished $\boldsymbol{\kappa}$ is automatically σ-selfdual, and π is distinguished if and only if $\boldsymbol{\rho}$ is distinguished. Considering ρ as a (σ-selfdual) level zero type, we are then reduced to the level zero case, which has been treated by Coniglio-Guilloton in the complex case. We thus have to extend her results to the modular case, which we know how to do when π is supercuspidal only.

To summarize, we need the assumption that π is supercuspidal in Theorems 1.1 and 1.2 for two reasons: for the existence of a distinguished κ in the case when T / T_{0} is unramified and for the level zero case.

1M. To study the distinction of ρ when π is supercuspidal, we use admissible pairs of level zero as in Coniglio-Guilloton [2016]. We attach to ρ a pair (D/T, δ) made of an unramified extension of degree m equipped with an involutive T_{0}-algebra homomorphism, nontrivial on T , denoted by σ, together with a character δ of D^{\times}such that $\delta \circ \sigma=\delta^{-1}$. (See Paragraphs 5C and 5E although the result is presented in a different way there.)

However, the distinguished representation κ of Paragraph 1 L is not unique in general, thus neither ρ nor δ are. Write D_{0} for the σ-fixed points of D and δ_{0} for the restriction of δ to D_{0}^{\times}. This is a quadratic character, trivial on $\mathrm{D} / \mathrm{D}_{0}$-norms. We prove in Proposition 10.5 that the pair ($\mathrm{D} / \mathrm{D}_{0}, \delta_{0}$) is uniquely determined by π up to F_{0}-isomorphism. This is the one occurring in our distinction criterion Theorem 1.2.

It remains to explain our strategy to prove the distinction criterion for ρ, in the modular case, in terms of the character δ_{0}, as well as the dimension of the space of invariant linear forms. This depends on the ramification of $\mathrm{T} / \mathrm{T}_{0}$.

The easiest case is when T / T_{0} is unramified. In this case, we are reduced to studying the distinction of supercuspidal representations of $\mathrm{GL}_{m}(\boldsymbol{l})$ by $\mathrm{GL}_{m}\left(\boldsymbol{l}_{0}\right)$. That any distinguished irreducible representation is
σ-selfdual follows from a finite and ℓ-modular version of Theorem 4.1 (see Remark 4.3). For the converse statement, we use a lifting argument to characteristic 0 , based on the fact that any σ-selfdual supercuspidal $\overline{\mathbf{F}}_{\ell}$-representation has a σ-selfdual $\overline{\mathbf{Q}}_{\ell}$-lift, where $\overline{\mathbf{Q}}_{\ell}$ is an algebraic closure of the field of ℓ-adic numbers and $\overline{\mathbf{F}}_{\ell}$ is its residual field. This does not hold for σ-selfdual nonsupercuspidal representations: by Remark 2.8, there are σ-selfdual cuspidal representations, with m even, which are not distinguished.

In the case where $\mathrm{T} / \mathrm{T}_{0}$ is ramified, we are reduced to studying the distinction of supercuspidal representations of $\mathrm{GL}_{m}(\boldsymbol{l})$ by either $\mathrm{GL}_{1}(\boldsymbol{l})$ if $m=1$, or $\mathrm{GL}_{r}(\boldsymbol{l}) \times \mathrm{GL}_{r}(\boldsymbol{l})$ if $m=2 r$ is even. It is more difficult, as we do not have an analogue of Theorem 4.1. Our proof relies on the structure of the projective envelope of a supercuspidal representation of $\mathrm{GL}_{m}(\boldsymbol{l})$, as well as a lifting argument to characteristic 0 . We prove that a supercuspidal representation is distinguished if and only if it is selfdual. Unlike the complex case, one can find σ-selfdual cuspidal representations, with $m>1$ odd, which are not distinguished (see Remark 2.18).

In both cases, we prove that a σ-selfdual supercuspidal representation of $\mathrm{GL}_{m}(\boldsymbol{l})$ is distinguished if any only if it admits a distinguished lift to characteristic 0 . We conclude by the following theorem.

Theorem 1.6 (Theorem 10.11). Let π be a σ-selfdual supercuspidal representation of the group G with coefficients in $\overline{\mathbf{F}}_{\ell}$.
(1) The representation π admits $a \sigma$-selfdual supercuspidal lift to $\overline{\mathbf{Q}}_{\ell}$.
(2) Let $\tilde{\pi}$ be a σ-selfdual lift of π, and suppose that $\ell \neq 2$. Then $\tilde{\pi}$ is distinguished if and only if π is distinguished.

1N. In this paragraph, we discuss the assumption $p \neq 2$. In Section 2, in which we study the finite field case, we assume that $p \neq 2$ in Paragraphs 2C and 2D only; see Remark 2.11. Note that neither Gow's results [1984] nor the modular version established in Paragraph 2B require p to be odd. The same is true of the results of Prasad and Flicker - as well as their modular version proved in Section 4 -asserting that any distinguished irreducible representation π of G is σ-selfdual and $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\pi, 1)$ has dimension 1.

From Paragraph 5D the assumption $p \neq 2$ is crucial (as in [Hakim and Murnaghan 2002; 2008] and to a lesser extent [Coniglio-Guilloton 2016]). We use at many places, in particular in Section 6 and in the proof of the σ-selfdual type Theorem 5.10, the fact that the first cohomology set of $\mathrm{Gal}\left(\mathrm{F} / \mathrm{F}_{0}\right)$ in a pro- p-group is trivial. I do not know whether or not Theorem 5.10 still holds when $p=2$.

I also do not now whether the dichotomy and disjunction theorems hold when F has characteristic 2. The only exception is Prasad's dichotomy theorem [2001] for cuspidal complex representations when $\mathrm{F} / \mathrm{F}_{0}$ is unramified, which remains the only known distinction criterion for cuspidal representations in arbitrary residual characteristic. Note that Prasad's approach does not work in the modular case, for [Prasad 2001, Theorem 1] does not hold in characteristic $\ell>0$.
10. Finally, let us mention that the methods developed in this paper are expected to generalize to other groups. The distinction of supercuspidal representations of $\mathrm{GL}_{n}(\mathrm{~F})$ by a unitary group is currently being explored by Jiandi Zou in his ongoing PhD thesis at Université de Versailles St-Quentin.

2. The finite field case

The aim of this section is to extend to the modular case some results about distinction of cuspidal representations of GL_{n} over a finite field which are know in the complex case only. These results will be needed in Sections 8 and 9, but this section can also be read independently from the rest of the article.

In this section, \boldsymbol{k} is a finite field whose characteristic is an arbitrary prime number p. In Paragraphs 2C and 2D, we will assume that p is odd. Let q denote the cardinality of \boldsymbol{k}.

Let R be an algebraically closed field of characteristic different from p, denoted ℓ. (Note that ℓ can be 0 .) We say that we are in the "modular case" when we consider the case where $\ell>0$. By representation of a finite group, we mean a representation on an R -vector space.

Given a representation π of a finite group G, we write π^{\vee} for the contragredient of π. Given a subgroup H of G, we say that π is H -distinguished if the $\operatorname{space} \operatorname{Hom}_{\mathrm{H}}(\pi, 1)$ is nonzero, where 1 denotes the trivial character of H .

Given $n \geq 1$, an irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$ is said to be cuspidal if it has no nonzero invariant vector under the unipotent radical of any proper parabolic subgroup or, equivalently, if it does not occur as a subrepresentation of any proper parabolically induced representation. It is supercuspidal if it does not occur as a subquotient of a proper parabolically induced representation. When R has characteristic 0 , any cuspidal representation is supercuspidal.

When $\ell>0$, we denote by $\overline{\mathbf{Q}}_{\ell}$ an algebraic closure of the field of ℓ-adic numbers, by $\overline{\mathbf{Z}}_{\ell}$ the ring of ℓ-adic integers in $\overline{\mathbf{Q}}_{\ell}$ and by $\overline{\mathbf{F}}_{\ell}$ the residue field of $\overline{\mathbf{Z}}_{\ell}$. We refer to [Serre 1977, Section 15] for a definition of the reduction $\bmod \ell$ of a $\overline{\mathbf{Q}}_{\ell}$-representation of a finite group.

2A. Parametrization of supercuspidal representations. For the results stated in this paragraph, we refer to [Green 1955; Dipper 1985; Dipper and James 1986; James 1986] (see also [Vignéras 1996, III.2; Mínguez and Sécherre 2015, Section 2.6]).

Let $\boldsymbol{t} / \boldsymbol{k}$ be an extension of degree $n \geq 1$ of finite fields of characteristic p. Fix a \boldsymbol{k}-embedding of \boldsymbol{t} in the matrix algebra $\mathrm{M}_{n}(\boldsymbol{k})$, and consider \boldsymbol{t}^{\times}as a maximal torus in $\mathrm{GL}_{n}(\boldsymbol{k})$. An R-character ξ of \boldsymbol{t}^{\times}is said to be \boldsymbol{k}-regular if the characters $\xi, \xi^{q}, \ldots, \xi^{q^{n-1}}$ are all distinct.

Let ξ be a \boldsymbol{k}-regular R-character of \boldsymbol{t}^{\times}. By Green [1955] when R has characteristic 0 and James [1986] when R has positive characteristic $\ell \neq p$, there is a supercuspidal irreducible representation ρ_{ξ} of $\mathrm{GL}_{n}(\boldsymbol{k})$, uniquely determined up to isomorphism, such that

$$
\begin{equation*}
\operatorname{tr} \rho_{\xi}(g)=(-1)^{n-1} \cdot \sum_{\gamma} \xi^{\gamma}(g) \tag{2-1}
\end{equation*}
$$

for all $g \in \boldsymbol{t}^{\times}$with irreducible characteristic polynomial, where γ runs over $\operatorname{Gal}(\boldsymbol{t} / \boldsymbol{k})$. This induces a surjective map

$$
\begin{equation*}
\xi \mapsto \rho_{\xi} \tag{2-2}
\end{equation*}
$$

between \boldsymbol{k}-regular characters of \boldsymbol{t}^{\times}and isomorphism classes of supercuspidal irreducible representations of $\mathrm{GL}_{n}(\boldsymbol{k})$, whose fibers are $\operatorname{Gal}(\boldsymbol{t} / \boldsymbol{k})$-orbits.

Suppose that R is the field $\overline{\mathbf{Q}}_{\ell}$. In the next proposition, we record the main properties of the reduction $\bmod \ell$ of supercuspidal $\overline{\mathbf{Q}}_{\ell}$-representations of $\mathrm{GL}_{n}(\boldsymbol{k})$.

Proposition 2.1 [Dipper 1985; Dipper and James 1986; James 1986]. Let ξ be a \boldsymbol{k}-regular $\overline{\mathbf{Q}}_{\ell}$-character of \boldsymbol{t}^{\times}and ρ be the supercuspidal irreducible representation which corresponds to it.
(1) The reduction mod ℓ of ρ, denoted $\bar{\rho}$, is irreducible and cuspidal.
(2) The representation $\bar{\rho}$ is supercuspidal if and only if the reduction $\bmod \ell$ of ξ, denoted $\bar{\xi}$, is \boldsymbol{k}-regular.
(3) When $\bar{\xi}$ is \boldsymbol{k}-regular, the supercuspidal irreducible $\overline{\mathbf{F}}_{\ell}$-representation of $\mathrm{GL}_{n}(\boldsymbol{k})$ which corresponds to it is $\bar{\rho}$.

Moreover, for any cuspidal irreducible $\overline{\mathbf{F}}_{\ell}$-representation π of $\mathrm{GL}_{n}(\boldsymbol{k})$, there is a supercuspidal irreducible $\overline{\mathbf{Q}}_{\ell}$-representation ρ of $\mathrm{GL}_{n}(\boldsymbol{k})$ whose reduction $\bmod \ell$ is π. Such a representation ρ is said to be a lift of π.

Remark 2.2. Here are a couple of additional properties which we will use at various places.
(1) The identity (2-1) shows that, if ξ is a \boldsymbol{k}-regular character of \boldsymbol{t}^{\times}and ρ is the supercuspidal representation corresponding to ξ by (2-2), then its contragredient ρ^{\vee} corresponds to ξ^{-1}.
(2) Let $\iota: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$ be an embedding of algebraically closed fields of characteristic $\ell \neq p$. Then any irreducible R^{\prime}-representation π^{\prime} of $\mathrm{GL}_{n}(\boldsymbol{k})$ is isomorphic to $\pi \otimes \mathrm{R}^{\prime}$ for a uniquely determined irreducible R-representation π of $\mathrm{GL}_{n}(\boldsymbol{k})$, which follows from the fact that, since $\mathrm{GL}_{n}(\boldsymbol{k})$ is finite, the trace of π^{\prime} takes values in $\iota(\mathrm{R})$. Given a subgroup H of $\mathrm{GL}_{n}(\boldsymbol{k})$, the representation π is cuspidal (respectively supercuspidal, H -distinguished) if and only if π^{\prime} is cuspidal (respectively supercuspidal, H -distinguished). Moreover, by (2-1), if π is supercuspidal and corresponds to the \boldsymbol{k}-regular R character ξ, then π^{\prime} corresponds to the \boldsymbol{k}-regular R^{\prime}-character $\xi^{\prime}=\iota \circ \xi$.

2B. The Galois case. Recall that p is an arbitrary prime number. Let $\boldsymbol{k} / \boldsymbol{k}_{0}$ be a quadratic extension of finite fields of characteristic p. Write σ for the nontrivial \boldsymbol{k}_{0}-automorphism of \boldsymbol{k}, and q_{0} for the cardinality of \boldsymbol{k}_{0}. We thus have $q_{0}^{2}=q$.

If π is an irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$, we write π^{σ} for the representation $\pi \circ \sigma$, and we say that π is σ-selfdual if π^{σ}, π^{\vee} are isomorphic.

Lemma 2.3. Let $n \geq 1$ be a positive integer.
(1) If there is a σ-selfdual supercuspidal irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$, then n is odd.
(2) Suppose that R has characteristic 0 and n is odd. Then there is a σ-selfdual supercuspidal irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$.

Proof. Let ξ be a \boldsymbol{k}-regular character of \boldsymbol{t}^{\times}, and let ρ denote the supercuspidal irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$ corresponding to it by (2-2). The identity (2-1) shows that ρ^{σ} corresponds to $\xi^{q_{0}}$. Indeed, for
all $g \in \boldsymbol{t}^{\times} \subseteq \mathrm{GL}_{n}(\boldsymbol{k})$ with irreducible characteristic polynomial, $\sigma(g)$ and $g^{q_{0}}$ have the same characteristic polynomial, thus they are conjugate in $\mathrm{GL}_{n}(\boldsymbol{k})$. It follows that

$$
\operatorname{tr} \rho^{\sigma}(g)=\operatorname{tr} \rho\left(g^{q_{0}}\right)=(-1)^{n-1} \cdot \sum_{\gamma} \xi^{\gamma}\left(g^{q_{0}}\right)=(-1)^{n-1} \cdot \sum_{\gamma}\left(\xi^{q_{0}}\right)^{\gamma}(g)
$$

for all $g \in \boldsymbol{t}^{\times}$with irreducible characteristic polynomial. Thus ρ is σ-selfdual if and only if

$$
\begin{equation*}
\xi^{-q_{0}}=\xi^{q_{0}^{2 i}}, \quad \text { for some } i \in\{0, \ldots, n-1\} \tag{2-3}
\end{equation*}
$$

Exponentiating to $-q_{0}$ again gives us the equality $\xi^{q}=\xi^{q^{2 i}}$. The \boldsymbol{k}-regularity assumption on ξ implies that n divides $2 i-1$, thus n is odd. Besides, since $0 \leq i \leq n-1$, we have $n=2 i-1$. It follows that

$$
\begin{equation*}
\rho \text { is } \sigma \text {-selfdual } \Leftrightarrow \xi^{-1}=\xi^{q_{0}^{n}} . \tag{2-4}
\end{equation*}
$$

This is also equivalent to ξ being trivial on $\boldsymbol{t}_{0}^{\times}$, where \boldsymbol{t}_{0} is the subfield of \boldsymbol{t} with q_{0}^{n} elements.
Conversely, suppose that R has characteristic 0 and n is odd. Let ξ be an R-character of \boldsymbol{t}^{\times}of order $q_{0}^{n}+1$, which exists since \boldsymbol{t}^{\times}has order $q^{n}-1=\left(q_{0}^{n}-1\right)\left(q_{0}^{n}+1\right)$. It is thus trivial on $\boldsymbol{t}_{0}^{\times}$. On ther other hand, q_{0} has order $2 n \bmod q_{0}^{n}+1$, thus q has order $n \bmod q_{0}^{n}+1$. It follows that the character ξ is \boldsymbol{k}-regular.
Remark 2.4. When R has characteristic $\ell>0$, the group $\mathrm{GL}_{n}(\boldsymbol{k})$ may have σ-selfdual cuspidal (nonsupercuspidal) representations for n even, and it may have no σ-selfdual supercuspidal representation for n odd.
(1) For an example of σ-selfdual cuspidal nonsupercuspidal representation for n even, let e be the order of $q \bmod \ell$, and suppose that $n=e \ell^{u}$ for some integer $u \geq 0$. Then, by [Mínguez and Sécherre 2015, Théorème 2.4], the unique generic subquotient π of the representation induced from the trivial character of a Borel subgroup of $\mathrm{GL}_{n}(\boldsymbol{k})$ is cuspidal and σ-selfdual. One may choose q, ℓ and u such that n is even. For instance, this is the case when $n=2$ and $\ell \neq 2$ divides $q+1$.
(2) The group $\mathrm{GL}_{n}(\boldsymbol{k})$ may even have no supercuspidal representation at all: this is the case, for instance, when $n=3, q=2$ and $\ell=7$.

Lemma 2.5. Let ρ be a supercuspidal representation of $\mathrm{GL}_{n}(\boldsymbol{k})$ for some odd integer $n \geq 1$. The following assertions are equivalent:
(1) The representation ρ is σ-selfdual.
(2) The representation ρ is $\mathrm{GL}_{n}\left(\boldsymbol{k}_{0}\right)$-distinguished.
(3) The space $\operatorname{Hom}_{\mathrm{GL}_{n}\left(k_{0}\right)}(\rho, 1)$ has dimension 1.

Proof. When R has characteristic 0, this is due to Gow [1984]. Suppose that R has characteristic $\ell>0$ prime to q. We postpone to Section 4 the proof of the fact that (2) implies (1) and is equivalent to (3), since the proof of Theorem 4.1 works in both the finite and nonarchimedean cases (see Remark 4.3). Here we prove that (1) implies (2). For this, we use the following general lemma.

Lemma 2.6. Let G be a finite group and H be a subgroup of G . Let π be an irreducible representation of G on a $\overline{\mathbf{Q}}_{\ell}$-vector space V such that $\operatorname{Hom}_{\mathrm{H}}(\pi, 1)$ is nonzero. Let $\mathrm{L} \subseteq \mathrm{V}$ be a G -stable $\overline{\mathbf{Z}}_{\ell}$-lattice. Then $\mathrm{L} \otimes \overline{\mathbf{F}}_{\ell}$ has at least one irreducible G -subquotient τ such that $\operatorname{Hom}_{\mathrm{H}}(\tau, 1) \neq\{0\}$.

Proof. Let φ be a nonzero H-invariant linear form on V. The image of L by φ, denoted M , is a $\overline{\mathbf{Z}}_{\ell}$-lattice in $\overline{\mathbf{Q}}_{\ell}$. Reducing mod the maximal ideal of $\overline{\mathbf{Z}}_{\ell}$ gives a nonzero H -invariant $\overline{\mathbf{F}}_{\ell}$-linear map $\bar{\varphi}$ from $\mathrm{L} \otimes \overline{\mathbf{F}}_{\ell}$ to $\mathrm{M} \otimes \overline{\mathbf{F}}_{\ell} \simeq \overline{\mathbf{F}}_{\ell}$. Let W be the largest subrepresentation of $\mathrm{L} \otimes \overline{\mathbf{F}}_{\ell}$ contained in the kernel of $\bar{\varphi}$. Then any irreducible subrepresentation τ of $\left(\mathrm{L} \otimes \overline{\mathbf{F}}_{\ell}\right) / \mathrm{W}$ satisfies the required condition.

Let ξ be a \boldsymbol{k}-regular character of \boldsymbol{t}^{\times}parametrizing some σ-selfdual supercuspidal representation ρ of $\mathrm{GL}_{n}(\boldsymbol{k})$. By (2-4), we have $\xi^{-1}=\xi^{q_{0}^{n}}$. Let us fix a field embedding $\iota: \overline{\mathbf{F}}_{\ell} \rightarrow \mathrm{R}$. Since ξ has finite image, there is a \boldsymbol{k}-regular character $\tilde{\xi}$ of \boldsymbol{t}^{\times}with values in $\overline{\mathbf{Z}}_{\ell}$ such that:

- The character $\tilde{\xi}$ satisfies the identity $\tilde{\xi}^{-1}=\tilde{\xi}^{q_{0}^{n}}$.
- One has $\xi=\iota \circ \xi_{0}$ where ξ_{0} is the reduction $\bmod \ell$ of $\tilde{\xi}$.

The character $\tilde{\xi}$ corresponds to a σ-selfdual supercuspidal $\overline{\mathbf{Q}}_{\ell}$-representation $\tilde{\rho}$ of $\mathrm{GL}_{n}(\boldsymbol{k})$. Let V denote the vector space of $\tilde{\rho}$ and fix a $\mathrm{GL}_{n}(\boldsymbol{k})$-stable $\overline{\mathbf{Z}}_{\ell}$-lattice L in V. By Paragraph 2A, the representation of
 to ξ_{0}, and it is distinguished by Lemma 2.6. The result now follows from Remark 2.2, which tells us that $\rho_{0} \otimes \mathrm{R}$ is distinguished and isomorphic to ρ.

Remark 2.7. If R is the field $\overline{\mathbf{F}}_{\ell}$, we proved that the representation ρ is distinguished if and only if it has a distinguished lift to $\overline{\mathbf{Q}}_{\ell}$.

Remark 2.8. We give an example of a σ-selfdual cuspidal nonsupercuspidal representation of $\mathrm{GL}_{n}(\boldsymbol{k})$ which is not distinguished. With the notation of Remark 2.4, assume that $n=e=2$. Thus π is a σ-selfdual cuspidal (nonsupercuspidal) representation of $\mathrm{GL}_{2}(\boldsymbol{k})$. Let $\tilde{\pi}$ be an ℓ-adic lift of π (see Remark 2.2), and decompose its restriction to $\mathrm{GL}_{2}\left(\boldsymbol{k}_{0}\right)$ as a direct sum

$$
\mathrm{V}_{1} \oplus \cdots \oplus \mathrm{~V}_{r}
$$

of irreducible components. Since the order of $\mathrm{GL}_{2}\left(\boldsymbol{k}_{0}\right)$ is prime to ℓ, reduction $\bmod \ell$ preserves irreducibility, and the restriction of π to $\mathrm{GL}_{2}\left(\boldsymbol{k}_{0}\right)$ is semisimple. It follows that π decomposes as $\mathrm{W}_{1} \oplus \cdots \oplus \mathrm{~W}_{r}$, where W_{i} is irreducible and is the reduction $\bmod \ell$ of V_{i} for each $i=1, \ldots, r$. Suppose that π is distinguished. Then W_{i} is the trivial character for some i. Thus V_{i} is a character, and it must be trivial since $\mathrm{GL}_{2}\left(\boldsymbol{k}_{0}\right)$ has no nontrivial character of order a power of ℓ, which implies that $\tilde{\pi}$ is distinguished. This is impossible, since $n=2$ is even.

Remark 2.9. More generally, the argument of Remark 2.8 shows that, if H is a subgroup of $\mathrm{GL}_{n}(\boldsymbol{k})$ whose order is prime to ℓ, then a cuspidal representation π of $\mathrm{GL}_{n}(\boldsymbol{k})$ is H-distinguished if and only if any ℓ-adic lift of π is H -distinguished.

2C. A mirabolic interlude. This paragraph is inspired from Matringe [2012]. We assume that $p \neq 2$. Let G denote the group $\mathrm{GL}_{n}(\boldsymbol{k})$ for some $n \geq 2$. Write P for the mirabolic subgroup of G , which is made of all matrices in G whose last row is $(0 \cdots 01)$. Let U be the unipotent radical of P, and G^{\prime} be the image of $\mathrm{GL}_{n-1}(\boldsymbol{k})$ in G under the group homomorphism

$$
g \mapsto\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)
$$

We thus have $\mathrm{P}=\mathrm{G}^{\prime} \mathrm{U}$, and we write P^{\prime} for the mirabolic subgroup of G^{\prime}. Let N be the maximal unipotent subgroup of G made of all upper triangular unipotent matrices, and ψ be a nontrivial character of \boldsymbol{k}. We still write ψ for the nondegenerate character

$$
x \mapsto \psi\left(x_{1,2}+\cdots+x_{n-1, n}\right)
$$

of N . We have a functor

$$
\pi \mapsto \operatorname{Ind}_{\mathrm{P}^{\prime} \mathrm{U}}^{\mathrm{P}}(\pi \otimes \psi)
$$

denoted Φ^{+}, from R-representations of P^{\prime} to R-representations of P , where $\pi \otimes \psi$ is the representation of $\mathrm{P}^{\prime} \mathrm{U}$ defined by $x u \mapsto \pi(x) \psi(u)$ for all $x \in \mathrm{P}^{\prime}$ and $u \in \mathrm{U}$.

Given integers $r \geq s \geq 0$ such that $r+s=n$, let $\mathrm{H}_{r, s}$ be the subgroup of G defined in [Matringe 2012]. It is the conjugate of the Levi subgroup $\mathrm{GL}_{r}(\boldsymbol{k}) \times \mathrm{GL}_{s}(\boldsymbol{k})$ of G under the permutation matrix $w_{r, s}$ defined by the permutation

$$
\left(\begin{array}{llllllccccccc}
1 & \cdots & t & \cdots & t+i & \cdots & r & r+1 & \cdots & r+1+j & \cdots & n-1 & n \\
1 & \cdots & t & \cdots & t+2 i & \cdots & n-1 & t+1 & \cdots & t+1+2 j & \cdots & n-2 & n
\end{array}\right)
$$

where $t=r-s+1$. If $s \geq 1$, let $\mathrm{H}_{r, s}^{\prime}$ be the subgroup $\mathrm{G}^{\prime} \cap \mathrm{H}_{r, s}$ (denoted $\mathrm{H}_{r, s-1}$ in [Matringe 2012]).
Lemma 2.10. Let π be a representation of P^{\prime}, and χ be a character of $\mathrm{H}_{r, s}$. Suppose that the vector space $\operatorname{Hom}_{\mathrm{P}^{\prime} \mathrm{H}_{r, s}}\left(\Phi^{+}(\pi), \chi\right)$ is nonzero. Then it is isomorphic to $\operatorname{Hom}_{\mathrm{P}^{\prime} \cap \mathrm{H}_{r, s}^{\prime}}(\pi, \chi)$.

Proof. Given $g \in \mathrm{G}$ and a representation τ of a subgroup H of G , we will write $\mathrm{H}^{g}=g^{-1} \mathrm{H} g$, and τ^{g} for the representation $x \mapsto \tau\left(g x g^{-1}\right)$ of H^{g}. Applying the Mackey formula, and since G^{\prime} normalizes U , the restriction of $\Phi^{+}(\pi)$ to $\mathrm{P} \cap \mathrm{H}_{r, s}$ decomposes as the direct sum
where g ranges over a set of representatives of $\left(\mathrm{P}^{\prime} \mathrm{U}, \mathrm{P} \cap \mathrm{H}_{r, s}\right)$-double cosets in P . Since $\mathrm{P}=\mathrm{G}^{\prime} \mathrm{U}$, we may assume g ranges over a set of representatives of $\left(\mathrm{P}^{\prime}, \mathrm{H}_{r, s}^{\prime}\right)$-double cosets in G^{\prime}. For each g, let us write the following isomorphism of representations of $\mathrm{P} \cap \mathrm{H}_{r, s}$

$$
\begin{equation*}
\operatorname{Ind}_{\mathrm{U} \cap \mathrm{H}_{r, s}}^{\mathrm{P}_{r, s} \mathrm{H}_{r, s}}\left(\pi^{g} \otimes \psi^{g}\right) \simeq \operatorname{Ind}_{{\mathrm{P} \cap \mathrm{H}_{r, s}}_{\mathrm{P} \cap \mathrm{P}_{r, s}}^{\mathrm{P}} \mathrm{U}}\left(\left(\pi^{g} \otimes \psi^{g}\right) \otimes \operatorname{Ind}_{\mathrm{U} \cap \mathrm{H}_{r, s}}^{\mathrm{P}_{r, s} \mathrm{H}_{r, s} \cap^{\prime g} \mathrm{U}}(1)\right) \tag{2-5}
\end{equation*}
$$

Since the induced representation $\operatorname{Ind}_{\mathrm{U}^{2} \mathrm{H}_{r, s}}^{\mathrm{P}_{r, s} \mathrm{P}_{r}{ }^{\prime} \mathrm{U}}$ (1) canonically surjects onto the trivial character of $\mathrm{P} \cap$ $\mathrm{H}_{r, s} \cap \mathrm{P}^{\prime g} \mathrm{U}$ by Frobenius reciprocity, the right-hand side of (2-5) surjects onto

$$
\operatorname{Ind}_{\mathrm{P} \cap \mathrm{H}_{r, s} \cap \mathrm{P}^{\prime g} \mathrm{U}}^{\mathrm{P} \cap \mathrm{H}_{, s}}\left(\pi^{g} \otimes \psi^{g}\right) .
$$

On the other hand, since π^{g} is trivial on $\mathrm{U} \cap \mathrm{H}_{r, s}$, the left-hand side of (2-5) is a sum of finitely many copies of $\operatorname{Ind}_{\mathrm{U}^{2} \mathrm{H}_{r, s}}^{{\mathrm{P} \cap \mathrm{H}_{r, s}}}\left(\psi^{g}\right)$. It follows that, if $\operatorname{Hom}_{\mathrm{P}_{\mathrm{H}} \mathrm{H}_{r, s}}\left(\Phi^{+}(\pi), \chi\right)$ is nonzero, then there is a $g \in \mathrm{G}^{\prime}$ such that

$$
\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, s}}\left(\operatorname{Ind}_{\mathrm{U}^{2} \cap \mathrm{H}_{r, s}}^{\mathrm{P}_{r, s}}\left(\psi^{g}\right), \chi\right) \neq\{0\} .
$$

By Frobenius reciprocity, this implies that $\psi^{g}=\chi$ on $\mathrm{U} \cap \mathrm{H}_{r, s}$. Since we assumed that $p \neq 2$, the field \boldsymbol{k} has at least three elements, thus any character of $\mathrm{H}_{r, s} \simeq \mathrm{GL}_{r}(\boldsymbol{k}) \times \mathrm{GL}_{s}(\boldsymbol{k})$ is trivial on unipotent elements. We thus get $\psi^{g}=1$ on $\mathrm{U} \cap \mathrm{H}_{r, s}$. By [Matringe 2012, Lemma 3.1], this implies that $g \in \mathrm{P}^{\prime} \mathrm{H}_{r, s}^{\prime}$, that is, we may assume that $g=1$. We thus have

$$
\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, s}}\left(\Phi^{+}(\pi), \chi\right)=\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, s}}\left(\operatorname{Ind}_{\mathrm{P}^{\prime} \mathrm{U} \cap \mathrm{U}_{r, s}}^{\mathrm{P}_{r, s} \mathrm{H}_{r, s}}(\pi \otimes \psi), \chi\right) \simeq \operatorname{Hom}_{\mathrm{P}^{\prime} \mathrm{U} \cap \mathrm{H}_{r, s}}(\pi \otimes \psi, \chi)
$$

The result now follows from the fact that $\mathrm{P}^{\prime} \mathrm{U} \cap \mathrm{H}_{r, s}=\mathrm{P}^{\prime} \cap \mathrm{H}_{r, s}^{\prime}$. (This latter equality has been pointed out to me by N. Matringe.)

