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Let F/F0 be a quadratic extension of nonarchimedean locally compact fields of residual characteristic
p 6= 2 and let σ denote its nontrivial automorphism. Let R be an algebraically closed field of characteristic
different from p. To any cuspidal representation π of GLn(F), with coefficients in R, such that πσ ' π∨

(such a representation is said to be σ -selfdual) we associate a quadratic extension D/D0, where D is a
tamely ramified extension of F and D0 is a tamely ramified extension of F0, together with a quadratic
character of D×0 . When π is supercuspidal, we give a necessary and sufficient condition, in terms of
these data, for π to be GLn(F0)-distinguished. When the characteristic ` of R is not 2, denoting by
ω the nontrivial R-character of F×0 trivial on F/F0-norms, we prove that any σ -selfdual supercuspidal
R-representation is either distinguished or ω-distinguished, but not both. In the modular case, that is
when ` > 0, we give examples of σ -selfdual cuspidal nonsupercuspidal representations which are not
distinguished nor ω-distinguished. In the particular case where R is the field of complex numbers, in which
case all cuspidal representations are supercuspidal, this gives a complete distinction criterion for arbitrary
complex cuspidal representations, as well as a purely local proof, for cuspidal representations, of the
dichotomy and disjunction theorem due to Kable and Anandavardhanan, Kable and Tandon, when p 6= 2.

1. Introduction

1A. Let F/F0 be a separable quadratic extension of nonarchimedean locally compact fields of residual
characteristic p and let σ denote its nontrivial automorphism. Let G be a connected reductive group defined
over F0, let G denote the locally profinite group G(F) equipped with the natural action of σ and Gσ

=G(F0)

be the σ -fixed points subgroup. The study of those irreducible (smooth) complex representations of G
which are Gσ -distinguished, that is which carry a nonzero Gσ -invariant linear form, goes back to the
1980’s. We refer to [Harder et al. 1986; Jacquet and Ye 1996] for the initial motivation for distinguished
representations in a global context and to [Hakim 1991; Flicker 1991] in a nonarchimedean context.

1B. In this work, we will consider the case where G is the general linear group GLn for n ≥ 1. We
thus have G = GLn(F) and Gσ

= GLn(F0). In this case, it is well-known (see [Prasad 1990; 2001;
Flicker 1991]) that any distinguished irreducible complex representation π of G is σ -selfdual, that is,
the contragredient π∨ of π is isomorphic to πσ = π ◦ σ , and the space HomGσ (π, 1) of all Gσ -invariant
linear forms on π has dimension 1. Also, the central character of π is trivial on F×0 . This gives us two
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necessary conditions for an irreducible complex representation of G to be distinguished and it is natural
to ask whether or not they are sufficient.

1C. First, let us consider the case where F/F0 is replaced by a quadratic extension k/k0 of finite fields of
characteristic p. In this case, Gow [1984] proved that an irreducible complex representation of GLn(k) is
GLn(k0)-distinguished if and only if π is σ -selfdual. (Note that the latter condition automatically implies
that the central character is trivial on k×0 .) Besides, if p 6= 2, the σ -selfdual irreducible representations of
GLn(k) are those which arise from some irreducible representation of the unitary group Un(k/k0) by
base change (see Kawanaka [1977]).

1D. We now go back to the nonarchimedean setting of Paragraph 1B and consider a σ -selfdual irreducible
complex representation π of G whose central character is trivial on F×0 . When π is cuspidal and F/F0

is unramified, Prasad [2001] proved that, if ω = ωF/F0 denotes the nontrivial character of F×0 trivial on
F/F0-norms, then π is either distinguished or ω-distinguished, the latter case meaning that the complex
vector space HomGσ (π, ω ◦ det) is nonzero.

When p 6= 2 and π is an essentially tame cuspidal representation, that is, when the number of unramified
characters χ of G such that πχ 'π is prime to p, Hakim and Murnaghan [2002] gave sufficient conditions
for π to be distinguished. These conditions are stated in terms of admissible pairs [Howe 1977], which
parametrize essentially tame cuspidal complex representations of G [Howe 1977; Bushnell and Henniart
2005a]. Note that they assume F has characteristic 0, but their approach also works in characteristic p.

When π is a discrete series representation and F has characteristic 0, Kable [2004] proved that if
π is σ -selfdual, then it is either distinguished or ω-distinguished: this is the Dichotomy Theorem. In
addition, Anandavardhanan, Kable and Tandon [2004] proved that π can’t be both distinguished and
ω-distinguished: this is the Disjunction Theorem. The proofs use global arguments, which is why F was
assumed to have characteristic 0, and the Asai L-function of π . However, these results still hold when F
has characteristic p 6= 2, as is explained in [Anandavardhanan et al. 2018, Appendix A]. Note that:

• The disjunction theorem implies that the sufficient conditions given by Hakim and Murnaghan in
[Hakim and Murnaghan 2002] in the essentially tame cuspidal case are necessary conditions as well.

• The dichotomy theorem implies that, when n is odd, any σ -selfdual discrete series representation of
G with central character trivial on F×0 is automatically distinguished. Indeed, an ω-distinguished
irreducible representation has a central character whose restriction to F×0 is ωn .

When p 6= 2 and π is cuspidal of level zero — in particular is essentially tame — Coniglio-Guilloton
[2016] gave a necessary and sufficient condition of distinction in terms of admissible pairs. Her proof
is purely local and does not use the disjunction theorem. (In fact, she considers the more general
case where G is an inner form of GLn over F0 and representations of level zero of G(F) whose local
Jacquet–Langlands transfer to GLn(F) is cuspidal.)

If one takes the classification of distinguished cuspidal representations of general linear groups for
granted, and assuming F has characteristic 0, Anandavardhanan and Rajan [2005; Anandavardhanan 2008]
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classified all distinguished discrete series representations of G in terms of the distinction of their cuspidal
support (see also [Matringe 2009]) and Matringe [2011; 2014] classified distinguished generic, as well
as distinguished unitary, representations of G in terms of the Langlands classification. This provides a
class of representations for which the dichotomy and disjunction theorems do not hold: some σ -selfdual
generic irreducible representations are nor distinguished nor ω-distinguished, and some are both.

Max Gurevich [2015] extended the dichotomy theorem to the class of ladder representations, which
contains all discrete series representations: a σ -selfdual ladder representation of G is either distinguished
or ω-distinguished, but it may be both (see [Gurevich 2015, Theorem 4.6]). Here again, F is assumed to
have characteristic 0.

Finally, one can deduce from these works the connection between distinction for generic irreducible
representations of G and base change from a quasisplit unitary group; see [Gan and Raghuram 2013,
Theorem 6.2; Anandavardhanan and Prasad 2018, Theorem 2.3; Gurevich et al. 2018].

1E. The discussion above leaves us with an open problem about cuspidal representations: find a distinction
criterion for an arbitrary σ -selfdual cuspidal representation π , with no assumption on the characteristic
of F, on the ramification of F/F0, on n nor on the torsion number of π (that is, the number of unramified
characters χ such that πχ ' π ).

In this paper, assuming that p 6= 2, we propose an approach which allows us to generalize both Hakim
and Murnaghan’s and Coniglio’s distinction criteria to all cuspidal irreducible complex representations of
G and which works:

• With no assumption on the characteristic of F (apart from the assumption “p 6= 2”).

• With purely local methods.

• Not only for complex representations, but more generally for representations with coefficients in an
algebraically closed field of arbitrary characteristic ` 6= p.

We thus give a complete solution to the problem above for cuspidal complex representations when
p 6= 2. We actually do more: we solve this problem in the larger context of supercuspidal representations
with coefficients in an algebraically closed field of arbitrary characteristic ` 6= p.

1F. First, let us say a word about the third item above. The theory of smooth representations of GLn(F)
with coefficients in an algebraically closed field of characteristic ` 6= p has been initiated by Vignéras
[1996; 1998] in view to extend the local Langlands programme to representations with coefficients in
a field — or a ring — as general as possible (see for instance [Vignéras 2001; Helm and Moss 2018]).
Inner forms have also been taken into account [Mínguez and Sécherre 2014a; Sécherre and Stevens 2016]
and the congruence properties of the local Jacquet–Langlands correspondence have been studied in [Dat
2012b; Mínguez and Sécherre 2017]. It is thus natural to extend the study of distinguished representations
to this wider context, where the field of complex numbers is replaced by a more general field. Very little
has been done about distinction of modular representations so far: a first study can be found in [Sécherre
and Venketasubramanian 2017].
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An important phenomenon in the modular case, that is when ` > 0, is that a cuspidal representa-
tion π may occur as a subquotient of a proper parabolically induced representation (see [Vignéras 1989,
Corollaire 5]). When this is not the case, that is when π does not occur as a subquotient of a proper
parabolically induced representation, π is said to be supercuspidal.

1G. From now on, we fix an algebraically closed field R of arbitrary characteristic ` 6= p, and consider
irreducible smooth representations of G with coefficients in R. Note that ` can be 0.

We first notice that, as in the complex case, any distinguished irreducible representation π of G with
coefficients in R is σ -selfdual and HomGσ (π, 1) is 1-dimensional (see Theorem 4.1).

We prove that, if ` 6= 2 6= p, the dichotomy and disjunction theorems hold for all supercuspidal
representations with coefficients in R. In particular, when R is the field of complex numbers, in which
case any cuspidal representation is supercuspidal, we get a purely local proof of the dichotomy and
disjunction theorems for cuspidal representations in the case where p 6= 2.

When `= 2 6= p, in which case there is no character of order 2 on F×0 , the dichotomy theorem takes a
simplified form: any σ -selfdual supercuspidal representation is distinguished. Let us summarize this first
series of results in the theorem below.

Theorem 1.1 (Theorem 10.8). Suppose that p 6= 2 and let π be a σ -selfdual supercuspidal irreducible
R-representation of G.

(1) If `= 2, then π is distinguished.

(2) If ` 6= 2, then π is either distinguished or ω-distinguished, but not both.

In the modular case, for ` > 2, we give examples of σ -selfdual cuspidal, nonsupercuspidal representa-
tions which are not distinguished nor ω-distinguished (see Remarks 7.5 and 2.8).

From now on, until the end of this introduction, we will assume that p 6= 2.

1H. The dichotomy and disjunction theorem stated in Theorem 1.1 relies on a distinction criterion, which
we state in Theorem 1.2. The basic idea is that we canonically associate to any σ -selfdual supercuspidal
representation π of G a finite extension D of F equipped with an F0-involution extending σ and a quadratic
character δ0 of the fixed points of D×; it is these data which govern the distinction of π . The character δ0

refines the information given by the central character of π in the sense that they coincide on F×0 , the latter
one being not enough in general to determine whether π is distinguished or not. To state our distinction
criterion, let us write D0 for the fixed points subfield of D.

Theorem 1.2 (Theorem 10.9). A σ -selfdual supercuspidal R-representation of G is distinguished if and
only if either

(1) `= 2, or

(2) ` 6= 2 and
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(a) if F/F0 is ramified, D/D0 is unramified and D0/F0 has odd ramification order, then the character
δ0 is nontrivial,

(b) otherwise, δ0 is trivial.

Even in the complex case, this is the first time a necessary and sufficient distinction criterion is exhibited
for an arbitrary cuspidal representation of GLn(F) in odd residual characteristic, in the spirit of [Hakim
and Murnaghan 2002; 2008; Coniglio-Guilloton 2016].

1I. The starting point of our strategy for proving Theorem 1.2 is to use Bushnell and Kutzko’s construction
of cuspidal representations of G via compact induction. This construction, elaborated in the complex
case by Bushnell and Kutzko [1993], has been extended to the modular case by Vignéras [1996] and
Minguez and Sécherre [2014b]. There is a family of pairs (J,λ), made of certain compact mod center
open subgroups J of G and certain irreducible representations λ of J, such that:

• For any such pair (J,λ), the compact induction of λ to G is irreducible and cuspidal.

• Any irreducible cuspidal representation of G occurs in this way, for a pair (J,λ) uniquely determined
up to G-conjugacy.

Such pairs are called extended maximal simple types in [Bushnell and Kutzko 1993], which we will
abbreviate to types for simplicity. We need to give more details about the structure of these types:

(1) The group J has a unique maximal compact subgroup J, and a unique maximal normal pro-p-group J1.

(2) There is a group isomorphism J/J1
' GLm(l) for some divisor m of n and finite extension l of the

residual field k of F.

(3) The restriction of λ to J1 is made of copies of a single irreducible representation η, which extends
(not uniquely, nor canonically) to J.

(4) Given a representation κ of J extending η, there is a unique irreducible representation ρ of J trivial
on J1 such that λ is isomorphic to κ ⊗ ρ, and ρ restricts irreducibly to J.

(5) The representation of GLm(l) obtained by restricting ρ to J is cuspidal.

The integer m, called the relative degree of π , is uniquely determined by π . There is another type-
theoretical invariant called the tame parameter field of π : this is a tamely ramified extension T of F,
uniquely determined up to F-isomorphism, whose degree divides n/m and whose residual field is l (see
[Bushnell and Henniart 2014] for more details). Note that π if essentially tame if and only if [T :F]= n/m.

1J. Now consider a σ -selfdual cuspidal R-representation π of G. The starting point of all our work is
[Anandavardhanan et al. 2018, Theorem 4.1], which asserts that among all the types contained in π , there
is a type (J,λ) which is σ -selfdual, that is J is σ -stable and λ∨ is isomorphic to λσ . Moreover, the tame
parameter field T of π is equipped with an F0-involution. If T0 denotes the fixed points subfield of T,
then T/T0 is a quadratic extension, uniquely determined up to F0-isomorphism. The invariants m and
T/T0 associated with π will play a central role in what follows.
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First, the following result says that the distinction of π can be detected by a σ -selfdual type.

Theorem 1.3 (Theorem 6.1). Let π be a σ -selfdual cuspidal representation of G. Then π is distinguished
if and only if it contains a distinguished σ -selfdual type, that is a σ -selfdual type (J,λ) such that
HomJ∩Gσ (λ, 1) is nonzero.

The proof of this theorem — which occupies Section 6 — is the most technical part of the paper:
starting with a σ -selfdual type (J,λ) contained in π and g ∈ G, one has to prove that, if the type (Jg,λg)

is distinguished, then it is σ -selfdual, that is σ(g)g−1
∈ J. First, one determines the set of the g ∈ G

such that ηg is distinguished, as well as the dimension of the space of invariant linear forms (Paragraphs
6A–6C); then, one analyzes the distinction of κg (Paragraphs 6D and 6E); one obtains the final statement
by using the cuspidality of the representation of GLm(l) induced by ρ (see Theorem 6.21).

1K. When T is unramified over T0, the σ -selfdual types contained in π form a single Gσ -conjugacy class.
When T is ramified over T0, the σ -selfdual types contained in π form bm/2c+ 1 different Gσ -conjugacy
classes, characterized by an integer i ∈ {0, . . . , bm/2c} called the index of the class. Since the space
HomGσ (π, 1) has dimension 1, only one of these conjugacy classes can contribute to distinction: we
prove that it is the one with maximal index. This gives us the following refinement of Theorem 1.3.

Proposition 1.4 (Corollary 6.24 and Proposition 7.1). Let π be a σ -selfdual cuspidal representation of G.
Let m be its relative degree and T/T0 be its associated quadratic extension.

(1) If T is unramified over T0, then π is distinguished if and only if any of its σ -selfdual types is
distinguished.

(2) If T is ramified over T0, then π is distinguished if and only if any of its σ -selfdual types of index
bm/2c is distinguished.

Note that this proposition is proved in [Anandavardhanan et al. 2018] in a different manner, based on a
result of Ok [1997]. However, the proof given in the present article is more likely to generalize to other
situations.

When T/T0 is ramified, one can be more precise (see Proposition 7.1): if π is distinguished, m is either
even or equal to 1. It is not difficult to construct σ -selfdual cuspidal representations of G such that T/T0

is ramified and m > 1 is odd: such cuspidal representations are not distinguished nor ω-distinguished
(see Remark 7.5).

In the case where T/T0 is unramified, m is odd for any supercuspidal σ -selfdual representation (see
Proposition 9.8). This does not hold for σ -selfdual cuspidal representations (which is easy to see), and this
does not even hold for distinguished cuspidal representations: Kurinczuk and Matringe recently proved
that, when F/F0 is unramified and n = `= 2, any σ -selfdual nonsupercuspidal cuspidal representation of
GL2(F) of level zero (thus of relative degree 2) is distinguished.

1L. As in the previous paragraph, π is a σ -selfdual cuspidal R-representation of G. The following
definition will be convenient to us (see Remark 10.2 for the connection with the usual notion of a generic
representation).
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Definition 1.5 (Definition 10.1). A σ -selfdual type (J,λ) in π is generic if either T/T0 is unramified, or
T/T0 is ramified and this type has index bm/2c.

Proposition 1.4 thus says that, up to Gσ -conjugacy, a σ -selfdual cuspidal representation π contains a
unique generic σ -selfdual type, and that π is distinguished if and only if such a type is distinguished (see
Theorem 10.3). This uniqueness property is crucial to the proof of the disjunction part of Theorem 1.1.

Let us fix a generic σ -selfdual type (J,λ) in π . Recall that, by construction, λ can be decomposed
(noncanonically) as κ ⊗ ρ. However, not any of these decompositions are suitable for our purpose. It
is not difficult to prove that κ can be chosen to be σ -selfdual, but this is not enough: we need to prove
that κ can be chosen to be both σ -selfdual and distinguished. The strategy of the proof depends on the
ramification of T over T0. This is why we treat separately the ramified and the unramified cases, in
Sections 7 and 9, respectively.

The easiest case is when T/T0 is ramified. Using the fact that m is either even or equal to 1, we prove that
κ can be chosen to be distinguished by adapting a result of Matringe [2012] (which we do in Paragraph 2C).

When T/T0 is unramified, the existence of a distinguished κ is more difficult to establish. Our proof
requires π to be supercuspidal, since in that case m is known to be odd, thus GLm(l) has GLm(l0)-
distinguished supercuspidal representations in characteristic 0, where l0 is the residual field of T0 (see the
proof of Proposition 9.4).

In both cases, a distinguished κ is automatically σ -selfdual, and π is distinguished if and only if ρ is
distinguished. Considering ρ as a (σ -selfdual) level zero type, we are then reduced to the level zero case,
which has been treated by Coniglio-Guilloton in the complex case. We thus have to extend her results to
the modular case, which we know how to do when π is supercuspidal only.

To summarize, we need the assumption that π is supercuspidal in Theorems 1.1 and 1.2 for two reasons:
for the existence of a distinguished κ in the case when T/T0 is unramified and for the level zero case.

1M. To study the distinction of ρ when π is supercuspidal, we use admissible pairs of level zero as in
Coniglio-Guilloton [2016]. We attach to ρ a pair (D/T, δ) made of an unramified extension of degree m
equipped with an involutive T0-algebra homomorphism, nontrivial on T, denoted by σ , together with a
character δ of D× such that δ ◦ σ = δ−1. (See Paragraphs 5C and 5E although the result is presented in a
different way there.)

However, the distinguished representation κ of Paragraph 1L is not unique in general, thus neither ρ

nor δ are. Write D0 for the σ -fixed points of D and δ0 for the restriction of δ to D×0 . This is a quadratic
character, trivial on D/D0-norms. We prove in Proposition 10.5 that the pair (D/D0, δ0) is uniquely
determined by π up to F0-isomorphism. This is the one occurring in our distinction criterion Theorem 1.2.

It remains to explain our strategy to prove the distinction criterion for ρ, in the modular case, in terms
of the character δ0, as well as the dimension of the space of invariant linear forms. This depends on the
ramification of T/T0.

The easiest case is when T/T0 is unramified. In this case, we are reduced to studying the distinction of
supercuspidal representations of GLm(l) by GLm(l0). That any distinguished irreducible representation is
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σ -selfdual follows from a finite and `-modular version of Theorem 4.1 (see Remark 4.3). For the converse
statement, we use a lifting argument to characteristic 0, based on the fact that any σ -selfdual supercuspidal
F`-representation has a σ -selfdual Q`-lift, where Q` is an algebraic closure of the field of `-adic numbers
and F` is its residual field. This does not hold for σ -selfdual nonsupercuspidal representations: by
Remark 2.8, there are σ -selfdual cuspidal representations, with m even, which are not distinguished.

In the case where T/T0 is ramified, we are reduced to studying the distinction of supercuspidal represen-
tations of GLm(l) by either GL1(l) if m = 1, or GLr (l)×GLr (l) if m = 2r is even. It is more difficult, as
we do not have an analogue of Theorem 4.1. Our proof relies on the structure of the projective envelope of
a supercuspidal representation of GLm(l), as well as a lifting argument to characteristic 0. We prove that a
supercuspidal representation is distinguished if and only if it is selfdual. Unlike the complex case, one can
find σ -selfdual cuspidal representations, with m > 1 odd, which are not distinguished (see Remark 2.18).

In both cases, we prove that a σ -selfdual supercuspidal representation of GLm(l) is distinguished if
any only if it admits a distinguished lift to characteristic 0. We conclude by the following theorem.

Theorem 1.6 (Theorem 10.11). Let π be a σ -selfdual supercuspidal representation of the group G with
coefficients in F`.

(1) The representation π admits a σ -selfdual supercuspidal lift to Q`.

(2) Let π̃ be a σ -selfdual lift of π , and suppose that ` 6= 2. Then π̃ is distinguished if and only if π is
distinguished.

1N. In this paragraph, we discuss the assumption p 6= 2. In Section 2, in which we study the finite field
case, we assume that p 6= 2 in Paragraphs 2C and 2D only; see Remark 2.11. Note that neither Gow’s
results [1984] nor the modular version established in Paragraph 2B require p to be odd. The same is true
of the results of Prasad and Flicker — as well as their modular version proved in Section 4 — asserting
that any distinguished irreducible representation π of G is σ -selfdual and HomGσ (π, 1) has dimension 1.

From Paragraph 5D the assumption p 6= 2 is crucial (as in [Hakim and Murnaghan 2002; 2008] and
to a lesser extent [Coniglio-Guilloton 2016]). We use at many places, in particular in Section 6 and in
the proof of the σ -selfdual type Theorem 5.10, the fact that the first cohomology set of Gal(F/F0) in a
pro-p-group is trivial. I do not know whether or not Theorem 5.10 still holds when p = 2.

I also do not now whether the dichotomy and disjunction theorems hold when F has characteristic 2.
The only exception is Prasad’s dichotomy theorem [2001] for cuspidal complex representations when
F/F0 is unramified, which remains the only known distinction criterion for cuspidal representations in
arbitrary residual characteristic. Note that Prasad’s approach does not work in the modular case, for
[Prasad 2001, Theorem 1] does not hold in characteristic ` > 0.

1O. Finally, let us mention that the methods developed in this paper are expected to generalize to other
groups. The distinction of supercuspidal representations of GLn(F) by a unitary group is currently being
explored by Jiandi Zou in his ongoing PhD thesis at Université de Versailles St-Quentin.
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2. The finite field case

The aim of this section is to extend to the modular case some results about distinction of cuspidal
representations of GLn over a finite field which are know in the complex case only. These results will be
needed in Sections 8 and 9, but this section can also be read independently from the rest of the article.

In this section, k is a finite field whose characteristic is an arbitrary prime number p. In Paragraphs 2C
and 2D, we will assume that p is odd. Let q denote the cardinality of k.

Let R be an algebraically closed field of characteristic different from p, denoted `. (Note that ` can
be 0.) We say that we are in the “modular case” when we consider the case where `> 0. By representation
of a finite group, we mean a representation on an R-vector space.

Given a representation π of a finite group G, we write π∨ for the contragredient of π . Given a subgroup
H of G, we say that π is H-distinguished if the space HomH(π, 1) is nonzero, where 1 denotes the trivial
character of H.

Given n≥ 1, an irreducible representation of GLn(k) is said to be cuspidal if it has no nonzero invariant
vector under the unipotent radical of any proper parabolic subgroup or, equivalently, if it does not occur
as a subrepresentation of any proper parabolically induced representation. It is supercuspidal if it does
not occur as a subquotient of a proper parabolically induced representation. When R has characteristic 0,
any cuspidal representation is supercuspidal.

When ` > 0, we denote by Q` an algebraic closure of the field of `-adic numbers, by Z` the ring
of `-adic integers in Q` and by F` the residue field of Z`. We refer to [Serre 1977, Section 15] for a
definition of the reduction mod ` of a Q`-representation of a finite group.

2A. Parametrization of supercuspidal representations. For the results stated in this paragraph, we refer
to [Green 1955; Dipper 1985; Dipper and James 1986; James 1986] (see also [Vignéras 1996, III.2;
Mínguez and Sécherre 2015, Section 2.6]).

Let t/k be an extension of degree n ≥ 1 of finite fields of characteristic p. Fix a k-embedding of t in
the matrix algebra Mn(k), and consider t× as a maximal torus in GLn(k). An R-character ξ of t× is said
to be k-regular if the characters ξ , ξq , . . . , ξqn−1

are all distinct.
Let ξ be a k-regular R-character of t×. By Green [1955] when R has characteristic 0 and James [1986]

when R has positive characteristic ` 6= p, there is a supercuspidal irreducible representation ρξ of GLn(k),
uniquely determined up to isomorphism, such that

tr ρξ (g)= (−1)n−1
·

∑
γ

ξγ (g) (2-1)

for all g ∈ t× with irreducible characteristic polynomial, where γ runs over Gal(t/k). This induces a
surjective map

ξ 7→ ρξ (2-2)

between k-regular characters of t× and isomorphism classes of supercuspidal irreducible representations
of GLn(k), whose fibers are Gal(t/k)-orbits.
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Suppose that R is the field Q`. In the next proposition, we record the main properties of the reduction
mod ` of supercuspidal Q`-representations of GLn(k).

Proposition 2.1 [Dipper 1985; Dipper and James 1986; James 1986]. Let ξ be a k-regular Q`-character
of t× and ρ be the supercuspidal irreducible representation which corresponds to it.

(1) The reduction mod ` of ρ, denoted ρ, is irreducible and cuspidal.

(2) The representation ρ is supercuspidal if and only if the reduction mod ` of ξ , denoted ξ , is k-regular.

(3) When ξ is k-regular, the supercuspidal irreducible F`-representation of GLn(k) which corresponds
to it is ρ.

Moreover, for any cuspidal irreducible F`-representation π of GLn(k), there is a supercuspidal irre-
ducible Q`-representation ρ of GLn(k) whose reduction mod ` is π . Such a representation ρ is said to be
a lift of π .

Remark 2.2. Here are a couple of additional properties which we will use at various places.

(1) The identity (2-1) shows that, if ξ is a k-regular character of t× and ρ is the supercuspidal represen-
tation corresponding to ξ by (2-2), then its contragredient ρ∨ corresponds to ξ−1.

(2) Let ι : R→ R′ be an embedding of algebraically closed fields of characteristic ` 6= p. Then any
irreducible R′-representation π ′ of GLn(k) is isomorphic to π ⊗ R′ for a uniquely determined
irreducible R-representation π of GLn(k), which follows from the fact that, since GLn(k) is finite,
the trace of π ′ takes values in ι(R). Given a subgroup H of GLn(k), the representation π is cuspidal
(respectively supercuspidal, H-distinguished) if and only if π ′ is cuspidal (respectively supercuspidal,
H-distinguished). Moreover, by (2-1), if π is supercuspidal and corresponds to the k-regular R-
character ξ , then π ′ corresponds to the k-regular R′-character ξ ′ = ι ◦ ξ .

2B. The Galois case. Recall that p is an arbitrary prime number. Let k/k0 be a quadratic extension of
finite fields of characteristic p. Write σ for the nontrivial k0-automorphism of k, and q0 for the cardinality
of k0. We thus have q2

0 = q .
If π is an irreducible representation of GLn(k), we write πσ for the representation π ◦ σ , and we say

that π is σ -selfdual if πσ , π∨ are isomorphic.

Lemma 2.3. Let n ≥ 1 be a positive integer.

(1) If there is a σ -selfdual supercuspidal irreducible representation of GLn(k), then n is odd.

(2) Suppose that R has characteristic 0 and n is odd. Then there is a σ -selfdual supercuspidal irreducible
representation of GLn(k).

Proof. Let ξ be a k-regular character of t×, and let ρ denote the supercuspidal irreducible representation
of GLn(k) corresponding to it by (2-2). The identity (2-1) shows that ρσ corresponds to ξq0 . Indeed, for
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all g ∈ t× ⊆GLn(k) with irreducible characteristic polynomial, σ(g) and gq0 have the same characteristic
polynomial, thus they are conjugate in GLn(k). It follows that

tr ρσ (g)= tr ρ(gq0)= (−1)n−1
·

∑
γ

ξ γ (gq0)= (−1)n−1
·

∑
γ

(ξq0)γ (g)

for all g ∈ t× with irreducible characteristic polynomial. Thus ρ is σ -selfdual if and only if

ξ−q0 = ξq2i
0 , for some i ∈ {0, . . . , n− 1}. (2-3)

Exponentiating to −q0 again gives us the equality ξq
= ξq2i

. The k-regularity assumption on ξ implies
that n divides 2i − 1, thus n is odd. Besides, since 0≤ i ≤ n− 1, we have n = 2i − 1. It follows that

ρ is σ -selfdual⇔ ξ−1
= ξqn

0 . (2-4)

This is also equivalent to ξ being trivial on t×0 , where t0 is the subfield of t with qn
0 elements.

Conversely, suppose that R has characteristic 0 and n is odd. Let ξ be an R-character of t× of order
qn

0 + 1, which exists since t× has order qn
− 1= (qn

0 − 1)(qn
0 + 1). It is thus trivial on t×0 . On ther other

hand, q0 has order 2n mod qn
0 + 1, thus q has order n mod qn

0 + 1. It follows that the character ξ is
k-regular. �

Remark 2.4. When R has characteristic ` > 0, the group GLn(k) may have σ -selfdual cuspidal (non-
supercuspidal) representations for n even, and it may have no σ -selfdual supercuspidal representation for
n odd.

(1) For an example of σ -selfdual cuspidal nonsupercuspidal representation for n even, let e be the order
of q mod `, and suppose that n = e`u for some integer u ≥ 0. Then, by [Mínguez and Sécherre
2015, Théorème 2.4], the unique generic subquotient π of the representation induced from the trivial
character of a Borel subgroup of GLn(k) is cuspidal and σ -selfdual. One may choose q, ` and u
such that n is even. For instance, this is the case when n = 2 and ` 6= 2 divides q + 1.

(2) The group GLn(k) may even have no supercuspidal representation at all: this is the case, for instance,
when n = 3, q = 2 and `= 7.

Lemma 2.5. Let ρ be a supercuspidal representation of GLn(k) for some odd integer n≥1. The following
assertions are equivalent:

(1) The representation ρ is σ -selfdual.

(2) The representation ρ is GLn(k0)-distinguished.

(3) The space HomGLn(k0)(ρ, 1) has dimension 1.

Proof. When R has characteristic 0, this is due to Gow [1984]. Suppose that R has characteristic ` > 0
prime to q. We postpone to Section 4 the proof of the fact that (2) implies (1) and is equivalent to (3),
since the proof of Theorem 4.1 works in both the finite and nonarchimedean cases (see Remark 4.3).
Here we prove that (1) implies (2). For this, we use the following general lemma.
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Lemma 2.6. Let G be a finite group and H be a subgroup of G. Let π be an irreducible representation of
G on a Q`-vector space V such that HomH(π, 1) is nonzero. Let L ⊆ V be a G-stable Z`-lattice. Then
L⊗F` has at least one irreducible G-subquotient τ such that HomH(τ, 1) 6= {0}.

Proof. Let ϕ be a nonzero H-invariant linear form on V. The image of L by ϕ, denoted M, is a Z`-lattice
in Q`. Reducing mod the maximal ideal of Z` gives a nonzero H-invariant F`-linear map ϕ from L⊗F`
to M⊗F` ' F`. Let W be the largest subrepresentation of L⊗F` contained in the kernel of ϕ. Then any
irreducible subrepresentation τ of (L⊗F`)/W satisfies the required condition. �

Let ξ be a k-regular character of t× parametrizing some σ -selfdual supercuspidal representation ρ of
GLn(k). By (2-4), we have ξ−1

= ξqn
0 . Let us fix a field embedding ι : F`→ R. Since ξ has finite image,

there is a k-regular character ξ̃ of t× with values in Z` such that:

• The character ξ̃ satisfies the identity ξ̃−1
= ξ̃qn

0 .

• One has ξ = ι ◦ ξ0 where ξ0 is the reduction mod ` of ξ̃ .

The character ξ̃ corresponds to a σ -selfdual supercuspidal Q`-representation ρ̃ of GLn(k). Let V denote
the vector space of ρ̃ and fix a GLn(k)-stable Z`-lattice L in V. By Paragraph 2A, the representation of
GLn(k) on the F`-vector space L⊗F` is isomorphic to the supercuspidal representation ρ0 corresponding
to ξ0, and it is distinguished by Lemma 2.6. The result now follows from Remark 2.2, which tells us that
ρ0⊗R is distinguished and isomorphic to ρ. �

Remark 2.7. If R is the field F`, we proved that the representation ρ is distinguished if and only if it has
a distinguished lift to Q`.

Remark 2.8. We give an example of a σ -selfdual cuspidal nonsupercuspidal representation of GLn(k)
which is not distinguished. With the notation of Remark 2.4, assume that n= e= 2. Thus π is a σ -selfdual
cuspidal (nonsupercuspidal) representation of GL2(k). Let π̃ be an `-adic lift of π (see Remark 2.2), and
decompose its restriction to GL2(k0) as a direct sum

V1⊕ · · ·⊕Vr

of irreducible components. Since the order of GL2(k0) is prime to `, reduction mod ` preserves irreducibil-
ity, and the restriction of π to GL2(k0) is semisimple. It follows that π decomposes as W1⊕ · · ·⊕Wr ,
where Wi is irreducible and is the reduction mod ` of Vi for each i = 1, . . . , r . Suppose that π is
distinguished. Then Wi is the trivial character for some i . Thus Vi is a character, and it must be trivial
since GL2(k0) has no nontrivial character of order a power of `, which implies that π̃ is distinguished.
This is impossible, since n = 2 is even.

Remark 2.9. More generally, the argument of Remark 2.8 shows that, if H is a subgroup of GLn(k)
whose order is prime to `, then a cuspidal representation π of GLn(k) is H-distinguished if and only if
any `-adic lift of π is H-distinguished.
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2C. A mirabolic interlude. This paragraph is inspired from Matringe [2012]. We assume that p 6= 2.
Let G denote the group GLn(k) for some n ≥ 2. Write P for the mirabolic subgroup of G, which is made
of all matrices in G whose last row is (0 · · · 01). Let U be the unipotent radical of P, and G′ be the image
of GLn−1(k) in G under the group homomorphism

g 7→
(

g 0
0 1

)
.