Remark 2.11. (1) If χ is assumed to be trivial on unipotent elements, or if \boldsymbol{k} has at least three elements, then Lemma 2.10 holds without assuming that $p \neq 2$.
(2) If \boldsymbol{k} has cardinality 2 , the group $\mathrm{GL}_{2}(\boldsymbol{k})$ has a cuspidal character. Thus, when $r \geq 2$, the group $\mathrm{H}_{r, 2}$ has a character which is nontrivial on $\mathrm{U} \cap \mathrm{H}_{r, 2}$.

Now write $\mathrm{G}^{\prime \prime}$ for the copy of $\mathrm{GL}_{n-2}(\boldsymbol{k})$ in the upper left block of G^{\prime} and $\mathrm{P}^{\prime \prime}$ for the mirabolic subgroup of $\mathrm{G}^{\prime \prime}$.

Lemma 2.12. Let π^{\prime} be a representation of $\mathrm{P}^{\prime \prime}$, and χ^{\prime} be a character of $\mathrm{H}_{r, s}^{\prime}$. Suppose that $s \geq 1$. If $\operatorname{Hom}_{\mathrm{P}^{\prime} \cap \mathrm{H}_{r, s}^{\prime}}\left(\Phi^{+}\left(\pi^{\prime}\right), \chi^{\prime}\right)$ is nonzero, then it is isomorphic to $\operatorname{Hom}_{\mathrm{P}^{\prime \prime} \cap \mathrm{H}_{r-1, s-1}}\left(\pi^{\prime}, \chi^{\prime}\right)$.
Proof. It is similar to that of Lemma 2.10, replacing [Matringe 2012, Lemma 3.1] by [Matringe 2012, Lemma 3.2].

Let Γ denote the mirabolic representation of P . Recall that it is defined as the representation of P induced from the character ψ of N .

Lemma 2.13. Let $n \geq 2$ and $r \geq s \geq 0$ be such that $r+s=n$. Let χ be a character of $\mathrm{H}_{r, s}$. If the space $\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, s}}(\Gamma, \chi)$ is nonzero, then $r=s$.

Proof. If $s=0$, then $\mathrm{H}_{r, s}=\mathrm{G}$ and the result follows from the fact that the representation Γ is irreducible of dimension greater than 1 .

Suppose that $s \geq 1$ and that the space $\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, s}}(\Gamma, \chi)$ is nonzero. The mirabolic representation Γ is isomorphic to $\Phi^{+}\left(\Gamma^{\prime}\right)$, where Γ^{\prime} denotes the mirabolic representation of P^{\prime}. By Lemma 2.10 , the space $\operatorname{Hom}_{\mathrm{P}^{\prime} \cap \mathrm{H}_{r, s}^{\prime}}\left(\Gamma^{\prime}, \chi^{\prime}\right)$ is nonzero, where χ^{\prime} is the restriction of χ to $\mathrm{H}_{r, s}^{\prime}$. Now identify Γ^{\prime} with $\Phi^{+}\left(\Gamma^{\prime \prime}\right)$, where
$\Gamma^{\prime \prime}$ is the mirabolic representation of $\mathrm{P}^{\prime \prime}$. By Lemma 2.12, the space $\operatorname{Hom}_{\mathrm{P}^{\prime \prime} \cap \mathrm{H}_{r-1, s-1}}\left(\Gamma^{\prime \prime}, \chi^{\prime \prime}\right)$ is nonzero, where $\chi^{\prime \prime}$ is the restriction of χ^{\prime} to $\mathrm{H}_{r-1, s-1}$. By induction on n, the fact that $\operatorname{Hom}_{\mathrm{P}^{\prime \prime} \cap \mathrm{H}_{r-1, s-1}}\left(\Gamma^{\prime \prime}, \chi^{\prime \prime}\right)$ is nonzero implies that $r-1=s-1$, thus $r=s$.

Proposition 2.14. Let $n \geq 2$ and $r, s \geq 0$ be such that $r+s=n$. Let ρ be a cuspidal representation of G , and χ be a character of $\mathrm{M}=\left(\mathrm{GL}_{r} \times \mathrm{GL}_{s}\right)(\boldsymbol{k})$. Suppose $\operatorname{Hom}_{\mathrm{M}}(\rho, \chi)$ is nonzero. Then $r=s$.

Proof. Conjugating M and χ if necessary, we may assume that $r \geq s$. The result then follows from Lemma 2.13 and the fact that the restriction of ρ to P is isomorphic to Γ. This latter fact is well-known when R has characteristic 0 , and is given by [Vignéras 1996, III.1] when R is equal to $\overline{\mathbf{F}}_{\ell}$. For an arbitrary R of characteristic $\ell>0$, fix a field embedding of $\overline{\mathbf{F}}_{\ell}$ in R and write ρ as $\rho_{0} \otimes \mathrm{R}$ for some cuspidal irreducible $\overline{\mathbf{F}}_{\ell \text {-representation }} \rho_{0}$ of G as in Remark 2.2. Since the restriction of ρ_{0} to P is isomorphic to Γ_{0}, the mirabolic $\overline{\mathbf{F}}_{\ell}$-representation of P , the restriction of ρ to P is isomorphic to $\Gamma_{0} \otimes \mathrm{R} \simeq \Gamma$.

Remark 2.15. Suppose that $r=s \geq 1$. Putting Lemmas 2.10 and 2.12 together, we get

$$
\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, r}}\left(\left(\Phi^{+}\right)^{2}(\pi), 1\right) \simeq \operatorname{Hom}_{\mathrm{P}^{\prime \prime} \cap \mathrm{H}_{r-1, r-1}}(\pi, 1)
$$

for any representation π of $\mathrm{P}^{\prime \prime}$. By induction, we get an isomorphism $\operatorname{Hom}_{\mathrm{P} \cap \mathrm{H}_{r, r}}(\Gamma, 1) \simeq \mathrm{R}$.
Corollary 2.16. Suppose that $n=2 r$ for some $r \geq 1$, and let ρ be a cuspidal representation of $\mathrm{GL}_{n}(\boldsymbol{k})$. Then the R -vector space $\operatorname{Hom}_{\left(\mathrm{GL}_{r} \times \mathrm{GL}_{r}\right)(\boldsymbol{k})}(\rho, 1)$ has dimension at most 1 .

Proof. This follows from Remark 2.15, together with the fact that the restriction of ρ to P is isomorphic to Γ.

2D. The Levi case. In this paragraph, we consider the supercuspidal irreducible representations of $\mathrm{GL}_{n}(\boldsymbol{k})$ distinguished by some maximal Levi subgroup. As in Paragraph 2C, we assume that $p \neq 2$.

Lemma 2.17. Let $n \geq 1$ be a positive integer.
(1) If there is a selfdual supercuspidal irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$, then either $n=1$ or n is even.
(2) Suppose that R has characteristic 0 , and that either $n=1$ or n is even. Then there exists a selfdual supercuspidal irreducible representation of $\mathrm{GL}_{n}(\boldsymbol{k})$.

Proof. If $n=1$, the trivial character of \boldsymbol{k}^{\times}is selfdual and supercuspidal. Suppose that $n \geq 2$. Let us fix an extension \boldsymbol{t} of \boldsymbol{k} of degree n, and identify \boldsymbol{t}^{\times}with a maximal torus in $\mathrm{GL}_{n}(\boldsymbol{k})$. We consider the Green-James parametrization (2-2) of isomorphism classes of supercuspidal irreducible representations of $\mathrm{GL}_{n}(\boldsymbol{k})$ by \boldsymbol{k}-regular characters of \boldsymbol{t}^{\times}.

Given a \boldsymbol{k}-regular character ξ of \boldsymbol{t}^{\times}, let ρ denote the representation corresponding to it. Recall (see Remark 2.2) that ρ^{\vee} corresponds to ξ^{-1}. Thus ρ is selfdual if and only if

$$
\begin{equation*}
\xi^{-1}=\xi^{q^{i}}, \quad \text { for some } i \in\{0, \ldots, n-1\} \tag{2-6}
\end{equation*}
$$

Taking the contragredient again gives us the equality $\xi=\xi^{q^{2 i}}$. The regularity assumption on ξ implies that n divides $2 i$ and, since $0 \leq i \leq n-1$, we get $n=2 i$. It follows that

$$
\begin{equation*}
\rho_{\xi} \text { is selfdual } \Leftrightarrow \xi^{-1}=\xi^{q^{n / 2}} \tag{2-7}
\end{equation*}
$$

This is also equivalent to ξ being trivial on $\boldsymbol{t}^{\prime \times}$, where \boldsymbol{t}^{\prime} is the subfield of \boldsymbol{t} with cardinality $q^{n / 2}$.
Conversely, suppose that R has characteristic 0 and $n=2 r$ for some $r \geq 1$. Let us consider an R-character ξ of \boldsymbol{t}^{\times}of order $q^{r}+1$, which exists since \boldsymbol{t}^{\times}has order $q^{n}-1=\left(q^{r}-1\right)\left(q^{r}+1\right)$. It is trivial on $\boldsymbol{t}^{\prime \times}$. On ther other hand, q has order $n=2 r \bmod q^{r}+1$, which implies that ξ is \boldsymbol{k}-regular.

Remark 2.18. When R has characteristic $\ell>0$, the group $\mathrm{GL}_{n}(\boldsymbol{k})$ may have selfdual cuspidal (nonsupercuspidal) representations even if n is odd and >1. Indeed, let e be the order of $q \bmod \ell$, and suppose that $n=e \ell^{u}$ for some $u \geq 0$. The unique generic irreducible subquotient of the representation induced from the trivial character of a Borel subgroup of $\mathrm{GL}_{n}(\boldsymbol{k})$ is then both cuspidal (see Remark 2.4) and selfdual. One then can choose q, ℓ and u such that n is odd and >1. For instance, this is the case when $\ell \neq 2$ divides $q-1$ and $n=\ell$.

Also, as in Remark 2.4, the group $\mathrm{GL}_{n}(\boldsymbol{k})$ may even have no supercuspidal representation at all, which is the case, for instance, when $n=q=2$ and $\ell=3$.

Lemma 2.19. Suppose that $n=2 r$ with $r \geq 1$, and let ρ be a supercuspidal representation of $\mathrm{GL}_{n}(\boldsymbol{k})$. The following assertions are equivalent:
(1) The representation ρ is selfdual.
(2) The representation ρ is $\left(\mathrm{GL}_{r} \times \mathrm{GL}_{r}\right)(\boldsymbol{k})$-distinguished.
(3) The R-vector space $\operatorname{Hom}_{\left(\mathrm{GL}_{r} \times \mathrm{GL}_{r}\right)(\boldsymbol{k})}(\rho, 1)$ has dimension 1 .

Proof. When R has characteristic 0, this is [Hakim and Murnaghan 2002, Proposition 6.1] (see also [Coniglio-Guilloton 2016, Lemme 3.4.10]). Suppose now R has prime characteristic ℓ not dividing q. To prove that (1) implies (2), we follow the same lifting argument as in the proof of Lemma 2.5 .

We now prove that (2) implies (1). Let us write $\mathrm{G}=\mathrm{GL}_{n}(\boldsymbol{k})$ and $\mathrm{H}=\left(\mathrm{GL}_{r} \times \mathrm{GL}_{r}\right)(\boldsymbol{k})$. Let ρ be an H -distinguished supercuspidal representation of G . If one fixes a field embedding of $\overline{\mathbf{F}}_{\ell}$ in R , then Remark 2.2 tells us that ρ is isomorphic to $\rho_{0} \otimes \mathrm{R}$ for some distinguished supercuspidal irreducible $\overline{\mathbf{F}}_{\ell}$-representation ρ_{0} of G. Since ρ is selfdual if and only if ρ_{0} is, we are thus reduced to proving the result in the case where R is equal to $\overline{\mathbf{F}}_{\ell}$, which we assume now.

Since ρ is distinguished, its contragredient ρ^{\vee} has a nonzero H -invariant vector. We thus have a nonzero homomorphism $i: \overline{\mathbf{Z}}_{\ell}[\mathrm{H} \backslash \mathrm{G}] \rightarrow \rho^{\vee}$. Let us consider a projective envelope $f: \mathrm{P} \rightarrow \rho^{\vee}$ of ρ^{\vee} in the category of $\overline{\mathbf{Z}}_{\ell}[\mathrm{G}]$-modules. Since ρ^{\vee} is supercuspidal, it has the following properties (see for instance [Vignéras 1996, III.2.9]):

- The representation $\mathrm{P} \otimes \overline{\mathbf{Q}}_{\ell}$ is isomorphic to the direct sum of all the $\overline{\mathbf{Q}}_{\ell}$-lifts of ρ^{\vee}.
- There are ℓ^{a} such lifts, where a is the ℓ-adic valuation of $q^{n}-1$.
- The representation $\mathrm{P} \otimes \overline{\mathbf{F}}_{\ell}$ is indecomposable of length ℓ^{a} and has a unique irreducible quotient, and all its irreducible components are isomorphic to ρ^{\vee}.

By projectivity of P , the homomorphism i gives rise to a nonzero homomorphism

$$
\begin{equation*}
j: \mathrm{P} \rightarrow \overline{\mathbf{Z}}_{\ell}[\mathrm{H} \backslash \mathrm{G}] \tag{2-8}
\end{equation*}
$$

such that $i \circ j=f$. Inverting ℓ, we get a nonzero homomorphism from $\mathrm{P} \otimes \overline{\mathbf{Q}}_{\ell}$ to $\overline{\mathbf{Q}}_{\ell}[\mathrm{H} \backslash \mathrm{G}]$. It follows that ρ^{\vee} has at least one H-distinguished lift. Thanks to the characteristic 0 case, such a lift is selfdual. Reducing $\bmod \ell$, it follows that ρ is selfdual.

We now go back to the case of a general R. The fact that (2) implies (3) is a particular case of Corollary 2.16. However, we are going to give another proof here, which works for supercuspidal representations only but is more likely to generalize to other situations.

Let V be the maximal direct summand of $\mathrm{R}[\mathrm{H} \backslash \mathrm{G}]$ in the block of ρ. This means that $\mathrm{R}[\mathrm{H} \backslash \mathrm{G}]$ decomposes as a direct sum $\mathrm{V} \oplus \mathrm{V}^{\prime}$ where all irreducible subquotients of V are isomorphic to ρ, and no irreducible subquotient of V^{\prime} is isomorphic to ρ. Besides, since ρ is selfdual, we have

$$
\operatorname{dim} \operatorname{Hom}_{H}(\rho, 1)=\operatorname{dim} \operatorname{Hom}_{H}(1, \rho)=\operatorname{dim} \operatorname{Hom}_{G}(\mathrm{R}[\mathrm{H} \backslash \mathrm{G}], \rho)=\operatorname{dim} \operatorname{Hom}_{G}(\mathrm{~V}, \rho)
$$

We thus have to prove that the cosocle of V is isomorphic to ρ.
Lemma 2.20. The R -algebra $\mathrm{A}=\operatorname{End}_{\mathrm{G}}(\mathrm{V})$ is commutative.
Proof. Since the convolution algebra $\mathrm{R}[\mathrm{H} \backslash \mathrm{G} / \mathrm{H}]$ decomposes as $\operatorname{End}_{\mathrm{G}}(\mathrm{V}) \oplus \operatorname{End}_{\mathrm{G}}\left(\mathrm{V}^{\prime}\right)$, it suffices to prove that $\mathrm{R}[\mathrm{H} \backslash \mathrm{G} / \mathrm{H}]$ is commutative. For $x \in \mathrm{G}$, let f_{x} be the characteristic function in $\mathrm{R}[\mathrm{H} \backslash \mathrm{G} / \mathrm{H}]$ of the double coset $\mathrm{H} x \mathrm{H}$. For $x, y \in \mathrm{G}$, one has

$$
f_{x} * f_{y}=\sum_{z \in \mathrm{H} \backslash \mathrm{G} / \mathrm{H}} a(x, y, z) f_{z}
$$

where $a(x, y, z) \in \mathrm{R}$ is the image of the cardinality of $\left(\mathrm{H} x \mathrm{H} \cap z \mathrm{H} y^{-1} \mathrm{H}\right) / \mathrm{H}$ in R . When R has characteristic 0 , the algebra $R[H \backslash G / H]$ is known to be commutative since $R[H \backslash G]$ is multiplicity free as an $R[G]$-module, thus

$$
\begin{equation*}
\operatorname{card}\left(\mathrm{H} x \mathrm{H} \cap z \mathrm{H} y^{-1} \mathrm{H}\right) / \mathrm{H}=\operatorname{card}\left(\mathrm{H} y \mathrm{H} \cap z \mathrm{H} x^{-1} \mathrm{H}\right) / \mathrm{H} \tag{2-9}
\end{equation*}
$$

for all $x, y, z \in \mathrm{G}$. Now if R has characteristic $\ell>0$, reducing (2-9) $\bmod \ell$ gives us a congruence relation which tells us that the algebra $\mathrm{R}[\mathrm{H} \backslash \mathrm{G} / \mathrm{H}]$ is commutative.

It remains to prove that the cosocle of V is multiplicity free. Let $m \geq 1$ be the multiplicity of ρ in the cosocle of V and Q be the projective indecomposable $\mathrm{R}[\mathrm{G}]$-module associated with ρ. It has length ℓ^{a}, has a unique irreducible quotient, and all its irreducible components are isomorphic to ρ. Write $\mathrm{V}=\mathrm{V}_{1} \oplus \cdots \oplus \mathrm{~V}_{m}$ where $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{m}$ are indecomposable $\mathrm{R}[\mathrm{G}]$-modules with cosocle isomorphic to ρ. There is a nilpotent endomorphism $N \in \operatorname{End}_{G}(Q)$ such that

$$
\operatorname{End}_{G}(\mathrm{Q})=\mathrm{R}[\mathrm{~N}]
$$

with $\mathrm{N}^{\ell^{a}}=0$ and $\mathrm{N}^{\ell^{a}-1} \neq 0$. Therefore each V_{i} is isomorphic to the quotient of Q by the image of $\mathrm{N}^{k_{i}}$ for some $k_{i} \geq 0$. Reordering if necessary, we may assume that $\operatorname{Hom}\left(\mathrm{V}_{1}, \mathrm{~V}_{i}\right)$ is nonzero for all $i \geq 1$. Suppose that $m \geq 2$, and define two endomorphisms $u, u^{\prime} \in \mathrm{A}$ by:
(1) The endomorphisms u, u^{\prime} are trivial on V_{i} for all $i \geq 2$.
(2) The restriction of u to V_{1} is the identity on V_{1}.
(3) The restriction of u^{\prime} to V_{1} coincides with some nonzero homomorphism in $\operatorname{Hom}\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$.

Then $u u^{\prime}=0$ and $u^{\prime} u \neq 0$, thus A is not commutative. Thus $m=1$.
Remark 2.21. If R is the field $\overline{\mathbf{F}}_{\ell}$, we proved that ρ is distinguished if and only if it has a distinguished lift to $\overline{\mathbf{Q}}_{\ell}$ (see Remark 2.7).

Remark 2.22. If we only assume ρ to be cuspidal in Lemmas 2.17 and 2.19, then the lifting argument may not work, that is, ξ may not have a σ-selfdual \boldsymbol{k}-regular lift $\tilde{\xi}$. Besides, the structure of the projective envelope of ρ is more complicated when ρ is cuspidal nonsupercuspidal.

3. Notation and basic definitions in the nonarchimedean case

Let $\mathrm{F} / \mathrm{F}_{0}$ be a separable quadratic extension of locally compact nonarchimedean local fields of residual characteristic p. Apart from Section 4, we will assume that $p \neq 2$.

Write σ for the nontrivial F_{0}-automorphism of F . Write \mathcal{O} for the ring of integers of F and \mathcal{O}_{0} for that of F_{0}. Write \boldsymbol{k} for the residue field of F and \boldsymbol{k}_{0} for that of F_{0}. The involution σ induces a \boldsymbol{k}_{0}-automorphism of \boldsymbol{k}, still denoted σ, which generates $\operatorname{Gal}\left(\boldsymbol{k} / \boldsymbol{k}_{0}\right)$.

As in Section 2, let R be an algebraically closed field of characteristic ℓ different from p. (Note that ℓ can be 0 .) We say we are in the "modular case" when we consider the case where $\ell>0$.

We fix once and for all a character

$$
\begin{equation*}
\psi_{0}: \mathrm{F}_{0} \rightarrow \mathrm{R}^{\times} \tag{3-1}
\end{equation*}
$$

trivial on the maximal ideal of \mathcal{O}_{0} but not on \mathcal{O}_{0}, and define $\psi=\psi_{0} \circ \operatorname{tr}_{\mathrm{F} / \mathrm{F}_{0}}$.
When $\ell \neq 2$, we write

$$
\begin{equation*}
\omega=\omega_{\mathrm{F} / \mathrm{F}_{0}}: \mathrm{F}_{0}^{\times} \rightarrow \mathrm{R}^{\times} \tag{3-2}
\end{equation*}
$$

for the character of F_{0}^{\times}whose kernel is the subgroup of $\mathrm{F} / \mathrm{F}_{0}$-norms.
Let G be the locally profinite group $\mathrm{G}=\mathrm{GL}_{n}(\mathrm{~F})$, with $n \geq 1$, equipped with the involution σ acting componentwise. Its σ-fixed points is the closed subgroup $\mathrm{G}^{\sigma}=\mathrm{GL}_{n}\left(\mathrm{~F}_{0}\right)$. We will identify the center of G with F^{\times}and that of G^{σ} with F_{0}^{\times}.

By representation of a locally profinite group, we always mean a smooth representation on an R-module. Given a representation π of a closed subgroup H of G, we write π^{\vee} for the smooth contragredient of π and π^{σ} for the representation $\pi \circ \sigma$ of the subgroup $\sigma(\mathrm{H})$. We say that π is σ-selfdual if H is σ-stable and π^{σ}, π^{\vee} are isomorphic. If $g \in \mathrm{G}$, we write $\mathrm{H}^{g}=\left\{g^{-1} h g \mid h \in \mathrm{H}\right\}$ and π^{g} for the representation $x \mapsto \pi\left(g x g^{-1}\right)$ of H^{g}. If χ is a character of H , we write $\pi \chi$ for the representation $g \mapsto \chi(g) \pi(g)$.

If μ is a character of $\mathrm{H} \cap \mathrm{G}^{\sigma}$, we say that π is μ-distinguished if the space $\operatorname{Hom}_{\mathrm{H} \cap \mathrm{G}^{\sigma}}(\pi, \mu)$ is nonzero. If μ is the trivial character, we will simply say that π is $\mathrm{H} \cap \mathrm{G}^{\sigma}$-distinguished, or just distinguished. If $\mathrm{H}=\mathrm{G}$ and ϕ is a character of F_{0}^{\times}, we will abbreviate $\phi \circ$ det-distinguished to ϕ-distinguished.

An irreducible representation of G is said to be cuspidal if all its proper Jacquet modules are trivial or, equivalently, if it does not occur as a subrepresentation of a proper parabolically induced representation. It is said to be supercuspidal if it does not occur as a subquotient of a proper parabolically induced representation (by [Dat 2012a, Corollaire B.1.3], this is equivalent to not occurring as a subquotient of the parabolic induction of any irreducible representation of a proper Levi subgroup of G). When R has characteristic 0 , any cuspidal representation is supercuspidal.

4. A modular version of theorems of Prasad and Flicker

In this section, the residue characteristic p is arbitrary. We prove the following theorem, which is well-known in the complex case. Note that, in the modular case, any irreducible representation of G has a central character by [Vignéras 1996, II.2.8].

Theorem 4.1. Let π be a distinguished irreducible representation of G . Then:
(1) The central character of π is trivial on F_{0}^{\times}.
(2) The contragredient representation π^{\vee} is distinguished.
(3) The space $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\pi, 1)$ has dimension 1.
(4) The representations π^{σ} and π^{\vee} are isomorphic, that is, π is σ-selfdual.

Remark 4.2. In the complex case, this theorem was first proved under the assumption that the characteristic of F is not 2, which was required in the proof of [Flicker 1991, Proposition 10]. Later, Prasad [2001, Section 4] gave an argument which only requires $\mathrm{F} / \mathrm{F}_{0}$ to be separable quadratic.

Proof. Property (1) is straightforward. Property (2) follows from an argument of Gelfand and Kazhdan (see [Sécherre and Venketasubramanian 2017, Proposition 8.4] in the modular case). For properties (3) and (4), we follow the proofs of Prasad [1990] and Flicker [1991]. The reference for the basic results in the theory of modular representations of p-adic reductive groups which we use in the proof is [Vignéras 1996].

Write $\mathcal{C}_{c}^{\infty}(G)$ for the space of locally constant, compactly supported R-valued functions on G, and fix an R-valued Haar measure on G, that is, a nonzero R-linear form on $\mathcal{C}_{c}^{\infty}(G)$ invariant under left translation by G.

Let W denote the vector space of π, and $l: \mathrm{W} \rightarrow \mathrm{R}$ be a nonzero G^{σ}-invariant linear form. For any $f \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathrm{G})$, define a linear form on W by

$$
\pi(f) l: w \mapsto \int_{\mathrm{G}} f(x) l(\pi(x) w) d x
$$

Since f is smooth, the linear form $\pi(f) l$ on W is smooth. This defines a nonzero homomorphism $\mathrm{L}: \mathrm{C}_{c}^{\infty}(\mathrm{G}) \rightarrow \mathrm{W}^{\vee}$. It is G-equivariant under right translation and G^{σ}-invariant under left translation. Since

W is irreducible, it is surjective. Similarly, given a nonzero G^{σ}-invariant linear form $m: W^{\vee} \rightarrow \mathrm{R}$, we obtain a surjective right G-equivariant and left G^{σ}-invariant homomorphism M from $\mathcal{C}_{c}^{\infty}(G)$ to $W^{\vee \vee} \simeq W$ (see [Vignéras 1996, Proposition I.4.18] for the latter isomorphism). We now define

$$
\mathrm{B}(f, g)=\langle\mathrm{M}(f), \mathrm{L}(g)\rangle \in \mathrm{R}
$$

for all $f, g \in \mathcal{C}_{c}^{\infty}(\mathrm{G})$. This defines a right G -invariant and left $\mathrm{G}^{\sigma} \times \mathrm{G}^{\sigma}$-invariant linear form B on the space $\mathcal{C}_{c}^{\infty}(G) \otimes \mathcal{C}_{c}^{\infty}(G) \simeq \mathcal{C}_{c}^{\infty}(G \times G)$. As in [Prasad 1990, Lemma 4.2] (and with [Prasad 2001, Lemma 4.1], which extends the result of [Flicker 1991, Proposition 10] to the case where F has arbitrary characteristic) we have

$$
\begin{equation*}
\mathrm{B}(f, g)=\mathrm{B}(g \circ \sigma, f \circ \sigma) \tag{4-1}
\end{equation*}
$$

for all $f, g \in \mathcal{C}_{c}^{\infty}(\mathrm{G})$. It follows that the kernel of L is equal to $\{f \circ \sigma \mid f \in \operatorname{Ker}(\mathrm{M})\}$. Thus, if l^{\prime} is any nonzero G^{σ}-invariant linear form on W , with associated homomorphism L^{\prime}, then $\mathrm{L}, \mathrm{L}^{\prime}$ have the same kernel. Since π^{\vee} is admissible (by [Vignéras 1996, II.2.8]), Schur's lemma applies (see [Vignéras 1996, I.6.9]) thus one has $l^{\prime}=c l$ for some $c \in \mathrm{R}^{\times}$. Thus $\operatorname{Hom}_{\mathrm{G}^{\sigma}}(\mathrm{W}, 1)$ has dimension 1 .

As in [Prasad 1990, Lemma 4.2], the bilinear form B corresponds to the G^{σ}-biinvariant linear form D on $\mathcal{C}_{c}^{\infty}(G)$ defined by

$$
\mathrm{D}(h)=m(\pi(h) l)
$$

for all $h \in \mathcal{C}_{c}^{\infty}(G)$. The correspondence between B and D is given by

$$
\mathrm{D}(h)=\mathrm{B}(k), \quad \text { with } k:(x, y) \mapsto h\left(x y^{-1}\right) .
$$

Note that (4-1) gives $\mathrm{D}(h)=\mathrm{D}(h \circ \sigma \circ \iota)$ with $\iota: x \mapsto x^{-1}$ on G. Replacing π by $\pi^{*}=\pi^{\vee \sigma}$ and exchanging the roles played by l, m we get a linear form

$$
\mathrm{D}^{*}: h \mapsto l\left(\pi^{*}(h) m\right)
$$

Since we have $l\left(\pi^{*}(h) m\right)=m(\pi(h \circ \sigma \circ \iota) l)$, it follows that $\mathrm{D}^{*}=\mathrm{D}$. In order to deduce Property (4), it remains to prove that D determines π entirely. For any $\xi \in \mathrm{W}^{\vee}$ we define the function

$$
c_{\xi}: x \mapsto m\left(\pi^{\vee}(x) \xi\right)=m\left(\xi \circ \pi\left(x^{-1}\right)\right)
$$

on G . Then $\xi \mapsto c_{\xi}$ is an embedding of W^{\vee} in the space $\mathcal{C}^{\infty}\left(\mathrm{G}^{\sigma} \backslash \mathrm{G}\right)$ of smooth R-valued functions on $\mathrm{G}^{\sigma} \backslash \mathrm{G}$. For $y \in \mathrm{G}$ and $h \in \mathcal{C}_{\mathrm{c}}^{\infty}(\mathrm{G})$, let ${ }^{y} h$ denote the function $x \mapsto h(x y)$. Since L and M are surjective, there is a function h such that $\pi(h) l$ is nonzero. Then $y \mapsto \mathrm{D}\left({ }^{y} h\right)$ is a nonzero function in the space $\mathcal{C}^{\infty}\left(\mathrm{G}^{\sigma} \backslash \mathrm{G}\right)$, generating a subrepresentation isomorphic to W^{\vee}. Indeed, it is equal to $c_{\pi(h) l}$. It thus follows from the equality $\mathrm{D}^{*}=\mathrm{D}$ that we have $\pi^{\sigma} \simeq \pi^{\vee}$, as expected.