We thus have P=G′U, and we write P′ for the mirabolic subgroup of G′. Let N be the maximal unipotent
subgroup of G made of all upper triangular unipotent matrices, and ψ be a nontrivial character of k. We
still write ψ for the nondegenerate character

x 7→ ψ(x1,2+ · · ·+ xn−1,n)

of N. We have a functor

π 7→ IndP
P′U(π ⊗ψ)

denoted 8+, from R-representations of P′ to R-representations of P, where π ⊗ψ is the representation of
P′U defined by xu 7→ π(x)ψ(u) for all x ∈ P′ and u ∈ U.

Given integers r ≥ s ≥ 0 such that r + s = n, let Hr,s be the subgroup of G defined in [Matringe 2012].
It is the conjugate of the Levi subgroup GLr (k)×GLs(k) of G under the permutation matrix wr,s defined
by the permutation(

1 · · · t · · · t + i · · · r r + 1 · · · r + 1+ j
1 · · · t · · · t + 2i · · · n− 1 t + 1 · · · t + 1+ 2 j

· · · n− 1 n
· · · n− 2 n

)
where t = r − s+ 1. If s ≥ 1, let H′r,s be the subgroup G′ ∩Hr,s (denoted Hr,s−1 in [Matringe 2012]).

Lemma 2.10. Let π be a representation of P′, and χ be a character of Hr,s . Suppose that the vector
space HomP∩Hr,s (8

+(π), χ) is nonzero. Then it is isomorphic to HomP′∩H′r,s (π, χ).

Proof. Given g ∈ G and a representation τ of a subgroup H of G, we will write Hg
= g−1Hg, and τ g for

the representation x 7→ τ(gxg−1) of Hg. Applying the Mackey formula, and since G′ normalizes U, the
restriction of 8+(π) to P∩Hr,s decomposes as the direct sum⊕

g

IndP∩Hr,s
P∩Hr,s∩P′gU(π

g
⊗ψg)

where g ranges over a set of representatives of (P′U,P∩Hr,s)-double cosets in P. Since P = G′U, we
may assume g ranges over a set of representatives of (P′,H′r,s)-double cosets in G′. For each g, let us
write the following isomorphism of representations of P∩Hr,s

IndP∩Hr,s
U∩Hr,s

(π g
⊗ψg)' IndP∩Hr,s

P∩Hr,s∩P′gU((π
g
⊗ψg)⊗ IndP∩Hr,s∩P′gU

U∩Hr,s
(1)). (2-5)
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Since the induced representation IndP∩Hr,s∩P′gU
U∩Hr,s

(1) canonically surjects onto the trivial character of P∩
Hr,s ∩P′gU by Frobenius reciprocity, the right-hand side of (2-5) surjects onto

IndP∩Hr,s
P∩Hr,s∩P′gU(π

g
⊗ψg).

On the other hand, since π g is trivial on U∩Hr,s , the left-hand side of (2-5) is a sum of finitely many copies
of IndP∩Hr,s

U∩Hr,s
(ψg). It follows that, if HomP∩Hr,s (8

+(π), χ) is nonzero, then there is a g ∈ G′ such that

HomP∩Hr,s (IndP∩Hr,s
U∩Hr,s

(ψg), χ) 6= {0}.

By Frobenius reciprocity, this implies that ψg
= χ on U∩Hr,s . Since we assumed that p 6= 2, the field k

has at least three elements, thus any character of Hr,s 'GLr (k)×GLs(k) is trivial on unipotent elements.
We thus get ψg

= 1 on U∩Hr,s . By [Matringe 2012, Lemma 3.1], this implies that g ∈ P′H′r,s , that is,
we may assume that g = 1. We thus have

HomP∩Hr,s (8
+(π), χ)= HomP∩Hr,s (IndP∩Hr,s

P′U∩Hr,s
(π ⊗ψ), χ)' HomP′U∩Hr,s (π ⊗ψ, χ).

The result now follows from the fact that P′U∩Hr,s = P′ ∩H′r,s . (This latter equality has been pointed
out to me by N. Matringe.) �

Remark 2.11. (1) If χ is assumed to be trivial on unipotent elements, or if k has at least three elements,
then Lemma 2.10 holds without assuming that p 6= 2.

(2) If k has cardinality 2, the group GL2(k) has a cuspidal character. Thus, when r ≥ 2, the group Hr,2

has a character which is nontrivial on U∩Hr,2.

Now write G′′ for the copy of GLn−2(k) in the upper left block of G′ and P′′ for the mirabolic subgroup
of G′′.

Lemma 2.12. Let π ′ be a representation of P′′, and χ ′ be a character of H′r,s . Suppose that s ≥ 1. If
HomP′∩H′r,s (8

+(π ′), χ ′) is nonzero, then it is isomorphic to HomP′′∩Hr−1,s−1(π
′, χ ′).

Proof. It is similar to that of Lemma 2.10, replacing [Matringe 2012, Lemma 3.1] by [Matringe 2012,
Lemma 3.2]. �

Let 0 denote the mirabolic representation of P. Recall that it is defined as the representation of P
induced from the character ψ of N.

Lemma 2.13. Let n ≥ 2 and r ≥ s ≥ 0 be such that r + s = n. Let χ be a character of Hr,s . If the space
HomP∩Hr,s (0, χ) is nonzero, then r = s.

Proof. If s = 0, then Hr,s = G and the result follows from the fact that the representation 0 is irreducible
of dimension greater than 1.

Suppose that s ≥ 1 and that the space HomP∩Hr,s (0, χ) is nonzero. The mirabolic representation 0 is
isomorphic to 8+(0′), where 0′ denotes the mirabolic representation of P′. By Lemma 2.10, the space
HomP′∩H′r,s (0

′, χ ′) is nonzero, where χ ′ is the restriction of χ to H′r,s . Now identify0′ with8+(0′′), where
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0′′ is the mirabolic representation of P′′. By Lemma 2.12, the space HomP′′∩Hr−1,s−1(0
′′, χ ′′) is nonzero,

where χ ′′ is the restriction of χ ′ to Hr−1,s−1. By induction on n, the fact that HomP′′∩Hr−1,s−1(0
′′, χ ′′) is

nonzero implies that r − 1= s− 1, thus r = s. �

Proposition 2.14. Let n ≥ 2 and r, s ≥ 0 be such that r + s = n. Let ρ be a cuspidal representation of G,
and χ be a character of M= (GLr ×GLs)(k). Suppose HomM(ρ, χ) is nonzero. Then r = s.

Proof. Conjugating M and χ if necessary, we may assume that r ≥ s. The result then follows from
Lemma 2.13 and the fact that the restriction of ρ to P is isomorphic to 0. This latter fact is well-known
when R has characteristic 0, and is given by [Vignéras 1996, III.1] when R is equal to F`. For an arbitrary
R of characteristic ` > 0, fix a field embedding of F` in R and write ρ as ρ0 ⊗ R for some cuspidal
irreducible F`-representation ρ0 of G as in Remark 2.2. Since the restriction of ρ0 to P is isomorphic to
00, the mirabolic F`-representation of P, the restriction of ρ to P is isomorphic to 00⊗R' 0. �

Remark 2.15. Suppose that r = s ≥ 1. Putting Lemmas 2.10 and 2.12 together, we get

HomP∩Hr,r ((8
+)2(π), 1)' HomP′′∩Hr−1,r−1(π, 1)

for any representation π of P′′. By induction, we get an isomorphism HomP∩Hr,r (0, 1)' R.

Corollary 2.16. Suppose that n = 2r for some r ≥ 1, and let ρ be a cuspidal representation of GLn(k).
Then the R-vector space Hom(GLr ×GLr )(k)(ρ, 1) has dimension at most 1.

Proof. This follows from Remark 2.15, together with the fact that the restriction of ρ to P is isomorphic
to 0. �

2D. The Levi case. In this paragraph, we consider the supercuspidal irreducible representations of
GLn(k) distinguished by some maximal Levi subgroup. As in Paragraph 2C, we assume that p 6= 2.

Lemma 2.17. Let n ≥ 1 be a positive integer.

(1) If there is a selfdual supercuspidal irreducible representation of GLn(k), then either n = 1 or n is
even.

(2) Suppose that R has characteristic 0, and that either n = 1 or n is even. Then there exists a selfdual
supercuspidal irreducible representation of GLn(k).

Proof. If n = 1, the trivial character of k× is selfdual and supercuspidal. Suppose that n ≥ 2. Let us
fix an extension t of k of degree n, and identify t× with a maximal torus in GLn(k). We consider the
Green–James parametrization (2-2) of isomorphism classes of supercuspidal irreducible representations
of GLn(k) by k-regular characters of t×.

Given a k-regular character ξ of t×, let ρ denote the representation corresponding to it. Recall (see
Remark 2.2) that ρ∨ corresponds to ξ−1. Thus ρ is selfdual if and only if

ξ−1
= ξq i

, for some i ∈ {0, . . . , n− 1}. (2-6)
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Taking the contragredient again gives us the equality ξ = ξq2i
. The regularity assumption on ξ implies

that n divides 2i and, since 0≤ i ≤ n− 1, we get n = 2i . It follows that

ρξ is selfdual⇔ ξ−1
= ξqn/2

. (2-7)

This is also equivalent to ξ being trivial on t ′×, where t ′ is the subfield of t with cardinality qn/2.
Conversely, suppose that R has characteristic 0 and n = 2r for some r ≥ 1. Let us consider an

R-character ξ of t× of order qr
+1, which exists since t× has order qn

−1= (qr
−1)(qr

+1). It is trivial
on t ′×. On ther other hand, q has order n = 2r mod qr

+ 1, which implies that ξ is k-regular. �

Remark 2.18. When R has characteristic ` > 0, the group GLn(k) may have selfdual cuspidal (nonsuper-
cuspidal) representations even if n is odd and > 1. Indeed, let e be the order of q mod `, and suppose that
n = e`u for some u ≥ 0. The unique generic irreducible subquotient of the representation induced from
the trivial character of a Borel subgroup of GLn(k) is then both cuspidal (see Remark 2.4) and selfdual.
One then can choose q, ` and u such that n is odd and > 1. For instance, this is the case when ` 6= 2
divides q − 1 and n = `.

Also, as in Remark 2.4, the group GLn(k) may even have no supercuspidal representation at all, which
is the case, for instance, when n = q = 2 and `= 3.

Lemma 2.19. Suppose that n = 2r with r ≥ 1, and let ρ be a supercuspidal representation of GLn(k).
The following assertions are equivalent:

(1) The representation ρ is selfdual.

(2) The representation ρ is (GLr ×GLr )(k)-distinguished.

(3) The R-vector space Hom(GLr ×GLr )(k)(ρ, 1) has dimension 1.

Proof. When R has characteristic 0, this is [Hakim and Murnaghan 2002, Proposition 6.1] (see also
[Coniglio-Guilloton 2016, Lemme 3.4.10]). Suppose now R has prime characteristic ` not dividing q . To
prove that (1) implies (2), we follow the same lifting argument as in the proof of Lemma 2.5.

We now prove that (2) implies (1). Let us write G = GLn(k) and H = (GLr ×GLr )(k). Let ρ be
an H-distinguished supercuspidal representation of G. If one fixes a field embedding of F` in R, then
Remark 2.2 tells us that ρ is isomorphic to ρ0 ⊗ R for some distinguished supercuspidal irreducible
F`-representation ρ0 of G. Since ρ is selfdual if and only if ρ0 is, we are thus reduced to proving the
result in the case where R is equal to F`, which we assume now.

Since ρ is distinguished, its contragredient ρ∨ has a nonzero H-invariant vector. We thus have a
nonzero homomorphism i : Z`[H\G] → ρ∨. Let us consider a projective envelope f : P→ ρ∨ of ρ∨

in the category of Z`[G]-modules. Since ρ∨ is supercuspidal, it has the following properties (see for
instance [Vignéras 1996, III.2.9]):

• The representation P⊗Q` is isomorphic to the direct sum of all the Q`-lifts of ρ∨.

• There are `a such lifts, where a is the `-adic valuation of qn
− 1.
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• The representation P⊗F` is indecomposable of length `a and has a unique irreducible quotient, and
all its irreducible components are isomorphic to ρ∨.

By projectivity of P, the homomorphism i gives rise to a nonzero homomorphism

j : P→ Z`[H\G] (2-8)

such that i ◦ j = f . Inverting `, we get a nonzero homomorphism from P⊗Q` to Q`[H\G]. It follows
that ρ∨ has at least one H-distinguished lift. Thanks to the characteristic 0 case, such a lift is selfdual.
Reducing mod `, it follows that ρ is selfdual.

We now go back to the case of a general R. The fact that (2) implies (3) is a particular case of
Corollary 2.16. However, we are going to give another proof here, which works for supercuspidal
representations only but is more likely to generalize to other situations.

Let V be the maximal direct summand of R[H\G] in the block of ρ. This means that R[H\G]
decomposes as a direct sum V⊕V′ where all irreducible subquotients of V are isomorphic to ρ, and no
irreducible subquotient of V′ is isomorphic to ρ. Besides, since ρ is selfdual, we have

dim HomH(ρ, 1)= dim HomH(1, ρ)= dim HomG(R[H\G], ρ)= dim HomG(V, ρ).

We thus have to prove that the cosocle of V is isomorphic to ρ.

Lemma 2.20. The R-algebra A= EndG(V) is commutative.

Proof. Since the convolution algebra R[H\G/H] decomposes as EndG(V)⊕EndG(V′), it suffices to prove
that R[H\G/H] is commutative. For x ∈ G, let fx be the characteristic function in R[H\G/H] of the
double coset HxH. For x, y ∈ G, one has

fx ∗ fy =
∑

z∈H\G/H

a(x, y, z) fz

where a(x, y, z)∈R is the image of the cardinality of (HxH∩zHy−1H)/H in R. When R has characteristic
0, the algebra R[H\G/H] is known to be commutative since R[H\G] is multiplicity free as an R[G]-module,
thus

card(HxH∩ zHy−1H)/H= card(HyH∩ zHx−1H)/H (2-9)

for all x, y, z ∈G. Now if R has characteristic ` > 0, reducing (2-9) mod ` gives us a congruence relation
which tells us that the algebra R[H\G/H] is commutative. �

It remains to prove that the cosocle of V is multiplicity free. Let m ≥ 1 be the multiplicity of ρ in
the cosocle of V and Q be the projective indecomposable R[G]-module associated with ρ. It has length
`a , has a unique irreducible quotient, and all its irreducible components are isomorphic to ρ. Write
V= V1⊕ · · ·⊕Vm where V1, . . . ,Vm are indecomposable R[G]-modules with cosocle isomorphic to ρ.
There is a nilpotent endomorphism N ∈ EndG(Q) such that

EndG(Q)= R[N]
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with N`a
= 0 and N`a

−1
6= 0. Therefore each Vi is isomorphic to the quotient of Q by the image of Nki

for some ki ≥ 0. Reordering if necessary, we may assume that Hom(V1,Vi ) is nonzero for all i ≥ 1.
Suppose that m ≥ 2, and define two endomorphisms u, u′ ∈ A by:

(1) The endomorphisms u, u′ are trivial on Vi for all i ≥ 2.

(2) The restriction of u to V1 is the identity on V1.

(3) The restriction of u′ to V1 coincides with some nonzero homomorphism in Hom(V1,V2).

Then uu′ = 0 and u′u 6= 0, thus A is not commutative. Thus m = 1. �

Remark 2.21. If R is the field F`, we proved that ρ is distinguished if and only if it has a distinguished
lift to Q` (see Remark 2.7).

Remark 2.22. If we only assume ρ to be cuspidal in Lemmas 2.17 and 2.19, then the lifting argument
may not work, that is, ξ may not have a σ -selfdual k-regular lift ξ̃ . Besides, the structure of the projective
envelope of ρ is more complicated when ρ is cuspidal nonsupercuspidal.

3. Notation and basic definitions in the nonarchimedean case

Let F/F0 be a separable quadratic extension of locally compact nonarchimedean local fields of residual
characteristic p. Apart from Section 4, we will assume that p 6= 2.

Write σ for the nontrivial F0-automorphism of F. Write O for the ring of integers of F and O0 for that
of F0. Write k for the residue field of F and k0 for that of F0. The involution σ induces a k0-automorphism
of k, still denoted σ , which generates Gal(k/k0).

As in Section 2, let R be an algebraically closed field of characteristic ` different from p. (Note that `
can be 0.) We say we are in the “modular case” when we consider the case where ` > 0.

We fix once and for all a character
ψ0 : F0→ R× (3-1)

trivial on the maximal ideal of O0 but not on O0, and define ψ = ψ0 ◦ trF/F0 .
When ` 6= 2, we write

ω = ωF/F0 : F
×

0 → R× (3-2)

for the character of F×0 whose kernel is the subgroup of F/F0-norms.
Let G be the locally profinite group G= GLn(F), with n ≥ 1, equipped with the involution σ acting

componentwise. Its σ -fixed points is the closed subgroup Gσ
= GLn(F0). We will identify the center of

G with F× and that of Gσ with F×0 .
By representation of a locally profinite group, we always mean a smooth representation on an R-module.