Remark 4.3. The same results hold - and the same argument works - when F / F_{0} is replaced by a quadratic extension of finite fields of arbitrary characteristic. It suffices to replace [Prasad 2001, Lemma 4.1] by [Gow 1984, Lemma 3.5].

5. Preliminaries on simple types

From now on, until the end of this article, we will assume that $p \neq 2$. This assumption is not needed in Paragraphs 5A-5C, but we assume it from now on for simplicity.

We assume the reader is familiar with the language of simple types. We recall the main results on simple strata, characters and types [Bushnell and Kutzko 1993; Bushnell and Henniart 1996; 2014; Mínguez and Sécherre 2014b] that we will need. Part of these preliminaries can also be found in [Anandavardhanan et al. 2018].

5A. Simple strata and characters. Let $[\mathfrak{a}, \beta]$ be a simple stratum in the F -algebra $\mathrm{M}_{n}(\mathrm{~F})$ of $n \times n$ matrices with entries in F for some $n \geq 1$. Recall that \mathfrak{a} is a hereditary order in $\mathrm{M}_{n}(\mathrm{~F})$ and β is a matrix in $\mathrm{M}_{n}(\mathrm{~F})$ such that:
(1) The F -algebra $\mathrm{E}=\mathrm{F}[\beta]$ is a field, whose degree over F is denoted d.
(2) The multiplicative group E^{\times}normalizes \mathfrak{a}.

The centralizer of E in $\mathrm{M}_{n}(\mathrm{~F})$, denoted B , is an E -algebra isomorphic to $\mathrm{M}_{m}(\mathrm{E})$, with $n=m d$. The intersection $\mathfrak{b}=\mathfrak{a} \cap \mathrm{B}$ is a hereditary order in B.

Write $\mathfrak{p}_{\mathfrak{a}}$ for the Jacobson radical of \mathfrak{a}, and $U^{1}(\mathfrak{a})$ for the compact open pro- p-subgroup $1+\mathfrak{p}_{\mathfrak{a}}$ of $\mathrm{G}=\mathrm{GL}_{n}(\mathrm{~F})$. We recall the following useful simple intersection property [Bushnell and Kutzko 1993, Theorem 1.6.1]: for all $x \in \mathrm{~B}^{\times}$, we have

$$
\begin{equation*}
\mathrm{U}^{1}(\mathfrak{a}) x \mathrm{U}^{1}(\mathfrak{a}) \cap \mathrm{B}^{\times}=\mathrm{U}^{1}(\mathfrak{b}) x \mathrm{U}^{1}(\mathfrak{b}) \tag{5-1}
\end{equation*}
$$

Associated with $[\mathfrak{a}, \beta]$, there are compact open subgroups

$$
\mathrm{H}^{1}(\mathfrak{a}, \beta) \subseteq \mathrm{J}^{1}(\mathfrak{a}, \beta) \subseteq \mathrm{J}(\mathfrak{a}, \beta)
$$

of \mathfrak{a}^{\times}and a finite set $\mathcal{C}(\mathfrak{a}, \beta)$ of characters of $H^{1}(\mathfrak{a}, \beta)$ called simple characters, depending on the choice of the character ψ fixed in Section 3. Write $\mathbf{J}(\mathfrak{a}, \beta)$ for the compact mod center subgroup generated by $\mathrm{J}(\mathfrak{a}, \beta)$ and the normalizer of \mathfrak{b} in B^{\times}.

Proposition 5.1 [Bushnell and Henniart 2014, 2.1]. We have the following properties:
(1) The group $\mathbf{J}(\mathfrak{a}, \beta)$ is the unique maximal compact subgroup of $\mathbf{J}(\mathfrak{a}, \beta)$.
(2) The group $\mathrm{J}^{1}(\mathfrak{a}, \beta)$ is the unique maximal normal pro-p-subgroup of $\mathrm{J}(\mathfrak{a}, \beta)$.
(3) The group $\mathrm{J}(\mathfrak{a}, \beta)$ is generated by $\mathrm{J}^{1}(\mathfrak{a}, \beta)$ and \mathfrak{b}^{\times}, and we have

$$
\begin{equation*}
\mathrm{J}(\mathfrak{a}, \beta) \cap \mathrm{B}^{\times}=\mathfrak{b}^{\times}, \quad \mathrm{J}^{1}(\mathfrak{a}, \beta) \cap \mathrm{B}^{\times}=\mathrm{U}^{1}(\mathfrak{b}) \tag{5-2}
\end{equation*}
$$

(4) The normalizer of any simple character $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ in G is equal to $\mathbf{J}(\mathfrak{a}, \beta)$.
(5) The intertwining set of any $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ in G is equal to $\mathrm{J}^{1}(\mathfrak{a}, \beta) \mathrm{B}^{\times} \mathrm{J}^{1}(\mathfrak{a}, \beta)$.

By [Bushnell and Kutzko 1993, Theorem 3.4.1], the quotient $J^{1}(\mathfrak{a}, \beta) / H^{1}(\mathfrak{a}, \beta)$ is a finite \boldsymbol{k}-vector space, and the map

$$
\begin{equation*}
(x, y) \mapsto\langle x, y\rangle=\theta\left(x y x^{-1} y^{-1}\right) \tag{5-3}
\end{equation*}
$$

makes it into a nondegenerate symplectic space. More precisely, if $\mathfrak{h}^{1}(\mathfrak{a}, \beta)$ and $\mathfrak{j}^{1}(\mathfrak{a}, \beta)$ are the sub- \mathcal{O} lattices of \mathfrak{a} such that $H^{1}(\mathfrak{a}, \beta)=1+\mathfrak{h}^{1}(\mathfrak{a}, \beta)$ and $\mathbf{J}^{1}(\mathfrak{a}, \beta)=1+\mathfrak{j}^{1}(\mathfrak{a}, \beta)$, then we have

$$
\begin{equation*}
\langle 1+u, 1+v\rangle=\psi \circ \operatorname{tr}(\beta(u v-v u)) \tag{5-4}
\end{equation*}
$$

for all $u, v \in \mathfrak{j}^{1}(\mathfrak{a}, \beta)$ [Bushnell and Henniart 2005b, Proposition 6.1], where $t r$ denotes the trace map of $\mathrm{M}_{n}(\mathrm{~F})$.

Let $\left[\mathfrak{a}^{\prime}, \beta^{\prime}\right]$ be another simple stratum in $\mathrm{M}_{n^{\prime}}(\mathrm{F})$ for some $n^{\prime} \geq 1$, and suppose that there is an F -algebra isomorphism $\varphi: \mathrm{F}[\beta] \rightarrow \mathrm{F}\left[\beta^{\prime}\right]$ such that $\varphi(\beta)=\beta^{\prime}$. Then there is a canonical bijective map

$$
\begin{equation*}
\mathcal{C}(\mathfrak{a}, \beta) \rightarrow \mathcal{C}\left(\mathfrak{a}^{\prime}, \beta^{\prime}\right) \tag{5-5}
\end{equation*}
$$

called the transfer map [Bushnell and Kutzko 1993, Theorem 3.6.14].
When the hereditary order $\mathfrak{b}=\mathfrak{a} \cap B$ is a maximal order in B, we say that the simple stratum $[\mathfrak{a}, \beta]$ and the simple characters in $\mathcal{C}(\mathfrak{a}, \beta)$ are maximal. When this is the case, then, given a homomorphism of E-algebras $\mathrm{B} \simeq \mathrm{M}_{m}(\mathrm{E})$ identifying \mathfrak{b} with the standard maximal order, there are group isomorphisms

$$
\begin{equation*}
\mathrm{J}(\mathfrak{a}, \beta) / \mathrm{J}^{1}(\mathfrak{a}, \beta) \simeq \mathfrak{b}^{\times} / \mathrm{U}^{1}(\mathfrak{b}) \simeq \mathrm{GL}_{m}(\boldsymbol{l}) \tag{5-6}
\end{equation*}
$$

where l is the residue field of E.
5B. Types and cuspidal representations. Let us write $\mathrm{G}=\mathrm{GL}_{n}(\mathrm{~F})$ for some $n \geq 1$. A family of pairs $(\mathbf{J}, \boldsymbol{\lambda})$ called extended maximal simple types, made of a compact mod center, open subgroup \mathbf{J} of G and an irreducible representation $\boldsymbol{\lambda}$ of \mathbf{J}, has been constructed in [Bushnell and Kutzko 1993] (see also [Mínguez and Sécherre 2014b] in the modular case).

Given an extended maximal simple type $(\mathbf{J}, \boldsymbol{\lambda})$ in G , there are a maximal simple stratum $[\mathfrak{a}, \beta]$ in $\mathrm{M}_{n}(\mathrm{~F})$ and a maximal simple character $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ such that $\mathbf{J}(\mathfrak{a}, \beta)=\mathbf{J}$ and θ is contained in the restriction of λ to $\mathrm{H}^{1}(\mathfrak{a}, \beta)$. Such a simple character is said to be attached to λ. By [Bushnell and Kutzko 1993, Proposition 5.1.1] (or [Mínguez and Sécherre 2014b, Proposition 2.1] in the modular case), the group $\mathrm{J}^{1}(\mathfrak{a}, \beta)$ carries, up to isomorphism, a unique irreducible representation η whose restriction to $\mathrm{H}^{1}(\mathfrak{a}, \beta)$ contains θ. It is called the Heisenberg representation associated to θ and has the following properties:
(1) The restriction of η to $\mathrm{H}^{1}(\mathfrak{a}, \beta)$ is made of $\left(\mathrm{J}^{1}(\mathfrak{a}, \beta): \mathrm{H}^{1}(\mathfrak{a}, \beta)\right)^{1 / 2}$ copies of θ.
(2) The representation η extends to \mathbf{J}.

For any representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η, there is, up to isomorphism, a unique irreducible representation $\boldsymbol{\rho}$ of \mathbf{J} trivial on $\mathbf{J}^{1}(\mathfrak{a}, \beta)$ such that $\boldsymbol{\lambda} \simeq \boldsymbol{\kappa} \otimes \rho$. Through (5-6), the restriction of $\boldsymbol{\rho}$ to the maximal compact subgroup $\mathrm{J}=\mathrm{J}(\mathfrak{a}, \beta)$ identifies with a cuspidal representation of $\mathrm{GL}_{m}(\boldsymbol{l})$.

Remark 5.2. The reader familiar with the theory of simple types will have noticed that we did not introduce the notion of beta-extension. Since $\mathrm{GL}_{m}(\boldsymbol{l})$ is not isomorphic to $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ (as p is not 2), any character of $\mathrm{GL}_{m}(\boldsymbol{l})$ factors through the determinant. It follows that, if $[\mathfrak{a}, \beta]$ is a maximal simple stratum, any representation of \mathbf{J} extending η is a beta-extension.

We have the following additional property, which follows from [Mínguez and Sécherre 2014b, Lemme 2.6].

Proposition 5.3. Let $\boldsymbol{\kappa}$ be a representation of \mathbf{J} extending η, and write \mathbf{J}^{1} for the maximal normal pro-p-subgroup of \mathbf{J}. The map

$$
\xi \mapsto \kappa \otimes \xi
$$

induces a bijection between isomorphism classes of irreducible representations $\boldsymbol{\xi}$ of \mathbf{J} trivial on \mathbf{J}^{1} and isomorphism classes of irreducible representations of \mathbf{J} whose restriction to \mathbf{J}^{1} contains η.

We now give the classification of cuspidal irreducible representations of G in terms of extended maximal simple types (see [Bushnell and Kutzko 1993, 6.2, 8.4] and [Mínguez and Sécherre 2014b, Section 3] in the modular case).

Proposition 5.4 [Bushnell and Kutzko 1993; Mínguez and Sécherre 2014b]. Let π be a cuspidal representation of G .
(1) There is an extended maximal simple type (\mathbf{J}, λ) such that λ occurs as a subrepresentation of the restriction of π to \mathbf{J}. It is uniquely determined up to G-conjugacy.
(2) Compact induction defines a bijection between the G-conjugacy classes of extended maximal simple types and the isomorphism classes of cuspidal representations of G .

From now on, we will abbreviate extended maximal simple type to type.
5C. Supercuspidal representations. Let π be a cuspidal representation of G. By Proposition 5.4, it contains a type ($\mathbf{J}, \boldsymbol{\lambda}$). Fix an irreducible representation $\boldsymbol{\kappa}$ as in Proposition 5.3 and let $\boldsymbol{\rho}$ be the corresponding representation of \mathbf{J} trivial on its maximal normal pro- p-subgroup \mathbf{J}^{1}.

Fix a maximal simple stratum $[\mathfrak{a}, \beta]$ such that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$. Write $\mathrm{E}=\mathrm{F}[\beta]$ and let ρ be the cuspidal representation of $\mathrm{J} / \mathrm{J}^{1} \simeq \mathrm{GL}_{m}(\boldsymbol{l})$ induced by ρ. We record the following fact.

Fact 5.5 [Mínguez and Sécherre 2014a, Proposition 6.10]. The representation π is supercuspidal if and only if ρ is supercuspidal.

Now suppose that π is supercuspidal, thus ρ is also supercuspidal. We show how to parametrize ρ by an "admissible pair of level zero". This will be needed in Sections 8 and 10.

First, let \boldsymbol{t} be an extension of degree m of \boldsymbol{l}, and identify \boldsymbol{t}^{\times}with a maximal torus in $\mathrm{GL}_{m}(\boldsymbol{l})$. We have the correspondence (2-2) between \boldsymbol{l}-regular characters of \boldsymbol{t}^{\times}and isomorphism classes of supercuspidal irreducible representations of $\mathrm{GL}_{m}(\boldsymbol{l})$.

Definition 5.6 [Howe 1977; Bushnell and Henniart 2005a]. An admissible pair of level zero over E is a pair $(\mathrm{K} / \mathrm{E}, \xi)$ made of a finite unramified extension K of E and a tamely ramified character $\xi: \mathrm{K}^{\times} \rightarrow \mathrm{R}^{\times}$ which does not factor through $\mathrm{N}_{\mathrm{K} / \mathrm{L}}$ for any field L such that $\mathrm{E} \subseteq \mathrm{L} \subsetneq \mathrm{K}$. Its degree is [K : E].

If ($\mathrm{K}^{\prime} / \mathrm{E}, \xi^{\prime}$) is another admissible pair of level zero over E , it is said to be isomorphic to $(\mathrm{K} / \mathrm{E}, \xi)$ if there is an isomorphism of E-algebras $\varphi: \mathrm{K}^{\prime} \rightarrow \mathrm{K}$ such that $\xi^{\prime}=\xi \circ \varphi$.

Recall (see Paragraph 5A) that, if we write B^{\times}for the centralizer of E in G, then $\mathbf{J}=\left(\mathbf{J} \cap B^{\times}\right) \mathbf{J}^{1}$, thus the group $\mathbf{J} / \mathbf{J}^{1}$ is isomorphic to $\left(\mathbf{J} \cap B^{\times}\right) /\left(\mathbf{J}^{1} \cap B^{\times}\right)$. In particular, the image of E^{\times}in $\mathbf{J} / \mathbf{J}^{1}$ is central. Since ρ is trivial on \mathbf{J}^{1}, the automorphism $\rho(x)$ is thus a scalar for all $x \in \mathrm{E}^{\times}$.

Definition 5.7. An admissible pair $(\mathrm{K} / \mathrm{E}, \xi)$ of level zero and degree m is attached to ρ if:
(1) Writing \boldsymbol{t} for the residue field of K, the \boldsymbol{l}-regular character of t^{\times}induced by the restriction of ξ to the units of the ring of integers of K corresponds to ρ via (2-2).
(2) One has $\rho(x)=\xi(x) \cdot$ id for all $x \in \mathrm{E}^{\times}$, where id is the identity on the space of ρ.

The following proposition is a refinement of the property of the map (2-2).

Proposition 5.8. The attachment relation defines a bijection

$$
\begin{equation*}
(\mathrm{K} / \mathrm{E}, \xi) \mapsto \rho(\mathrm{K} / \mathrm{E}, \xi) \tag{5-7}
\end{equation*}
$$

between isomorphism classes of admissible pairs of level zero over E and isomorphism classes of irreducible representations of \mathbf{J} trivial on \mathbf{J}^{1} whose restriction to \mathbf{J} defines a supercuspidal representation of $\mathrm{GL}_{m}(\boldsymbol{l})$ through (5-6).

Remark 5.9. As in Remark 2.2, let us fix an embedding $\iota: \mathrm{R} \rightarrow \mathrm{R}^{\prime}$ of algebraically closed fields of characteristic ℓ, and let $(\mathrm{K} / \mathrm{E}, \xi)$ be an admissible pair of level zero over E such that ξ takes values in R. Then $(K / E, \iota \circ \xi)$ is an admissible pair of level zero over E, and

$$
\rho(\mathrm{K} / \mathrm{E}, \iota \circ \xi)=\rho(\mathrm{K} / \mathrm{E}, \xi) \otimes \mathrm{R}^{\prime}
$$

This refines the last assertion of Remark 2.2.
5D. The σ-selfdual type theorem. Let us fix an integer $n \geq 1$ and write $G=\mathrm{GL}_{n}(\mathrm{~F})$. We recall the first main result of [Anandavardhanan et al. 2018].

Theorem 5.10 [Anandavardhanan et al. 2018, Theorem 4.1]. Let π be a cuspidal representation of G. It is σ-selfdual if and only if it contains a type $(\mathbf{J}, \boldsymbol{\lambda})$ such that \mathbf{J} is σ-stable and $\lambda^{\sigma} \simeq \lambda^{\vee}$.

Remark 5.11. More precisely (see [Anandavardhanan et al. 2018, Corollary 4.21]), any σ-selfdual cuspidal representation contain a σ-selfdual type $(\mathbf{J}, \boldsymbol{\lambda})$ with the additional property that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ for some maximal simple stratum $[\mathfrak{a}, \beta]$ in $\mathrm{M}_{n}(\mathrm{~F})$ such that:
(1) The hereditary order \mathfrak{a} is σ-stable and $\sigma(\beta)=-\beta$.
(2) The element β has the block diagonal form

$$
\beta=\left(\begin{array}{ccc}
\beta_{0} & & \\
& \ddots & \\
& & \beta_{0}
\end{array}\right)=\beta_{0} \otimes 1 \in \mathrm{M}_{d}(\mathrm{~F}) \otimes_{\mathrm{F}} \mathrm{M}_{m}(\mathrm{~F})=\mathrm{M}_{n}(\mathrm{~F})
$$

for some $\beta_{0} \in \mathrm{M}_{d}(\mathrm{~F})$, where d is the degree of β over F and $n=m d$; the centralizer B of $\mathrm{E}=\mathrm{F}[\beta]$ in $\mathrm{M}_{n}(\mathrm{~F})$ thus identifies with $\mathrm{M}_{m}(\mathrm{E})$, equipped with the involution σ acting componentwise.
(3) The order $\mathfrak{b}=\mathfrak{a} \cap B$ is the standard maximal order of $M_{m}(E)$.

Such a type will be useful in the discussion following Proposition 5.17.
Remark 5.12. If (\mathbf{J}, λ) is any σ-selfdual type, then there is a maximal simple stratum $[\mathfrak{a}, \beta]$ in $\mathbf{M}_{n}(\mathrm{~F})$ such that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$, the order \mathfrak{a} is σ-stable and $\sigma(\beta)=-\beta$ (see [Anandavardhanan et al. 2018, Corollary 4.24]). Such a maximal simple stratum will be said to be σ-selfdual.

Remark 5.13. Let π be a σ-selfdual cuspidal representation of G. Let (\mathbf{J}, λ) be a σ-selfdual type in π, let $[\mathfrak{a}, \beta]$ be a simple stratum such that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ and let $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ be the maximal simple character attached to λ. Then $\mathrm{H}^{1}(\mathfrak{a}, \beta)$ is σ-stable and $\theta \circ \sigma=\theta^{-1}$.

Let π be a σ-selfdual cuspidal representation of G. Let $(\mathbf{J}, \boldsymbol{\lambda})$ be a σ-selfdual type in π and fix a σ-selfdual simple stratum $[\mathfrak{a}, \beta]$ as in Remark 5.12. Then $\mathrm{E}=\mathrm{F}[\beta]$ is σ-stable. We denote by E_{0} the field of σ-fixed points in E , by T the maximal tamely ramified subextension of E over F and by T_{0} the intersection $\mathrm{T} \cap \mathrm{E}_{0}$. Also write $d=[\mathrm{E}: \mathrm{F}]$ and $n=m d$.

Proposition 5.14 [Anandavardhanan et al. 2018, Proposition 4.30]. The integer

$$
\begin{equation*}
m(\pi)=m=n / d \tag{5-8}
\end{equation*}
$$

and the F_{0}-isomorphism class of the quadratic extension $\mathrm{T} / \mathrm{T}_{0}$ only depend on π, and not on the choice of the σ-selfdual simple stratum $[\mathfrak{a}, \beta]$ as in Remark 5.12.

The integer m defined by (5-8) it called the relative degree of π. We record a list of properties of the field extension T / F.

Lemma 5.15. (1) The canonical homomorphism of $\mathrm{T}_{0} \otimes_{\mathrm{F}_{0}} \mathrm{~F}$-modules

$$
\mathrm{T}_{0} \otimes_{\mathrm{F}_{0}} \mathrm{~F} \rightarrow \mathrm{~T}
$$

is an isomorphism.
(2) If $\mathrm{F} / \mathrm{F}_{0}$ is unramified, then $\mathrm{T} / \mathrm{T}_{0}$ is unramified and T / F has odd residual degree.
(3) The extension $\mathrm{T} / \mathrm{T}_{0}$ is ramified if and only if $\mathrm{F} / \mathrm{F}_{0}$ is ramified and $\mathrm{T}_{0} / \mathrm{F}_{0}$ has odd ramification order.

Proof. Assertion (1) is [Anandavardhanan et al. 2018, Lemma 4.10]. We now prove (2) and (3).
First, suppose that $\mathrm{F} / \mathrm{F}_{0}$ is unramified. We remark that

$$
f(\mathrm{~T} / \mathrm{F}) \cdot f\left(\mathrm{~F} / \mathrm{F}_{0}\right)=f\left(\mathrm{~T} / \mathrm{T}_{0}\right) \cdot f\left(\mathrm{~T}_{0} / \mathrm{F}_{0}\right)
$$

is even. Since F does not embed in T_{0} as an F_{0}-algebra, T_{0} has odd residue degree over F_{0}. It follows that $f\left(\mathrm{~T} / \mathrm{T}_{0}\right)=2$ and that T has odd residue degree over F .

Suppose F / F_{0} is ramified, and let ϖ be a uniformizer of F such that $\varpi_{0}=\varpi^{2}$ is a uniformizer of F_{0}. Let e_{0} be the ramification order of $\mathrm{T}_{0} / \mathrm{F}_{0}$, and let t_{0} be a uniformizer of T_{0} such that

$$
\varpi_{0}=t_{0}^{e_{0}} \zeta_{0}
$$

for some root of unity $\zeta_{0} \in \mathrm{~F}_{0}^{\times}$of order prime to p. Let a be the greatest integer smaller than or equal to $e_{0} / 2$, and write $x=\varpi t_{0}^{-a}$. We have $\sigma(x)=-x$, thus $x \notin \mathrm{~T}_{0}$ and $x^{2} \in \mathrm{~T}_{0}$.

If e_{0} is odd, then $x^{2}=\zeta_{0} t_{0}$ is a uniformizer of T_{0}, whereas x is a uniformizer of T , thus T is ramified over T_{0}.

If e_{0} is even, then $x^{2}=\zeta_{0}$. It follows that x is a root of unity of order prime to p which is in T but not in T_{0}, thus T is unramified over T_{0}.
Remark 5.16. (1) The extensions E / E_{0} and T / T_{0} have the same ramification order.
(2) The extension E / E_{0} is ramified if and only if F / F_{0} is ramified and E_{0} / F_{0} has odd ramification order.

The first property comes from [Anandavardhanan et al. 2018, Remark 4.22], and the second one follows from the first one together with Lemma 5.15.

We now recall the classification of all σ-selfdual types contained in a given σ-selfdual cuspidal representation of G (see [Anandavardhanan et al. 2018, Proposition 4.31]).

Proposition 5.17. Let π be a σ-selfdual cuspidal representation of G , and let $\mathrm{T} / \mathrm{T}_{0}$ denote the quadratic extension associated to it.
(1) If T is unramified over T_{0}, the σ-selfdual types contained in π form a single G^{σ}-conjugacy class.
(2) If T is ramified over T_{0}, the σ-selfdual types contained in π form exactly $\lfloor m / 2\rfloor+1$ different G^{σ}-conjugacy classes.

One can give a more precise description in the ramified case. Suppose that T is ramified over T_{0}, and let $\left(\mathbf{J}_{0}, \lambda_{0}\right)$ be a σ-selfdual type in π satisfying the conditions of Remark 5.11. Let us fix a uniformizer t of E. For $i=0, \ldots,\lfloor m / 2\rfloor$, let t_{i} denote the diagonal matrix

$$
\operatorname{diag}(t, \ldots, t, 1, \ldots, 1) \in \mathrm{B}^{\times}=\mathrm{GL}_{m}(\mathrm{E})
$$

where t occurs i times. Then the pairs $\left(\mathbf{J}_{i}, \boldsymbol{\lambda}_{i}\right)=\left(\mathbf{J}_{0}^{t_{i}}, \lambda_{0}^{t_{i}}\right)$, for $i=0, \ldots,\lfloor m / 2\rfloor$, form a set of representatives of the G^{σ}-conjugacy classes of σ-selfdual types in π.
Definition 5.18. The integer i is called the index of the G^{σ}-conjugacy class of $\left(\mathbf{J}_{i}, \boldsymbol{\lambda}_{i}\right)$. It does not depend on the choice of $\left(\mathbf{J}_{0}, \lambda_{0}\right)$, nor on that of t.

Let $[\mathfrak{a}, \beta]$ be a simple stratum as in Remark 5.11 such that $\mathbf{J}_{0}=\mathbf{J}(\mathfrak{a}, \beta)$. If one identifies the quotient $\mathbf{J}(\mathfrak{a}, \beta)^{t_{i}} / \mathbf{J}^{1}(\mathfrak{a}, \beta)^{t_{i}}$ with $\mathrm{GL}_{m}(\boldsymbol{l})$ via

$$
\mathrm{J}(\mathfrak{a}, \beta)^{t_{i}} / \mathrm{J}^{1}(\mathfrak{a}, \beta)^{t_{i}} \simeq \mathrm{~J}(\mathfrak{a}, \beta) / \mathrm{J}^{1}(\mathfrak{a}, \beta) \simeq \mathrm{U}(\mathfrak{b}) / \mathrm{U}^{1}(\mathfrak{b}) \simeq \mathrm{GL}_{m}(\boldsymbol{l})
$$

then σ acts on $\mathrm{GL}_{m}(\boldsymbol{l})$ by conjugacy by the diagonal element

$$
\delta_{i}=\operatorname{diag}(-1, \ldots,-1,1, \ldots, 1) \in \mathrm{GL}_{m}(\boldsymbol{l})
$$

where -1 occurs i times, and $\left(\mathbf{J}(\mathfrak{a}, \beta)^{t_{i}} \cap \mathrm{G}^{\sigma}\right) /\left(\mathrm{J}^{1}(\mathfrak{a}, \beta)^{t_{i}} \cap \mathrm{G}^{\sigma}\right)$ identifies with the Levi subgroup $\left(\mathrm{GL}_{i} \times \mathrm{GL}_{m-i}\right)(\boldsymbol{l})$ of $\mathrm{GL}_{m}(\boldsymbol{l})$.

5E. Admissible pairs and σ-selfduality. Let (\mathbf{J}, λ) be a σ-selfdual type in G. Fix a σ-selfdual maximal simple stratum $[\mathfrak{a}, \beta]$ such that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ as in Remark 5.12, and a decomposition of λ of the form $\boldsymbol{\kappa} \otimes \rho$ as in Paragraph 5B. Write $\mathrm{E}=\mathrm{F}[\beta]$ as usual.
Proposition 5.19. Suppose that the representation ρ is σ-selfdual, and let $(\mathrm{K} / \mathrm{E}, \xi)$ be an admissible pair of level zero attached to it. There is a unique involutive E_{0}-automorphism $\hat{\sigma}$ of K such that $\xi \circ \hat{\sigma}=\xi^{-1}$ and $\hat{\sigma}$ coincides with σ on E .

Proof. Let K^{\prime} denote the extension of E given by the field K equipped with the map $x \mapsto \sigma(x)$ from E to K . Then the pair $\left(\mathrm{K}^{\prime} / \mathrm{E}, \xi\right)$ is admissible of level zero, and it is attached to ρ^{σ}. On the other hand, (K/E, ξ^{-1}) is admissible of level zero, attached to ρ^{\vee}. Since ρ is σ-selfdual, there is an E-algebra isomorphism $\hat{\sigma}: \mathrm{K} \rightarrow \mathrm{K}^{\prime}$ such that $\xi \circ \hat{\sigma}=\xi^{-1}$. We thus have

$$
\xi \circ \hat{\sigma}^{2}=\xi^{-1} \circ \hat{\sigma}=\xi
$$

and $\hat{\sigma}^{2}$ is an E-algebra automorphism of K . By admissibility of $(\mathrm{K} / \mathrm{E}, \xi)$, the latter automorphism is trivial, thus $\hat{\sigma}$ satisfies the required conditions. Uniqueness follows by admissibility again.

For simplicity, we will write σ for the involutive automorphism given by Proposition 5.19. Let K_{0} be the field of σ-fixed points of K. The following lemma will be useful in Section 10.
Lemma 5.20. If $\mathrm{E} / \mathrm{E}_{0}$ is ramified and m is even, then $\mathrm{K} / \mathrm{K}_{0}$ is unramified.
Proof. Write $m=2 r$ for some $r \geq 1$. Let t be a uniformizer of E such that $\sigma(t)=-t$ and let $\zeta \in \mathrm{K}$ be a root of unity of order $c^{m}-1$, where c is the cardinality of \boldsymbol{l}. We thus have $\mathrm{E}=\mathrm{E}_{0}[t]$ and $\mathrm{K}=\mathrm{E}[\zeta]$. Since σ is involutive, it induces an involutive \boldsymbol{l}-automorphism of \boldsymbol{t}, the residual field of K. If the latter were trivial, the relation $\xi \circ \sigma=\xi^{-1}$ would imply that the character $\bar{\xi}$ of t^{\times}induced by ξ is quadratic, contradicting the fact that it is \boldsymbol{l}-regular. The automorphism of \boldsymbol{t} induced by σ is thus the r-th power of the Frobenius automorphism. Now consider the element

$$
\alpha=\zeta^{\left(c^{r}+1\right) / 2}
$$

It has order $2\left(c^{r}-1\right)$, thus $\sigma(\alpha)=-\alpha$. Since α^{2} has order $c^{r}-1$, the extension of E_{0} it generates is unramified and has degree r. We thus have $\mathrm{E}_{0}\left[\alpha^{2}, t \alpha\right] \subseteq \mathrm{K}_{0}$ and their degrees are equal. Now we deduce that $\mathrm{K}=\mathrm{K}_{0}[\alpha]=\mathrm{K}_{0}[\zeta]$ is unramified over K_{0}.

5F. The following lemma will be useful in Sections 7 and 9, when we investigate decompositions of σ-selfdual types of the form $\boldsymbol{\kappa} \otimes \rho$ which behave well under σ.

Let $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ be a maximal simple character such that $\mathrm{H}^{1}(\mathfrak{a}, \beta)$ is σ-stable and $\theta \circ \sigma=\theta^{-1}$. Let \mathbf{J} be its normalizer in G, let \mathbf{J}^{1} be the maximal normal pro- p-subgroup of \mathbf{J} and η be the irreducible representation of \mathbf{J}^{1} containing θ.

Lemma 5.21. Let $\boldsymbol{\kappa}$ be a representation of \mathbf{J} extending η. There is a unique character μ of \mathbf{J} trivial on \mathbf{J}^{1} such that $\boldsymbol{\kappa}^{\sigma \vee} \simeq \kappa \mu$. It satisfies the identity $\mu \circ \sigma=\mu$.

Proof. Let $\boldsymbol{\kappa}$ be an irreducible representation of \mathbf{J} extending η. By uniqueness of the Heisenberg representation, the fact that $\theta \circ \sigma=\theta^{-1}$ implies that $\eta^{\sigma \vee}$ is isomorphic to η. Thus $\boldsymbol{\kappa}$ and $\boldsymbol{\kappa}^{\sigma \vee}$ are representations of \mathbf{J} extending η. There is a character μ of \mathbf{J} trivial on \mathbf{J}^{1} such that we have $\boldsymbol{\kappa}^{\sigma \vee} \simeq \kappa \mu$. It satisfies $\mu \circ \sigma=\mu$. It is unique by Proposition 5.3.

6. The distinguished type theorem

In this section we prove the following result, which is our first main theorem. It will be refined by Theorem 10.3 in Section 10. Recall that $p \neq 2$ until the end of this article.

Theorem 6.1. Let π be a σ-selfdual cuspidal representation of G . Then π is distinguished if and only if it contains a σ-selfdual type $(\mathbf{J}, \boldsymbol{\lambda})$ such that $\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\lambda}, 1)$ is nonzero.

Remark 6.2. If π is distinguished, it follows easily from the multiplicity 1 property in Theorem 4.1 that the distinguished σ-selfdual types $\left(\mathbf{J}, \boldsymbol{\lambda}\right.$) occurring in π form a single G^{σ}-conjugacy class (see Remark 6.23).

Remark 6.3. Theorem 6.1 is proved in [Anandavardhanan et al. 2018] in a different manner than the one we give here, although both proofs use the σ-selfdual type Theorem 5.10. The proof given in [Anandavardhanan et al. 2018] is based on a result of Ok [1997], proved by Ok for complex representations and extended to the modular case in [Anandavardhanan et al. 2018, Appendix B]. However, the proof we give here is more likely to generalize to other situations.

Let π be a σ-selfdual cuspidal representation. Theorem 5.10 tells us that it contains a σ-selfdual type $(\mathbf{J}, \boldsymbol{\lambda})$, and Proposition 5.4 tells us that π is compactly induced from λ. A simple application of the Mackey formula gives us

$$
\begin{equation*}
\operatorname{Hom}_{\mathbf{G}^{\sigma}}(\pi, 1) \simeq \prod_{g} \operatorname{Hom}_{\mathbf{J}^{g} \cap \mathbf{G}^{\sigma}}\left(\lambda^{g}, 1\right) \tag{6-1}
\end{equation*}
$$

where g ranges over a set of representatives of $\left(\mathbf{J}, \mathrm{G}^{\sigma}\right)$-double cosets in G.
Remark 6.4. It follows from Theorem 4.1 that there is at most one double coset $\mathbf{J} g \mathrm{G}^{\sigma}$ such that the space $\operatorname{Hom}_{\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}}\left(\lambda^{g}, 1\right)$ is nonzero, and that this space has dimension at most 1 . Thus the product in $(6-1)$ is actually a direct sum.

In this section, our main task (achieved in Paragraph 6E) is to prove that, if $\operatorname{Hom}_{\mathbf{J}^{g} \cap G^{\sigma}}\left(\lambda^{g}, 1\right)$ is nonzero, then $\sigma(g) g^{-1} \in \mathbf{J}$. Theorem 6.1 will follow easily from there (see Paragraph 6 F).

We may assume that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ for a maximal simple stratum $[\mathfrak{a}, \beta]$ satisfying the conditions of Remark 5.11. The extension $\mathrm{E}=\mathrm{F}[\beta]$, its centralizer B and the maximal order $\mathfrak{b}=\mathfrak{a} \cap \mathrm{B}$ are thus stable by σ. We write $d=[\mathrm{E}: \mathrm{F}]$ and $n=m d$. We identify B with the E -algebra $\mathrm{M}_{m}(\mathrm{E})$ equipped with the involution σ acting componentwise, and \mathfrak{b} with its standard maximal order.

We write $\mathrm{E}_{0}=\mathrm{E}^{\sigma}$, the field of σ-invariant elements of E , and fix once and for all a uniformizer t of E such that

$$
\sigma(t)= \begin{cases}t & \text { if } \mathrm{E} \text { is unramified over } \mathrm{E}_{0} \tag{6-2}\\ -t & \text { if } \mathrm{E} \text { is ramified over } \mathrm{E}_{0}\end{cases}
$$

We also write $\mathbf{J}=\mathrm{J}(\mathfrak{a}, \beta), \mathbf{J}^{1}=\mathbf{J}^{1}(\mathfrak{a}, \beta)$ and $\mathrm{H}^{1}=\mathrm{H}^{1}(\mathfrak{a}, \beta)$. Recall that $\mathbf{J}=\mathrm{E}^{\times} \mathbf{J}$.
We denote by T the maximal tamely ramified subextension of E over F , and set $\mathrm{T}_{0}=\mathrm{T} \cap \mathrm{E}_{0}$.
We insist on the fact that, throughout this section, we assume that the stratum $[\mathfrak{a}, \beta]$ satisfies the conditions of Remark 5.11.

6A. Double cosets contributing to the distinction of $\boldsymbol{\theta}$. Let $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ be the maximal simple character occurring in the restriction of λ to H^{1}. Suppose that $\operatorname{Hom}_{\mathbf{J}^{g} \cap G^{\sigma}}\left(\lambda^{g}, 1\right)$ is nonzero for some double coset $\mathbf{J} g \mathrm{G}^{\sigma}$. Restricting to $\mathrm{H}^{1 g} \cap \mathrm{G}^{\sigma}$, we deduce that the character θ^{g} is trivial on $\mathrm{H}^{1 g} \cap \mathrm{G}^{\sigma}$.

In this paragraph, we look for the double cosets $\mathbf{J} g \mathrm{G}^{\sigma} \subseteq \mathrm{G}$ such that the character θ^{g} is trivial on $\mathrm{H}^{1 g} \cap \mathrm{G}^{\sigma}$. For this, let us introduce the following general lemma.

Lemma 6.5. Let τ be an involution of G , let H be a τ-stable open pro-p-subgroup of G and let χ be a character of H such that $\chi \circ \tau=\chi^{-1}$. For any $g \in \mathrm{G}$, the character χ^{g} is trivial on $\mathrm{H}^{g} \cap \mathrm{G}^{\tau}$ if and only if $\tau(g) g^{-1}$ intertwines χ.

Proof. Write K for the τ-stable subgroup $\mathrm{H}^{g} \cap \tau\left(\mathrm{H}^{g}\right)$, which contains $\mathrm{H}^{g} \cap \mathrm{G}^{\tau}$. Let A be the quotient of K by $\overline{[\mathrm{K}, \mathrm{K}]}$, the closure of the derived subgroup of K . This is a τ-stable commutative pro- p-group. Given $x \in \mathrm{~K}$, write x^{\prime} for its image in A. For any $b \in \mathrm{~A}$, we have

$$
b=\sqrt{b \tau(b)} \cdot \sqrt{b \tau(b)^{-1}}
$$

where $b \mapsto \sqrt{b}$ is the inverse of the automorphism $b \mapsto b^{2}$ of A . Thus, for any $x \in \mathrm{~K}$, there are $y, z \in \mathrm{~K}$ such that $x=y z$ and $\tau\left(y^{\prime}\right)=y^{\prime}$ and $\tau\left(z^{\prime}\right)=z^{\prime-1}$.

Since $\tau(z)=z^{-1} h$ for some $h \in \overline{[K, K]}$, we have

$$
\begin{equation*}
\chi^{g}(\tau(z))=\chi^{g}\left(z^{-1} h\right)=\chi^{g}(z)^{-1} \tag{6-3}
\end{equation*}
$$

On the other hand, since $\tau(y)=y k$ for some $k \in \overline{[\mathrm{~K}, \mathrm{~K}]}$, the element $y^{-1} \tau(y)$ defines a 1-cocycle in the τ-stable pro- p-group $\overline{[\mathrm{K}, \mathrm{K}]}$. Since $p \neq 2$, this cocycle is a coboundary, which implies

$$
\begin{equation*}
y \in\left(\mathrm{H}^{g} \cap \mathrm{G}^{\tau}\right)[\overline{\mathrm{K}, \mathrm{~K}]} . \tag{6-4}
\end{equation*}
$$

Now suppose that χ^{g} is trivial on $\mathrm{H}^{g} \cap \mathrm{G}^{\tau}$. Then (6-3) and (6-4) imply that

$$
\begin{equation*}
\chi^{g}(\tau(x))=\chi^{g}(\tau(z))=\chi^{g}(z)^{-1}=\chi^{g}(x)^{-1}, \quad \text { for all } x \in \mathrm{~K} . \tag{6-5}
\end{equation*}
$$

Besides, (6-5) is equivalent to χ^{g} being trivial on $\mathrm{H}^{g} \cap \mathrm{G}^{\tau}$. On the other hand, we have

$$
\begin{equation*}
\chi^{g} \circ \tau=(\chi \circ \tau)^{\tau(g)}=\left(\chi^{-1}\right)^{\tau(g)}=\left(\chi^{\tau(g)}\right)^{-1} \tag{6-6}
\end{equation*}
$$

on K by assumption on χ. If we set $\gamma=\tau(g) g^{-1}$, then (6-5) is equivalent to

$$
\chi(h)=\chi^{\gamma}(h) \quad \text { for all } h \in \mathrm{H} \cap \gamma^{-1} \mathrm{H} \gamma .
$$

This amounts to saying that γ intertwines χ.
Proposition 6.6. Let $g \in G$. Then the character θ^{g} is trivial on $\mathrm{H}^{1 g} \cap \mathrm{G}^{\sigma}$ if and only if we have $\sigma(g) g^{-1} \in \mathrm{JB}^{\times} \mathbf{J}$.
Proof. This follows from Lemma 6.5 applied to the simple character θ of H^{1} and the involution σ, together with the fact that the intertwining set of θ is $\mathrm{JB}^{\times} \mathrm{J}$ by Proposition 5.1(5).

6B. The double coset lemma. We now prove the following fundamental lemma.
Lemma 6.7. Let $g \in \mathrm{G}$. Then $\sigma(g) g^{-1} \in \mathrm{JB}^{\times} \mathbf{J}$ if and only if $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$.
Proof. Write $\gamma=\sigma(g) g^{-1}$. If $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$, one verifies immediately that $\gamma \in \mathrm{JB}^{\times} \mathrm{J}$. Conversely, suppose that $\gamma \in \mathrm{J} c \mathrm{~J}$ for some $c \in \mathrm{~B}^{\times}$. We will first show that the double coset representative c can be chosen nicely.
Lemma 6.8. There is $a b \in \mathrm{~B}^{\times}$such that $\gamma \in \mathrm{J} b \mathbf{J}$ and $b \sigma(b)=1$.
Proof. Recall that B^{\times}has been identified with $\mathrm{GL}_{m}(\mathrm{E})$ and $\mathrm{U}=\mathrm{J} \cap \mathrm{B}^{\times}=\mathfrak{b}^{\times}$is its standard maximal compact subgroup. By the Cartan decomposition, B^{\times}decomposes as the disjoint union of the double cosets

$$
\mathrm{U} \cdot \operatorname{diag}\left(t^{a_{1}}, \ldots, t^{a_{m}}\right) \cdot \mathrm{U}
$$

where $a_{1} \geq \cdots \geq a_{m}$ ranges over nonincreasing sequences of m integers, and $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ denotes the diagonal matrix of B^{\times}with eigenvalues $\lambda_{1}, \ldots, \lambda_{m} \in \mathrm{E}^{\times}$. We thus may assume that $c=\operatorname{diag}\left(t^{a_{1}}, \ldots, t^{a_{m}}\right)$ for a uniquely determined sequence of integers $a_{1} \geq \cdots \geq a_{m}$.

The fact that $\sigma(\gamma)=\gamma^{-1}$ implies that we have $c \in \mathbf{J} c^{-1} \mathbf{J} \cap \mathrm{~B}^{\times}$. Using the simple intersection property (5-1) together with the fact that $\mathrm{J}=\mathrm{UJ}^{1}$ and $\mathrm{J}^{1} \subseteq \mathrm{U}^{1}(\mathfrak{a})$, we have $\mathrm{J} c^{-1} \mathrm{~J} \cap \mathrm{~B}^{\times}=\mathrm{U} c^{-1} \mathrm{U}$. The uniqueness of the Cartan decomposition of B^{\times}thus implies that the sequences $a_{1} \geq \cdots \geq a_{m}$ and $-a_{m} \geq \cdots \geq-a_{1}$ are equal. We thus have $a_{i}+a_{m+1-i}=0$ for all $i \in\{1, \ldots, m\}$. Now write $\kappa=\sigma(t) t^{-1} \in\{-1,1\}$ and choose signs $\kappa_{1}, \ldots, \kappa_{m} \in\{-1,1\}$ such that $\kappa_{i} \kappa_{m+1-i}=\kappa^{a_{i}}$ for all i. This is always possible since $a_{(m+1) / 2}=0$ when m is odd. Then the antidiagonal element

$$
b=\left(\begin{array}{ll}
& . \kappa_{1} t^{a_{1}} \tag{6-7}\\
\kappa_{m} t^{a_{m}} &
\end{array}\right) \in \mathrm{B}^{\times}
$$

satisfies the required conditions $b \sigma(b)=1$ and $\gamma \in \mathbf{J} b \mathbf{J}$.

Now write $\gamma=x^{\prime} b x$ with $x, x^{\prime} \in \mathrm{J}$ and $b \in \mathrm{~B}^{\times}$. Replacing g by $\sigma\left(x^{\prime}\right)^{-1} g$ does not change the double coset $\mathrm{J} g \mathrm{G}^{\sigma}$ but changes γ into $b x \sigma\left(x^{\prime}\right)$. From now on, we will thus assume that

$$
\begin{equation*}
\gamma=b x, \quad b \sigma(b)=1, \quad x \in \mathrm{~J}, \quad b \text { is of the form (6-7). } \tag{6-8}
\end{equation*}
$$

Write K for the group $\mathbf{J} \cap b^{-1} \mathbf{J} b$. Since $\sigma(b)=b^{-1}$ and \mathbf{J} is σ-stable, we have $x \in \mathrm{~K}$.
Lemma 6.9. The map $\delta: k \mapsto b^{-1} \sigma(k) b$ is an involutive group automorphism of K .
Proof. This follows from an easy calculation using the fact that $b \sigma(b)=1$.
Let $b_{1}>\cdots>b_{r}$ be the unique decreasing sequence of integers such that

$$
\left\{a_{1}, \ldots, a_{m}\right\}=\left\{b_{1}, \ldots, b_{r}\right\}
$$

and m_{j} denote the multiplicity of b_{j} in $\left(a_{1}, \ldots, a_{m}\right)$, for $j \in\{1, \ldots, r\}$. We have $m_{j}=m_{r+1-j}$ for all j, and $m_{1}+\cdots+m_{r}=m$. These integers define a standard Levi subgroup

$$
\begin{equation*}
\mathrm{M}=\mathrm{GL}_{m_{1} d}(\mathrm{~F}) \times \cdots \times \mathrm{GL}_{m_{r} d}(\mathrm{~F}) \subseteq \mathrm{G} \tag{6-9}
\end{equation*}
$$

Write P for the standard parabolic subgroup of G generated by M and upper triangular matrices. Let N and N^{-}denote the unipotent radicals of P and its opposite parabolic subgroup with respect to M , respectively. Since b has the form (6-7), it normalizes M and we have

$$
\mathrm{K}=\left(\mathrm{K} \cap \mathrm{~N}^{-}\right) \cdot(\mathrm{K} \cap \mathrm{M}) \cdot(\mathrm{K} \cap \mathrm{~N}), \quad \mathrm{K} \cap \mathrm{P}=\mathrm{J} \cap \mathrm{P}, \quad \mathrm{~K} \cap \mathrm{~N}^{-} \subseteq \mathrm{J}^{1} \cap \mathrm{~N}^{-} .
$$

We have similar properties for the subgroup $\mathrm{V}=\mathrm{K} \cap \mathrm{B}^{\times}=\mathrm{U} \cap b^{-1} \mathrm{U} b$ of B^{\times}, that is

$$
\mathrm{V}=\left(\mathrm{V} \cap \mathrm{~N}^{-}\right) \cdot(\mathrm{V} \cap \mathrm{M}) \cdot(\mathrm{V} \cap \mathrm{~N}), \quad \mathrm{V} \cap \mathrm{P}=\mathrm{U} \cap \mathrm{P}, \quad \mathrm{~V} \cap \mathrm{~N}^{-} \subseteq \mathrm{U}^{1} \cap \mathrm{~N}^{-}
$$

where $\mathrm{U}^{1}=\mathrm{J}^{1} \cap \mathrm{~B}^{\times}=\mathrm{U}^{1}(\mathfrak{b})$. Note that this subgroup V is stable by δ.
Lemma 6.10. The subset

$$
\mathrm{K}^{1}=\left(\mathrm{K} \cap \mathrm{~N}^{-}\right) \cdot\left(\mathrm{J}^{1} \cap \mathrm{M}\right) \cdot(\mathrm{K} \cap \mathrm{~N})
$$

is a δ-stable normal pro-p-subgroup of K , and we have $\mathrm{K}=\mathrm{VK}^{1}$.
Proof. To prove that K^{1} is a subgroup of K , it is enough to prove that one has the containment $(K \cap N) \cdot\left(K \cap N^{-}\right) \subseteq K^{1}$. Let \mathfrak{j}^{1} be the sub- \mathcal{O}-lattice of \mathfrak{a} such that $J^{1}=1+\mathfrak{j}^{1}$ and let $\mathfrak{j}=\mathfrak{b}+\mathfrak{j}^{1}$, thus $J=\mathfrak{j}^{\times}$. A simple computation shows that $K \cap N^{-} \subseteq(1+t \mathfrak{j}) \cap \mathrm{N}^{-}$and

$$
(\mathrm{K} \cap \mathrm{~N}) \cdot\left(\mathrm{K} \cap \mathrm{~N}^{-}\right) \subseteq\left(\mathrm{K} \cap \mathrm{~N}^{-}\right) \cdot((1+t \mathfrak{j}) \cap \mathrm{M}) \cdot(\mathrm{K} \cap \mathrm{~N})
$$

The expected result thus follows from the fact that $t \mathfrak{j} \subseteq \mathfrak{j}^{1}$. Besides, K^{1} is a δ-stable pro- p-group.
Since $V \cap M$ normalizes $K \cap N^{-}, K \cap N$ and $K^{1} \cap M$, we have $(V \cap M) K^{1}=K$ whence K^{1} is normal in K and $\mathrm{K}=\mathrm{VK}^{1}$, as expected.

The subgroup K^{1} is useful in the following lemma. Note that we have $x \delta(x)=1$.

Lemma 6.11. Let $y \in \mathrm{~K}$ be such that $y \delta(y)=1$. There are $k \in \mathrm{~K}$ and $v \in \mathrm{~V}$ such that:
(1) The element v is diagonal in B^{\times}with eigenvalues in $\{-1,1\}$ and it satisfies $v \delta(v)=1$.
(2) One has $\delta(k) y k^{-1} \in v \mathrm{~K}^{1}$.

Proof. Let $\mathrm{V}^{1}=\mathrm{V} \cap \mathrm{K}^{1}=\mathrm{K}^{1} \cap \mathrm{~B}^{\times}$. We have

$$
\mathrm{V}^{1}=\left(\mathrm{V} \cap \mathrm{~N}^{-}\right) \cdot\left(\mathrm{U}^{1} \cap \mathrm{M}\right) \cdot(\mathrm{U} \cap \mathrm{~N})
$$

We thus have canonical δ-equivariant group isomorphisms

$$
\begin{equation*}
\mathrm{K} / \mathrm{K}^{1} \simeq \mathrm{~V} / \mathrm{V}^{1} \simeq(\mathrm{U} \cap \mathrm{M}) /\left(\mathrm{U}^{1} \cap \mathrm{M}\right) \tag{6-10}
\end{equation*}
$$

By (6-9), we have $\mathrm{M} \cap \mathrm{B}^{\times}=\mathrm{GL}_{m_{1}}(\mathrm{E}) \times \cdots \times \mathrm{GL}_{m_{r}}(\mathrm{E})$, thus the right-hand side of (6-10) identifies with $\mathcal{M}=\mathrm{GL}_{m_{1}}(\boldsymbol{l}) \times \cdots \times \mathrm{GL}_{m_{r}}(\boldsymbol{l})$, where \boldsymbol{l} denotes the residue field of E . Besides, since b is given by (6-7), the involution δ acts on \mathcal{M} as

$$
\left(g_{1}, \ldots, g_{r}\right) \mapsto\left(\sigma\left(g_{r}\right), \ldots, \sigma\left(g_{1}\right)\right)
$$

Write $y=v y^{\prime}$ for some $v \in \mathrm{~V}$ and $y^{\prime} \in \mathrm{K}^{1}$. The simple intersection property (5-1) gives us

$$
\delta(v)^{-1}=\delta\left(y^{\prime}\right) v y^{\prime} \in \mathrm{V} \cap \mathrm{~K}^{1} v \mathrm{~K}^{1}=\mathrm{V}^{1} v \mathrm{~V}^{1}
$$

Thus there is $u \in \mathrm{~V}^{1}$ such that $v u \delta(v u) \in \mathrm{V}^{1}$. Replacing $\left(v, y^{\prime}\right)$ by $\left(v u, u^{-1} y^{\prime}\right)$, we may and will assume that $y=v y^{\prime}$ with $v \delta(v) \in \mathrm{V}^{1}$.

We now compute the first cohomology set of δ in \mathcal{M}. Let $w=\left(w_{1}, \ldots, w_{r}\right)$ denote the image of y in \mathcal{M}. We have $w \delta(w)=1$, that is

$$
\sigma\left(w_{j}\right)=w_{r+1-j}^{-1}, \quad \text { for all } j \in\{1, \ldots, r\}
$$

If r is even, one can find an element $a \in \mathcal{N}$ such that $w=\delta(a) a^{-1}$. If r is odd, say $r=2 s-1$, one can find an element $a \in \mathcal{M}$ such that

$$
\delta(a) w a^{-1}=\left(1, \ldots, 1, w_{s}, 1, \ldots, 1\right)
$$

and we have $w_{s} \sigma\left(w_{s}\right)=1$. If $\mathrm{E} / \mathrm{E}_{0}$ is unramified, then \boldsymbol{l} is quadratic over the residue field of E_{0}, and it follows from the triviality of the first cohomology set of σ in $\mathrm{GL}_{m_{s}}(\boldsymbol{l})$ that $w=\sigma(c) c^{-1}$ for some $c \in \mathcal{M}$. In these two cases, we thus may find $k \in \mathrm{~K}$ such that $\delta(k) x k^{-1} \in \mathrm{~K}^{1}$.

It remains to treat the case where r is odd and $\mathrm{E} / \mathrm{E}_{0}$ is ramified. In this case, we have $w_{s}^{2}=1$, thus w_{s} is conjugate in $\mathrm{GL}_{m_{s}}(\boldsymbol{l})$ to a diagonal element with eigenvalues 1 and -1 . Let i denote the multiplicity of -1 . Let

$$
v \in \mathrm{U} \cap \mathrm{M}=\mathrm{GL}_{m_{1}}\left(\mathcal{O}_{\mathrm{E}}\right) \times \cdots \times \mathrm{GL}_{m_{r}}\left(\mathcal{O}_{\mathrm{E}}\right)
$$

(here \mathcal{O}_{E} is the ring of integers of E) be a diagonal matrix with eigenvalues 1 and -1 , such that -1 occurs with multiplicity i and only in the s-th block. Then $v \delta(v)=1$ and there is $k \in \mathrm{~K}$ such that $\delta(k) y k^{-1} \in v \mathrm{~K}^{1}$.

Applying Lemma 6.11 to x gives us $k \in \mathrm{~K}, v \in \mathrm{~V}$ such that $b v \sigma(b v)=1$ and $\delta(k) x k^{-1} \in v \mathrm{~K}^{1}$. Besides, $b v$ is antidiagonal of the form (6-7) and $\sigma(k) \gamma k^{-1} \in b v \mathrm{~K}^{1}$. Therefore, replacing g by $k g$, which does not change the double coset $\mathrm{J} g \mathrm{G}^{\sigma}$, we will assume that γ can be written

$$
\begin{equation*}
\gamma=b x, \quad b \sigma(b)=1, \quad x \in \mathrm{~J}^{1}, \quad b \text { is of the form (6-7). } \tag{6-11}
\end{equation*}
$$

Comparing with (6-8), we now have a stronger condition on x, that is $x \delta(x)=1$ and $x \in \mathrm{~K}^{1}$.
Since K^{1} is a δ-stable pro- p-group and p is odd, the first cohomology set of δ in K^{1} is trivial. Thus $x=\delta(y) y^{-1}$ for some $y \in \mathrm{~K}^{1}$, hence $\gamma=\sigma(y) b y^{-1}$. Since $b \sigma(b)=1$ and the first cohomology set of σ in B^{\times}is trivial, one has $b=\sigma(h) h^{-1}$ for some $h \in \mathrm{~B}^{\times}$. Thus $g \in y h \mathrm{G}^{\sigma} \subseteq \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$, and Lemma 6.7 is proved.

6C. Contribution of the Heisenberg representation. Let η be the Heisenberg representation of J^{1} associated to θ (see Paragraph 5B). In this paragraph, we prove the following result.

Proposition 6.12. Given $g \in \mathrm{G}$, we have

$$
\operatorname{dim} \operatorname{Hom}_{\mathrm{J}^{1} g \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)= \begin{cases}1 & \text { if } g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma} \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Suppose that $\operatorname{Hom}_{\mathrm{J}^{1 g} \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)$ is nonzero. Restricting to $\mathrm{H}^{1 g} \cap \mathrm{G}^{\sigma}$, the character θ^{g} is trivial on $\mathrm{H}^{1 g} \cap \mathrm{G}^{\sigma}$, and Proposition 6.6 together with Lemma 6.7 give us $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$. Conversely, assume that $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$. Since the dimension of $\operatorname{Hom}_{\mathrm{J}^{1 g} \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)$ does not change when g varies in a given $\left(\mathbf{J}, \mathrm{G}^{\sigma}\right)$-double coset, we may and will assume that we have $g \in \mathrm{~B}^{\times}$. Thus we have $\gamma=\sigma(g) g^{-1} \in \mathrm{~B}^{\times}$ as well.

Lemma 6.13. The map $\tau: x \mapsto \gamma^{-1} \sigma(x) \gamma$ is an involutive automorphism of G and, for any subgroup $\mathrm{H} \subseteq \mathrm{G}$, we have $\mathrm{H}^{g} \cap \mathrm{G}^{\sigma}=\left(\mathrm{H} \cap \mathrm{G}^{\tau}\right)^{g}$.