Given a representation π of a closed subgroup H of G, we write π∨ for the smooth contragredient of π
and πσ for the representation π ◦ σ of the subgroup σ(H). We say that π is σ -selfdual if H is σ -stable
and πσ , π∨ are isomorphic. If g ∈ G, we write Hg

= {g−1hg | h ∈ H} and π g for the representation
x 7→ π(gxg−1) of Hg. If χ is a character of H, we write πχ for the representation g 7→ χ(g)π(g).
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If µ is a character of H∩Gσ , we say that π is µ-distinguished if the space HomH∩Gσ (π, µ) is nonzero.
If µ is the trivial character, we will simply say that π is H∩Gσ -distinguished, or just distinguished. If
H= G and φ is a character of F×0 , we will abbreviate φ ◦ det-distinguished to φ-distinguished.

An irreducible representation of G is said to be cuspidal if all its proper Jacquet modules are trivial or,
equivalently, if it does not occur as a subrepresentation of a proper parabolically induced representation.
It is said to be supercuspidal if it does not occur as a subquotient of a proper parabolically induced
representation (by [Dat 2012a, Corollaire B.1.3], this is equivalent to not occurring as a subquotient of
the parabolic induction of any irreducible representation of a proper Levi subgroup of G). When R has
characteristic 0, any cuspidal representation is supercuspidal.

4. A modular version of theorems of Prasad and Flicker

In this section, the residue characteristic p is arbitrary. We prove the following theorem, which is
well-known in the complex case. Note that, in the modular case, any irreducible representation of G has a
central character by [Vignéras 1996, II.2.8].

Theorem 4.1. Let π be a distinguished irreducible representation of G. Then:

(1) The central character of π is trivial on F×0 .

(2) The contragredient representation π∨ is distinguished.

(3) The space HomGσ (π, 1) has dimension 1.

(4) The representations πσ and π∨ are isomorphic, that is, π is σ -selfdual.

Remark 4.2. In the complex case, this theorem was first proved under the assumption that the character-
istic of F is not 2, which was required in the proof of [Flicker 1991, Proposition 10]. Later, Prasad [2001,
Section 4] gave an argument which only requires F/F0 to be separable quadratic.

Proof. Property (1) is straightforward. Property (2) follows from an argument of Gelfand and Kazhdan (see
[Sécherre and Venketasubramanian 2017, Proposition 8.4] in the modular case). For properties (3) and (4),
we follow the proofs of Prasad [1990] and Flicker [1991]. The reference for the basic results in the theory
of modular representations of p-adic reductive groups which we use in the proof is [Vignéras 1996].

Write C∞c (G) for the space of locally constant, compactly supported R-valued functions on G, and fix
an R-valued Haar measure on G, that is, a nonzero R-linear form on C∞c (G) invariant under left translation
by G.

Let W denote the vector space of π , and l :W→ R be a nonzero Gσ -invariant linear form. For any
f ∈ C∞c (G), define a linear form on W by

π( f )l : w 7→
∫

G
f (x)l(π(x)w) dx .

Since f is smooth, the linear form π( f )l on W is smooth. This defines a nonzero homomorphism
L :C∞c (G)→W∨. It is G-equivariant under right translation and Gσ -invariant under left translation. Since
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W is irreducible, it is surjective. Similarly, given a nonzero Gσ -invariant linear form m :W∨→ R, we
obtain a surjective right G-equivariant and left Gσ -invariant homomorphism M from C∞c (G) to W∨∨ 'W
(see [Vignéras 1996, Proposition I.4.18] for the latter isomorphism). We now define

B( f, g)= 〈M( f ),L(g)〉 ∈ R

for all f, g ∈C∞c (G). This defines a right G-invariant and left Gσ
×Gσ -invariant linear form B on the space

C∞c (G)⊗C∞c (G)' C∞c (G×G). As in [Prasad 1990, Lemma 4.2] (and with [Prasad 2001, Lemma 4.1],
which extends the result of [Flicker 1991, Proposition 10] to the case where F has arbitrary characteristic)
we have

B( f, g)= B(g ◦ σ, f ◦ σ) (4-1)

for all f, g ∈ C∞c (G). It follows that the kernel of L is equal to { f ◦ σ | f ∈ Ker(M)}. Thus, if l ′ is any
nonzero Gσ -invariant linear form on W, with associated homomorphism L′, then L, L′ have the same
kernel. Since π∨ is admissible (by [Vignéras 1996, II.2.8]), Schur’s lemma applies (see [Vignéras 1996,
I.6.9]) thus one has l ′ = cl for some c ∈ R×. Thus HomGσ (W, 1) has dimension 1.

As in [Prasad 1990, Lemma 4.2], the bilinear form B corresponds to the Gσ -biinvariant linear form
D on C∞c (G) defined by

D(h)= m(π(h)l)

for all h ∈ C∞c (G). The correspondence between B and D is given by

D(h)= B(k), with k : (x, y) 7→ h(xy−1).

Note that (4-1) gives D(h)=D(h◦σ ◦ι) with ι : x 7→ x−1 on G. Replacing π by π∗=π∨σ and exchanging
the roles played by l,m we get a linear form

D∗ : h 7→ l(π∗(h)m).

Since we have l(π∗(h)m) = m(π(h ◦ σ ◦ ι)l), it follows that D∗ = D. In order to deduce Property (4),
it remains to prove that D determines π entirely. For any ξ ∈W∨ we define the function

cξ : x 7→ m(π∨(x)ξ)= m(ξ ◦π(x−1))

on G. Then ξ 7→ cξ is an embedding of W∨ in the space C∞(Gσ
\G) of smooth R-valued functions on

Gσ
\G. For y ∈ G and h ∈ C∞c (G), let yh denote the function x 7→ h(xy). Since L and M are surjective,

there is a function h such that π(h)l is nonzero. Then y 7→ D(yh) is a nonzero function in the space
C∞(Gσ

\G), generating a subrepresentation isomorphic to W∨. Indeed, it is equal to cπ(h)l . It thus follows
from the equality D∗ = D that we have πσ ' π∨, as expected. �

Remark 4.3. The same results hold — and the same argument works — when F/F0 is replaced by
a quadratic extension of finite fields of arbitrary characteristic. It suffices to replace [Prasad 2001,
Lemma 4.1] by [Gow 1984, Lemma 3.5].
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5. Preliminaries on simple types

From now on, until the end of this article, we will assume that p 6= 2. This assumption is not needed in
Paragraphs 5A–5C, but we assume it from now on for simplicity.

We assume the reader is familiar with the language of simple types. We recall the main results on simple
strata, characters and types [Bushnell and Kutzko 1993; Bushnell and Henniart 1996; 2014; Mínguez and
Sécherre 2014b] that we will need. Part of these preliminaries can also be found in [Anandavardhanan
et al. 2018].

5A. Simple strata and characters. Let [a, β] be a simple stratum in the F-algebra Mn(F) of n × n
matrices with entries in F for some n ≥ 1. Recall that a is a hereditary order in Mn(F) and β is a matrix
in Mn(F) such that:

(1) The F-algebra E= F[β] is a field, whose degree over F is denoted d.

(2) The multiplicative group E× normalizes a.

The centralizer of E in Mn(F), denoted B, is an E-algebra isomorphic to Mm(E), with n = md. The
intersection b= a∩B is a hereditary order in B.

Write pa for the Jacobson radical of a, and U1(a) for the compact open pro-p-subgroup 1+ pa of
G = GLn(F). We recall the following useful simple intersection property [Bushnell and Kutzko 1993,
Theorem 1.6.1]: for all x ∈ B×, we have

U1(a)xU1(a)∩B× = U1(b)xU1(b). (5-1)

Associated with [a, β], there are compact open subgroups

H1(a, β)⊆ J1(a, β)⊆ J(a, β)

of a× and a finite set C(a, β) of characters of H1(a, β) called simple characters, depending on the choice
of the character ψ fixed in Section 3. Write J(a, β) for the compact mod center subgroup generated by
J(a, β) and the normalizer of b in B×.

Proposition 5.1 [Bushnell and Henniart 2014, 2.1]. We have the following properties:

(1) The group J(a, β) is the unique maximal compact subgroup of J(a, β).

(2) The group J1(a, β) is the unique maximal normal pro-p-subgroup of J(a, β).

(3) The group J(a, β) is generated by J1(a, β) and b×, and we have

J(a, β)∩B× = b×, J1(a, β)∩B× = U1(b). (5-2)

(4) The normalizer of any simple character θ ∈ C(a, β) in G is equal to J(a, β).

(5) The intertwining set of any θ ∈ C(a, β) in G is equal to J1(a, β)B×J1(a, β).
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By [Bushnell and Kutzko 1993, Theorem 3.4.1], the quotient J1(a, β)/H1(a, β) is a finite k-vector
space, and the map

(x, y) 7→ 〈x, y〉 = θ(xyx−1 y−1) (5-3)

makes it into a nondegenerate symplectic space. More precisely, if h1(a, β) and j1(a, β) are the sub-O-
lattices of a such that H1(a, β)= 1+ h1(a, β) and J1(a, β)= 1+ j1(a, β), then we have

〈1+ u, 1+ v〉 = ψ ◦ tr(β(uv− vu)) (5-4)

for all u, v ∈ j1(a, β) [Bushnell and Henniart 2005b, Proposition 6.1], where tr denotes the trace map of
Mn(F).

Let [a′, β ′] be another simple stratum in Mn′(F) for some n′ ≥ 1, and suppose that there is an F-algebra
isomorphism ϕ : F[β] → F[β ′] such that ϕ(β)= β ′. Then there is a canonical bijective map

C(a, β)→ C(a′, β ′) (5-5)

called the transfer map [Bushnell and Kutzko 1993, Theorem 3.6.14].
When the hereditary order b= a∩B is a maximal order in B, we say that the simple stratum [a, β]

and the simple characters in C(a, β) are maximal. When this is the case, then, given a homomorphism of
E-algebras B'Mm(E) identifying b with the standard maximal order, there are group isomorphisms

J(a, β)/J1(a, β)' b×/U1(b)' GLm(l) (5-6)

where l is the residue field of E.

5B. Types and cuspidal representations. Let us write G = GLn(F) for some n ≥ 1. A family of pairs
(J,λ) called extended maximal simple types, made of a compact mod center, open subgroup J of G and an
irreducible representation λ of J, has been constructed in [Bushnell and Kutzko 1993] (see also [Mínguez
and Sécherre 2014b] in the modular case).

Given an extended maximal simple type (J,λ) in G, there are a maximal simple stratum [a, β] in Mn(F)
and a maximal simple character θ ∈ C(a, β) such that J(a, β)= J and θ is contained in the restriction
of λ to H1(a, β). Such a simple character is said to be attached to λ. By [Bushnell and Kutzko 1993,
Proposition 5.1.1] (or [Mínguez and Sécherre 2014b, Proposition 2.1] in the modular case), the group
J1(a, β) carries, up to isomorphism, a unique irreducible representation η whose restriction to H1(a, β)

contains θ . It is called the Heisenberg representation associated to θ and has the following properties:

(1) The restriction of η to H1(a, β) is made of (J1(a, β) : H1(a, β))1/2 copies of θ .

(2) The representation η extends to J.

For any representation κ of J extending η, there is, up to isomorphism, a unique irreducible representation
ρ of J trivial on J1(a, β) such that λ' κ⊗ρ. Through (5-6), the restriction of ρ to the maximal compact
subgroup J= J(a, β) identifies with a cuspidal representation of GLm(l).
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Remark 5.2. The reader familiar with the theory of simple types will have noticed that we did not
introduce the notion of beta-extension. Since GLm(l) is not isomorphic to GL2(F2) (as p is not 2), any
character of GLm(l) factors through the determinant. It follows that, if [a, β] is a maximal simple stratum,
any representation of J extending η is a beta-extension.

We have the following additional property, which follows from [Mínguez and Sécherre 2014b,
Lemme 2.6].

Proposition 5.3. Let κ be a representation of J extending η, and write J1 for the maximal normal
pro-p-subgroup of J. The map

ξ 7→ κ ⊗ ξ

induces a bijection between isomorphism classes of irreducible representations ξ of J trivial on J1 and
isomorphism classes of irreducible representations of J whose restriction to J1 contains η.

We now give the classification of cuspidal irreducible representations of G in terms of extended maximal
simple types (see [Bushnell and Kutzko 1993, 6.2, 8.4] and [Mínguez and Sécherre 2014b, Section 3] in
the modular case).

Proposition 5.4 [Bushnell and Kutzko 1993; Mínguez and Sécherre 2014b]. Let π be a cuspidal repre-
sentation of G.

(1) There is an extended maximal simple type (J,λ) such that λ occurs as a subrepresentation of the
restriction of π to J. It is uniquely determined up to G-conjugacy.

(2) Compact induction defines a bijection between the G-conjugacy classes of extended maximal simple
types and the isomorphism classes of cuspidal representations of G.

From now on, we will abbreviate extended maximal simple type to type.

5C. Supercuspidal representations. Let π be a cuspidal representation of G. By Proposition 5.4, it con-
tains a type (J,λ). Fix an irreducible representation κ as in Proposition 5.3 and let ρ be the corresponding
representation of J trivial on its maximal normal pro-p-subgroup J1.

Fix a maximal simple stratum [a, β] such that J= J(a, β). Write E= F[β] and let ρ be the cuspidal
representation of J/J1

' GLm(l) induced by ρ. We record the following fact.

Fact 5.5 [Mínguez and Sécherre 2014a, Proposition 6.10]. The representation π is supercuspidal if and
only if ρ is supercuspidal.

Now suppose that π is supercuspidal, thus ρ is also supercuspidal. We show how to parametrize ρ by
an “admissible pair of level zero”. This will be needed in Sections 8 and 10.

First, let t be an extension of degree m of l , and identify t× with a maximal torus in GLm(l). We have
the correspondence (2-2) between l-regular characters of t× and isomorphism classes of supercuspidal
irreducible representations of GLm(l).
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Definition 5.6 [Howe 1977; Bushnell and Henniart 2005a]. An admissible pair of level zero over E is a
pair (K/E, ξ) made of a finite unramified extension K of E and a tamely ramified character ξ : K×→ R×

which does not factor through NK/L for any field L such that E⊆ L ( K. Its degree is [K : E].

If (K′/E, ξ ′) is another admissible pair of level zero over E, it is said to be isomorphic to (K/E, ξ) if
there is an isomorphism of E-algebras ϕ : K′→ K such that ξ ′ = ξ ◦ϕ.

Recall (see Paragraph 5A) that, if we write B× for the centralizer of E in G, then J= (J∩B×)J1, thus
the group J/J1 is isomorphic to (J∩B×)/(J1

∩B×). In particular, the image of E× in J/J1 is central.
Since ρ is trivial on J1, the automorphism ρ(x) is thus a scalar for all x ∈ E×.

Definition 5.7. An admissible pair (K/E, ξ) of level zero and degree m is attached to ρ if:

(1) Writing t for the residue field of K, the l-regular character of t× induced by the restriction of ξ to
the units of the ring of integers of K corresponds to ρ via (2-2).

(2) One has ρ(x)= ξ(x) · id for all x ∈ E×, where id is the identity on the space of ρ.

The following proposition is a refinement of the property of the map (2-2).

Proposition 5.8. The attachment relation defines a bijection

(K/E, ξ) 7→ ρ(K/E, ξ) (5-7)

between isomorphism classes of admissible pairs of level zero over E and isomorphism classes of
irreducible representations of J trivial on J1 whose restriction to J defines a supercuspidal representation
of GLm(l) through (5-6).

Remark 5.9. As in Remark 2.2, let us fix an embedding ι : R→ R′ of algebraically closed fields of
characteristic `, and let (K/E, ξ) be an admissible pair of level zero over E such that ξ takes values in R.
Then (K/E, ι ◦ ξ) is an admissible pair of level zero over E, and

ρ(K/E, ι ◦ ξ)= ρ(K/E, ξ)⊗R′.

This refines the last assertion of Remark 2.2.

5D. The σ -selfdual type theorem. Let us fix an integer n ≥ 1 and write G= GLn(F). We recall the first
main result of [Anandavardhanan et al. 2018].

Theorem 5.10 [Anandavardhanan et al. 2018, Theorem 4.1]. Let π be a cuspidal representation of G. It
is σ -selfdual if and only if it contains a type (J,λ) such that J is σ -stable and λσ ' λ∨.

Remark 5.11. More precisely (see [Anandavardhanan et al. 2018, Corollary 4.21]), any σ -selfdual
cuspidal representation contain a σ -selfdual type (J,λ) with the additional property that J= J(a, β) for
some maximal simple stratum [a, β] in Mn(F) such that:
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(1) The hereditary order a is σ -stable and σ(β)=−β.

(2) The element β has the block diagonal form

β =

β0
. . .

β0

= β0⊗ 1 ∈Md(F)⊗F Mm(F)=Mn(F)

for some β0 ∈Md(F), where d is the degree of β over F and n = md; the centralizer B of E= F[β]
in Mn(F) thus identifies with Mm(E), equipped with the involution σ acting componentwise.

(3) The order b= a∩B is the standard maximal order of Mm(E).

Such a type will be useful in the discussion following Proposition 5.17.

Remark 5.12. If (J,λ) is any σ -selfdual type, then there is a maximal simple stratum [a, β] in Mn(F)
such that J = J(a, β), the order a is σ -stable and σ(β) = −β (see [Anandavardhanan et al. 2018,
Corollary 4.24]). Such a maximal simple stratum will be said to be σ -selfdual.