Proof. This follows from an easy calculation using the fact that $\sigma(\gamma)=\gamma^{-1}$.
Our goal is thus to prove that the space $\operatorname{Hom}_{\mathrm{J}^{1} \cap \mathrm{G}^{\tau}}(\eta, 1)$ has dimension 1. By Paragraph 5B, the representation of \mathbf{J}^{1} induced from θ decomposes as the direct sum of $\left(\mathrm{J}^{1}: \mathrm{H}^{1}\right)^{1 / 2}$ copies of the representation η. The space

$$
\begin{equation*}
\operatorname{Hom}_{\mathbf{J}^{1} \cap \mathbf{G}^{\tau}}\left(\operatorname{Ind}_{\mathbf{H}^{1}}^{\mathrm{J}^{1}}(\theta), 1\right) \tag{6-12}
\end{equation*}
$$

thus decomposes as the direct sum of $\left(\mathrm{J}^{1}: \mathrm{H}^{1}\right)^{1 / 2}$ copies of $\operatorname{Hom}_{\mathrm{J}^{1} \cap \mathrm{G}^{\tau}}(\eta, 1)$. Applying Frobenius reciprocity and the Mackey formula, the space (6-12) is isomorphic to

$$
\begin{equation*}
\operatorname{Hom}_{\mathbf{J}^{1}}\left(\operatorname{Ind}_{\mathrm{H}^{1}}^{\mathrm{J}^{1}}(\theta), \operatorname{Ind}_{\mathrm{J}^{1} \cap \mathrm{G}^{\tau}}^{\mathrm{J}^{1}}(1)\right) \simeq \bigoplus_{x \in \mathrm{X}} \operatorname{Hom}_{\mathbf{H}^{1}}\left(\theta, \operatorname{Ind}_{\mathrm{H}^{1} \cap\left(\mathbf{J}^{1} \cap \mathrm{G}^{\tau}\right)^{x}}^{\mathrm{H}^{1}}\right. \tag{1}
\end{equation*}
$$

where X is equal to $J^{1} /\left(\mathrm{J}^{1} \cap \mathrm{G}^{\tau}\right) \mathrm{H}^{1}$ (recall that H^{1} is normal in J^{1} and $\mathrm{J}^{1} / \mathrm{H}^{1}$ is abelian). Since J^{1} normalizes θ, this is isomorphic to

$$
\begin{equation*}
\bigoplus_{x \in \mathrm{X}} \operatorname{Hom}_{\mathrm{H}^{1}}\left(\theta, \operatorname{Ind}_{\mathrm{H}^{1} \cap \mathrm{G}^{\tau}}^{\mathrm{H}^{1}}(1)\right) \simeq \bigoplus_{x \in \mathrm{X}} \operatorname{Hom}_{\mathrm{H}^{1} \cap \mathrm{G}^{\tau}}(\theta, 1) \tag{6-13}
\end{equation*}
$$

Since $\operatorname{Hom}_{\mathrm{H}^{1} \cap \mathrm{G}^{\tau}}(\theta, 1)$ has dimension 1, the right-hand side of $(6-13)$ has dimension the cardinality of X. It thus remains to prove that X has cardinality $\left(J^{1}: H^{1}\right)^{1 / 2}$, or equivalently

$$
\begin{equation*}
\left(\mathrm{J}^{1} \cap \mathrm{G}^{\tau}: \mathrm{H}^{1} \cap \mathrm{G}^{\tau}\right)=\left(\mathrm{J}^{1}: \mathrm{H}^{1}\right)^{1 / 2} \tag{6-14}
\end{equation*}
$$

Now consider the groups $\mathrm{J}^{1} \cap \mathrm{~J}^{1 \gamma}$ and $\mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}$, which are both stable by τ.
Lemma 6.14. We have $\theta(\tau(x))=\theta(x)^{-1}$ for all $x \in \mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}$.
Proof. Given $x \in \mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}$, and using the fact that $\theta \circ \sigma=\theta^{-1} \circ \mathrm{on}^{1}$, we have

$$
\theta(\tau(x))^{-1}=\theta \circ \sigma(\tau(x))=\theta^{\gamma}(x)=\theta(x)
$$

since $\gamma \in \mathrm{B}^{\times}$intertwines θ.
Let us write \mathbb{V} for the \boldsymbol{k}-vector space $\left(\mathbf{J}^{1} \cap \mathrm{~J}^{1 \gamma}\right) /\left(\mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}\right)$ equipped with both the involution τ and the symplectic form $(x, y) \mapsto\langle x, y\rangle$ induced by (5-3). We write $\mathbb{V}^{+}=\{v \in \mathbb{V} \mid \tau(v)=v\}$ and $\mathbb{V}^{-}=\{v \in \mathbb{V} \mid \tau(v)=-v\}$. We have the decomposition $\mathbb{V}=\mathbb{V}^{+} \oplus \mathbb{V}^{-}$since $p \neq 2$.
Lemma 6.15. There is a group isomorphism $\mathbb{V}^{+} \simeq\left(J^{1} \cap G^{\tau}\right) /\left(\mathrm{H}^{1} \cap \mathrm{G}^{\tau}\right)$.
Proof. First note that we have the containment $\left(\mathrm{J}^{1} \cap \mathrm{G}^{\tau}\right)\left(\mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}\right) /\left(\mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}\right) \subseteq \mathbb{V}^{+}$. The lemma will follow if we prove that this containment is an equality. Let $x \in \mathrm{~J}^{1} \cap \mathrm{~J}^{1 \gamma}$ be such that $x\left(\mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}\right) \in \mathbb{V}^{+}$. One thus has $x^{-1} \tau(x) \in \mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}$. Since $\mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}$ is a τ-stable pro- p-group and $p \neq 2$, there is an $h \in \mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}$ such that $x^{-1} \tau(x)=h^{-1} \tau(h)$. The expected result follows.

We are now going to prove that \mathbb{V}^{+}and \mathbb{V}^{-}have the same dimension.
Lemma 6.16. The subspaces \mathbb{V}^{+}and \mathbb{V}^{-}are totally isotropic.
Proof. Indeed, thanks to Lemma 6.14, first note that

$$
\begin{equation*}
\langle\tau(x), y\rangle=\langle\tau(y), x\rangle, \quad x, y \in \mathbb{V} . \tag{6-15}
\end{equation*}
$$

If $x, y \in \mathbb{V}^{+}$, then we get $\langle x, y\rangle=\langle x, y\rangle^{-1}$, thus $\langle x, y\rangle=1$ since $p \neq 2$. If $x, y \in \mathbb{V}^{-}$, then we get $\left\langle x^{-1}, y\right\rangle=\left\langle x, y^{-1}\right\rangle^{-1}$. But $\left\langle x^{-1}, y\right\rangle=\langle x, y\rangle^{-1}=\left\langle x, y^{-1}\right\rangle$. It follows again that $\langle x, y\rangle=1$.

Let \mathbb{W} denote the kernel of the symplectic form $(x, y) \mapsto\langle x, y\rangle$ on \mathbb{V}, that is

$$
\mathbb{W}=\{w \in \mathbb{V} \mid\langle w, v\rangle=1 \text { for all } v \in \mathbb{V}\}
$$

Let \mathbb{Y} and \mathbb{Y}^{\prime} denote the images of $H^{1} \cap J^{1 \gamma}$ and $J^{1} \cap H^{1 \gamma}$ in \mathbb{V}, respectively.
Lemma 6.17. The subspaces \mathbb{Y} and \mathbb{Y}^{\prime} are both contained in \mathbb{W}, and we have $\mathbb{W}=\mathbb{Y} \oplus \mathbb{Y}^{\prime}$.
Proof. One easily verifies that τ stabilizes \mathbb{W} and exchanges \mathbb{Y} and \mathbb{Y}^{\prime}. First note that $\mathbb{Y} \subseteq \mathbb{W}$, since $\langle x, y\rangle=1$ for any $x \in \mathrm{H}^{1}$ and $y \in \mathrm{~J}^{1}$. By applying τ, and thanks to (6-15), we deduce that \mathbb{Y}^{\prime} is also contained in \mathbb{W}. Now, thanks to (5-4), we have

$$
\langle 1+x, 1+y\rangle=\psi \circ \operatorname{tr}(\beta(x y-y x))
$$

for all $x, y \in \mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma}$, where \mathfrak{j}^{1} is the sub- \mathcal{O}-lattice of \mathfrak{a} such that $\mathbf{J}^{1}=1+\mathfrak{j}^{1}$. Let a_{β} denote the endomorphism of F-algebras $x \mapsto \beta x-x \beta$ of $\mathrm{M}_{n}(\mathrm{~F})$. Given a subset $\mathrm{S} \subseteq \mathrm{M}_{n}(\mathrm{~F})$, write S^{*} for the set of $a \in \mathrm{M}_{n}(\mathrm{~F})$ such
that $\psi(\operatorname{tr}(a s))=1$ for all $s \in \mathrm{~S}$. Then the set of $x \in \mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma}$ such that $\langle 1+x, 1+y\rangle=1$ for all $y \in \mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma}$ is equal to

$$
\begin{aligned}
\mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma} \cap a_{\beta}\left(\mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma}\right)^{*} & =\mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma} \cap\left(a_{\beta}\left(\mathfrak{j}^{1}\right) \cap a_{\beta}\left(\mathfrak{j}^{1}\right)^{\gamma}\right)^{*} \\
& =\mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma} \cap\left(a_{\beta}\left(\mathfrak{j}^{1}\right)^{*}+a_{\beta}\left(\mathfrak{j}^{1}\right)^{* \gamma}\right) \\
& =\mathfrak{j}^{1 \gamma} \cap\left(\mathfrak{j}^{1} \cap a_{\beta}\left(\mathfrak{j}^{1}\right)^{*}\right)+\mathfrak{j}^{1} \cap\left(\mathfrak{j}^{1} \cap a_{\beta}\left(\mathfrak{j}^{1}\right)^{*}\right)^{\gamma} .
\end{aligned}
$$

We now claim that

$$
\begin{equation*}
\mathfrak{j}^{1} \cap a_{\beta}\left(\mathfrak{j}^{1}\right)^{*}=\mathfrak{h}^{1} \tag{6-16}
\end{equation*}
$$

To see this, look at the case where $g=1$. On the one hand, for $x \in \mathfrak{j}^{1}$, we have $\langle 1+x, 1+y\rangle=1$ for all $y \in \mathfrak{j}^{1}$ if and only if $x \in \mathfrak{j}^{1} \cap a_{\beta}\left(\mathfrak{j}^{1}\right)^{*}$. On the other hand, the symplectic form (5-3) on the space $\mathrm{J}^{1} / \mathrm{H}^{1}$ is nondegenerate. We thus have $\mathfrak{j}^{1} \cap a_{\beta}\left(\mathfrak{j}^{1}\right)^{*} \subseteq \mathfrak{h}^{1}$ and the other containment follows from the fact that ψ is trivial on the maximal ideal of \mathcal{O}.

We now go back to our general situation with $g \in B^{\times}$. Applying (6-16) to \mathfrak{j}^{1} and $\mathfrak{j}^{1 \gamma}$, we get

$$
\mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma} \cap a_{\beta}\left(\mathfrak{j}^{1} \cap \mathfrak{j}^{1 \gamma}\right)^{*}=\mathfrak{j}^{1 \gamma} \cap \mathfrak{h}^{1}+\mathfrak{h}^{1 \gamma} \cap \mathfrak{j}^{1}
$$

The result follows.
Corollary 6.18. The subspaces $\mathbb{W}^{+}=\mathbb{W} \cap \mathbb{V}^{+}$and $\mathbb{W}^{-}=\mathbb{W} \cap \mathbb{V}^{-}$have the same dimension and we have $\mathbb{W}=\mathbb{W}^{+} \oplus \mathbb{W}^{-}$.

Proof. The map $x \mapsto x+\tau(x)$ is an isomorphism from \mathbb{Y} to \mathbb{W}^{+}, and the map $x \mapsto x-\tau(x)$ is an isomorphism from \mathbb{Y} to \mathbb{W}^{-}. Thanks to Lemma 6.17 and the fact that $\mathbb{Y}, \mathbb{Y}^{\prime}$ have the same dimension, we thus have

$$
\operatorname{dim} \mathbb{W}^{+}+\operatorname{dim} \mathbb{W}^{-}=2 \cdot \operatorname{dim} \mathbb{Y}=\operatorname{dim} \mathbb{W}
$$

which ends the proof of the corollary.
Now consider the nondegenerate symplectic space \mathbb{V} / \mathbb{W}. It decomposes into the direct sum of two totally isotropic subspaces $\left(\mathbb{V}^{+}+\mathbb{W}\right) / \mathbb{W}$ and $\left(\mathbb{V}^{-}+\mathbb{W}\right) / \mathbb{W}$. We thus have

$$
\begin{gathered}
\max \left(\operatorname{dim}\left(\left(\mathbb{V}^{+}+\mathbb{W}\right) / \mathbb{W}\right), \operatorname{dim}\left(\left(\mathbb{V}^{-}+\mathbb{W}\right) / \mathbb{W}\right)\right) \leq \frac{1}{2} \cdot \operatorname{dim}(\mathbb{V} / \mathbb{W}) \\
\quad \operatorname{dim}\left(\left(\mathbb{V}^{+}+\mathbb{W}\right) / \mathbb{W}\right)+\operatorname{dim}\left(\left(\mathbb{V}^{-}+\mathbb{W}\right) / \mathbb{W}\right)=\operatorname{dim}(\mathbb{V} / \mathbb{W})
\end{gathered}
$$

These spaces thus have the same dimension and are maximal totally isotropic. Corollary 6.18 now implies that \mathbb{V}^{+}and \mathbb{V}^{-}have the same dimension.

In order to deduce the equality (6-14), and thanks to Lemma 6.15, it remains to prove that ${ }^{1}$

$$
\left(\mathrm{J}^{1} \cap \mathrm{~J}^{1 \gamma}: \mathrm{H}^{1} \cap \mathrm{H}^{1 \gamma}\right)=\left(\mathrm{J}^{1}: \mathrm{H}^{1}\right)
$$

which follows from [Bushnell and Kutzko 1993, Lemma 5.1.10]. This ends the proof of Proposition 6.12.

[^1]6D. Contribution of the mixed Heisenberg representation. Let $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$. We saw in Paragraph 6B (see (6-11)) that, changing g without changing the double coset $\mathrm{J}^{2} \mathrm{G}^{\sigma}$, we may assume that $g \in \mathrm{~B}^{\times}$and that $\gamma=\sigma(g) g^{-1}$ can be written $\gamma=b u$ with b of the form (6-7) and $u \in \mathrm{U}^{1}=\mathrm{J}^{1} \cap \mathrm{~B}^{\times}$. We write τ for the involution defined by Lemma 6.13 and $\mathrm{U}=\mathrm{J} \cap \mathrm{B}^{\times}$.

We have a standard Levi subgroup M of G defined by (6-9) and parabolic subgroups P, P^{-}of G with Levi component M , opposite to each other and with unipotent radicals $\mathrm{N}, \mathrm{N}^{-}$respectively. There is a unique standard hereditary order $\mathfrak{b}_{\mathrm{m}} \subseteq \mathfrak{b}$ such that

$$
\mathfrak{b}_{\mathrm{m}}^{\times}=\left(\mathrm{U}^{1} \cap \mathrm{~N}^{-}\right) \cdot(\mathrm{U} \cap \mathrm{P})
$$

Since $u \in \mathrm{U}^{1} \subseteq \mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)$ and thanks to the specific form of b, one verifies that

$$
\begin{equation*}
\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)=\left(\mathrm{U}^{1} \cap \mathrm{P}^{-}\right) \cdot(\mathrm{U} \cap \mathrm{~N})=\left(\mathrm{U} \cap \mathrm{U}^{1 \gamma}\right) \mathrm{U}^{1} \tag{6-17}
\end{equation*}
$$

Let $\mathfrak{a}_{\mathrm{m}} \subseteq \mathfrak{a}$ be the unique hereditary order of $\mathrm{M}_{n}(\mathrm{~F})$ normalized by E^{\times}such that $\mathfrak{a}_{\mathrm{m}} \cap \mathrm{B}=\mathfrak{b}_{\mathrm{m}}$. This gives us a simple stratum $\left[\mathfrak{a}_{\mathrm{m}}, \beta\right]$. Let $\theta_{\mathrm{m}} \in \mathcal{C}\left(\mathfrak{a}_{\mathrm{m}}, \beta\right)$ be the transfer of θ (see (5-5)) and η_{m} be the Heisenberg representation on $\mathrm{J}_{\mathrm{m}}^{1}=\mathrm{J}^{1}\left(\mathfrak{a}_{\mathrm{m}}, \beta\right)$ associated with θ_{m} (by [Bushnell and Kutzko 1993, Proposition 5.1.1; Mínguez and Sécherre 2014b, Proposition 2.1]).

Let S^{1} be the pro- p-subgroup $\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) \mathrm{J}^{1} \subseteq \mathrm{~J}$. By [Bushnell and Kutzko 1993, Proposition 5.1.15], there is an irreducible representation μ of the group S^{1}, unique up to isomorphism, extending η and such that

$$
\begin{equation*}
\operatorname{Ind}_{\mathrm{S}^{1}}^{\mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)}(\mu) \simeq \operatorname{Ind}_{\mathrm{J}_{\mathrm{m}}^{1}}^{\mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)}\left(\eta_{\mathrm{m}}\right) \tag{6-18}
\end{equation*}
$$

In this paragraph, we prove the following result.
Proposition 6.19. We have $\operatorname{dim} \operatorname{Hom}_{\mathbb{S}^{1 g} \cap \mathrm{G}^{\sigma}}\left(\mu^{g}, 1\right)=1$.
Proof. Since μ extends η, the space $\operatorname{Hom}_{\mathrm{S}^{1}{ }^{1} \cap \mathrm{G}^{\sigma}}\left(\mu^{g}, 1\right)$ is contained in the 1 -dimensional space $\operatorname{Hom}_{\mathrm{J}^{1 g} \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)$. It is thus enough to prove that $\operatorname{Hom}_{\mathrm{S}^{1 g} \cap \mathrm{G}^{\sigma}}\left(\mu^{g}, 1\right)$ is nonzero. Equivalently, by Lemma 6.13, it is enough to prove that $\operatorname{Hom}_{\mathrm{S}^{1} \cap \mathrm{G}^{\tau}}(\mu, 1)$ is nonzero.

First note that, since $\mathfrak{b}_{\mathrm{m}}$ is σ-stable, $\mathfrak{a}_{\mathrm{m}}$ is σ-stable as well. We have

$$
\sigma\left(\mathrm{H}^{1}\left(\mathfrak{a}_{\mathrm{m}}, \beta\right)\right)=\mathrm{H}^{1}\left(\sigma\left(\mathfrak{a}_{\mathrm{m}}\right), \sigma(\beta)\right)=\mathrm{H}^{1}\left(\mathfrak{a}_{\mathrm{m}},-\beta\right)=\mathrm{H}^{1}\left(\mathfrak{a}_{\mathrm{m}}, \beta\right)
$$

thus $\mathrm{H}_{\mathrm{m}}^{1}=\mathrm{H}^{1}\left(\mathfrak{a}_{\mathrm{m}}, \beta\right)$ is σ-stable. By an argument similar to the one used in [Anandavardhanan et al. 2018, Paragraph 4.6], it then follows that $\theta_{\mathrm{m}} \circ \sigma=\left(\theta_{\mathrm{m}}\right)^{-1}$.

Since γ intertwines θ_{m} by Proposition 5.1(5), it follows from Proposition 6.6 that the character θ_{m}^{g} is trivial on $\mathrm{H}_{\mathrm{m}}^{1 g} \cap \mathrm{G}^{\sigma}$, thus $\operatorname{Hom}_{\mathrm{J}_{\mathrm{m}}{ }^{g} \cap \mathrm{G}^{\sigma}}\left(\eta_{\mathrm{m}}^{g}, 1\right)=\operatorname{Hom}_{\mathrm{J}_{\mathrm{m}}^{1} \cap \mathrm{G}^{\tau}}\left(\eta_{\mathrm{m}}, 1\right)$ is nonzero. Inducing to $\mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)$, we get

$$
\operatorname{Hom}_{\mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) \cap \mathrm{G}^{\tau}}\left(\operatorname{Ind}_{\mathrm{J}_{\mathrm{m}}^{1}}^{\mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)}\left(\eta_{\mathrm{m}}\right), 1\right) \neq\{0\} .
$$

Applying the Frobenius reciprocity and the Mackey formula, it follows that there is a $x \in \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)$ such that

$$
\begin{equation*}
\operatorname{Hom}_{\mathbb{S}^{1 x} \cap \mathrm{G}^{\tau}}\left(\mu^{x}, 1\right) \neq\{0\} . \tag{6-19}
\end{equation*}
$$

We claim that $x \in \mathrm{~S}^{1}\left(\mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) \cap \mathrm{G}^{\tau}\right)$. Restricting (6-19) to the subgroup $\mathrm{H}^{1 x} \cap \mathrm{G}^{\tau}$ and applying Proposition 6.6, we get

$$
\sigma(x g) g^{-1} x^{-1}=\sigma(x) \gamma x^{-1} \in \mathrm{~J}^{1} \mathrm{~B}^{\times} \mathbf{J}^{1} \cap \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) \gamma \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) .
$$

Write $\sigma(x) \gamma x^{-1}=j c j^{\prime}$ for some $j, j^{\prime} \in \mathbf{J}^{1}$ and $c \in \mathrm{~B}^{\times}$. Since $\gamma \in \mathrm{B}^{\times}$and $\mathbf{J}^{1} \subseteq \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)$, the simple intersection property (5-1) implies that $c \in \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) \gamma \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) \cap \mathrm{B}^{\times}=\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) \gamma \mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)$. Therefore we have $\sigma(x) \gamma x^{-1}=\sigma(s) \gamma s^{\prime}$ for some $s, s^{\prime} \in \mathrm{S}^{1}$. If we let $y=s^{-1} x$, then we have $\sigma(y) \gamma y^{-1}=\gamma l$ for some $l \in \mathrm{~S}^{1}$, that is $\tau(y) y^{-1}=l$. Since the first cohomology set of τ in $\mathrm{S}^{1} \cap \mathrm{~S}^{1 \gamma}$ is trivial, we get $l=\tau(h) h^{-1}$ for some $h \in \mathbf{S}^{1}$. This gives us

$$
x \in \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right) \cap \mathrm{S}^{1}\left(\mathrm{G}^{\sigma}\right)^{g^{-1}}
$$

and the claim follows from the fact that $\mathrm{S}^{1} \subseteq \mathrm{U}^{1}\left(\mathfrak{a}_{\mathrm{m}}\right)$.
Putting the claim and (6-19) together, we deduce that $\operatorname{Hom}_{\mathbb{S}^{1} \cap \mathrm{G}^{\tau}}(\mu, 1)$ is nonzero.
6E. The double coset theorem. Let $\boldsymbol{\kappa}$ be an irreducible representation of \mathbf{J} extending η as in Paragraph 5B. There is an irreducible representation ρ of \mathbf{J}, unique up to isomorphism, which is trivial on the subgroup J^{1} and satisfies $\boldsymbol{\lambda} \simeq \boldsymbol{\kappa} \otimes \rho$. We have the following lemma.

Lemma 6.20. Let $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$.
(1) There is a unique character χ of $\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}$ trivial on $\mathbf{J}^{1 g} \cap \mathrm{G}^{\sigma}$ such that

$$
\operatorname{Hom}_{\mathbf{J}^{1} \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)=\operatorname{Hom}_{\mathbf{J}^{\varepsilon} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\kappa}^{g}, \chi^{-1}\right) .
$$

(2) The canonical linear map

$$
\operatorname{Hom}_{\mathbf{J}^{1 g} \cap \mathbf{G}^{\sigma}}\left(\eta^{g}, 1\right) \otimes \operatorname{Hom}_{\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\rho}^{g}, \chi\right) \rightarrow \operatorname{Hom}_{\mathbf{J}^{\varepsilon} \cap \mathbf{G}^{\sigma}}\left(\lambda^{g}, 1\right)
$$

is an isomorphism.
Proof. Let us fix a nonzero linear form $\mathscr{E} \in \operatorname{Hom}_{\mathrm{J}^{1} \S \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)$. The choice of κ defines an action of $\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}$ on the space $\operatorname{Hom}_{\mathrm{J}^{18} \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)$, which has dimension 1 by Proposition 6.12. This determines a unique character χ of $\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}$ trivial on $\mathrm{J}^{1 g} \cap \mathrm{G}^{\sigma}$ such that

$$
\mathscr{E} \circ \boldsymbol{\kappa}^{g}(x)=\chi(x)^{-1} \cdot \mathscr{E}
$$

for all $x \in \mathbf{J}^{g} \cap \mathrm{G}^{\sigma}$. This gives us the first part of the lemma.
Given $\mathscr{L} \in \operatorname{Hom}_{\mathbf{J}^{8} \cap \mathrm{G}^{\sigma}}\left(\lambda^{g}, 1\right)$ and w in the space of ρ, the linear form $v \mapsto \mathscr{L}(v \otimes w)$ defined on the space of η is in $\operatorname{Hom}_{\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}}\left(\eta^{g}, 1\right)$. By Proposition 6.12 it is thus of the form $\mathscr{F}(w) \mathscr{E}$ for a unique $\mathscr{F}(w) \in \mathrm{R}$. We have $\mathscr{L}=\mathscr{E} \otimes \mathscr{F}$ and $\mathscr{F} \in \operatorname{Hom}_{\mathbf{J}^{g} \cap \mathrm{G}^{\boldsymbol{r}}}\left(\boldsymbol{\rho}^{g}, \chi\right)$.
Theorem 6.21. Let $g \in \mathrm{G}$ and suppose $\operatorname{Hom}_{\mathbf{J}^{\mathrm{s}} \cap \mathrm{G}^{\sigma}}\left(\lambda^{g}, 1\right)$ is nonzero. Then $\sigma(g) g^{-1} \in \mathbf{J}$.
Proof. We know from Proposition 6.6 and Lemma 6.7 that $g \in \mathrm{JB}^{\times} \mathrm{G}^{\sigma}$. We thus may assume that $g \in \mathrm{~B}^{\times}$ and $\gamma=\sigma(g) g^{-1}$ is as in Paragraph 6D. In particular, we have a standard hereditary order $\mathfrak{b}_{\mathrm{m}} \subseteq \mathfrak{b}$ and an involution τ.

Let us fix an irreducible representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η, and let χ be the character given by Lemma 6.20. The restriction of $\boldsymbol{\kappa}$ to J , denoted κ, is an irreducible representation of J extending η. It follows from Remark 5.2 that κ is a beta-extension of η, and from [Bushnell and Kutzko 1993, Theorem 5.2.3] that κ extends μ. Proposition 6.19 thus implies

$$
\operatorname{Hom}_{\mathbf{S}^{1 g} \cap \mathrm{G}^{\sigma}}\left(\mu^{g}, 1\right)=\operatorname{Hom}_{\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\kappa}^{g}, \chi^{-1}\right)
$$

and χ is trivial on $U^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)^{g} \cap \mathrm{G}^{\sigma}$. By Lemma 6.20, the space $\operatorname{Hom}_{\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\rho}^{g}, \chi\right)$ is nonzero.
Write $\mathrm{U}=\mathrm{J} \cap \mathrm{B}^{\times}$and $\mathrm{U}^{1}=\mathrm{J}^{1} \cap \mathrm{~B}^{\times}$. Since $g \in \mathrm{~B}^{\times}$, we have $\mathrm{J}^{g} \cap \mathrm{G}^{\sigma}=\left(\mathrm{U}^{g} \cap \mathrm{G}^{\sigma}\right)\left(\mathrm{J}^{1 g} \cap \mathrm{G}^{\sigma}\right)$. Let ρ be the restriction of ρ to \mathbf{J}. Then $\operatorname{Hom}_{\mathrm{U}^{g} \cap \mathrm{G}^{\sigma}}\left(\rho^{g}, \chi\right)$ is nonzero. Lemma 6.13 implies

$$
\begin{equation*}
\operatorname{Hom}_{\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) \cap \mathrm{G}^{\tau}}(\rho, 1)=\operatorname{Hom}_{\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)^{g} \cap \mathrm{G}^{\sigma}}\left(\rho^{g}, 1\right) \neq\{0\} \tag{6-20}
\end{equation*}
$$

We now describe more carefully the subgroup $\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)$.
Lemma 6.22. We have $\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)=\left(\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) \cap \mathrm{G}^{\tau}\right) \mathrm{U}^{1}$.
Proof. We follow the proof of [Hakim and Murnaghan 2008, Proposition 5.20]. According to (6-17) it is enough to prove that $\mathrm{U} \cap \mathrm{U}^{1 \gamma}$ is contained in $\left(\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) \cap \mathrm{G}^{\tau}\right) \mathrm{U}^{1}$. Let $x \in \mathrm{U} \cap \mathrm{U}^{1 \gamma}$ and define $y=x^{-1} \tau(x)^{-1} x \tau(x)$. Then $y \in \mathrm{U}^{1} \cap \mathrm{U}^{1 \gamma}$ and $y \tau(y)=1$. Since the first cohomology set of τ in $\mathrm{U}^{1} \cap \mathrm{U}^{1 \gamma}$ is trivial, we get $y=z \tau(z)^{-1}$ for some $z \in \mathrm{U}^{1} \cap \mathrm{U}^{1 \gamma}$. Define $x^{\prime}=x \tau(x) \tau(z)$. Then $x^{\prime} \in \mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) \cap \mathrm{G}^{\tau}$ and we have $x \in x^{\prime} \mathrm{U}^{1}$.

Since ρ is trivial on U^{1}, Lemma 6.22 and (6-20) together imply that $\operatorname{Hom}_{\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right)}(\rho, 1)$ is nonzero. Since $\mathrm{U}^{1}\left(\mathfrak{b}_{\mathrm{m}}\right) / \mathrm{U}^{1}$ is a unipotent subgroup of $\mathrm{U} / \mathrm{U}^{1} \simeq \mathrm{GL}_{m}(\boldsymbol{l})$, the fact that the representation ρ is cuspidal (see Paragraph 5B) implies that $\mathfrak{b}_{\mathrm{m}}=\mathfrak{b}$, that is $\gamma \in \mathrm{U} \subseteq \mathbf{J}$.

Lemma 4.25 of [Anandavardhanan et al. 2018] gives a detailed account of the elements $g \in G$ such that $\sigma(g) g^{-1} \in \mathbf{J}$.

6F. Proof of Theorem 6.1. Let π be a σ-selfdual cuspidal representation of G , and ($\mathbf{J}, \boldsymbol{\lambda}$) be a σ-selfdual type in π given by Theorem 5.10. If the space $\operatorname{Hom}_{\mathbf{J \cap G}^{\sigma}}(\boldsymbol{\lambda}, 1)$ is nonzero, then (6-1) implies that π is distinguished.