Remark 5.13. Let π be a σ -selfdual cuspidal representation of G. Let (J,λ) be a σ -selfdual type in π ,
let [a, β] be a simple stratum such that J= J(a, β) and let θ ∈ C(a, β) be the maximal simple character
attached to λ. Then H1(a, β) is σ -stable and θ ◦ σ = θ−1.

Let π be a σ -selfdual cuspidal representation of G. Let (J,λ) be a σ -selfdual type in π and fix a
σ -selfdual simple stratum [a, β] as in Remark 5.12. Then E = F[β] is σ -stable. We denote by E0 the
field of σ -fixed points in E, by T the maximal tamely ramified subextension of E over F and by T0 the
intersection T∩E0. Also write d = [E : F] and n = md .

Proposition 5.14 [Anandavardhanan et al. 2018, Proposition 4.30]. The integer

m(π)= m = n/d (5-8)

and the F0-isomorphism class of the quadratic extension T/T0 only depend on π , and not on the choice of
the σ -selfdual simple stratum [a, β] as in Remark 5.12.

The integer m defined by (5-8) it called the relative degree of π . We record a list of properties of the
field extension T/F.

Lemma 5.15. (1) The canonical homomorphism of T0⊗F0 F-modules

T0⊗F0 F→ T

is an isomorphism.

(2) If F/F0 is unramified, then T/T0 is unramified and T/F has odd residual degree.

(3) The extension T/T0 is ramified if and only if F/F0 is ramified and T0/F0 has odd ramification order.
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Proof. Assertion (1) is [Anandavardhanan et al. 2018, Lemma 4.10]. We now prove (2) and (3).
First, suppose that F/F0 is unramified. We remark that

f (T/F) · f (F/F0)= f (T/T0) · f (T0/F0)

is even. Since F does not embed in T0 as an F0-algebra, T0 has odd residue degree over F0. It follows
that f (T/T0)= 2 and that T has odd residue degree over F.

Suppose F/F0 is ramified, and let $ be a uniformizer of F such that $0 =$
2 is a uniformizer of F0.

Let e0 be the ramification order of T0/F0, and let t0 be a uniformizer of T0 such that

$0 = te0
0 ζ0

for some root of unity ζ0 ∈ F×0 of order prime to p. Let a be the greatest integer smaller than or equal to
e0/2, and write x =$ t−a

0 . We have σ(x)=−x , thus x /∈ T0 and x2
∈ T0.

If e0 is odd, then x2
= ζ0t0 is a uniformizer of T0, whereas x is a uniformizer of T, thus T is ramified

over T0.
If e0 is even, then x2

= ζ0. It follows that x is a root of unity of order prime to p which is in T but not
in T0, thus T is unramified over T0. �

Remark 5.16. (1) The extensions E/E0 and T/T0 have the same ramification order.

(2) The extension E/E0 is ramified if and only if F/F0 is ramified and E0/F0 has odd ramification order.
The first property comes from [Anandavardhanan et al. 2018, Remark 4.22], and the second one follows

from the first one together with Lemma 5.15.

We now recall the classification of all σ -selfdual types contained in a given σ -selfdual cuspidal
representation of G (see [Anandavardhanan et al. 2018, Proposition 4.31]).

Proposition 5.17. Let π be a σ -selfdual cuspidal representation of G, and let T/T0 denote the quadratic
extension associated to it.

(1) If T is unramified over T0, the σ -selfdual types contained in π form a single Gσ -conjugacy class.

(2) If T is ramified over T0, the σ -selfdual types contained in π form exactly bm/2c + 1 different
Gσ -conjugacy classes.

One can give a more precise description in the ramified case. Suppose that T is ramified over T0, and
let (J0,λ0) be a σ -selfdual type in π satisfying the conditions of Remark 5.11. Let us fix a uniformizer t
of E. For i = 0, . . . , bm/2c, let ti denote the diagonal matrix

diag(t, . . . , t, 1, . . . , 1) ∈ B× = GLm(E)

where t occurs i times. Then the pairs (Ji ,λi )= (Jti
0 ,λ

ti
0 ), for i = 0, . . . , bm/2c, form a set of representa-

tives of the Gσ -conjugacy classes of σ -selfdual types in π .

Definition 5.18. The integer i is called the index of the Gσ -conjugacy class of (Ji ,λi ). It does not depend
on the choice of (J0,λ0), nor on that of t .
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Let [a, β] be a simple stratum as in Remark 5.11 such that J0 = J(a, β). If one identifies the quotient
J(a, β)ti /J1(a, β)ti with GLm(l) via

J(a, β)ti /J1(a, β)ti ' J(a, β)/J1(a, β)' U(b)/U1(b)' GLm(l)

then σ acts on GLm(l) by conjugacy by the diagonal element

δi = diag(−1, . . . ,−1, 1, . . . , 1) ∈ GLm(l)

where −1 occurs i times, and (J(a, β)ti ∩ Gσ )/(J1(a, β)ti ∩ Gσ ) identifies with the Levi subgroup
(GLi ×GLm−i )(l) of GLm(l).

5E. Admissible pairs and σ -selfduality. Let (J,λ) be a σ -selfdual type in G. Fix a σ -selfdual maximal
simple stratum [a, β] such that J = J(a, β) as in Remark 5.12, and a decomposition of λ of the form
κ ⊗ ρ as in Paragraph 5B. Write E= F[β] as usual.

Proposition 5.19. Suppose that the representation ρ is σ -selfdual, and let (K/E, ξ) be an admissible pair
of level zero attached to it. There is a unique involutive E0-automorphism σ̂ of K such that ξ ◦ σ̂ = ξ−1

and σ̂ coincides with σ on E.

Proof. Let K′ denote the extension of E given by the field K equipped with the map x 7→ σ(x) from E to K.
Then the pair (K′/E, ξ) is admissible of level zero, and it is attached to ρσ . On the other hand, (K/E, ξ−1)

is admissible of level zero, attached to ρ∨. Since ρ is σ -selfdual, there is an E-algebra isomorphism
σ̂ : K→ K′ such that ξ ◦ σ̂ = ξ−1. We thus have

ξ ◦ σ̂ 2
= ξ−1

◦ σ̂ = ξ

and σ̂ 2 is an E-algebra automorphism of K. By admissibility of (K/E, ξ), the latter automorphism is
trivial, thus σ̂ satisfies the required conditions. Uniqueness follows by admissibility again. �

For simplicity, we will write σ for the involutive automorphism given by Proposition 5.19. Let K0 be
the field of σ -fixed points of K. The following lemma will be useful in Section 10.

Lemma 5.20. If E/E0 is ramified and m is even, then K/K0 is unramified.

Proof. Write m = 2r for some r ≥ 1. Let t be a uniformizer of E such that σ(t)=−t and let ζ ∈ K be
a root of unity of order cm

− 1, where c is the cardinality of l . We thus have E = E0[t] and K = E[ζ ].
Since σ is involutive, it induces an involutive l-automorphism of t , the residual field of K. If the latter
were trivial, the relation ξ ◦ σ = ξ−1 would imply that the character ξ of t× induced by ξ is quadratic,
contradicting the fact that it is l-regular. The automorphism of t induced by σ is thus the r -th power of
the Frobenius automorphism. Now consider the element

α = ζ (c
r
+1)/2.

It has order 2(cr
− 1), thus σ(α) = −α. Since α2 has order cr

− 1, the extension of E0 it generates is
unramified and has degree r . We thus have E0[α

2, tα] ⊆ K0 and their degrees are equal. Now we deduce
that K= K0[α] = K0[ζ ] is unramified over K0. �
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5F. The following lemma will be useful in Sections 7 and 9, when we investigate decompositions of
σ -selfdual types of the form κ ⊗ ρ which behave well under σ .

Let θ ∈ C(a, β) be a maximal simple character such that H1(a, β) is σ -stable and θ ◦ σ = θ−1. Let
J be its normalizer in G, let J1 be the maximal normal pro-p-subgroup of J and η be the irreducible
representation of J1 containing θ .

Lemma 5.21. Let κ be a representation of J extending η. There is a unique character µ of J trivial on J1

such that κσ∨ ' κµ. It satisfies the identity µ ◦ σ = µ.

Proof. Let κ be an irreducible representation of J extending η. By uniqueness of the Heisenberg
representation, the fact that θ ◦ σ = θ−1 implies that ησ∨ is isomorphic to η. Thus κ and κσ∨ are
representations of J extending η. There is a character µ of J trivial on J1 such that we have κσ∨ ' κµ. It
satisfies µ ◦ σ = µ. It is unique by Proposition 5.3. �

6. The distinguished type theorem

In this section we prove the following result, which is our first main theorem. It will be refined by
Theorem 10.3 in Section 10. Recall that p 6= 2 until the end of this article.

Theorem 6.1. Let π be a σ -selfdual cuspidal representation of G. Then π is distinguished if and only if
it contains a σ -selfdual type (J,λ) such that HomJ∩Gσ (λ, 1) is nonzero.

Remark 6.2. If π is distinguished, it follows easily from the multiplicity 1 property in Theorem 4.1
that the distinguished σ -selfdual types (J,λ) occurring in π form a single Gσ -conjugacy class (see
Remark 6.23).

Remark 6.3. Theorem 6.1 is proved in [Anandavardhanan et al. 2018] in a different manner than
the one we give here, although both proofs use the σ -selfdual type Theorem 5.10. The proof given in
[Anandavardhanan et al. 2018] is based on a result of Ok [1997], proved by Ok for complex representations
and extended to the modular case in [Anandavardhanan et al. 2018, Appendix B]. However, the proof we
give here is more likely to generalize to other situations.

Let π be a σ -selfdual cuspidal representation. Theorem 5.10 tells us that it contains a σ -selfdual type
(J,λ), and Proposition 5.4 tells us that π is compactly induced from λ. A simple application of the
Mackey formula gives us

HomGσ (π, 1)'
∏

g

HomJg
∩Gσ (λ

g, 1) (6-1)

where g ranges over a set of representatives of (J,Gσ )-double cosets in G.

Remark 6.4. It follows from Theorem 4.1 that there is at most one double coset JgGσ such that the
space HomJg

∩Gσ (λ
g, 1) is nonzero, and that this space has dimension at most 1. Thus the product in (6-1)

is actually a direct sum.
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In this section, our main task (achieved in Paragraph 6E) is to prove that, if HomJg
∩Gσ (λ

g, 1) is nonzero,
then σ(g)g−1

∈ J. Theorem 6.1 will follow easily from there (see Paragraph 6F).
We may assume that J = J(a, β) for a maximal simple stratum [a, β] satisfying the conditions of

Remark 5.11. The extension E= F[β], its centralizer B and the maximal order b= a∩B are thus stable
by σ . We write d = [E : F] and n = md. We identify B with the E-algebra Mm(E) equipped with the
involution σ acting componentwise, and b with its standard maximal order.

We write E0 = Eσ , the field of σ -invariant elements of E, and fix once and for all a uniformizer t of E
such that

σ(t)=
{

t if E is unramified over E0,
−t if E is ramified over E0.

(6-2)

We also write J= J(a, β), J1
= J1(a, β) and H1

= H1(a, β). Recall that J= E×J.
We denote by T the maximal tamely ramified subextension of E over F, and set T0 = T∩E0.
We insist on the fact that, throughout this section, we assume that the stratum [a, β] satisfies the

conditions of Remark 5.11.

6A. Double cosets contributing to the distinction of θ . Let θ ∈C(a, β) be the maximal simple character
occurring in the restriction of λ to H1. Suppose that HomJg

∩Gσ (λ
g, 1) is nonzero for some double coset

JgGσ . Restricting to H1g
∩Gσ , we deduce that the character θ g is trivial on H1g

∩Gσ .
In this paragraph, we look for the double cosets JgGσ

⊆ G such that the character θ g is trivial on
H1g
∩Gσ . For this, let us introduce the following general lemma.

Lemma 6.5. Let τ be an involution of G, let H be a τ -stable open pro-p-subgroup of G and let χ be a
character of H such that χ ◦ τ = χ−1. For any g ∈ G, the character χ g is trivial on Hg

∩Gτ if and only if
τ(g)g−1 intertwines χ .

Proof. Write K for the τ -stable subgroup Hg
∩ τ(Hg), which contains Hg

∩Gτ . Let A be the quotient
of K by [K,K], the closure of the derived subgroup of K. This is a τ -stable commutative pro-p-group.
Given x ∈ K, write x ′ for its image in A. For any b ∈ A, we have

b =
√

bτ(b) ·
√

bτ(b)−1

where b 7→
√

b is the inverse of the automorphism b 7→ b2 of A. Thus, for any x ∈ K, there are y, z ∈ K
such that x = yz and τ(y′)= y′ and τ(z′)= z′−1.

Since τ(z)= z−1h for some h ∈ [K,K], we have

χ g(τ (z))= χ g(z−1h)= χ g(z)−1. (6-3)

On the other hand, since τ(y)= yk for some k ∈ [K,K], the element y−1τ(y) defines a 1-cocycle in the
τ -stable pro-p-group [K,K]. Since p 6= 2, this cocycle is a coboundary, which implies

y ∈ (Hg
∩Gτ )[K,K]. (6-4)
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Now suppose that χ g is trivial on Hg
∩Gτ . Then (6-3) and (6-4) imply that

χ g(τ (x))= χ g(τ (z))= χ g(z)−1
= χ g(x)−1, for all x ∈ K. (6-5)

Besides, (6-5) is equivalent to χ g being trivial on Hg
∩Gτ . On the other hand, we have

χ g
◦ τ = (χ ◦ τ)τ(g) = (χ−1)τ(g) = (χ τ(g))−1 (6-6)

on K by assumption on χ . If we set γ = τ(g)g−1, then (6-5) is equivalent to

χ(h)= χγ (h) for all h ∈ H∩ γ−1Hγ .

This amounts to saying that γ intertwines χ . �

Proposition 6.6. Let g ∈ G. Then the character θ g is trivial on H1g
∩ Gσ if and only if we have

σ(g)g−1
∈ JB×J.

Proof. This follows from Lemma 6.5 applied to the simple character θ of H1 and the involution σ , together
with the fact that the intertwining set of θ is JB×J by Proposition 5.1(5). �

6B. The double coset lemma. We now prove the following fundamental lemma.

Lemma 6.7. Let g ∈ G. Then σ(g)g−1
∈ JB×J if and only if g ∈ JB×Gσ .

Proof. Write γ = σ(g)g−1. If g ∈ JB×Gσ , one verifies immediately that γ ∈ JB×J. Conversely, suppose
that γ ∈ JcJ for some c∈B×. We will first show that the double coset representative c can be chosen nicely.

Lemma 6.8. There is a b ∈ B× such that γ ∈ JbJ and bσ(b)= 1.

Proof. Recall that B× has been identified with GLm(E) and U = J∩B× = b× is its standard maximal
compact subgroup. By the Cartan decomposition, B× decomposes as the disjoint union of the double cosets

U · diag(ta1, . . . , tam ) ·U

where a1≥ · · · ≥ am ranges over nonincreasing sequences of m integers, and diag(λ1, . . . , λm) denotes the
diagonal matrix of B× with eigenvalues λ1, . . . , λm ∈E×. We thus may assume that c= diag(ta1, . . . , tam )

for a uniquely determined sequence of integers a1 ≥ · · · ≥ am .
The fact that σ(γ )= γ−1 implies that we have c ∈ Jc−1J∩B×. Using the simple intersection property

(5-1) together with the fact that J=UJ1 and J1
⊆U1(a), we have Jc−1J∩B×=Uc−1U. The uniqueness of

the Cartan decomposition of B× thus implies that the sequences a1 ≥ · · · ≥ am and −am ≥ · · · ≥ −a1 are
equal. We thus have ai +am+1−i = 0 for all i ∈ {1, . . . ,m}. Now write κ = σ(t)t−1

∈ {−1, 1} and choose
signs κ1, . . . , κm ∈ {−1, 1} such that κiκm+1−i = κ

ai for all i . This is always possible since a(m+1)/2 = 0
when m is odd. Then the antidiagonal element

b =

 κ1ta1

. .
.

κm tam

 ∈ B× (6-7)

satisfies the required conditions bσ(b)= 1 and γ ∈ JbJ. �
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Now write γ = x ′bx with x, x ′ ∈ J and b ∈ B×. Replacing g by σ(x ′)−1g does not change the double
coset JgGσ but changes γ into bxσ(x ′). From now on, we will thus assume that

γ = bx, bσ(b)= 1, x ∈ J, b is of the form (6-7). (6-8)

Write K for the group J∩ b−1Jb. Since σ(b)= b−1 and J is σ -stable, we have x ∈ K.

Lemma 6.9. The map δ : k 7→ b−1σ(k)b is an involutive group automorphism of K.

Proof. This follows from an easy calculation using the fact that bσ(b)= 1. �

Let b1 > · · ·> br be the unique decreasing sequence of integers such that

{a1, . . . , am} = {b1, . . . , br }

and m j denote the multiplicity of b j in (a1, . . . , am), for j ∈ {1, . . . , r}. We have m j = mr+1− j for all j ,
and m1+ · · ·+mr = m. These integers define a standard Levi subgroup

M= GLm1d(F)× · · ·×GLmr d(F)⊆ G. (6-9)

Write P for the standard parabolic subgroup of G generated by M and upper triangular matrices. Let N and
N− denote the unipotent radicals of P and its opposite parabolic subgroup with respect to M, respectively.
Since b has the form (6-7), it normalizes M and we have

K= (K∩N−) · (K∩M) · (K∩N), K∩P= J∩P, K∩N− ⊆ J1
∩N−.

We have similar properties for the subgroup V= K∩B× = U∩ b−1Ub of B×, that is

V= (V∩N−) · (V∩M) · (V∩N), V∩P= U∩P, V∩N− ⊆ U1
∩N−,

where U1
= J1
∩B× = U1(b). Note that this subgroup V is stable by δ.

Lemma 6.10. The subset

K1
= (K∩N−) · (J1

∩M) · (K∩N)

is a δ-stable normal pro-p-subgroup of K, and we have K= VK1.

Proof. To prove that K1 is a subgroup of K, it is enough to prove that one has the containment
(K ∩ N) · (K ∩ N−) ⊆ K1. Let j1 be the sub-O-lattice of a such that J1

= 1 + j1 and let j = b + j1,
thus J= j×. A simple computation shows that K∩N− ⊆ (1+ t j)∩N− and

(K∩N) · (K∩N−)⊆ (K∩N−) · ((1+ t j)∩M) · (K∩N).

The expected result thus follows from the fact that t j⊆ j1. Besides, K1 is a δ-stable pro-p-group.
Since V∩M normalizes K∩N−, K∩N and K1

∩M, we have (V∩M)K1
= K whence K1 is normal

in K and K= VK1, as expected. �

The subgroup K1 is useful in the following lemma. Note that we have xδ(x)= 1.
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Lemma 6.11. Let y ∈ K be such that yδ(y)= 1. There are k ∈ K and v ∈ V such that:

(1) The element v is diagonal in B× with eigenvalues in {−1, 1} and it satisfies vδ(v)= 1.

(2) One has δ(k)yk−1
∈ vK1.

Proof. Let V1
= V∩K1

= K1
∩B×. We have

V1
= (V∩N−) · (U1

∩M) · (U∩N).

We thus have canonical δ-equivariant group isomorphisms

K/K1
' V/V1

' (U∩M)/(U1
∩M). (6-10)

By (6-9), we have M∩B× =GLm1(E)×· · ·×GLmr (E), thus the right-hand side of (6-10) identifies with
M= GLm1(l)× · · ·×GLmr (l), where l denotes the residue field of E. Besides, since b is given by (6-7),
the involution δ acts on M as

(g1, . . . , gr ) 7→ (σ (gr ), . . . , σ (g1)).

Write y = vy′ for some v ∈ V and y′ ∈ K1. The simple intersection property (5-1) gives us

δ(v)−1
= δ(y′)vy′ ∈ V∩K1vK1

= V1vV1.

Thus there is u ∈ V1 such that vuδ(vu) ∈ V1. Replacing (v, y′) by (vu, u−1 y′), we may and will assume
that y = vy′ with vδ(v) ∈ V1.

We now compute the first cohomology set of δ in M. Let w = (w1, . . . , wr ) denote the image of y
in M. We have wδ(w)= 1, that is

σ(w j )= w
−1
r+1− j , for all j ∈ {1, . . . , r}.

If r is even, one can find an element a ∈M such that w = δ(a)a−1. If r is odd, say r = 2s− 1, one can
find an element a ∈M such that

δ(a)wa−1
= (1, . . . , 1, ws, 1, . . . , 1)

and we have wsσ(ws)= 1. If E/E0 is unramified, then l is quadratic over the residue field of E0, and it
follows from the triviality of the first cohomology set of σ in GLms (l) that w = σ(c)c−1 for some c ∈M.
In these two cases, we thus may find k ∈ K such that δ(k)xk−1

∈ K1.
It remains to treat the case where r is odd and E/E0 is ramified. In this case, we have w2

s = 1, thus ws

is conjugate in GLms (l) to a diagonal element with eigenvalues 1 and −1. Let i denote the multiplicity
of −1. Let

v ∈ U∩M= GLm1(OE)× · · ·×GLmr (OE)

(here OE is the ring of integers of E) be a diagonal matrix with eigenvalues 1 and −1, such that −1
occurs with multiplicity i and only in the s-th block. Then vδ(v) = 1 and there is k ∈ K such that
δ(k)yk−1

∈ vK1. �
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Applying Lemma 6.11 to x gives us k ∈K, v ∈V such that bvσ(bv)= 1 and δ(k)xk−1
∈ vK1. Besides,

bv is antidiagonal of the form (6-7) and σ(k)γ k−1
∈ bvK1. Therefore, replacing g by kg, which does

not change the double coset JgGσ , we will assume that γ can be written

γ = bx, bσ(b)= 1, x ∈ J1, b is of the form (6-7). (6-11)

Comparing with (6-8), we now have a stronger condition on x , that is xδ(x)= 1 and x ∈ K1.
Since K1 is a δ-stable pro-p-group and p is odd, the first cohomology set of δ in K1 is trivial. Thus

x = δ(y)y−1 for some y ∈K1, hence γ = σ(y)by−1. Since bσ(b)= 1 and the first cohomology set of σ in
B× is trivial, one has b=σ(h)h−1 for some h∈B×. Thus g∈ yhGσ

⊆JB×Gσ , and Lemma 6.7 is proved. �

6C. Contribution of the Heisenberg representation. Let η be the Heisenberg representation of J1 asso-
ciated to θ (see Paragraph 5B). In this paragraph, we prove the following result.

Proposition 6.12. Given g ∈ G, we have

dim HomJ1g∩Gσ (η
g, 1)=

{
1 if g ∈ JB×Gσ ,

0 otherwise.

Proof. Suppose that HomJ1g∩Gσ (η
g, 1) is nonzero. Restricting to H1g

∩Gσ , the character θ g is trivial
on H1g

∩Gσ , and Proposition 6.6 together with Lemma 6.7 give us g ∈ JB×Gσ . Conversely, assume
that g ∈ JB×Gσ . Since the dimension of HomJ1g∩Gσ (η

g, 1) does not change when g varies in a given
(J,Gσ )-double coset, we may and will assume that we have g ∈ B×. Thus we have γ = σ(g)g−1

∈ B×

as well.

Lemma 6.13. The map τ : x 7→ γ−1σ(x)γ is an involutive automorphism of G and, for any subgroup
H⊆ G, we have Hg

∩Gσ
= (H∩Gτ )g.

Proof. This follows from an easy calculation using the fact that σ(γ )= γ−1. �

Our goal is thus to prove that the space HomJ1∩Gτ (η, 1) has dimension 1. By Paragraph 5B, the repre-
sentation of J1 induced from θ decomposes as the direct sum of (J1

:H1)1/2 copies of the representation η.
The space

HomJ1∩Gτ (IndJ1

H1(θ), 1) (6-12)

thus decomposes as the direct sum of (J1
:H1)1/2 copies of HomJ1∩Gτ (η, 1). Applying Frobenius reciprocity

and the Mackey formula, the space (6-12) is isomorphic to

HomJ1(IndJ1

H1(θ), IndJ1

J1∩Gτ (1))'
⊕
x∈X

HomH1(θ, IndH1

H1∩(J1∩Gτ )x (1))

where X is equal to J1/(J1
∩ Gτ )H1 (recall that H1 is normal in J1 and J1/H1 is abelian). Since J1

normalizes θ , this is isomorphic to⊕
x∈X

HomH1(θ, IndH1

H1∩Gτ (1))'
⊕
x∈X

HomH1∩Gτ (θ, 1). (6-13)
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Since HomH1∩Gτ (θ, 1) has dimension 1, the right-hand side of (6-13) has dimension the cardinality of X.
It thus remains to prove that X has cardinality (J1

: H1)1/2, or equivalently

(J1
∩Gτ

: H1
∩Gτ )= (J1

: H1)1/2. (6-14)

Now consider the groups J1
∩ J1γ and H1

∩H1γ , which are both stable by τ .

Lemma 6.14. We have θ(τ (x))= θ(x)−1 for all x ∈ H1
∩H1γ .

Proof. Given x ∈ H1
∩H1γ , and using the fact that θ ◦ σ = θ−1 on H1, we have

θ(τ (x))−1
= θ ◦ σ(τ(x))= θγ (x)= θ(x)

since γ ∈ B× intertwines θ . �

Let us write V for the k-vector space (J1
∩ J1γ )/(H1

∩ H1γ ) equipped with both the involution τ
and the symplectic form (x, y) 7→ 〈x, y〉 induced by (5-3). We write V+ = {v ∈ V | τ(v) = v} and
V− = {v ∈ V | τ(v)=−v}. We have the decomposition V= V+⊕V− since p 6= 2.

Lemma 6.15. There is a group isomorphism V+ ' (J1
∩Gτ )/(H1

∩Gτ ).

Proof. First note that we have the containment (J1
∩Gτ )(H1

∩H1γ )/(H1
∩H1γ )⊆ V+. The lemma will

follow if we prove that this containment is an equality. Let x ∈ J1
∩ J1γ be such that x(H1

∩H1γ ) ∈ V+.
One thus has x−1τ(x) ∈ H1

∩H1γ . Since H1
∩H1γ is a τ -stable pro-p-group and p 6= 2, there is an

h ∈ H1
∩H1γ such that x−1τ(x)= h−1τ(h). The expected result follows. �

We are now going to prove that V+ and V− have the same dimension.

Lemma 6.16. The subspaces V+ and V− are totally isotropic.

Proof. Indeed, thanks to Lemma 6.14, first note that

〈τ(x), y〉 = 〈τ(y), x〉, x, y ∈ V. (6-15)

If x, y ∈ V+, then we get 〈x, y〉 = 〈x, y〉−1, thus 〈x, y〉 = 1 since p 6= 2. If x, y ∈ V−, then we get
〈x−1, y〉 = 〈x, y−1

〉
−1. But 〈x−1, y〉 = 〈x, y〉−1

= 〈x, y−1
〉. It follows again that 〈x, y〉 = 1. �

Let W denote the kernel of the symplectic form (x, y) 7→ 〈x, y〉 on V, that is

W = {w ∈ V | 〈w, v〉 = 1 for all v ∈ V}.

Let Y and Y′ denote the images of H1
∩ J1γ and J1

∩H1γ in V, respectively.

Lemma 6.17. The subspaces Y and Y′ are both contained in W, and we have W = Y⊕Y′.

Proof. One easily verifies that τ stabilizes W and exchanges Y and Y′. First note that Y ⊆W, since
〈x, y〉 = 1 for any x ∈ H1 and y ∈ J1. By applying τ , and thanks to (6-15), we deduce that Y′ is also
contained in W. Now, thanks to (5-4), we have

〈1+ x, 1+ y〉 = ψ ◦ tr(β(xy− yx))

for all x, y∈ j1∩j1γ , where j1 is the sub-O-lattice of a such that J1
=1+j1. Let aβ denote the endomorphism

of F-algebras x 7→ βx − xβ of Mn(F). Given a subset S⊆Mn(F), write S∗ for the set of a ∈Mn(F) such
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that ψ(tr(as))= 1 for all s ∈ S. Then the set of x ∈ j1∩ j1γ such that 〈1+ x, 1+ y〉 = 1 for all y ∈ j1∩ j1γ

is equal to

j1 ∩ j1γ ∩ aβ(j1 ∩ j1γ )∗ = j1 ∩ j1γ ∩ (aβ(j1)∩ aβ(j1)γ )∗

= j1 ∩ j1γ ∩ (aβ(j1)∗+ aβ(j1)∗γ )

= j1γ ∩ (j1 ∩ aβ(j1)∗)+ j1 ∩ (j1 ∩ aβ(j1)∗)γ .

We now claim that

j1 ∩ aβ(j1)∗ = h1. (6-16)

To see this, look at the case where g = 1. On the one hand, for x ∈ j1, we have 〈1+ x, 1+ y〉 = 1 for all
y ∈ j1 if and only if x ∈ j1 ∩ aβ(j1)∗. On the other hand, the symplectic form (5-3) on the space J1/H1 is
nondegenerate. We thus have j1 ∩ aβ(j1)∗ ⊆ h1 and the other containment follows from the fact that ψ is
trivial on the maximal ideal of O.

We now go back to our general situation with g ∈ B×. Applying (6-16) to j1 and j1γ , we get

j1 ∩ j1γ ∩ aβ(j1 ∩ j1γ )∗ = j1γ ∩ h1
+ h1γ

∩ j1.

The result follows. �

Corollary 6.18. The subspaces W+ =W∩V+ and W− =W∩V− have the same dimension and we have
W =W+⊕W−.

Proof. The map x 7→ x + τ(x) is an isomorphism from Y to W+, and the map x 7→ x − τ(x) is an
isomorphism from Y to W−. Thanks to Lemma 6.17 and the fact that Y, Y′ have the same dimension, we
thus have

dim W++ dim W− = 2 · dim Y = dim W,

which ends the proof of the corollary. �

Now consider the nondegenerate symplectic space V/W. It decomposes into the direct sum of two
totally isotropic subspaces (V++W)/W and (V−+W)/W. We thus have

max(dim((V++W)/W), dim((V−+W)/W))≤ 1
2 · dim(V/W),

dim((V++W)/W)+ dim((V−+W)/W)= dim(V/W).

These spaces thus have the same dimension and are maximal totally isotropic. Corollary 6.18 now implies
that V+ and V− have the same dimension.

In order to deduce the equality (6-14), and thanks to Lemma 6.15, it remains to prove that1

(J1
∩ J1γ

: H1
∩H1γ )= (J1

: H1),

which follows from [Bushnell and Kutzko 1993, Lemma 5.1.10]. This ends the proof of Proposition 6.12.
�

1I thank Jiandi Zou for pointing out this argument to me, which was missing in a former version of the proof.



1712 Vincent Sécherre

6D. Contribution of the mixed Heisenberg representation. Let g ∈ JB×Gσ . We saw in Paragraph 6B
(see (6-11)) that, changing g without changing the double coset JgGσ , we may assume that g ∈ B× and
that γ = σ(g)g−1 can be written γ = bu with b of the form (6-7) and u ∈ U1

= J1
∩B×. We write τ for

the involution defined by Lemma 6.13 and U= J∩B×.
We have a standard Levi subgroup M of G defined by (6-9) and parabolic subgroups P, P− of G with

Levi component M, opposite to each other and with unipotent radicals N, N− respectively. There is a
unique standard hereditary order bm ⊆ b such that

b×m = (U
1
∩N−) · (U∩P).

Since u ∈ U1
⊆ U1(bm) and thanks to the specific form of b, one verifies that

U1(bm)= (U1
∩P−) · (U∩N)= (U∩U1γ )U1. (6-17)

Let am ⊆ a be the unique hereditary order of Mn(F) normalized by E× such that am∩B= bm. This gives
us a simple stratum [am, β]. Let θm ∈ C(am, β) be the transfer of θ (see (5-5)) and ηm be the Heisenberg
representation on J1

m = J1(am, β) associated with θm (by [Bushnell and Kutzko 1993, Proposition 5.1.1;
Mínguez and Sécherre 2014b, Proposition 2.1]).

Let S1 be the pro-p-subgroup U1(bm)J1
⊆ J. By [Bushnell and Kutzko 1993, Proposition 5.1.15], there

is an irreducible representation µ of the group S1, unique up to isomorphism, extending η and such that

IndU1(am)

S1 (µ)' IndU1(am)

J1
m

(ηm). (6-18)

In this paragraph, we prove the following result.

Proposition 6.19. We have dim HomS1g∩Gσ (µ
g, 1)= 1.

Proof. Since µ extends η, the space HomS1g∩Gσ (µ
g, 1) is contained in the 1-dimensional space

HomJ1g∩Gσ (η
g, 1). It is thus enough to prove that HomS1g∩Gσ (µ

g, 1) is nonzero. Equivalently, by
Lemma 6.13, it is enough to prove that HomS1∩Gτ (µ, 1) is nonzero.

First note that, since bm is σ -stable, am is σ -stable as well. We have

σ(H1(am, β))= H1(σ (am), σ (β))= H1(am,−β)= H1(am, β)

thus H1
m = H1(am, β) is σ -stable. By an argument similar to the one used in [Anandavardhanan et al.

2018, Paragraph 4.6], it then follows that θm ◦ σ = (θm)
−1.

Since γ intertwines θm by Proposition 5.1(5), it follows from Proposition 6.6 that the character θ g
m is

trivial on H1g
m ∩Gσ , thus HomJ1g

m ∩Gσ (η
g
m, 1)= HomJ1

m∩Gτ (ηm, 1) is nonzero. Inducing to U1(am), we get

HomU1(am)∩Gτ (IndU1(am)

J1
m

(ηm), 1) 6= {0}.

Applying the Frobenius reciprocity and the Mackey formula, it follows that there is a x ∈U1(am) such that

HomS1x∩Gτ (µ
x , 1) 6= {0}. (6-19)
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We claim that x ∈ S1(U1(am) ∩ Gτ ). Restricting (6-19) to the subgroup H1x
∩ Gτ and applying

Proposition 6.6, we get

σ(xg)g−1x−1
= σ(x)γ x−1

∈ J1B×J1
∩U1(am)γU1(am).

Write σ(x)γ x−1
= jcj ′ for some j, j ′ ∈ J1 and c ∈ B×. Since γ ∈ B× and J1

⊆ U1(am), the simple
intersection property (5-1) implies that c ∈U1(am)γU1(am)∩B× =U1(bm)γU1(bm). Therefore we have
σ(x)γ x−1

= σ(s)γ s ′ for some s, s ′ ∈ S1. If we let y = s−1x , then we have σ(y)γ y−1
= γ l for some

l ∈ S1, that is τ(y)y−1
= l. Since the first cohomology set of τ in S1

∩ S1γ is trivial, we get l = τ(h)h−1

for some h ∈ S1. This gives us
x ∈ U1(am)∩S1(Gσ )g

−1

and the claim follows from the fact that S1
⊆ U1(am).