Conversely, suppose that π is distinguished and that $(\mathbf{J}, \boldsymbol{\lambda})$ has been chosen as in Remark 5.11 as it may be. Then the space $\operatorname{Hom}_{\mathbf{J}^{g} \cap \mathrm{G}^{\sigma}}\left(\lambda^{g}, 1\right)$ is nonzero for some $g \in \mathrm{G}$. By Theorem 6.21, one has $\sigma(g) g^{-1} \in \mathbf{J}$. Thus \mathbf{J}^{g} is σ-stable, and

$$
\left(\lambda^{g}\right)^{\sigma}=\left(\lambda^{\sigma}\right)^{\sigma(g)} \simeq\left(\lambda^{\vee}\right)^{g}=\left(\lambda^{g}\right)^{\vee}
$$

thus the type $\left(\mathbf{J}^{g}, \boldsymbol{\lambda}^{g}\right)$ is σ-selfdual.
Remark 6.23. Let $(\mathbf{J}, \boldsymbol{\lambda})$ and $\left(\mathbf{J}^{\prime}, \lambda^{\prime}\right)$ be two distinguished σ-selfdual types in π. Since they both occur in π, there is a $g \in G$ such that $\mathbf{J}^{\prime}=\mathbf{J}^{g}$ and $\lambda^{\prime} \simeq \lambda^{g}$. Thanks to the multiplicity 1 property of Theorem 4.1, the formula (6-1) tells us that the double cosets $\mathbf{J G}^{\sigma}$ and $\mathbf{J} g \mathbf{G}^{\sigma}$ are equal, which implies that $g \in \mathbf{J G}^{\sigma}$. Thus a distinguished cuspidal representation π contains, up to G^{σ}-conjugacy, a unique distinguished σ-selfdual type.

Recall that Proposition 5.14 associates to any σ-selfdual cuspidal representation of G a quadratic extension $\mathrm{T} / \mathrm{T}_{0}$.

Corollary 6.24. Let π be a σ-selfdual cuspidal representation of G , and suppose that $\mathrm{T} / \mathrm{T}_{0}$ is unramified. Then π is distinguished if and only if any σ-selfdual type in π is distinguished.

Proof. This follows from Theorem 6.1 together with Proposition 5.17, which says that the representation π contains, up to G^{σ}-conjugacy, a unique σ-selfdual type.

When $\mathrm{T} / \mathrm{T}_{0}$ is ramified, Proposition 5.17 tells us that π contains more than one G^{σ}-conjugacy class of σ-selfdual types as soon as its relative degree m is at least 2 . In the next section, we will see that the G^{σ}-conjugacy class of index $\lfloor m / 2\rfloor$ (see Definition 5.18) is the only one which may contribute to the distinction of π.

7. The cuspidal ramified case

As usual, write $\mathrm{G}=\mathrm{GL}_{n}(\mathrm{~F})$ for some $n \geq 1$. To any σ-selfdual cuspidal representation of G , one can associate a quadratic extension $\mathrm{T} / \mathrm{T}_{0}$ and its relative degree m (see Proposition 5.14). In this section, we will consider the case where T / T_{0} is ramified.

7A. The first main result of this section is the following proposition, which we will prove in Paragraph 7C.
Proposition 7.1. Let π be a σ-selfdual cuspidal representation of G with quadratic extension $\mathrm{T} / \mathrm{T}_{0}$ and relative degree m. Suppose $\mathrm{T} / \mathrm{T}_{0}$ is ramified. Then π is distinguished if and only if
(1) either $m=1$ or m is even, and
(2) any σ-selfdual type of index $\lfloor m / 2\rfloor$ contained in π is distinguished.

Remark 7.2. Proposition 7.1 refines Theorem 6.1 by saying that, if T / T_{0} is ramified, then the G^{σ} conjugacy class of σ-selfdual types of index $\lfloor\mathrm{m} / 2\rfloor$ contained in π is the only one which may contribute to the distinction of π. See [Anandavardhanan et al. 2018, Proposition 5.5] for a characterization of this class in terms of Whittaker data. See also Definition 10.1 and Remark 10.2 below.

Remark 7.3. Proposition 7.1 is proved in [Anandavardhanan et al. 2018] in a different manner from the one we give here (see Remark 6.3 above and [Anandavardhanan et al. 2018, Corollary 6.6 and Remark 6.7]).

Remark 7.4. If we assume π to be supercuspidal in Proposition 7.1, then m is automatically either even or equal to 1 , even if π is not distinguished (see Proposition 8.1).

Remark 7.5. However, if π is nonsupercuspidal in Proposition 7.1, then its relative degree m need not be either even nor equal to 1 . Let k be a divisor of n and τ be a σ-selfdual supercuspidal representation of $\mathrm{GL}_{n / k}(\mathrm{~F})$. Assume R has characteristic $\ell>0$, let v be the unramified character "absolute value of the determinant" and let $e(\tau)$ be the smallest integer $i \geq 1$ such that $\tau \nu^{i} \simeq \tau$. Suppose that $k=e(\tau) \ell^{u}$
for some $u \geq 0$. Then [Mínguez and Sécherre 2014a, Théorème 6.14] tells us that the unique generic irreducible subquotient π of the normalized parabolically induced representation

$$
\tau \times \tau \nu \times \cdots \times \tau \nu^{k-1}
$$

is cuspidal, and that it is σ-selfdual since τ is. If $k>1$ and $m(\pi)=k m(\tau)$ is odd, then π is a σ-selfdual cuspidal representation which is not distinguished nor ω-distinguished. (For instance, this is the case when τ is the trivial character of F^{\times}and $k=n=\ell$ where $\ell \neq 2$ divides $q-1$, which gives $\left.m(\tau)=e(\tau)=1\right)$.

7B. Existence of σ-selfdual extensions of the Heisenberg representation. We now go back to our usual notation. Let $[\mathfrak{a}, \beta]$ be a maximal simple stratum in $\mathrm{M}_{n}(\mathrm{~F})$ such that \mathfrak{a} is σ-stable and $\sigma(\beta)=-\beta$. Write E for the extension $\mathrm{F}[\beta]$, and suppose that it is ramified over the field E_{0} of σ-fixed points in E . Let d be the degree $[\mathrm{E}: \mathrm{F}]$ and write $n=m d$.

Let \boldsymbol{l} denote the residue field of E . Let us notice once and for all that, since $p \neq 2$, any character of $\mathrm{GL}_{m}(\boldsymbol{l})$ is of the form $\alpha \circ$ det, for some character α of \boldsymbol{l}^{\times}.

The following lemma generalizes [Coniglio-Guilloton 2016, Lemme 3.4.6] (which is concerned with complex representations and χ trivial only).

Lemma 7.6. Let χ be a character of $\left(\mathrm{GL}_{i} \times \mathrm{GL}_{m-i}\right)(\boldsymbol{l})$ for some $i \in\{0, \cdots,\lfloor m / 2\rfloor\}$. Suppose there is a χ-distinguished cuspidal representation of $\mathrm{GL}_{m}(\boldsymbol{l})$. Then either $m=1$ or $m=2 i$.
Proof. If $m \geq 2$, the result follows from Proposition 2.14. Note that, if $m=1$, then χ is the unique χ-distinguished irreducible representation of $\mathrm{GL}_{1}(\boldsymbol{l})$.

Let $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ be a maximal simple character such that $\mathrm{H}^{1}(\mathfrak{a}, \beta)$ is σ-stable and $\theta \circ \sigma=\theta^{-1}$, and let $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ be its normalizer in G. Let η be the Heisenberg representation of $\mathbf{J}^{1}=\mathbf{J}^{1}(\mathfrak{a}, \beta)$ containing θ and write $\mathrm{J}=\mathrm{J}(\mathfrak{a}, \beta)$.

Lemma 7.7. There is a σ-selfdual representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η.
Proof. Conjugating by a suitable element in G, we may assume that the stratum [a, β] satisfies the conditions of Remark 5.11. Indeed, if it doesn't, there is a $g \in \mathrm{G}$ such that θ^{g} is σ-selfdual and [$\mathfrak{a}^{g}, \beta^{g}$] satisfies these conditions. This implies that $\gamma=\sigma(g) g^{-1}$ normalizes θ, that is $\gamma \in \mathbf{J}$. Now, assuming the lemma to be true for $\left[\mathfrak{a}^{g}, \beta^{g}\right]$, there exists a σ-selfdual representation $\boldsymbol{\kappa}^{\prime}$ of \mathbf{J}^{g} extending η^{g}. Define a representation $\boldsymbol{\kappa}$ of \mathbf{J} by $\boldsymbol{\kappa}^{g}=\boldsymbol{\kappa}^{\prime}$. Then $\boldsymbol{\kappa}$ extends η, and it is σ-selfdual since $\gamma \in \mathbf{J}$. From now on, we will assume that $[\mathfrak{a}, \beta]$ satisfies the conditions of Remark 5.11 . We will identify $\mathrm{J} / \mathrm{J}^{1}$ with $\mathrm{GL}_{m}(\boldsymbol{l})$, on which σ acts trivially.

Suppose first that R has characteristic 0 . Let $\boldsymbol{\kappa}$ be a representation of \mathbf{J} extending η, let μ be the character of \mathbf{J} trivial on \mathbf{J}^{1} such that $\boldsymbol{\kappa}^{\sigma \vee} \simeq \boldsymbol{\kappa} \mu$ given by Lemma 5.21 and χ be the character of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ associated with $\boldsymbol{\kappa}$ by Lemma 6.20. We claim that there is a character v of \mathbf{J} trivial on \mathbf{J}^{1} such that $(\nu \circ \sigma) v=\mu$. Indeed, κv will then extend η and be σ-selfdual. We have

$$
\operatorname{Hom}_{\mathbf{J}^{1} \cap \mathbf{G}^{\sigma}}(\eta, 1)=\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\kappa}, \chi^{-1}\right) \simeq \operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}\left(\chi, \boldsymbol{\kappa}^{\sigma \vee}\right) \simeq \operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}\left(\chi \mu^{-1}, \boldsymbol{\kappa}\right)
$$

where the isomorphism in the middle follows from the fact that σ acts trivially on $\mathbf{J} \cap \mathrm{G}^{\sigma}$ and by duality. Since R has characteristic 0 and $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is compact, the latter space is isomorphic to $\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\kappa}, \chi \mu^{-1}\right)$. By uniqueness of χ, it follows that the restriction of μ to $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is χ^{2}. Restricting to $\mathbf{J} \cap \mathrm{G}^{\sigma}$ and writing $\mu=\varphi \circ$ det and $\chi=\alpha \circ$ det as characters of $\mathrm{GL}_{m}(\boldsymbol{l})$ for suitable characters φ, α of \boldsymbol{l}^{\times}, we get $\varphi=\alpha^{2}$. Let ν be the unique character of \mathbf{J} which is trivial on \mathbf{J}^{1} and equal to $\alpha \circ$ det as a character of $\mathrm{GL}_{m}(\boldsymbol{l})$. Since \mathbf{J} is generated by t and \mathbf{J}, it remains to extend ν to \mathbf{J} by fixing a scalar $v(t) \in \mathbf{R}^{\times}$such that $v(t)^{2}=v(-1) \mu(t)$.

Suppose now that R is equal to $\overline{\mathbf{F}}_{\ell}$. As in the proof of Lemma 2.5 , we use a lifting and reduction argument. Note that reducing finite-dimensional smooth $\overline{\mathbf{Q}}_{\ell}$-representations of profinite groups is the same as for finite groups (for which we referred to [Serre 1977, Section 15]). The simple character θ lifts to a simple character $\tilde{\theta}$ with values in $\overline{\mathbf{Z}}_{\ell}$, defined with respect to the same simple stratum as θ, and such that $\tilde{\theta} \circ \sigma=\tilde{\theta}^{-1}$. By the characteristic 0 case, there is a σ-selfdual $\overline{\mathbf{Q}}_{\ell}$-representation $\tilde{\boldsymbol{\kappa}}$ of \mathbf{J} extending the irreducible $\overline{\mathbf{Q}}_{\ell}$-representation $\tilde{\eta}$ of \mathbf{J}^{1} associated with $\tilde{\theta}$. The reduction $\bmod \ell$ of $\tilde{\eta}$ is a representation of \mathbf{J}^{1} containing θ, of the same dimension as η : it is thus isomorphic to η itself. Let $\tilde{\kappa}$ denote the restriction of $\tilde{\boldsymbol{\kappa}}$ to \mathbf{J}. Its reduction $\bmod \ell$, denoted κ, is a σ-selfdual representation of \mathbf{J} extending η, and which extends to some representation $\boldsymbol{\kappa}$ of \mathbf{J}. Since κ is σ-selfdual, the representation $\boldsymbol{\kappa}^{\sigma \vee}$ is isomorphic to $\kappa \mu$ for some character μ of \mathbf{J} trivial on \mathbf{J}. Since \mathbf{J} is generated by \mathbf{J} and t, there is a character v of \mathbf{J} trivial on \mathbf{J} such that $(\nu \circ \sigma) \nu=\mu$, thus $\kappa \nu$ is σ-selfdual.

Finally, suppose that R has characteristic $\ell>0$, and fix an embedding $\iota: \overline{\mathbf{F}}_{\ell} \rightarrow \mathrm{R}$. Since θ has finite image, there is a simple $\overline{\mathbf{F}}_{\ell}$-character θ_{0} defined with respect to the same simple stratum as θ such that $\theta_{0} \circ \sigma=\theta_{0}^{-1}$ and $\theta=\iota \circ \theta_{0}$. Let $\boldsymbol{\kappa}_{0}$ be a σ-selfdual $\overline{\mathbf{F}}_{\ell}$-representation of \mathbf{J} extending the irreducible $\overline{\mathbf{F}}_{\ell}$-representation η_{0} of \mathbf{J}^{1} associated with θ_{0}. The irreducible representations η and $\eta_{0} \otimes \mathrm{R}$ both contain θ. By uniqueness of the Heisenberg representation, they are isomorphic. It follows that $\boldsymbol{\kappa}=\boldsymbol{\kappa}_{0} \otimes \mathrm{R}$ is a σ-selfdual R-representation of J extending η.

7C. Proof of Proposition 7.1. Let $(\mathbf{J}, \boldsymbol{\lambda})$ be a σ-selfdual type, with associated simple character the character θ of Paragraph 7B.

Lemma 7.8. If $(\mathbf{J}, \boldsymbol{\lambda})$ is distinguished, then either
(1) $m=1$, or
(2) $m=2 r$ for some $r \geq 1$, and (\mathbf{J}, λ) has index r.

Proof. Let $\boldsymbol{\kappa}$ be a σ-selfdual representation of \mathbf{J} extending η provided by Lemma 7.7. Let $\boldsymbol{\rho}$ be the unique irreducible representation of \mathbf{J} trivial on \mathbf{J}^{1} such that $\boldsymbol{\lambda} \simeq \boldsymbol{\kappa} \otimes \rho$ and i be the index of $(\mathbf{J}, \boldsymbol{\lambda})$. Lemma 6.20 tells us that ρ is χ-distinguished for some character χ of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ trivial on $\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}$. Restricting ρ to \mathbf{J} and identifying $\mathrm{J} / \mathrm{J}^{1}$ with $\mathrm{GL}_{m}(\boldsymbol{l})$, we get a cuspidal representation ρ of $\mathrm{GL}_{m}(\boldsymbol{l})$ and a character χ of $\left(\mathrm{GL}_{i} \times \mathrm{GL}_{m-i}\right)(\boldsymbol{l})$ such that ρ is χ-distinguished. The result follows from Lemma 7.6.

Let π be a σ-selfdual cuspidal representation of G , and suppose that the quadratic extension $\mathrm{T} / \mathrm{T}_{0}$ associated with it by Proposition 5.14 is ramified. Let $(\mathbf{J}, \boldsymbol{\lambda})$ be a σ-selfdual type contained in π. By Remark 5.12, we may assume that it is defined with respect to a σ-selfdual simple stratum. By Remark 5.16,
E is ramified over E_{0}. We can thus apply the results of Paragraph 7B and Lemma 7.8. Proposition 7.1 now follows from Theorem 6.1 together with Lemma 7.8.

7D. Existence of distinguished extensions of the Heisenberg representation. The second main result of this section is the following proposition.

Proposition 7.9. Let π be a σ-selfdual cuspidal representation of G with ramified quadratic extension $\mathrm{T} / \mathrm{T}_{0}$. Assume that $m=1$ or m is even, and let (\mathbf{J}, λ) be a σ-selfdual type in π of index $\lfloor m / 2\rfloor$. Let \mathbf{J}^{1} be the maximal normal pro-p-subgroup of \mathbf{J} and η be an irreducible component of the restriction of λ to J^{1}.
(1) There is a distinguished representation of \mathbf{J} extending η, and any such representation of \mathbf{J} is σ-selfdual.
(2) Let $\boldsymbol{\kappa}$ be a distinguished representation of \mathbf{J} extending η, and let ρ be the unique representation of \mathbf{J} trivial on J^{1} such that $\boldsymbol{\lambda} \simeq \boldsymbol{\kappa} \otimes \rho$. Then π is distinguished if and only if ρ is distinguished.

We start with the following lemma, which slightly refines part (1) of the proposition.
Lemma 7.10. Let (\mathbf{J}, λ) be as in Proposition 7.9.
(1) There is a distinguished representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η.
(2) If $\ell=2$ or if m is even, such a distinguished representation $\boldsymbol{\kappa}$ is unique.
(3) Any distinguished representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η is σ-selfdual.

Remark 7.11. If $\ell \neq 2$ and $m=1$, there are exactly two distinguished representations of \mathbf{J} extending η, twisted of each other by the unique nontrivial character of \mathbf{J} trivial on $\left(\mathbf{J} \cap \mathrm{G}^{\sigma}\right) \mathbf{J}^{1}$. (See the proof below, which shows that $\left(\mathbf{J} \cap \mathrm{G}^{\sigma}\right) \mathbf{J}^{1}$ has index 2 in \mathbf{J}.)

Proof. Let \mathbf{J} be the maximal compact subgroup of \mathbf{J}, and \mathbf{J}^{1} be its maximal normal pro- p-subgroup. As usual, we fix a maximal simple stratum $[\mathfrak{a}, \beta]$ defining $(\mathbf{J}, \boldsymbol{\lambda})$ such that \mathfrak{a} is σ-stable and $\sigma(\beta)=-\beta$, and write $\mathrm{E}=\mathrm{F}[\beta]$ and \boldsymbol{l} for its residue field. We will identify $\mathrm{J} / \mathrm{J}^{1}$ with $\mathrm{GL}_{m}(\boldsymbol{l})$ equipped with an involution whose fixed points is $\left(\mathrm{GL}_{i} \times \mathrm{GL}_{m-i}\right)(\boldsymbol{l})$ where $i=\lfloor m / 2\rfloor$.

Let $\boldsymbol{\kappa}$ be an irreducible representation of \mathbf{J} extending η. By Lemma 6.20, there is a character χ of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ trivial on $\mathbf{J}^{1} \cap \mathrm{G}^{\sigma}$ associated to $\boldsymbol{\kappa}$. We claim that χ extends to a character ϕ of \mathbf{J} trivial on \mathbf{J}^{1}. It will then follow that $\kappa \phi$ is distinguished and extends η.

Suppose first that $m=1$. We then have canonical group isomorphisms

$$
\begin{equation*}
\left(\mathrm{J} \cap \mathrm{G}^{\sigma}\right) /\left(\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}\right) \simeq \mathrm{J} / \mathrm{J}^{1} \simeq l^{\times} \tag{7-1}
\end{equation*}
$$

Thus there is a unique character ϕ of \mathbf{J} trivial on \mathbf{J}^{1} which coincides with χ on $\mathbf{J} \cap \mathrm{G}^{\sigma}$. Since \mathbf{J} is generated by t and \mathbf{J}, and since t normalizes ϕ, this character extends to a character of \mathbf{J} trivial on \mathbf{J}^{1}.

Lemma 7.12. Suppose that $m=1$. Then $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is generated by $\mathrm{J} \cap \mathrm{G}^{\sigma}$ and t^{2}.

Proof. Since we have $\mathbf{J}=\mathrm{E}^{\times} \mathbf{J}^{1}$ when $m=1$, we may consider the exact sequence of σ-groups

$$
1 \rightarrow \mathrm{U}_{\mathrm{E}}^{1} \rightarrow \mathrm{E}^{\times} \times \mathrm{J}^{1} \rightarrow \mathbf{J} \rightarrow 1
$$

Taking σ-invariants and since the first cohomology group $\mathrm{H}^{1}\left(\sigma, \mathrm{U}_{\mathrm{E}}^{1}\right)$ is trivial, $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is generated by E_{0}^{\times} and $\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}$. The result follows from (7-1) and the fact that t^{2} is a uniformizer of E_{0}.

It follows from Lemma 7.12 that χ can be extended to a character ϕ of \mathbf{J} trivial on \mathbf{J}^{1}. Since we must have $\phi(t)^{2}=\chi\left(t^{2}\right)$ in the field R of characteristic ℓ, there are at most two such characters, with uniqueness if and only if $\ell=2$.

Suppose now that $m=2 r$ for some $r \geq 1$, and consider the element

$$
w=\left(\mathrm{id}_{r} \mathrm{id}_{r}\right) \in \mathfrak{b}^{\times} \subseteq \mathrm{GL}_{m}(\mathrm{E})
$$

where id_{r} is the identity matrix in $\mathrm{GL}_{r}(\mathrm{E})$.
Lemma 7.13. Suppose that $m=2 r$. The group $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is generated by $\mathbf{J} \cap \mathrm{G}^{\sigma}$ and $t w$.
Proof. First, notice that $t^{\prime}=t w$ is σ-invariant. Any $x \in \mathbf{J}$ can be written $x=t^{\prime k} y$ for unique $k \in \mathbb{Z}$ and $y \in \mathbf{J}$. We thus have $x \in \mathbf{J} \cap \mathrm{G}^{\sigma}$ if and only if $y \in \mathbf{J} \cap \mathrm{G}^{\sigma}$.

Since $\boldsymbol{\kappa}$ and $\mathbf{J} \cap \mathrm{G}^{\sigma}$ are normalized by w, we have $\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\kappa}, \chi^{-1}\right)=\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}\left(\boldsymbol{\kappa},\left(\chi^{w}\right)^{-1}\right)$, and the uniqueness of χ implies that $\chi^{w}=\chi$. First, consider the character of

$$
\left(\mathrm{J} \cap \mathrm{G}^{\sigma}\right) /\left(\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}\right) \simeq\left(\mathrm{GL}_{r} \times \mathrm{GL}_{r}\right)(\boldsymbol{l})
$$

defined by χ and write it $\left(\alpha_{1} \circ \operatorname{det}\right) \otimes\left(\alpha_{2} \circ\right.$ det $)$ for some characters α_{1}, α_{2} of \boldsymbol{l}^{\times}. The identity $\chi^{w}=\chi$ implies that $\alpha_{1}=\alpha_{2}$, thus there is a unique character ϕ of J trivial on J^{1} which coincides with χ on $\mathrm{J} \cap \mathrm{G}^{\sigma}$. By Lemma 7.13, there is a unique character ϕ of \mathbf{J} trivial on \mathbf{J}^{1} extending χ. This proves (1) and (2).

Now let $\boldsymbol{\kappa}$ be a distinguished representation of \mathbf{J} extending η. It satisfies $\boldsymbol{\kappa}{ }^{\sigma \vee} \simeq \boldsymbol{\kappa} \mu$ for some character μ of \mathbf{J} trivial on \mathbf{J}^{1} such that $\mu \circ \sigma=\mu$ (see Lemma 5.21). Since $\boldsymbol{\kappa}$ is distinguished, μ is trivial on $\mathbf{J} \cap \mathrm{G}^{\sigma}$. We will prove that $\boldsymbol{\kappa}$ is σ-selfdual, that is, that the character μ is trivial.

Suppose first that $m=1$. Thus $(\mathbf{J}, \boldsymbol{\kappa})$ is a distinguished type in G. Let π denote the cuspidal irreducible representation of G compactly induced from $\boldsymbol{\kappa}$. It is distinguished, thus σ-selfdual by Theorem 4.1. It follows that κ and $\kappa^{\sigma \vee} \simeq \kappa \mu$ are both contained in π, thus μ is trivial.

Suppose now that $m=2 r$. Since μ is trivial on $\left(\mathrm{GL}_{r} \times \mathrm{GL}_{r}\right)(\boldsymbol{l})$, it must be trivial on $\mathrm{GL}_{m}(\boldsymbol{l})$. Since $t w$ is σ-invariant, we have $\mu(t w)=1$. Thus μ is trivial. This proves (3).

For part (2) of Proposition 7.9, it suffices to fix a distinguished representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η and to consider the canonical isomorphism

$$
\operatorname{Hom}_{\mathbf{J} \cap \mathbf{G}^{\sigma}}(\boldsymbol{\kappa}, 1) \otimes \operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\rho}, 1) \rightarrow \operatorname{Hom}_{\mathbf{J}_{\cap \mathrm{G}^{\sigma}}}(\boldsymbol{\lambda}, 1)
$$

(compare with Lemma 6.20).

Proposition 7.9 reduces the problem of the distinction of π to that of ρ. In the next section, we investigate the distinction of ρ in the case where π is supercuspidal.

8. The supercuspidal ramified case

In this section, we investigate the distinction of σ-selfdual supercuspidal representations of G in the case where $\mathrm{T} / \mathrm{T}_{0}$ ramified.

8A. The relative degree. Let π be a σ-selfdual cuspidal representation of G such that $\mathrm{T} / \mathrm{T}_{0}$ is ramified. Let (\mathbf{J}, λ) be a σ-selfdual type contained in π and let $\boldsymbol{\kappa}$ be a σ-selfdual representation of \mathbf{J} extending η given by Lemma 7.7. This defines a σ-selfdual irreducible representation ρ of \mathbf{J} trivial on \mathbf{J}^{1}. Let \mathbf{J} denote the maximal compact subgroup of \mathbf{J} and ρ denote the cuspidal representation of $\mathbf{J} / \mathbf{J}^{1} \simeq \mathrm{GL}_{m}(\boldsymbol{l})$ induced by ρ.

Since ρ is σ-selfdual, the representation ρ is selfdual. Applying Fact 5.5 together with Lemma 2.17, we get the following lemma mentioned in Remark 7.4.

Proposition 8.1. Let π be a σ-selfdual supercuspidal representation of G such that $\mathrm{T} / \mathrm{T}_{0}$ is ramified. Then its relative degree m is either even or equal to 1 .

8B. Distinction criterion in the ramified case. Let (J, λ) be a σ-selfdual type of index $\lfloor m / 2\rfloor$ contained in π. We fix a distinguished representation κ of \mathbf{J} extending η given by Proposition 7.9. It is σ-selfdual, thus the representation ρ of \mathbf{J} trivial on J^{1} which correspond to this choice is σ-selfdual. By Proposition 7.9 again, π is distinguished if and only if ρ is distinguished. We now investigate the distinction of ρ. For this, we will use the admissible pairs of level zero introduced in Paragraphs 5C and 5E.

Let us fix a σ-selfdual maximal simple stratum $[\mathfrak{a}, \beta]$ such that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$. Write $\mathrm{E}=\mathrm{F}[\beta]$. Let $(\mathrm{K} / \mathrm{E}, \xi)$ be an admissible pair of level zero attached to ρ in the sense of Definition 5.7. Since ρ is σ-selfdual, Proposition 5.19 tells us that there is a unique involutive E_{0}-automorphism of K , which we denote by σ, which is nontrivial on E and satisfies $\xi \circ \sigma=\xi^{-1}$. Let K_{0} be the σ-fixed points of K and $\mathrm{E}_{0}=\mathrm{K}_{0} \cap \mathrm{E}$.

Lemma 8.2. The representation ρ is distinguished if and only if at least one of the following conditions is fulfilled:
(1) $\ell=2$.
(2) $m=1$ and ρ is trivial on E_{0}^{\times}.
(3) m is even and ξ is nontrivial on K_{0}^{\times}.

Remark 8.3. Note that case (3) cannot happen when $\ell=2$.
Proof. The case $m=1$ is clear. Let us suppose that $m=2 r$ for some $r \geq 1$. The case where the characteristic of R is 0 is given by [Hakim and Murnaghan 2002, Proposition 6.3]. Suppose R has characteristic $\ell>0$ and fix an embedding $\iota: \overline{\mathbf{F}}_{\ell} \rightarrow \mathrm{R}$. Since $\xi \circ \sigma=\xi^{-1}$, the image of ξ is finite, thus
contained in the image of $\overline{\mathbf{F}}_{\ell}$ in R . Indeed, the restriction of ξ to the units of K^{\times}has finite image and $\xi(t)$ has order at most 4 since $\xi(\sigma(t))=\xi(t)^{-1}$ and $\sigma(t) \in\{-t, t\}$. There is thus a $\overline{\mathbf{F}}_{\ell \text {-character } \xi_{0} \text { of } \mathrm{K}^{\times}, ~(\mathbb{R}}$ such that $\xi_{0} \circ \sigma=\xi_{0}^{-1}$ and $\xi=\iota \circ \xi_{0}$. In particular, (K/E, $\left.\xi_{0}\right)$ is an admissible pair of level zero. Let $\boldsymbol{\rho}_{0}$ be the σ-selfdual $\overline{\mathbf{F}}_{\ell}$-representation attached to it. By Remark 5.9, the representation ρ is isomorphic to $\rho_{0} \otimes \mathrm{R}$. It thus suffices to prove the lemma when R is equal to $\overline{\mathbf{F}}_{\ell}$, which we assume now.

We consider the canonical $\overline{\mathbf{Q}}_{\ell}$-lift $\tilde{\xi}$ of ξ, which has the same finite order as ξ. It satisfies the identity $\tilde{\xi} \circ \sigma=\tilde{\xi}^{-1}$, and the pair ($\mathrm{K} / \mathrm{E}, \tilde{\xi}$) is admissible of level zero. Attached to it, there is thus a σ-selfdual $\overline{\mathbf{Q}}_{\ell}$-representation $\tilde{\boldsymbol{\rho}}$ of \mathbf{J} trivial on \mathbf{J}^{1}. Note that the kernel of $\tilde{\boldsymbol{\rho}}$ has finite index, since it contains \mathbf{J}^{1} and t^{4}, thus $\tilde{\rho}$ can be considered as a representation of a finite group. From Proposition 2.1, one checks easily that its reduction mod ℓ is ρ. Note that the restriction of ξ to K_{0}^{\times}is either trivial or (if $\ell \neq 2$) equal to $\omega_{\mathrm{K} / \mathrm{K}_{0}}$.

Suppose ξ is nontrivial on K_{0}^{\times}. Then the same holds for $\tilde{\xi}$, and the characteristic 0 case tells us that $\tilde{\rho}$ is distinguished. As in the proof of Lemma 2.5, by applying Lemma 2.6, reducing mod ℓ a nonzero invariant form on $\tilde{\rho}$ gives us a nonzero invariant form on ρ, which is thus distinguished.

Suppose now that ξ is trivial on K_{0}^{\times}. Then the same holds for $\tilde{\xi}$. Let $\tilde{\alpha}$ denote the unramified ℓ-adic character of K^{\times}of order 2 . Then ($\mathrm{K} / \mathrm{E}, \tilde{\xi} \tilde{\alpha}$) is an admissible pair of level zero. It is attached to $\tilde{\rho} \tilde{\varphi}$ where $\tilde{\varphi}$ is the unramified ℓ-adic character of \mathbf{J} of order 2. Since $\tilde{\xi} \tilde{\alpha}$ is nontrivial on K_{0}^{\times}, the representation $\tilde{\rho} \tilde{\varphi}$ is distinguished. Thus ρ is φ-distinguished, where φ is the reduction $\bmod \ell$ of $\tilde{\varphi}$.

If $\ell=2$, then ρ is distinguished. Suppose now that $\ell \neq 2$. If ρ were both φ-distinguished and distinguished, one would have two linearly independent linear forms in $\operatorname{Hom}_{{\mathrm{J} \cap \mathrm{G}^{\sigma}}}(\boldsymbol{\rho}, 1)$, and this would contradict Lemma 2.19. The result follows.

The field extension E of F is not uniquely determined by π, unlike its maximal tamely ramified extension T. To remedy this, let D be the maximal tamely ramified subextension of K / F. Write $\mathrm{D}_{0}=\mathrm{D} \cap \mathrm{K}_{0}$, and let δ_{0} be the restriction of ξ to D_{0}^{\times}.

Since $\xi \circ \sigma=\xi^{-1}$ the character δ_{0} is quadratic, either trivial or (if $\ell \neq 2$) equal to $\omega_{\mathrm{D} / \mathrm{D}_{0}}$. We will see in Proposition 10.5 that, up to F_{0}-equivalence, $\mathrm{D} / \mathrm{D}_{0}$ and δ_{0} are determined by π.

Theorem 8.4. Let π be a σ-selfdual supercuspidal representation of G . Suppose that $\mathrm{T} / \mathrm{T}_{0}$ is ramified. Let m be its relative degree and δ_{0} be the quadratic character of D_{0}^{\times}associated to it.
(1) The representation π is distinguished if and only if at least one of the following conditions is fulfilled:
(a) $\ell=2$.
(b) $m=1$ and δ_{0} is trivial.
(c) m is even and δ_{0} is nontrivial.
(2) Suppose that $\ell \neq 2$. Then π is ω-distinguished if and only if either
(a) $m=1$ and δ_{0} is nontrivial, or
(b) m is even and δ_{0} is trivial.

Remark 8.5. If R has characteristic 2 , then π is always distinguished. If R has characteristic not 2 , then π is either distinguished or ω-distinguished, but not both.

Proof. By Proposition 7.9 and Lemma 8.2, it suffices to compare the restriction of ξ to K_{0}^{\times}with δ_{0} when $\ell \neq 2$.

Suppose first that $m=1$ and δ_{0} is trivial. Since the restriction of ρ to E_{0}^{\times}is equal to either 1 or $\omega_{\mathrm{E} / \mathrm{E}_{0}}$, its restriction to T_{0}^{\times}is either 1 or $\omega_{\mathrm{T} / \mathrm{T}_{0}}$, respectively. Since δ_{0} is trivial, we are in the first case, that is, the restriction of ρ to E_{0}^{\times}is trivial.

Suppose now that $m \neq 1$ and ξ is nontrivial on K_{0}^{\times}. We want to prove that δ_{0} is nontrivial. The restriction of ξ to K_{0}^{\times}is equal to $\omega_{\mathrm{K} / \mathrm{K}_{0}}$. Thus δ_{0} is equal to $\omega_{\mathrm{D} / \mathrm{D}_{0}}$.

Now suppose that R has characteristic different from 2 and let χ be an unramified character of F^{\times} extending ω. Note that the twisted representation $\pi^{\prime}=\pi\left(\chi^{-1} \circ\right.$ det $)$ is supercuspidal and σ-selfdual and that the character associated with π^{\prime} is $\delta_{0}^{\prime}=\left.\delta_{0}\left(\chi^{-1} \circ \mathrm{~N}_{\mathrm{K} / \mathrm{F}}\right)\right|_{\mathrm{D}_{0}^{\times}}$, where $\mathrm{N}_{\mathrm{K} / \mathrm{F}}$ is the norm map from K to F . Suppose first that $m=1$. Then

$$
\begin{aligned}
\pi \text { is } \omega \text {-distinguished } & \Leftrightarrow \pi^{\prime} \text { is distinguished } \\
& \Leftrightarrow \text { the character } \delta_{0}^{\prime} \text { is trivial } \\
& \Leftrightarrow \text { the character } \delta_{0} \text { coincides with } \chi \circ \mathrm{N}_{\mathrm{E} / \mathrm{F}} \text { on } \mathrm{T}_{0}^{\times}
\end{aligned}
$$

Suppose now that $m \neq 1$. Then π is ω-distinguished $\Leftrightarrow \pi^{\prime}$ is distinguished \Leftrightarrow the character δ_{0}^{\prime} is nontrivial \Leftrightarrow the character δ_{0} coincides with $\left(\chi \circ \mathrm{N}_{\mathrm{K} / \mathrm{F}}\right) \omega_{\mathrm{D} / \mathrm{D}_{0}}$ on D_{0}^{\times}.

The restriction of $\chi \circ \mathrm{N}_{\mathrm{K} / \mathrm{F}}$ to D_{0}^{\times}is $\omega \circ \mathrm{N}_{\mathrm{D}_{0} / \mathrm{F}_{0}}=\omega_{\mathrm{D} / \mathrm{D}_{0}}$ to the power of $\left[\mathrm{K}_{0}: \mathrm{D}_{0}\right]$, which is a p-power with p odd. This gives us the expected result.

Remark 8.6. If π is as in Theorem 8.4 and $m>1$, its central character ω_{π} is always trivial on F_{0}^{\times}. Indeed, since π and λ have the same central character, we can express ω_{π} as the product $\omega_{\kappa} \omega_{\rho}$, where ω_{κ} and ω_{ρ} are the central characters of $\boldsymbol{\kappa}$ and $\boldsymbol{\rho}$ on F^{\times}, respectively. Since $\boldsymbol{\kappa}$ is distinguished, its central character is trivial on F_{0}^{\times}, thus ω_{π} and δ_{0} coincide on F_{0}^{\times}. If δ_{0} is trivial then ω_{π} is trivial on F_{0}^{\times}. Now assume that δ_{0} is equal to $\omega_{\mathrm{D} / \mathrm{D}_{0}}$. Since $\mathrm{D} / \mathrm{D}_{0}$ is unramified by Lemma 5.20 , its restriction to F_{0}^{\times}is trivial if and only if $e\left(\mathrm{D}_{0} / \mathrm{F}_{0}\right)$ is even, which is the case since $e\left(\mathrm{D}_{0} / \mathrm{T}_{0}\right)=2$ when m is even.
Remark 8.7. On the other hand, since $\mathrm{T} / \mathrm{T}_{0}$ is ramified, the restriction of $\omega_{\mathrm{T} / \mathrm{T}_{0}}$ to F_{0}^{\times}is trivial if and only if $\boldsymbol{k}_{0}^{\times}$is contained in the subgroup $\boldsymbol{l}^{\times 2}$ of squares in \boldsymbol{l}^{\times}, that is, if and only if $f\left(\mathrm{~T}_{0} / \mathrm{F}_{0}\right)$ is even. It follows that, if $m=1$ and $f\left(\mathrm{~T}_{0} / \mathrm{F}_{0}\right)$ is odd (which is equivalent to n being odd by Lemma 5.15 and since m is either 1 or even) then π is distinguished if and only if ω_{π} is trivial on F_{0}^{\times}.

9. The supercuspidal unramified case

Let π be a σ-selfdual cuspidal representation of $\mathrm{G}=\mathrm{GL}_{n}(\mathrm{~F})$ for $n \geq 1$. In this section, we investigate the case where the quadratic extension $\mathrm{T} / \mathrm{T}_{0}$ is unramified. By Corollary 6.24 , the representation π is distinguished if and only if any of the σ-selfdual types contained in π is distinguished.

9A. Existence of σ-selfdual extensions of the Heisenberg representation. Let $[\mathfrak{a}, \beta$] be a maximal simple stratum as in Remark 5.11. Write $\mathrm{E}=\mathrm{F}[\beta]$ and suppose that it is unramified over $\mathrm{E}_{0}=\mathrm{E}^{\sigma}$. Let us write $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta), \mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ and $\mathbf{J}^{1}=\mathbf{J}^{1}(\mathfrak{a}, \beta)$.

We may and will identify $\mathrm{J} / \mathrm{J}^{1}$ with the group $\mathrm{GL}_{m}(\boldsymbol{l})$, denoted \mathcal{G}, equipped with the residual involution $\sigma \in \operatorname{Gal}\left(\boldsymbol{l} / \boldsymbol{l}_{0}\right)$, where \boldsymbol{l} and \boldsymbol{l}_{0} are the residue fields of E and E_{0}, respectively.

Lemma 9.1. The group $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is generated by t and $\mathrm{J} \cap \mathrm{G}^{\sigma}$.
Proof. Any $x \in \mathbf{J}$ can be written $x=t^{m} y$ for unique $m \in \mathbb{Z}$ and $y \in \mathbf{J}$. Since t is σ-invariant, we have $x \in \mathbf{J} \cap \mathrm{G}^{\sigma}$ if and only if $y \in \mathbf{J} \cap \mathrm{G}^{\sigma}$.

Lemma 9.2. Any character of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ trivial on $\mathbf{J}^{1} \cap \mathrm{G}^{\sigma}$ extends to a character of \mathbf{J} trivial on \mathbf{J}^{1}.
Proof. Let χ be a character of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ trivial on $\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}$. Since J^{1} is a pro- p-group, the first cohomology group of σ in J^{1} is trivial. The subgroup \mathcal{G}^{σ} thus identifies with $\left(\mathrm{J} \cap \mathrm{G}^{\sigma}\right) /\left(\mathrm{J}^{1} \cap \mathrm{G}^{\sigma}\right)$. The restriction of χ to $\mathrm{J} \cap \mathrm{G}^{\sigma}$ thus induces a character of \mathcal{G}^{σ}, which can be written $\alpha_{0} \circ$ det for some character α_{0} of $\boldsymbol{l}_{0}^{\times}$. Let α be a character of \boldsymbol{l}^{\times}extending α_{0}, and let ϕ be the character of \mathbf{J} trivial on \mathbf{J}^{1} inducing the character $\alpha \circ \operatorname{det}$ of \mathcal{G}. Since $\mathbf{J}=\mathfrak{b}^{\times} \mathbf{J}^{1}$, the element t acts trivially on $\mathbf{J} / \mathbf{J}^{1}$ by conjugacy, thus normalizes ϕ. We thus may extend ϕ to \mathbf{J} by setting $\phi(t)=\chi(t)$. Lemma 9.1 implies that ϕ extends χ and it is trivial on \mathbf{J}^{1}.

Let $\theta \in \mathcal{C}(\mathfrak{a}, \beta)$ be a maximal simple character such that $\mathrm{H}^{1}(\mathfrak{a}, \beta)$ is σ-stable and $\theta \circ \sigma=\theta^{-1}$. Let η denote the Heisenberg representation of θ on the group J^{1}.

Lemma 9.3. There is a σ-selfdual representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η.
Proof. Let $\boldsymbol{\kappa}$ be an irreducible representation of \mathbf{J} extending η. By Lemma 5.21, there is a character μ of \mathbf{J} trivial on \mathbf{J}^{1} such that $\boldsymbol{\kappa}^{\sigma \vee} \simeq \kappa \mu$ and $\mu \circ \sigma=\mu$. We claim that there is a character v of \mathbf{J} trivial on \mathbf{J}^{1} such that $(\nu \circ \sigma) \nu=\mu$. Indeed, if this is the case, the representation $\kappa \nu$ extends η and is σ-selfdual.

Consider first μ as a character of \mathcal{G} and write $\mu=\varphi \circ \operatorname{det}$ for some character φ of \boldsymbol{l}^{\times}. Then we have $\varphi \circ \sigma=\varphi$, thus there is a character α of \boldsymbol{l}^{\times}such that $(\alpha \circ \sigma) \alpha=\varphi$. Choosing such a α, there exists a unique character v of \mathbf{J} inducing $\alpha \circ \operatorname{det}$ on \mathcal{G}. Since \mathbf{J} is generated by t and \mathbf{J}, it remains to extend v to \mathbf{J} by choosing a scalar $v(t) \in \mathrm{R}^{\times}$such that $v(t)^{2}=\mu(t)$.

9B. Existence of distinguished extensions of the Heisenberg representation. Let (\mathbf{J}, λ) be a σ-selfdual type, with associated simple character the character θ of Paragraph 9A.

In this paragraph, we suppose that m is odd.
Proposition 9.4. Suppose that m is odd. There is a σ-selfdual distinguished representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η.

Proof. We first assume that R has characteristic 0 . By Lemma 9.3, there is a σ-selfdual representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η. Let χ denote the character of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ trivial on $\mathbf{J}^{1} \cap \mathrm{G}^{\sigma}$ associated to $\boldsymbol{\kappa}$ by Lemma 6.20. Since m is odd, Lemma 2.3 implies that \mathcal{G} possesses a σ-selfdual supercuspidal representation ρ. Let ρ be the unique representation of \mathbf{J} trivial on \mathbf{J}^{1} such that $t \in \operatorname{Ker}(\boldsymbol{\rho})$ and whose restriction to \mathbf{J} is the
inflation of ρ. This representation ρ is σ-selfdual. By Lemma 2.5, it is also distinguished. Now let λ be the σ-selfdual type $\boldsymbol{\kappa} \otimes \rho$ on \mathbf{J}. The natural isomorphism

$$
\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\kappa}, \chi) \otimes \operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\rho}, 1) \rightarrow \operatorname{Hom}_{\mathbf{J}_{\cap \mathrm{G}^{\sigma}}}(\boldsymbol{\lambda}, \chi)
$$

thus shows that λ is χ-distinguished.
By Lemma 9.2, there exists a character ϕ of \mathbf{J} trivial on \mathbf{J}^{1} extending χ. The representation $\lambda^{\prime}=\lambda \phi^{-1}$ is thus a distinguished type. Let π^{\prime} be the cuspidal representation of G compactly induced from $\left(\mathbf{J}, \lambda^{\prime}\right)$. It is distinguished, thus σ-selfdual by Theorem 4.1. Since λ^{\prime} and $\lambda^{\prime \sigma \vee} \simeq \lambda^{\prime} \phi(\phi \circ \sigma)$ are both contained in π^{\prime}, it follows that $\phi(\phi \circ \sigma)$ is trivial. This implies that $\boldsymbol{\kappa}^{\prime}=\boldsymbol{\kappa} \phi^{-1}$ is both σ-selfdual and distinguished.

Now assume that R has characteristic $\ell>0$. We then reduce to the characteristic 0 case as in the proof of Lemma 7.7.

Remark 9.5. I don't know whether Proposition 9.4 holds when m is even.
Corollary 9.6. (1) Any distinguished representation of \mathbf{J} extending η is σ-selfdual.
(2) If $\ell=2$, any σ-selfdual representation of \mathbf{J} extending η is distinguished.

Proof. Let us fix a distinguished σ-selfdual representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η given by Proposition 9.4. Let $\boldsymbol{\kappa}^{\prime}$ be a distinguished representation of \mathbf{J} extending η. Then $\boldsymbol{\kappa}^{\prime}=\boldsymbol{\kappa} \phi$ for some character ϕ of \mathbf{J} trivial on $\left(\mathbf{J} \cap \mathrm{G}^{\sigma}\right) \mathbf{J}^{1}$. Thus $\phi(t)=1$ and ϕ induces the character $\alpha \circ \operatorname{det}$ on \mathcal{G}, where α is a character of \boldsymbol{l}^{\times}trivial on $\boldsymbol{l}_{0}^{\times}$, or equivalently $\alpha^{q_{0}+1}=1$. Thus we have $\phi(\phi \circ \sigma)=1$. This implies that $\boldsymbol{\kappa}^{\prime}$ is σ-selfdual, which proves the first assertion.

Now suppose that $\boldsymbol{\kappa}^{\prime}$ is a σ-selfdual representation of \mathbf{J} extending η. Then $\boldsymbol{\kappa}^{\prime}=\boldsymbol{\kappa} \xi$ for some character ξ of \mathbf{J} such that $\xi(\xi \circ \sigma)$ is trivial. Thus $\xi(t) \in\{-1,1\}$ and there is a character v of \boldsymbol{l}^{\times}such that ξ induces $\nu \circ \operatorname{det}$ on \mathcal{G} and $\nu^{q_{0}+1}=1$. It follows that ξ is trivial on $\left(\mathrm{J} \cap \mathrm{G}^{\sigma}\right) \mathrm{J}^{1}$. Thus, if $\ell=2$, the representation $\boldsymbol{\kappa}^{\prime}$ is distinguished.

Remark 9.7. Let $\boldsymbol{\kappa}$ be a σ-selfdual representation of \mathbf{J} extending η. Then the character χ of $\mathbf{J} \cap \mathrm{G}^{\sigma}$ associated to $\boldsymbol{\kappa}$ by Lemma 6.20 is quadratic and unramified.

9C. Distinction criterion in the unramified case. Let π be a σ-selfdual supercuspidal representation of G. Associated to it by Proposition 5.14, there is a quadratic extension T / T_{0}. We assume that T is unramified over T_{0}.

Recall that, by Theorem 6.1 and Proposition 5.17, the representation π is distinguished if and only any of its σ-selfdual types is distinguished. The following result is the analogue of Proposition 7.9.

Proposition 9.8. Let π be a σ-selfdual supercuspidal representation of G , with unramified quadratic extension $\mathrm{T} / \mathrm{T}_{0}$ and relative degree m. Let (\mathbf{J}, λ) be a σ-selfdual type in π. Let \mathbf{J}^{1} be the maximal normal pro-p-subgroup of \mathbf{J} and η be an irreducible component of the restriction of λ to \mathbf{J}^{1}.
(1) The integer m is odd.
(2) There is a distinguished representation of \mathbf{J} extending η, and any such extension of η is σ-selfdual.
(3) Let $\boldsymbol{\kappa}$ be a distinguished representation of \mathbf{J} extending η, and let $\boldsymbol{\rho}$ be the unique representation of \mathbf{J} trivial on J^{1} such that $\boldsymbol{\lambda} \simeq \boldsymbol{\kappa} \otimes \rho$. Then π is distinguished if and only if $\boldsymbol{\rho}$ is distinguished.

Proof. We may and will assume that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$ for some maximal simple stratum $[\mathfrak{a}, \beta]$ as in Remark 5.11. Following Remark 5.16, the extension E is unramified over E_{0}. We thus may apply the results of Paragraph 9A.

Let $\boldsymbol{\kappa}$ be a σ-selfdual representation of \mathbf{J} extending η, the existence of which is given by Lemma 9.3, and let ρ be the irreducible representation of \mathbf{J} trivial on \mathbf{J}^{1} such that $\boldsymbol{\lambda}$ is isomorphic to $\boldsymbol{\kappa} \otimes \rho$. Since $\boldsymbol{\lambda}$ and $\boldsymbol{\kappa}$ are σ-selfdual, $\boldsymbol{\rho}$ is σ-selfdual. Its restriction to J induces a cuspidal irreducible representation of $\mathrm{GL}_{m}(\boldsymbol{l})$, denoted ρ. Since π is supercuspidal, ρ is also supercuspidal by Fact 5.5. Lemma 2.3 implies that m is odd. We thus apply Proposition 9.4, which gives us a σ-selfdual distinguished representation extending η.

Part (2) of the proposition is given by Corollary 9.6. For (3), it suffices to fix a distinguished representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η and to consider the canonical isomorphism

$$
\operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\kappa}, 1) \otimes \operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\rho}, 1) \rightarrow \operatorname{Hom}_{\mathbf{J} \cap \mathrm{G}^{\sigma}}(\boldsymbol{\lambda}, 1)
$$

as in the ramified case.
Remark 9.9. If one relaxes the supercuspidality assumption on π (that is, we only assume π to be σ-selfdual cuspidal with $\mathrm{T} / \mathrm{T}_{0}$ unramified), then its relative degree m need not be odd, in which case our proof of Proposition 9.8(2) doesn't apply (see Remarks 2.4 and 9.5). Unlike the ramified case, I thus don't know whether there is a distinguished and σ-selfdual extension $\boldsymbol{\kappa}$ of η when π is not supercuspidal.

Remark 9.10. In both the ramified and unramified cases, the distinguished representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η is not unique in general, so neither is $\boldsymbol{\rho}$. If $\boldsymbol{\kappa}$ is a distinguished representation of \mathbf{J} extending η, the other ones are exactly the $\kappa \phi$ where ϕ ranges over the set of characters of \mathbf{J} trivial on $\left(\mathbf{J} \cap \mathrm{G}^{\sigma}\right) \mathbf{J}^{1}$.

From now, we will thus assume that $\boldsymbol{\kappa}$ is a distinguished σ-selfdual representation of \mathbf{J} extending η. Proposition 9.8 reduces the problem of the distinction of π to that of ρ. We now investigate the distinction of ρ.

Let ρ be the representation of $\mathrm{GL}_{m}(\boldsymbol{l})$ defined by restricting ρ to J . It is σ-selfdual. By Fact 5.5 , it is also supercuspidal.

Let $(\mathrm{K} / \mathrm{E}, \xi)$ be an admissible pair of level 0 attached to ρ in the sense of Definition 5.7. Since ρ is σ-selfdual, Proposition 5.19 tells us that there is a unique involutive E_{0}-automorphism of K , which we denote by σ, which is nontrivial on E and satisfies $\xi \circ \sigma=\xi^{-1}$. Let K_{0} be the σ-fixed points of K and $\mathrm{E}_{0}=\mathrm{K}_{0} \cap \mathrm{E}$.

Lemma 9.11. The representation ρ is distinguished if and only if it is trivial on E_{0}^{\times}.

Proof. Note that $\rho(x)=\xi(x)$. id for all $x \in \mathrm{E}^{\times}$, thus ρ is trivial on E_{0}^{\times}if and only if ξ is. The representation ρ is σ-selfdual, thus distinguished (see Lemma 2.5). We thus have

$$
\operatorname{Hom}_{\mathbf{J}^{\prime} \mathrm{G}^{\sigma}}(\boldsymbol{\rho}, 1) \subseteq \operatorname{Hom}_{\mathrm{J} \mathrm{\cap G}}{ }^{\sigma}(\boldsymbol{\rho}, 1) \simeq \operatorname{Hom}_{\mathrm{GL}_{m}\left(\boldsymbol{l}_{0}\right)}(\rho, 1)
$$

where the space on the right-hand side is nonzero (and has dimension 1). Since $\mathbf{J} \cap \mathrm{G}^{\sigma}$ is generated by $\mathrm{J} \cap \mathrm{G}^{\sigma}$ and t, we deduce that ρ is distinguished if and only if t acts trivially on the space $\operatorname{Hom}_{\mathrm{J}^{\prime} \mathrm{G}^{\sigma}}(\boldsymbol{\rho}, 1)$, that is, if and only if $\xi(t)$ is trivial. The result follows from the fact that, since ξ is σ-selfdual, it is trivial on the $\mathrm{E} / \mathrm{E}_{0}$-norms in E_{0}^{\times}, thus on the units of E_{0}.

Let ε_{0} denote the restriction of the character ξ to T_{0}^{\times}.
Lemma 9.12. The character ε_{0} is quadratic and unramified.
Proof. As has been said in the proof of Lemma 9.11, the character ξ is trivial on the subgroup of $\mathrm{E} / \mathrm{E}_{0}$-norms in E_{0}^{\times}, since ρ is σ-selfdual. Thus the restriction of ξ to E_{0}^{\times}is either trivial or (if $\ell \neq 2$) equal to $\omega_{\mathrm{E} / \mathrm{E}_{0}}$. We get the expected result by restricting to T_{0}^{\times}, since E is unramified over E_{0} and $e\left(\mathrm{E}_{0} / \mathrm{T}_{0}\right)$ is a p-power with p odd.

We will see below (Remark 10.7) that the character ε_{0} is uniquely determined by π.
Theorem 9.13. Let π be a σ-selfdual supercuspidal representation of G. Suppose that T is unramified over T_{0}.
(1) The representation π is distinguished if and only if ε_{0} is trivial.
(2) Suppose that the characteristic of R is not 2 . Then π is ω-distinguished if and only if ε_{0} is nontrivial.

Remark 9.14. If R has characteristic 2 , then π is always distinguished. If R has characteristic not 2 , then π is either distinguished or ω-distinguished, but not both.

Proof. By Proposition 9.8, the representation π is distinguished if and only if ρ is distinguished. Lemma 9.11 tells us that it is distinguished if and only if $\xi(t)=1$. The restriction of ξ to E_{0}^{\times}is a quadratic unramified character. Since the ramification index of E_{0} over T_{0} is odd (for it is a p-power), ξ is trivial on E_{0}^{\times}if and only if it is trivial on T_{0}^{\times}. The first assertion is proven.

Now suppose that R has characteristic different from 2 , and let χ be an unramified character of F^{\times} extending ω. Note that the twisted representation $\pi^{\prime}=\pi\left(\chi^{-1} \circ\right.$ det $)$ is supercuspidal and σ-selfdual, and that the character associated with π^{\prime} is $\varepsilon_{0}^{\prime}=\left.\varepsilon_{0}\left(\chi^{-m} \circ \mathrm{~N}_{\mathrm{E} / \mathrm{F}}\right)\right|_{\mathrm{T}_{0}^{\times}}$where $\mathrm{N}_{\mathrm{E} / \mathrm{F}}$ is the norm map from E to F . Thus

$$
\begin{aligned}
\pi \text { is } \omega \text {-distinguished } & \Leftrightarrow \pi^{\prime} \text { is distinguished } \\
& \Leftrightarrow \text { the character } \varepsilon_{0}^{\prime} \text { is trivial on } \mathrm{T}_{0}^{\times} \\
& \Leftrightarrow \text { the character } \varepsilon_{0} \text { coincides with } \chi^{m} \circ \mathrm{~N}_{\mathrm{E} / \mathrm{F}} \text { on } \mathrm{T}_{0}^{\times}
\end{aligned}
$$

The restriction of $\chi \circ \mathrm{N}_{\mathrm{E} / \mathrm{F}}$ to T_{0}^{\times}is equal to $\omega \circ \mathrm{N}_{\mathrm{T}_{0} / \mathrm{F}_{0}}=\omega_{\mathrm{T} / \mathrm{T}_{0}}$ to the power of $\left[\mathrm{E}_{0}: \mathrm{T}_{0}\right]$, which is a p-power. The second assertion then follows from the fact that p and m are odd.

Corollary 9.15. Let π be a supercuspidal representation of G . Suppose that $\mathrm{T} / \mathrm{T}_{0}$ is unramified, and that the ramification index of T / F is odd. Then π is distinguished if and only if it is σ-selfdual and its central character is trivial on F_{0}^{\times}.
Proof. Suppose that π is σ-selfdual and that its central character ω_{π} is trivial on F_{0}^{\times}. By using a σ-selfdual type ($\mathbf{J}, \boldsymbol{\lambda}$) contained in π as above, we can express ω_{π} as the product $\omega_{\kappa} \omega_{\rho}$, where ω_{κ} and ω_{ρ} are the central characters of $\boldsymbol{\kappa}$ and ρ on F^{\times}, respectively. Since $\boldsymbol{\kappa}$ is distinguished, its central character is trivial on F_{0}^{\times}, thus ω_{π} and ε_{0} coincide on F_{0}^{\times}. It remains to prove that ε_{0} is trivial if and only if it is trivial on F_{0}^{\times}.

Suppose ε_{0} is trivial on F_{0}^{\times}. By Lemma 9.12, it is unramified, thus $\varepsilon_{0}^{e\left(\mathrm{~T}_{0} / \mathrm{F}_{0}\right)}$ is trivial on T_{0}^{\times}. Since $e(\mathrm{~T} / \mathrm{F})$ is odd, $e\left(\mathrm{~T}_{0} / \mathrm{F}_{0}\right)$ is odd too, and the expected result follows from the fact that ε_{0} is quadratic.
Remark 9.16. In particular, when n is odd and F is unramified over F_{0}, a supercuspidal representation of G is distinguished if and only if it is σ-selfdual and its central character is trivial on F_{0}^{\times}. This has been proved by Prasad [2001] when R has characteristic 0 . Note that, since m and p are odd here, n is odd if and only if $[\mathrm{T}: \mathrm{F}]$ is odd.

Remark 9.17. Note that, in the proof of Prasad [2001, Theorem 4], the isomorphism of π with $\pi^{\sigma \vee}$ gives an element $g \in G$ which has the property that $g \sigma(g) \in \mathbf{J}=\mathrm{J}(\mathfrak{a}, \beta)$, but g has a priori no reason to normalize J. Anyway, g can be chosen in the maximal compact open subgroup \mathfrak{a}^{\times}which contains \mathbf{J} (which derives from [Bushnell and Kutzko 1993, Theorem 3.5.11]), thus the group generated by g and J will indeed be compact mod center.

10. Statement of the final results

In this section we put together the main results of Sections $7-9$. Let π be a σ-selfdual supercuspidal representation of G. Associated to it, there are its relative degree m and the quadratic extension $\mathrm{T} / \mathrm{T}_{0}$. It is convenient to introduce the following definition, which comes from [Anandavardhanan et al. 2018].

Definition 10.1. A σ-selfdual type in π is said to be generic if either T / T_{0} is unramified or T / T_{0} is ramified and this type has index $\lfloor m / 2\rfloor$.

Remark 10.2. It is proved in [Anandavardhanan et al. 2018, Proposition 5.5] that a σ-selfdual type is generic in the sense of Definition 10.1 if and only if there are a σ-stable maximal unipotent subgroup N of G and a σ-selfdual nondegenerate character ψ_{N} of N such that $\operatorname{Hom}_{J \cap N}\left(\lambda, \psi_{N}\right)$ is nonzero.

Definition 10.1 is convenient to us because of the following result, which subsumes Propositions 7.1 and 8.1 (compare with Theorem 6.1).

Theorem 10.3. A σ-selfdual cuspidal representation of G is distinguished if and only if any of its generic σ-selfdual types is distinguished.