Putting the claim and (6-19) together, we deduce that HomS1∩Gτ (µ, 1) is nonzero. �

6E. The double coset theorem. Let κ be an irreducible representation of J extending η as in Paragraph 5B.
There is an irreducible representation ρ of J, unique up to isomorphism, which is trivial on the subgroup
J1 and satisfies λ' κ ⊗ ρ. We have the following lemma.

Lemma 6.20. Let g ∈ JB×Gσ .

(1) There is a unique character χ of Jg
∩Gσ trivial on J1g

∩Gσ such that

HomJ1g∩Gσ (η
g, 1)= HomJg

∩Gσ (κ
g, χ−1).

(2) The canonical linear map

HomJ1g∩Gσ (η
g, 1)⊗HomJg

∩Gσ (ρ
g, χ)→ HomJg

∩Gσ (λ
g, 1)

is an isomorphism.

Proof. Let us fix a nonzero linear form E ∈ HomJ1g∩Gσ (η
g, 1). The choice of κ defines an action of

Jg
∩Gσ on the space HomJ1g∩Gσ (η

g, 1), which has dimension 1 by Proposition 6.12. This determines a
unique character χ of Jg

∩Gσ trivial on J1g
∩Gσ such that

E ◦ κg(x)= χ(x)−1
· E

for all x ∈ Jg
∩Gσ . This gives us the first part of the lemma.

Given L ∈ HomJg
∩Gσ (λ

g, 1) and w in the space of ρ, the linear form v 7→ L (v ⊗w) defined on
the space of η is in HomJ1g∩Gσ (η

g, 1). By Proposition 6.12 it is thus of the form F (w)E for a unique
F (w) ∈ R. We have L = E ⊗F and F ∈ HomJg

∩Gσ (ρ
g, χ). �

Theorem 6.21. Let g ∈ G and suppose HomJg
∩Gσ (λ

g, 1) is nonzero. Then σ(g)g−1
∈ J.

Proof. We know from Proposition 6.6 and Lemma 6.7 that g ∈ JB×Gσ . We thus may assume that g ∈ B×

and γ = σ(g)g−1 is as in Paragraph 6D. In particular, we have a standard hereditary order bm ⊆ b and an
involution τ .
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Let us fix an irreducible representation κ of J extending η, and let χ be the character given by
Lemma 6.20. The restriction of κ to J, denoted κ , is an irreducible representation of J extending η.
It follows from Remark 5.2 that κ is a beta-extension of η, and from [Bushnell and Kutzko 1993,
Theorem 5.2.3] that κ extends µ. Proposition 6.19 thus implies

HomS1g∩Gσ (µ
g, 1)= HomJg

∩Gσ (κ
g, χ−1)

and χ is trivial on U1(bm)
g
∩Gσ . By Lemma 6.20, the space HomJg

∩Gσ (ρ
g, χ) is nonzero.

Write U= J∩B× and U1
= J1
∩B×. Since g ∈ B×, we have Jg

∩Gσ
= (Ug

∩Gσ )(J1g
∩Gσ ). Let ρ be

the restriction of ρ to J. Then HomUg∩Gσ (ρ
g, χ) is nonzero. Lemma 6.13 implies

HomU1(bm)∩Gτ (ρ, 1)= HomU1(bm)g∩Gσ (ρ
g, 1) 6= {0}. (6-20)

We now describe more carefully the subgroup U1(bm).

Lemma 6.22. We have U1(bm)= (U1(bm)∩Gτ )U1.

Proof. We follow the proof of [Hakim and Murnaghan 2008, Proposition 5.20]. According to (6-17)
it is enough to prove that U ∩ U1γ is contained in (U1(bm) ∩ Gτ )U1. Let x ∈ U ∩ U1γ and define
y = x−1τ(x)−1xτ(x). Then y ∈U1

∩U1γ and yτ(y)= 1. Since the first cohomology set of τ in U1
∩U1γ

is trivial, we get y = zτ(z)−1 for some z ∈ U1
∩U1γ . Define x ′ = xτ(x)τ (z). Then x ′ ∈ U1(bm)∩Gτ

and we have x ∈ x ′U1. �

Since ρ is trivial on U1, Lemma 6.22 and (6-20) together imply that HomU1(bm)(ρ, 1) is nonzero. Since
U1(bm)/U1 is a unipotent subgroup of U/U1

'GLm(l), the fact that the representation ρ is cuspidal (see
Paragraph 5B) implies that bm = b, that is γ ∈ U⊆ J. �

Lemma 4.25 of [Anandavardhanan et al. 2018] gives a detailed account of the elements g ∈ G such
that σ(g)g−1

∈ J.

6F. Proof of Theorem 6.1. Let π be a σ -selfdual cuspidal representation of G, and (J,λ) be a σ -selfdual
type in π given by Theorem 5.10. If the space HomJ∩Gσ (λ, 1) is nonzero, then (6-1) implies that π is
distinguished.

Conversely, suppose that π is distinguished and that (J,λ) has been chosen as in Remark 5.11 as it may
be. Then the space HomJg

∩Gσ (λ
g, 1) is nonzero for some g ∈G. By Theorem 6.21, one has σ(g)g−1

∈ J.
Thus Jg is σ -stable, and

(λg)σ = (λσ )σ(g) ' (λ∨)g = (λg)∨

thus the type (Jg,λg) is σ -selfdual.

Remark 6.23. Let (J,λ) and (J′,λ′) be two distinguished σ -selfdual types in π . Since they both occur
in π , there is a g ∈G such that J′ = Jg and λ′ ' λg. Thanks to the multiplicity 1 property of Theorem 4.1,
the formula (6-1) tells us that the double cosets JGσ and JgGσ are equal, which implies that g ∈ JGσ .
Thus a distinguished cuspidal representation π contains, up to Gσ -conjugacy, a unique distinguished
σ -selfdual type.
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Recall that Proposition 5.14 associates to any σ -selfdual cuspidal representation of G a quadratic
extension T/T0.

Corollary 6.24. Let π be a σ -selfdual cuspidal representation of G, and suppose that T/T0 is unramified.
Then π is distinguished if and only if any σ -selfdual type in π is distinguished.

Proof. This follows from Theorem 6.1 together with Proposition 5.17, which says that the representation
π contains, up to Gσ -conjugacy, a unique σ -selfdual type. �

When T/T0 is ramified, Proposition 5.17 tells us that π contains more than one Gσ -conjugacy class of
σ -selfdual types as soon as its relative degree m is at least 2. In the next section, we will see that the
Gσ -conjugacy class of index bm/2c (see Definition 5.18) is the only one which may contribute to the
distinction of π .

7. The cuspidal ramified case

As usual, write G = GLn(F) for some n ≥ 1. To any σ -selfdual cuspidal representation of G, one can
associate a quadratic extension T/T0 and its relative degree m (see Proposition 5.14). In this section, we
will consider the case where T/T0 is ramified.

7A. The first main result of this section is the following proposition, which we will prove in Paragraph 7C.

Proposition 7.1. Let π be a σ -selfdual cuspidal representation of G with quadratic extension T/T0 and
relative degree m. Suppose T/T0 is ramified. Then π is distinguished if and only if

(1) either m = 1 or m is even, and

(2) any σ -selfdual type of index bm/2c contained in π is distinguished.

Remark 7.2. Proposition 7.1 refines Theorem 6.1 by saying that, if T/T0 is ramified, then the Gσ -
conjugacy class of σ -selfdual types of index bm/2c contained in π is the only one which may contribute
to the distinction of π . See [Anandavardhanan et al. 2018, Proposition 5.5] for a characterization of this
class in terms of Whittaker data. See also Definition 10.1 and Remark 10.2 below.

Remark 7.3. Proposition 7.1 is proved in [Anandavardhanan et al. 2018] in a different manner from
the one we give here (see Remark 6.3 above and [Anandavardhanan et al. 2018, Corollary 6.6 and
Remark 6.7]).

Remark 7.4. If we assume π to be supercuspidal in Proposition 7.1, then m is automatically either even
or equal to 1, even if π is not distinguished (see Proposition 8.1).

Remark 7.5. However, if π is nonsupercuspidal in Proposition 7.1, then its relative degree m need not
be either even nor equal to 1. Let k be a divisor of n and τ be a σ -selfdual supercuspidal representation
of GLn/k(F). Assume R has characteristic ` > 0, let ν be the unramified character “absolute value of
the determinant” and let e(τ ) be the smallest integer i ≥ 1 such that τνi

' τ . Suppose that k = e(τ )`u
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for some u ≥ 0. Then [Mínguez and Sécherre 2014a, Théorème 6.14] tells us that the unique generic
irreducible subquotient π of the normalized parabolically induced representation

τ × τν× · · ·× τνk−1

is cuspidal, and that it is σ -selfdual since τ is. If k > 1 and m(π)= km(τ ) is odd, then π is a σ -selfdual
cuspidal representation which is not distinguished nor ω-distinguished. (For instance, this is the case when
τ is the trivial character of F× and k = n = ` where ` 6= 2 divides q − 1, which gives m(τ )= e(τ )= 1).

7B. Existence of σ -selfdual extensions of the Heisenberg representation. We now go back to our usual
notation. Let [a, β] be a maximal simple stratum in Mn(F) such that a is σ -stable and σ(β)=−β. Write
E for the extension F[β], and suppose that it is ramified over the field E0 of σ -fixed points in E. Let d be
the degree [E : F] and write n = md .

Let l denote the residue field of E. Let us notice once and for all that, since p 6= 2, any character of
GLm(l) is of the form α ◦ det, for some character α of l×.

The following lemma generalizes [Coniglio-Guilloton 2016, Lemme 3.4.6] (which is concerned with
complex representations and χ trivial only).

Lemma 7.6. Let χ be a character of (GLi ×GLm−i )(l) for some i ∈ {0, · · · , bm/2c}. Suppose there is a
χ -distinguished cuspidal representation of GLm(l). Then either m = 1 or m = 2i .

Proof. If m ≥ 2, the result follows from Proposition 2.14. Note that, if m = 1, then χ is the unique
χ -distinguished irreducible representation of GL1(l). �

Let θ ∈ C(a, β) be a maximal simple character such that H1(a, β) is σ -stable and θ ◦ σ = θ−1, and let
J= J(a, β) be its normalizer in G. Let η be the Heisenberg representation of J1

= J1(a, β) containing θ
and write J= J(a, β).

Lemma 7.7. There is a σ -selfdual representation κ of J extending η.

Proof. Conjugating by a suitable element in G, we may assume that the stratum [a, β] satisfies the
conditions of Remark 5.11. Indeed, if it doesn’t, there is a g ∈ G such that θ g is σ -selfdual and [ag, βg

]

satisfies these conditions. This implies that γ = σ(g)g−1 normalizes θ , that is γ ∈ J. Now, assuming the
lemma to be true for [ag, βg

], there exists a σ -selfdual representation κ ′ of Jg extending ηg. Define a
representation κ of J by κg

= κ ′. Then κ extends η, and it is σ -selfdual since γ ∈ J. From now on, we
will assume that [a, β] satisfies the conditions of Remark 5.11. We will identify J/J1 with GLm(l), on
which σ acts trivially.

Suppose first that R has characteristic 0. Let κ be a representation of J extending η, let µ be the
character of J trivial on J1 such that κσ∨ ' κµ given by Lemma 5.21 and χ be the character of J∩Gσ

associated with κ by Lemma 6.20. We claim that there is a character ν of J trivial on J1 such that
(ν ◦ σ)ν = µ. Indeed, κν will then extend η and be σ -selfdual. We have

HomJ1∩Gσ (η, 1)= HomJ∩Gσ (κ, χ
−1)' HomJ∩Gσ (χ, κ

σ∨)' HomJ∩Gσ (χµ
−1, κ)
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where the isomorphism in the middle follows from the fact that σ acts trivially on J∩Gσ and by duality.
Since R has characteristic 0 and J∩Gσ is compact, the latter space is isomorphic to HomJ∩Gσ (κ, χµ

−1).
By uniqueness of χ , it follows that the restriction of µ to J∩Gσ is χ2. Restricting to J∩Gσ and writing
µ= ϕ ◦det and χ = α ◦det as characters of GLm(l) for suitable characters ϕ, α of l×, we get ϕ = α2. Let
ν be the unique character of J which is trivial on J1 and equal to α◦det as a character of GLm(l). Since J is
generated by t and J, it remains to extend ν to J by fixing a scalar ν(t) ∈R× such that ν(t)2 = ν(−1)µ(t).

Suppose now that R is equal to F`. As in the proof of Lemma 2.5, we use a lifting and reduction
argument. Note that reducing finite-dimensional smooth Q`-representations of profinite groups is the
same as for finite groups (for which we referred to [Serre 1977, Section 15]). The simple character θ lifts
to a simple character θ̃ with values in Z`, defined with respect to the same simple stratum as θ , and such
that θ̃ ◦σ = θ̃−1. By the characteristic 0 case, there is a σ -selfdual Q`-representation κ̃ of J extending the
irreducible Q`-representation η̃ of J1 associated with θ̃ . The reduction mod ` of η̃ is a representation of J1

containing θ , of the same dimension as η: it is thus isomorphic to η itself. Let κ̃ denote the restriction of
κ̃ to J. Its reduction mod `, denoted κ , is a σ -selfdual representation of J extending η, and which extends
to some representation κ of J. Since κ is σ -selfdual, the representation κσ∨ is isomorphic to κµ for some
character µ of J trivial on J. Since J is generated by J and t , there is a character ν of J trivial on J such
that (ν ◦ σ)ν = µ, thus κν is σ -selfdual.

Finally, suppose that R has characteristic ` > 0, and fix an embedding ι : F`→ R. Since θ has finite
image, there is a simple F`-character θ0 defined with respect to the same simple stratum as θ such that
θ0 ◦ σ = θ

−1
0 and θ = ι ◦ θ0. Let κ0 be a σ -selfdual F`-representation of J extending the irreducible

F`-representation η0 of J1 associated with θ0. The irreducible representations η and η0⊗R both contain θ .
By uniqueness of the Heisenberg representation, they are isomorphic. It follows that κ = κ0⊗R is a
σ -selfdual R-representation of J extending η. �

7C. Proof of Proposition 7.1. Let (J,λ) be a σ -selfdual type, with associated simple character the
character θ of Paragraph 7B.

Lemma 7.8. If (J,λ) is distinguished, then either

(1) m = 1, or

(2) m = 2r for some r ≥ 1, and (J,λ) has index r .

Proof. Let κ be a σ -selfdual representation of J extending η provided by Lemma 7.7. Let ρ be the unique
irreducible representation of J trivial on J1 such that λ' κ ⊗ρ and i be the index of (J,λ). Lemma 6.20
tells us that ρ is χ-distinguished for some character χ of J∩Gσ trivial on J1

∩Gσ . Restricting ρ to J
and identifying J/J1 with GLm(l), we get a cuspidal representation ρ of GLm(l) and a character χ of
(GLi ×GLm−i )(l) such that ρ is χ -distinguished. The result follows from Lemma 7.6. �

Let π be a σ -selfdual cuspidal representation of G, and suppose that the quadratic extension T/T0

associated with it by Proposition 5.14 is ramified. Let (J,λ) be a σ -selfdual type contained in π . By
Remark 5.12, we may assume that it is defined with respect to a σ -selfdual simple stratum. By Remark 5.16,
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E is ramified over E0. We can thus apply the results of Paragraph 7B and Lemma 7.8. Proposition 7.1
now follows from Theorem 6.1 together with Lemma 7.8.

7D. Existence of distinguished extensions of the Heisenberg representation. The second main result
of this section is the following proposition.

Proposition 7.9. Let π be a σ -selfdual cuspidal representation of G with ramified quadratic exten-
sion T/T0. Assume that m = 1 or m is even, and let (J,λ) be a σ -selfdual type in π of index bm/2c. Let J1

be the maximal normal pro-p-subgroup of J and η be an irreducible component of the restriction of λ

to J1.

(1) There is a distinguished representation of J extending η, and any such representation of J is
σ -selfdual.

(2) Let κ be a distinguished representation of J extending η, and let ρ be the unique representation of J
trivial on J1 such that λ' κ ⊗ ρ. Then π is distinguished if and only if ρ is distinguished.

We start with the following lemma, which slightly refines part (1) of the proposition.

Lemma 7.10. Let (J,λ) be as in Proposition 7.9.

(1) There is a distinguished representation κ of J extending η.

(2) If `= 2 or if m is even, such a distinguished representation κ is unique.

(3) Any distinguished representation κ of J extending η is σ -selfdual.

Remark 7.11. If ` 6= 2 and m = 1, there are exactly two distinguished representations of J extending η,
twisted of each other by the unique nontrivial character of J trivial on (J∩Gσ )J1. (See the proof below,
which shows that (J∩Gσ )J1 has index 2 in J.)

Proof. Let J be the maximal compact subgroup of J, and J1 be its maximal normal pro-p-subgroup. As
usual, we fix a maximal simple stratum [a, β] defining (J,λ) such that a is σ -stable and σ(β)=−β, and
write E= F[β] and l for its residue field. We will identify J/J1 with GLm(l) equipped with an involution
whose fixed points is (GLi ×GLm−i )(l) where i = bm/2c.