Let (\mathbf{J}, λ) be a generic σ-selfdual type contained in π. Let $[\mathfrak{a}, \beta]$ be a σ-selfdual simple stratum such that $\mathbf{J}=\mathbf{J}(\mathfrak{a}, \beta)$. The restriction of $\boldsymbol{\lambda}$ to the maximal normal pro- p-subgroup \mathbf{J}^{1} is made of copies of a single irreducible representation η. We fix a distinguished σ-selfdual representation $\boldsymbol{\kappa}$ of \mathbf{J} extending η,
the existence of which is given by Propositions 7.9 and 9.8. Let ρ be the representation of \mathbf{J} trivial on \mathbf{J}^{1} such that λ is isomorphic to $\kappa \otimes \rho$. Let $(\mathrm{K} / \mathrm{E}, \xi)$ be a admissible pair of level 0 attached to ρ and σ be the involution of K given by Proposition 5.19. Let K_{0} be the field of σ-fixed points of K . We thus have $\mathrm{K} \simeq \mathrm{K}_{0} \otimes_{\mathrm{F}_{0}} \mathrm{~F}$.

Definition 10.4. Let D be the maximal tamely ramified subextension of K / F. Write $D_{0}=D \cap K_{0}$, and let δ_{0} be the restriction of ξ to D_{0}^{\times}.

It follows immediately from the definition that $\mathrm{D}_{0} / \mathrm{F}_{0}$ is tamely ramified and the character δ_{0} is quadratic, either trivial or (if $\ell \neq 2$) equal to $\omega_{\mathrm{D} / \mathrm{D}_{0}}$.

Proposition 10.5. The quadratic extension $\mathrm{D} / \mathrm{D}_{0}$ and the character δ_{0} are uniquely determined by π up to F_{0}-equivalence. That is, if $\mathrm{D}^{\prime} / \mathrm{D}_{0}^{\prime}$ and δ_{0}^{\prime} are another quadratic extension and character associated to π, then there is an F_{0}-isomorphism $\varphi: \mathrm{D} \rightarrow \mathrm{D}^{\prime}$ such that $\varphi\left(\mathrm{D}_{0}\right)=\mathrm{D}_{0}^{\prime}$ and $\delta_{0}=\delta_{0}^{\prime} \circ \varphi$.

Proof. Start with a generic σ-selfdual type contained in π. Since it is unique up to G^{σ}-conjugacy, we may assume this is $(\mathbf{J}, \boldsymbol{\lambda})$. Fix a σ-selfdual stratum $\left[\mathfrak{a}^{\prime}, \beta^{\prime}\right]$ such that $\mathbf{J}=\mathbf{J}\left(\mathfrak{a}^{\prime}, \beta^{\prime}\right)$. By [Anandavardhanan et al. 2018, Lemma 4.29], we may assume that the maximal tamely ramified subextension of $\mathrm{E}^{\prime}=\mathrm{F}\left[\beta^{\prime}\right]$ over F is equal to T . Fix a distinguished σ-selfdual representation $\boldsymbol{\kappa}^{\prime}$ of \mathbf{J} extending η, let $\boldsymbol{\rho}^{\prime}$ be the representation of \mathbf{J} trivial on \mathbf{J}^{1} corresponding to this choice and $\left(\mathrm{K}^{\prime} / \mathrm{E}^{\prime}, \xi^{\prime}\right)$ be an admissible pair of level 0 attached to ρ^{\prime}. This gives us a quadratic extension $\mathrm{D}^{\prime} / \mathrm{D}_{0}^{\prime}$ and a character δ_{0}^{\prime} of $\mathrm{D}_{0}^{\prime x}$.

First, suppose that $\left[\mathfrak{a}^{\prime}, \beta^{\prime}\right]=[\mathfrak{a}, \beta]$ and $\mathrm{K}^{\prime}=\mathrm{K}$. We have $\boldsymbol{\kappa}^{\prime}=\boldsymbol{\kappa} \phi$ for some character ϕ of \mathbf{J} trivial on $\left(\mathbf{J} \cap \mathrm{G}^{\sigma}\right) \mathbf{J}^{1}$, thus ρ^{\prime} is isomorphic to $\rho \phi^{-1}$. Thus ξ^{\prime} is E-isomorphic to $\xi \alpha^{-1}$ for some tamely ramified character α of K^{\times}trivial on K_{0}^{\times}. Restricting to D_{0}, we get $\delta_{0}^{\prime}=\delta_{0}$.

We now go back to the general case. By the previous argument, we may assume that $\boldsymbol{\kappa}^{\prime}=\boldsymbol{\kappa}$, thus $\boldsymbol{\rho}^{\prime}=\boldsymbol{\rho}$. Since D and D^{\prime} are both unramified of same degree m over T , they are T -isomorphic. Let us fix a T-isomorphism $f: \mathrm{D} \rightarrow \mathrm{D}^{\prime}$. Write σ^{\prime} for the involutive automorphism of K^{\prime} given by Proposition 5.19.

Lemma 10.6. We have $\sigma^{\prime} \circ f=f \circ \sigma$.
Proof. Let us identify the residual fields of K and D , denoted \boldsymbol{t}, and those of E and T, denoted \boldsymbol{l}. Note that, if φ is any T-automorphism of D , then it commutes with σ since φ and $\sigma \circ \varphi \circ \sigma^{-1}$ are both in $\operatorname{Gal}(\mathrm{D} / \mathrm{T})$ and have the same image in $\operatorname{Gal}(\boldsymbol{t} / \boldsymbol{l})$.

We now consider the pair ($\mathrm{D} / \mathrm{T},\left.\xi\right|_{\mathrm{D}^{\times}}$). Since D / T is unramified of degree m, it is admissible of level 0 . Moreover, the \boldsymbol{l}-regular character of \boldsymbol{t}^{\times}it induces is $\operatorname{Gal}(\boldsymbol{t} / \boldsymbol{l})$-conjugate to the one induced by $(\mathrm{K} / \mathrm{E}, \boldsymbol{\xi})$, which doesn't depend on the identifications of residual fields we have made. We have a similar result for ($\mathrm{D} / \mathrm{T}, \xi^{\prime} \circ f$) and $\left(\mathrm{K}^{\prime} / \mathrm{E}^{\prime}, \xi^{\prime}\right)$. Since $\rho^{\prime}=\rho$ we deduce that $\xi^{\prime} \circ f=\xi \circ \varphi$ for some $\varphi \in \operatorname{Gal}(\mathrm{D} / \mathrm{T})$. Let α be the T-automorphism $\sigma^{\prime} \circ f \circ \sigma^{-1} \circ f^{-1}$ of D^{\prime}. We have

$$
\xi^{\prime} \circ \alpha=\xi^{\prime-1} \circ f \circ \sigma^{-1} \circ f^{-1}=\xi^{-1} \circ \varphi \circ \sigma^{-1} \circ f^{-1}=\xi \circ \varphi \circ f^{-1}=\xi^{\prime}
$$

It follows from admissibility of ξ^{\prime} that α is trivial, as expected.

Lemma 10.6 implies that D_{0} and D_{0}^{\prime} are T_{0}-isomorphic. We thus now may assume that $\mathrm{D}=\mathrm{D}^{\prime}$ and $\mathrm{D}_{0}=\mathrm{D}_{0}^{\prime}$, thus $\mathrm{K}, \mathrm{K}^{\prime}$ have the same maximal unramified subextension D over T and there is an automorphism $\varphi \in \operatorname{Gal}(\mathrm{D} / \mathrm{T})$ such that $\xi^{\prime}(x)=\xi \circ \varphi(x)$ for all $x \in \mathrm{D}^{\times}$. Restricting to D_{0}^{\times}, we deduce that $\delta_{0}^{\prime}=\delta_{0}$.

Remark 10.7. In particular, the character ε_{0} of Paragraph 9 C , which is the restriction of δ_{0} to T_{0}^{\times}, is uniquely determined by π.

We state the dichotomy and disjunction theorem.
Theorem 10.8. Let π be a σ-selfdual supercuspidal representation of G. Let ℓ be the characteristic of R.
(1) If $\ell \neq 2$, then π is either distinguished or ω-distinguished, but not both.
(2) If $\ell=2$, then π is always distinguished.

Proof. See Remarks 8.5 and 9.14.
We now state the distinction criterion theorem.
Theorem 10.9. Let π be a σ-selfdual supercuspidal representation of G. Attached to it, there are the quadratic extensions $\mathrm{T} / \mathrm{T}_{0}$ and $\mathrm{D} / \mathrm{D}_{0}$ and the character δ_{0}.
(1) Suppose that n is odd. Then π is distinguished if and only if its central character is trivial on F_{0}^{\times}.
(2) If $\ell \neq 2, \mathrm{~T} / \mathrm{T}_{0}$ is ramified and $\mathrm{D} / \mathrm{D}_{0}$ is unramified, then π is distinguished if and only if the character δ_{0} is nontrivial.
(3) Otherwise, π is distinguished if and only if δ_{0} is trivial.

Proof. Item (1) is an immediate consequence of Theorem 10.8 as explained in Paragraph 1D. If $\ell \neq 2$, a σ-selfdual supercuspidal representation π is either distinguished or ω-distinguished. In the latter case, the restriction of its central character to F_{0}^{\times}is ω^{n}, which is trivial if and only if n is even. See also Remarks 8.7 and 9.16.

For the remaining items, see Theorems 8.4 and 9.13 ; it suffices to check that, if $\mathrm{T} / \mathrm{T}_{0}$ is unramified, then δ_{0} is trivial if and only if its restriction ε_{0} to T_{0}^{\times}is trivial, which follows from the fact that m is odd in that case.

Remark 10.10. The following conditions are equivalent:
(1) D / D_{0} is ramified.
(2) $\mathrm{T} / \mathrm{T}_{0}$ is ramified and $m=1$.

Indeed this follows from Remark 5.16, Lemma 5.20 and Proposition 8.1. The following conditions are thus also equivalent:
(1) T / T_{0} is ramified and D / D_{0} is unramified.
(2) $\mathrm{F} / \mathrm{F}_{0}$ is ramified, $\mathrm{T}_{0} / \mathrm{F}_{0}$ has odd ramification order and $\mathrm{D} / \mathrm{D}_{0}$ is unramified.
(3) $\mathrm{F} / \mathrm{F}_{0}$ is ramified, $\mathrm{T}_{0} / \mathrm{F}_{0}$ has odd ramification order and $m \neq 1$.

We now state the distinguished lift theorem. For the notion of the reduction $\bmod \ell$ of an integral irreducible $\overline{\mathbf{Q}}_{\ell}$-representation of G, we refer to [Vignéras 1996; 2004]. If π is an irreducible $\overline{\mathbf{F}}_{\ell}$-representation of G , we say an integral irreducible $\overline{\mathbf{Q}}_{\ell}$-representation of G is a lift of π if its reduction $\bmod \ell$ is irreducible and isomorphic to π.

Theorem 10.11. Let π be a σ-selfdual supercuspidal $\overline{\mathbf{F}}_{\ell}$-representation of G .
(1) The representation π admits a σ-selfdual supercuspidal lift to $\overline{\mathbf{Q}}_{\ell}$.
(2) Let $\tilde{\pi}$ be a σ-selfdual lift of π, and suppose that $\ell \neq 2$. Then $\tilde{\pi}$ is distinguished if and only if π is distinguished.

Proof. Let (\mathbf{J}, λ) be a σ-selfdual type in π. Let η be the Heisenberg representation contained in the restriction of λ to J^{1}, with associated simple character θ. As in the proof of Lemma 7.7, let $\tilde{\theta}$ be the lift of θ with values in $\overline{\mathbf{Q}}_{\ell}$ and $\tilde{\eta}$ be the associated Heisenberg representation, whose reduction $\bmod \ell$ is isomorphic to η. Propositions 7.9 and 9.4 tell us that there is a distinguished σ-selfdual representation $\tilde{\boldsymbol{\kappa}}$ of \mathbf{J} which extends $\tilde{\eta}$. Its reduction $\bmod \ell$, denoted $\boldsymbol{\kappa}$, is a σ-selfdual representation of \mathbf{J} extending η and it is distinguished thanks to Lemma 2.6. (Note that, as in the proof of Lemma 8.2, the fact that $\boldsymbol{\kappa}$ is σ-selfdual implies that it has finite image; it thus can be considered as a representation of a finite group.) Let ρ be the irreducible representation of \mathbf{J} trivial on \mathbf{J}^{1} such that $\boldsymbol{\lambda}$ is isomorphic to $\boldsymbol{\kappa} \otimes \rho$. It is σ-selfdual.

The representation ρ admits a σ-selfdual $\overline{\mathbf{Q}}_{\ell}$-lift $\tilde{\rho}$ on \mathbf{J} trivial on \mathbf{J}^{1}. Indeed, let (K/E, ξ) be an admissible pair of level 0 attached to ρ. Then, as in the proof of Lemma 8.2, the canonical $\overline{\mathbf{Q}}_{\ell}$-lift $\tilde{\xi}$ of ξ defines a pair (K/E, $\tilde{\xi}$) which is admissible of level 0 , and the $\overline{\mathbf{Q}}_{\ell}$-representation $\tilde{\rho}$ of \mathbf{J} trivial on J^{1} which is attached to it is both σ-selfdual and a lift of ρ. The representation $\tilde{\kappa} \otimes \tilde{\rho}$ is thus a σ-selfdual ℓ-adic type whose reduction $\bmod \ell$ is λ. Inducing $\tilde{\kappa} \otimes \tilde{\rho}$ to G, we get a σ-selfdual supercuspidal lift $\tilde{\pi}$ of π.

Suppose that $\ell \neq 2$ and let $\tilde{\omega}$ be the canonical ℓ-adic lift of ω, that is, the $\overline{\mathbf{Q}}_{\ell \text {-character of } \mathrm{F}_{0}^{\times} \text {of }}$ kernel $\mathrm{N}_{\mathrm{F} / \mathrm{F}_{0}}\left(\mathrm{~F}^{\times}\right)$. By Theorem 10.8, since the representation $\tilde{\pi}$ is σ-selfdual, it is either distinguished or $\tilde{\omega}$-distinguished, but not both. Using the reduction argument of invariant linear forms as in Lemma 2.6, we see that if $\tilde{\pi}$ is distinguished (respectively, $\tilde{\omega}$-distinguished), then π is distinguished (respectively, ω-distinguished). By Theorem 10.8 applied to π, this is an equivalence.

We end with the following result, which is useful in [Anandavardhanan et al. 2018].
Proposition 10.12. Suppose that π is a distinguished supercuspidal representation of G and that $\ell \neq 2$. Then π has no ω-distinguished unramified twist if and only if $\mathrm{D} / \mathrm{D}_{0}$ is ramified, that is, if and only if $\mathrm{T} / \mathrm{T}_{0}$ is ramified and $m=1$.

Proof. Consider an unramified twist $\pi^{\prime}=\pi(\chi \circ \operatorname{det})$ of π, where χ is an unramified character of F^{\times}. We are looking for a χ such that π^{\prime} is ω-distinguished. First, π^{\prime} is σ-selfdual if and only if $\pi \chi(\chi \circ \sigma) \simeq \pi$, that is, if and only if

$$
\begin{equation*}
(\chi(\chi \circ \sigma))^{t(\pi)}=\chi^{2 t(\pi)}=1 \tag{10-1}
\end{equation*}
$$

where $t(\pi)$ denotes the torsion number of π, that is the number of unramified characters α of G such that $\pi \alpha \simeq \pi$. By [Mínguez and Sécherre 2014b, Section 3.4], we have $t(\pi)=f(\mathrm{~K} / \mathrm{F})=f(\mathrm{D} / \mathrm{F})$. Now the quadratic character associated with π^{\prime} is $\delta_{0}^{\prime}=\left.\delta_{0}\left(\chi \circ \mathrm{~N}_{\mathrm{K} / \mathrm{F}}\right)\right|_{\mathrm{D}_{0}^{\times}}$and we have

$$
\begin{equation*}
\left.\left(\chi \circ \mathrm{N}_{\mathrm{K} / \mathrm{F}}\right)\right|_{\mathrm{D}_{0}^{\times}}=\left(\chi \circ \mathrm{N}_{\mathrm{D}_{0} / \mathrm{F}_{0}}\right)^{[\mathrm{K}: \mathrm{D}]} . \tag{10-2}
\end{equation*}
$$

By Theorem 10.11, the representation π^{\prime} is ω-distinguished if and only if the character (10-2) is equal to $\omega_{\mathrm{D} / \mathrm{D}_{0}}$. If D is ramified over D_{0}, this is not possible since χ is unramified. If $\mathrm{D} / \mathrm{D}_{0}$ is unramified, choosing an unramified character χ of order $f\left(\mathrm{D}_{0} / \mathrm{F}_{0}\right)$ gives us an ω-distinguished twist π^{\prime}.

Acknowledgements

I thank D. Prasad for his invitation to TIFR Mumbai where part of this work was done, and U. K. Anandavardhanan for his invitation to give a talk about this work at IIT Bombay, in January 2018. I also thank N. Matringe for stimulating discussions about this work, as well as an anonymous referee for valuable comments and suggestions.

This work has been partly supported by the Laboratoire International Associé Centre Franco-Indien pour les Mathématiques, and by the Institut Universitaire de France.

References

[Anandavardhanan 2008] U. K. Anandavardhanan, "Root numbers of Asai L-functions", Int. Math. Res. Not. 2008 (2008), art. id. rnn125. MR Zbl
[Anandavardhanan and Prasad 2018] U. K. Anandavardhanan and D. Prasad, "Distinguished representations for SL(n)", Math. Res. Lett. 25:6 (2018), 1695-1717. MR Zbl
[Anandavardhanan and Rajan 2005] U. K. Anandavardhanan and C. S. Rajan, "Distinguished representations, base change, and reducibility for unitary groups", Int. Math. Res. Not. 2005:14 (2005), 841-854. MR Zbl
[Anandavardhanan et al. 2004] U. K. Anandavardhanan, A. C. Kable, and R. Tandon, "Distinguished representations and poles of twisted tensor L-functions", Proc. Amer. Math. Soc. 132:10 (2004), 2875-2883. MR Zbl
[Anandavardhanan et al. 2018] U. K. Anandavardhanan, R. Kurinczuk, N. Matringe, V. Sécherre, and S. Stevens, "Galois self-dual cuspidal types and Asai local factors", 2018. To appear in J. Eur. Math. Soc. arXiv
[Bushnell and Henniart 1996] C. J. Bushnell and G. Henniart, "Local tame lifting for GL(N), I: Simple characters", Inst. Hautes Études Sci. Publ. Math. 83 (1996), 105-233. MR Zbl
[Bushnell and Henniart 2005a] C. J. Bushnell and G. Henniart, "The essentially tame local Langlands correspondence, I", J. Amer. Math. Soc. 18:3 (2005), 685-710. MR Zbl
[Bushnell and Henniart 2005b] C. J. Bushnell and G. Henniart, "Local tame lifting for GL(N), III: Explicit base change and Jacquet-Langlands correspondence", J. Reine Angew. Math. 580 (2005), 39-100. MR Zbl
[Bushnell and Henniart 2014] C. J. Bushnell and G. Henniart, To an effective local Langlands correspondence, Mem. Amer. Math. Soc. 1087, Amer. Math. Soc., Providence, RI, 2014. MR Zbl
[Bushnell and Kutzko 1993] C. J. Bushnell and P. C. Kutzko, The admissible dual of GL(N) via compact open subgroups, Ann. of Math. Studies 129, Princeton Univ. Press, 1993. MR Zbl
[Coniglio-Guilloton 2016] C. Coniglio-Guilloton, "Correspondance de Jacquet-Langlands et distinction: cas des représentations cuspidales de niveau 0", Bull. Soc. Math. France 144:2 (2016), 163-216. MR Zbl
[Dat 2012a] J.-F. Dat, "Théorie de Lubin-Tate non abélienne ℓ-entière", Duke Math. J. 161:6 (2012), 951-1010. MR Zbl
[Dat 2012b] J.-F. Dat, "Un cas simple de correspondance de Jacquet-Langlands modulo ℓ ", Proc. Lond. Math. Soc. (3) 104:4 (2012), 690-727. MR Zbl
[Dipper 1985] R. Dipper, "On the decomposition numbers of the finite general linear groups, II", Trans. Amer. Math. Soc. 292:1 (1985), 123-133. MR Zbl
[Dipper and James 1986] R. Dipper and G. James, "Identification of the irreducible modular representations of GL $n(q)$ ", J. Algebra 104:2 (1986), 266-288. MR Zbl
[Flicker 1991] Y. Z. Flicker, "On distinguished representations", J. Reine Angew. Math. 418 (1991), 139-172. MR Zbl
[Gan and Raghuram 2013] W. T. Gan and A. Raghuram, "Arithmeticity for periods of automorphic forms", pp. 187-229 in Automorphic representations and L-functions (Mumbai, 2012), edited by D. Prasad et al., Tata Inst. Fundam. Res. Stud. Math. 22, Tata Inst. Fund. Res., Mumbai, 2013. MR Zbl
[Gow 1984] R. Gow, "Two multiplicity-free permutation representations of the general linear group GL(n, q^{2})", Math. Z. 188:1 (1984), 45-54. MR Zbl
[Green 1955] J. A. Green, "The characters of the finite general linear groups", Trans. Amer. Math. Soc. 80 (1955), 402-447. MR Zbl
[Gurevich 2015] M. Gurevich, "On a local conjecture of Jacquet, ladder representations and standard modules", Math. Z. 281:3-4 (2015), 1111-1127. MR Zbl
[Gurevich et al. 2018] M. Gurevich, J.-J. Ma, and A. Mitra, "On two questions concerning representations distinguished by the Galois involution", Forum Math. 30:1 (2018), 141-157. MR Zbl
[Hakim 1991] J. Hakim, "Distinguished p-adic representations", Duke Math. J. 62:1 (1991), 1-22. MR Zbl
[Hakim and Murnaghan 2002] J. Hakim and F. Murnaghan, "Two types of distinguished supercuspidal representations", Int. Math. Res. Not. 2002:35 (2002), 1857-1889. MR Zbl
[Hakim and Murnaghan 2008] J. Hakim and F. Murnaghan, "Distinguished tame supercuspidal representations", Int. Math. Res. Pap. 2008:2 (2008), art. id. rpn005. MR Zbl
[Harder et al. 1986] G. Harder, R. P. Langlands, and M. Rapoport, "Algebraische Zyklen auf Hilbert-Blumenthal-Flächen", J. Reine Angew. Math. 366 (1986), 53-120. MR Zbl
[Helm and Moss 2018] D. Helm and G. Moss, "Converse theorems and the local Langlands correspondence in families", Invent. Math. 214:2 (2018), 999-1022. MR Zbl
[Howe 1977] R. E. Howe, "Tamely ramified supercuspidal representations of GL ${ }_{n} "$, Pacific J. Math. 73:2 (1977), 437-460. MR Zbl
[Jacquet and Ye 1996] H. Jacquet and Y. Ye, "Distinguished representations and quadratic base change for GL(3)", Trans. Amer. Math. Soc. 348:3 (1996), 913-939. MR Zbl
[James 1986] G. James, "The irreducible representations of the finite general linear groups", Proc. Lond. Math. Soc. (3) 52:2 (1986), 236-268. MR Zbl
[Kable 2004] A. C. Kable, "Asai L-functions and Jacquet's conjecture", Amer. J. Math. 126:4 (2004), 789-820. MR Zbl
[Kawanaka 1977] N. Kawanaka, "On the irreducible characters of the finite unitary groups", J. Math. Soc. Japan 29:3 (1977), 425-450. MR Zbl
[Matringe 2009] N. Matringe, "Conjectures about distinction and local Asai L-functions", Int. Math. Res. Not. 2009:9 (2009), 1699-1741. MR Zbl
[Matringe 2011] N. Matringe, "Distinguished generic representations of GL(n) over p-adic fields", Int. Math. Res. Not. 2011:1 (2011), 74-95. MR Zbl
[Matringe 2012] N. Matringe, "Cuspidal representations of $G L(n, F)$ distinguished by a maximal Levi subgroup, with F a non-archimedean local field", C. R. Math. Acad. Sci. Paris 350:17-18 (2012), 797-800. MR Zbl
[Matringe 2014] N. Matringe, "Unitary representations of $\mathrm{GL}(n, K)$ distinguished by a Galois involution for a p-adic field K ", Pacific J. Math. 271:2 (2014), 445-460. MR Zbl
[Mínguez and Sécherre 2014a] A. Mínguez and V. Sécherre, "Représentations lisses modulo ℓ de GL m (D)", Duke Math. J. 163:4 (2014), 795-887. MR Zbl
[Mínguez and Sécherre 2014b] A. Mínguez and V. Sécherre, "Types modulo ℓ pour les formes intérieures de GL_{n} sur un corps local non archimédien", Proc. Lond. Math. Soc. (3) 109:4 (2014), 823-891. MR Zbl
[Mínguez and Sécherre 2015] A. Mínguez and V. Sécherre, "Classification des représentations modulaires de $\mathrm{GL}_{n}(q)$ en caractéristique non naturelle", pp. 163-183 in Trends in number theory (Seville, 2013), edited by F. Chamizo et al., Contemp. Math. 649, Amer. Math. Soc., Providence, RI, 2015. MR Zbl
[Mínguez and Sécherre 2017] A. Mínguez and V. Sécherre, "Correspondance de Jacquet-Langlands locale et congruences modulo ℓ ", Invent. Math. 208:2 (2017), 553-631. MR Zbl
[Ok 1997] Y. Ok, Distinction and gamma factors at 1/2: supercuspidal case, Ph.D. thesis, Columbia University, 1997.
[Prasad 1990] D. Prasad, "Trilinear forms for representations of GL(2) and local ϵ-factors", Compositio Math. 75:1 (1990), 1-46. MR Zbl
[Prasad 2001] D. Prasad, "On a conjecture of Jacquet about distinguished representations of GL(n)", Duke Math. J. 109:1 (2001), 67-78. MR Zbl
[Sécherre and Stevens 2016] V. Sécherre and S. Stevens, "Block decomposition of the category of ℓ-modular smooth representations of $\mathrm{GL}_{n}(\mathrm{~F})$ and its inner forms", Ann. Sci. Éc. Norm. Supér. (4) 49:3 (2016), 669-709. MR Zbl
[Sécherre and Venketasubramanian 2017] V. Sécherre and C. G. Venketasubramanian, "Modular representations of GL(n) distinguished by GL $(n-1)$ over a p-adic field", Int. Math. Res. Not. 2017:14 (2017), 4435-4492. MR Zbl
[Serre 1977] J.-P. Serre, Linear representations of finite groups, Graduate Texts in Math. 42, Springer, 1977. MR Zbl
[Vignéras 1989] M.-F. Vignéras, "Représentations modulaires de GL $(2, F)$ en caractéristique ℓ, F corps p-adique, $p \neq \ell$ ", Compositio Math. 72:1 (1989), 33-66. Correction in 101:1 (1996), 109-113. MR Zbl
[Vignéras 1996] M.-F. Vignéras, Représentations l-modulaires d'un groupe réductif p-adique avec $l \neq p$, Progr. Math. 137, Birkhäuser, Boston, 1996. MR Zbl
[Vignéras 1998] M.-F. Vignéras, "Induced R-representations of p-adic reductive groups", Selecta Math. (N.S.) 4:4 (1998), 549-623. MR Zbl
[Vignéras 2001] M.-F. Vignéras, "Correspondance de Langlands semi-simple pour $\operatorname{GL}(n, \mathrm{~F})$ modulo $\ell \neq p$ ", Invent. Math. 144:1 (2001), 177-223. MR Zbl
[Vignéras 2004] M.-F. Vignéras, "On highest Whittaker models and integral structures", pp. 773-801 in Contributions to automorphic forms, geometry, and number theory (Baltimore, 2002), edited by H. Hida et al., Johns Hopkins Univ. Press, Baltimore, 2004. MR Zbl

Communicated by Marie-France Vignéras
Received 2018-07-19 Revised 2019-03-19 Accepted 2019-05-25
vincent.secherre@math.uvsq.fr Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France

Algebra \& Number Theory

msp.org/ant

EDITORS

Managing Editor
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

Richard E. Borcherds	University of California, Berkeley, USA	Martin Olsson	University of California, Berkeley, USA
Antoine Chambert-Loir	Université Paris-Diderot, France	Raman Parimala	Emory University, USA
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Jonathan Pila	University of Oxford, UK
Brian D. Conrad	Stanford University, USA	Anand Pillay	University of Notre Dame, USA
Samit Dasgupta	University of California, Santa Cruz, USA	Michael Rapoport	Universität Bonn, Germany
Hélène Esnault	Freie Universität Berlin, Germany	Victor Reiner	University of Minnesota, USA
Gavril Farkas	Humboldt Universität zu Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Christopher Skinner	Princeton University, USA
Wee Teck Gan	National University of Singapore	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Ben J. Green	University of Oxford, UK	Pham Huu Tiep	University of Arizona, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Roger Heath-Brown	Oxford University, UK	Michel van den Bergh	Hasselt University, Belgium
Craig Huneke	University of Virginia, USA	Akshay Venkatesh	Institute for Advanced Study, USA
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Marie-France Vignéras	Université Paris VII, France
János Kollár	Princeton University, USA	Kei-Ichi Watanabe	Nihon University, Japan
Philippe Michel	École Polytechnique Fédérale de Lausanne	Melanie Matchett Wood	University of Wisconsin, Madison, USA
Susan Montgomery	University of Southern California, USA	Shou-Wu Zhang	Princeton University, USA
Shigefumi Mori	RIMS, Kyoto University, Japan		

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor
See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2019 is US $\$ 385 /$ year for the electronic version, and $\$ 590 /$ year ($+\$ 60$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from MSP.
PUBLISHED BY
mathematical sciences publishers

Algebra \& Number Theory

Volume 13 No. 72019

Crystalline comparison isomorphisms in p-adic Hodge theory:the absolutely unramified case 1509
Fucheng Tan and Jilong Tong
Pseudorepresentations of weight one are unramified 1583
Frank Calegari and Joel Specter
On the p-typical de Rham-Witt complex over $W(k)$ 1597
CHRISTOPHER DAVIS
Coherent Tannaka duality and algebraicity of Hom-stacks 1633Jack Hall and David RydH
Supercuspidal representations of $\mathrm{GL}_{n}(\mathrm{~F})$ distinguished by a Galois involution 1677
Vincent SÉcherre
A vanishing result for higher smooth duals 1735Claus Sorensen

[^0]: MSC2010: primary 22E50; secondary 11F70, 11F85.
 Keywords: cuspidal representation, distinguished representation, Galois involution, modular representation, p-adic reductive group.

[^1]: ${ }^{1}$ I thank Jiandi Zou for pointing out this argument to me, which was missing in a former version of the proof.