Let κ be an irreducible representation of J extending η. By Lemma 6.20, there is a character χ of
J∩Gσ trivial on J1

∩Gσ associated to κ . We claim that χ extends to a character φ of J trivial on J1. It
will then follow that κφ is distinguished and extends η.

Suppose first that m = 1. We then have canonical group isomorphisms

(J∩Gσ )/(J1
∩Gσ )' J/J1

' l×. (7-1)

Thus there is a unique character φ of J trivial on J1 which coincides with χ on J∩Gσ . Since J is generated
by t and J, and since t normalizes φ, this character extends to a character of J trivial on J1.

Lemma 7.12. Suppose that m = 1. Then J∩Gσ is generated by J∩Gσ and t2.
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Proof. Since we have J= E×J1 when m = 1, we may consider the exact sequence of σ -groups

1→ U1
E→ E×× J1

→ J→ 1.

Taking σ -invariants and since the first cohomology group H1(σ,U1
E) is trivial, J∩Gσ is generated by E×0

and J1
∩Gσ . The result follows from (7-1) and the fact that t2 is a uniformizer of E0. �

It follows from Lemma 7.12 that χ can be extended to a character φ of J trivial on J1. Since we
must have φ(t)2 = χ(t2) in the field R of characteristic `, there are at most two such characters, with
uniqueness if and only if `= 2.

Suppose now that m = 2r for some r ≥ 1, and consider the element

w =

(
idr

idr

)
∈ b× ⊆ GLm(E)

where idr is the identity matrix in GLr (E).

Lemma 7.13. Suppose that m = 2r . The group J∩Gσ is generated by J∩Gσ and tw.

Proof. First, notice that t ′ = tw is σ -invariant. Any x ∈ J can be written x = t ′k y for unique k ∈ Z and
y ∈ J. We thus have x ∈ J∩Gσ if and only if y ∈ J∩Gσ . �

Since κ and J∩Gσ are normalized by w, we have HomJ∩Gσ (κ, χ
−1)=HomJ∩Gσ (κ, (χ

w)−1), and the
uniqueness of χ implies that χw = χ . First, consider the character of

(J∩Gσ )/(J1
∩Gσ )' (GLr ×GLr )(l)

defined by χ and write it (α1 ◦ det)⊗ (α2 ◦ det) for some characters α1, α2 of l×. The identity χw = χ
implies that α1 = α2, thus there is a unique character φ of J trivial on J1 which coincides with χ on J∩Gσ .
By Lemma 7.13, there is a unique character φ of J trivial on J1 extending χ . This proves (1) and (2).

Now let κ be a distinguished representation of J extending η. It satisfies κσ∨ ' κµ for some character
µ of J trivial on J1 such that µ◦σ =µ (see Lemma 5.21). Since κ is distinguished, µ is trivial on J∩Gσ .
We will prove that κ is σ -selfdual, that is, that the character µ is trivial.

Suppose first that m = 1. Thus (J, κ) is a distinguished type in G. Let π denote the cuspidal irreducible
representation of G compactly induced from κ . It is distinguished, thus σ -selfdual by Theorem 4.1. It
follows that κ and κσ∨ ' κµ are both contained in π , thus µ is trivial.

Suppose now that m = 2r . Since µ is trivial on (GLr ×GLr )(l), it must be trivial on GLm(l). Since
tw is σ -invariant, we have µ(tw)= 1. Thus µ is trivial. This proves (3). �

For part (2) of Proposition 7.9, it suffices to fix a distinguished representation κ of J extending η and
to consider the canonical isomorphism

HomJ∩Gσ (κ, 1)⊗HomJ∩Gσ (ρ, 1)→ HomJ∩Gσ (λ, 1)

(compare with Lemma 6.20).
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Proposition 7.9 reduces the problem of the distinction of π to that of ρ. In the next section, we
investigate the distinction of ρ in the case where π is supercuspidal.

8. The supercuspidal ramified case

In this section, we investigate the distinction of σ -selfdual supercuspidal representations of G in the case
where T/T0 ramified.

8A. The relative degree. Let π be a σ -selfdual cuspidal representation of G such that T/T0 is ramified.
Let (J,λ) be a σ -selfdual type contained in π and let κ be a σ -selfdual representation of J extending
η given by Lemma 7.7. This defines a σ -selfdual irreducible representation ρ of J trivial on J1. Let J
denote the maximal compact subgroup of J and ρ denote the cuspidal representation of J/J1

' GLm(l)
induced by ρ.

Since ρ is σ -selfdual, the representation ρ is selfdual. Applying Fact 5.5 together with Lemma 2.17,
we get the following lemma mentioned in Remark 7.4.

Proposition 8.1. Let π be a σ -selfdual supercuspidal representation of G such that T/T0 is ramified.
Then its relative degree m is either even or equal to 1.

8B. Distinction criterion in the ramified case. Let (J,λ) be a σ -selfdual type of index bm/2c contained
in π . We fix a distinguished representation κ of J extending η given by Proposition 7.9. It is σ -selfdual,
thus the representation ρ of J trivial on J1 which correspond to this choice is σ -selfdual. By Proposition 7.9
again, π is distinguished if and only if ρ is distinguished. We now investigate the distinction of ρ. For
this, we will use the admissible pairs of level zero introduced in Paragraphs 5C and 5E.

Let us fix a σ -selfdual maximal simple stratum [a, β] such that J = J(a, β). Write E = F[β]. Let
(K/E, ξ) be an admissible pair of level zero attached to ρ in the sense of Definition 5.7. Since ρ is
σ -selfdual, Proposition 5.19 tells us that there is a unique involutive E0-automorphism of K, which we
denote by σ , which is nontrivial on E and satisfies ξ ◦ σ = ξ−1. Let K0 be the σ -fixed points of K and
E0 = K0 ∩E.

Lemma 8.2. The representation ρ is distinguished if and only if at least one of the following conditions is
fulfilled:

(1) `= 2.

(2) m = 1 and ρ is trivial on E×0 .

(3) m is even and ξ is nontrivial on K×0 .

Remark 8.3. Note that case (3) cannot happen when `= 2.

Proof. The case m = 1 is clear. Let us suppose that m = 2r for some r ≥ 1. The case where the
characteristic of R is 0 is given by [Hakim and Murnaghan 2002, Proposition 6.3]. Suppose R has
characteristic ` > 0 and fix an embedding ι : F`→ R. Since ξ ◦ σ = ξ−1, the image of ξ is finite, thus
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contained in the image of F` in R. Indeed, the restriction of ξ to the units of K× has finite image and
ξ(t) has order at most 4 since ξ(σ (t))= ξ(t)−1 and σ(t) ∈ {−t, t}. There is thus a F`-character ξ0 of K×

such that ξ0 ◦ σ = ξ
−1
0 and ξ = ι ◦ ξ0. In particular, (K/E, ξ0) is an admissible pair of level zero. Let ρ0

be the σ -selfdual F`-representation attached to it. By Remark 5.9, the representation ρ is isomorphic to
ρ0⊗R. It thus suffices to prove the lemma when R is equal to F`, which we assume now.

We consider the canonical Q`-lift ξ̃ of ξ , which has the same finite order as ξ . It satisfies the identity
ξ̃ ◦ σ = ξ̃−1, and the pair (K/E, ξ̃ ) is admissible of level zero. Attached to it, there is thus a σ -selfdual
Q`-representation ρ̃ of J trivial on J1. Note that the kernel of ρ̃ has finite index, since it contains J1 and t4,
thus ρ̃ can be considered as a representation of a finite group. From Proposition 2.1, one checks easily that
its reduction mod ` is ρ. Note that the restriction of ξ to K×0 is either trivial or (if ` 6= 2) equal to ωK/K0 .

Suppose ξ is nontrivial on K×0 . Then the same holds for ξ̃ , and the characteristic 0 case tells us that
ρ̃ is distinguished. As in the proof of Lemma 2.5, by applying Lemma 2.6, reducing mod ` a nonzero
invariant form on ρ̃ gives us a nonzero invariant form on ρ, which is thus distinguished.

Suppose now that ξ is trivial on K×0 . Then the same holds for ξ̃ . Let α̃ denote the unramified `-adic
character of K× of order 2. Then (K/E, ξ̃ α̃) is an admissible pair of level zero. It is attached to ρ̃ϕ̃ where
ϕ̃ is the unramified `-adic character of J of order 2. Since ξ̃ α̃ is nontrivial on K×0 , the representation ρ̃ϕ̃

is distinguished. Thus ρ is ϕ-distinguished, where ϕ is the reduction mod ` of ϕ̃.
If ` = 2, then ρ is distinguished. Suppose now that ` 6= 2. If ρ were both ϕ-distinguished and

distinguished, one would have two linearly independent linear forms in HomJ∩Gσ (ρ, 1), and this would
contradict Lemma 2.19. The result follows. �

The field extension E of F is not uniquely determined by π , unlike its maximal tamely ramified
extension T. To remedy this, let D be the maximal tamely ramified subextension of K/F. Write
D0 = D∩K0, and let δ0 be the restriction of ξ to D×0 .

Since ξ ◦ σ = ξ−1 the character δ0 is quadratic, either trivial or (if ` 6= 2) equal to ωD/D0 . We will see
in Proposition 10.5 that, up to F0-equivalence, D/D0 and δ0 are determined by π .

Theorem 8.4. Let π be a σ -selfdual supercuspidal representation of G. Suppose that T/T0 is ramified.
Let m be its relative degree and δ0 be the quadratic character of D×0 associated to it.

(1) The representation π is distinguished if and only if at least one of the following conditions is fulfilled:

(a) `= 2.
(b) m = 1 and δ0 is trivial.
(c) m is even and δ0 is nontrivial.

(2) Suppose that ` 6= 2. Then π is ω-distinguished if and only if either

(a) m = 1 and δ0 is nontrivial, or
(b) m is even and δ0 is trivial.

Remark 8.5. If R has characteristic 2, then π is always distinguished. If R has characteristic not 2, then
π is either distinguished or ω-distinguished, but not both.
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Proof. By Proposition 7.9 and Lemma 8.2, it suffices to compare the restriction of ξ to K×0 with δ0 when
` 6= 2.

Suppose first that m = 1 and δ0 is trivial. Since the restriction of ρ to E×0 is equal to either 1 or ωE/E0 ,
its restriction to T×0 is either 1 or ωT/T0 , respectively. Since δ0 is trivial, we are in the first case, that is,
the restriction of ρ to E×0 is trivial.

Suppose now that m 6= 1 and ξ is nontrivial on K×0 . We want to prove that δ0 is nontrivial. The
restriction of ξ to K×0 is equal to ωK/K0 . Thus δ0 is equal to ωD/D0 .

Now suppose that R has characteristic different from 2 and let χ be an unramified character of F×

extending ω. Note that the twisted representation π ′ = π(χ−1
◦ det) is supercuspidal and σ -selfdual and

that the character associated with π ′ is δ′0 = δ0(χ
−1
◦NK/F)|D×0

, where NK/F is the norm map from K to F.
Suppose first that m = 1. Then

π is ω-distinguished⇔ π ′ is distinguished

⇔ the character δ′0 is trivial

⇔ the character δ0 coincides with χ ◦NE/F on T×0 .

Suppose now that m 6= 1. Then

π is ω-distinguished⇔ π ′ is distinguished

⇔ the character δ′0 is nontrivial

⇔ the character δ0 coincides with (χ ◦NK/F)ωD/D0 on D×0 .

The restriction of χ ◦NK/F to D×0 is ω ◦ND0/F0 = ωD/D0 to the power of [K0 : D0], which is a p-power
with p odd. This gives us the expected result. �

Remark 8.6. If π is as in Theorem 8.4 and m> 1, its central character ωπ is always trivial on F×0 . Indeed,
since π and λ have the same central character, we can express ωπ as the product ωκωρ , where ωκ and ωρ

are the central characters of κ and ρ on F×, respectively. Since κ is distinguished, its central character is
trivial on F×0 , thus ωπ and δ0 coincide on F×0 . If δ0 is trivial then ωπ is trivial on F×0 . Now assume that δ0

is equal to ωD/D0 . Since D/D0 is unramified by Lemma 5.20, its restriction to F×0 is trivial if and only if
e(D0/F0) is even, which is the case since e(D0/T0)= 2 when m is even.

Remark 8.7. On the other hand, since T/T0 is ramified, the restriction of ωT/T0 to F×0 is trivial if and
only if k×0 is contained in the subgroup l×2 of squares in l×, that is, if and only if f (T0/F0) is even. It
follows that, if m = 1 and f (T0/F0) is odd (which is equivalent to n being odd by Lemma 5.15 and since
m is either 1 or even) then π is distinguished if and only if ωπ is trivial on F×0 .

9. The supercuspidal unramified case

Let π be a σ -selfdual cuspidal representation of G= GLn(F) for n ≥ 1. In this section, we investigate
the case where the quadratic extension T/T0 is unramified. By Corollary 6.24, the representation π is
distinguished if and only if any of the σ -selfdual types contained in π is distinguished.
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9A. Existence of σ -selfdual extensions of the Heisenberg representation. Let [a, β] be a maximal
simple stratum as in Remark 5.11. Write E= F[β] and suppose that it is unramified over E0 = Eσ . Let us
write J= J(a, β), J= J(a, β) and J1

= J1(a, β).
We may and will identify J/J1 with the group GLm(l), denoted G, equipped with the residual involution

σ ∈ Gal(l/l0), where l and l0 are the residue fields of E and E0, respectively.

Lemma 9.1. The group J∩Gσ is generated by t and J∩Gσ .

Proof. Any x ∈ J can be written x = tm y for unique m ∈ Z and y ∈ J. Since t is σ -invariant, we have
x ∈ J∩Gσ if and only if y ∈ J∩Gσ . �

Lemma 9.2. Any character of J∩Gσ trivial on J1
∩Gσ extends to a character of J trivial on J1.

Proof. Let χ be a character of J∩Gσ trivial on J1
∩Gσ . Since J1 is a pro-p-group, the first cohomology

group of σ in J1 is trivial. The subgroup Gσ thus identifies with (J∩Gσ )/(J1
∩Gσ ). The restriction of χ

to J∩Gσ thus induces a character of Gσ , which can be written α0 ◦ det for some character α0 of l×0 . Let
α be a character of l× extending α0, and let φ be the character of J trivial on J1 inducing the character
α ◦det of G. Since J= b×J1, the element t acts trivially on J/J1 by conjugacy, thus normalizes φ. We thus
may extend φ to J by setting φ(t)= χ(t). Lemma 9.1 implies that φ extends χ and it is trivial on J1. �

Let θ ∈ C(a, β) be a maximal simple character such that H1(a, β) is σ -stable and θ ◦ σ = θ−1. Let η
denote the Heisenberg representation of θ on the group J1.

Lemma 9.3. There is a σ -selfdual representation κ of J extending η.

Proof. Let κ be an irreducible representation of J extending η. By Lemma 5.21, there is a character µ of
J trivial on J1 such that κσ∨ ' κµ and µ ◦ σ = µ. We claim that there is a character ν of J trivial on J1

such that (ν ◦ σ)ν = µ. Indeed, if this is the case, the representation κν extends η and is σ -selfdual.
Consider first µ as a character of G and write µ= ϕ ◦ det for some character ϕ of l×. Then we have

ϕ ◦ σ = ϕ, thus there is a character α of l× such that (α ◦ σ)α = ϕ. Choosing such a α, there exists a
unique character ν of J inducing α ◦ det on G. Since J is generated by t and J, it remains to extend ν to J
by choosing a scalar ν(t) ∈ R× such that ν(t)2 = µ(t). �

9B. Existence of distinguished extensions of the Heisenberg representation. Let (J,λ) be a σ -selfdual
type, with associated simple character the character θ of Paragraph 9A.

In this paragraph, we suppose that m is odd.

Proposition 9.4. Suppose that m is odd. There is a σ -selfdual distinguished representation κ of J
extending η.

Proof. We first assume that R has characteristic 0. By Lemma 9.3, there is a σ -selfdual representation κ

of J extending η. Let χ denote the character of J∩Gσ trivial on J1
∩Gσ associated to κ by Lemma 6.20.

Since m is odd, Lemma 2.3 implies that G possesses a σ -selfdual supercuspidal representation ρ. Let
ρ be the unique representation of J trivial on J1 such that t ∈ Ker(ρ) and whose restriction to J is the
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inflation of ρ. This representation ρ is σ -selfdual. By Lemma 2.5, it is also distinguished. Now let λ be
the σ -selfdual type κ ⊗ ρ on J. The natural isomorphism

HomJ∩Gσ (κ, χ)⊗HomJ∩Gσ (ρ, 1)→ HomJ∩Gσ (λ, χ)

thus shows that λ is χ -distinguished.
By Lemma 9.2, there exists a character φ of J trivial on J1 extending χ . The representation λ′ = λφ−1

is thus a distinguished type. Let π ′ be the cuspidal representation of G compactly induced from (J,λ′).
It is distinguished, thus σ -selfdual by Theorem 4.1. Since λ′ and λ′σ∨ ' λ′φ(φ ◦ σ) are both contained
in π ′, it follows that φ(φ ◦ σ) is trivial. This implies that κ ′ = κφ−1 is both σ -selfdual and distinguished.

Now assume that R has characteristic ` > 0. We then reduce to the characteristic 0 case as in the proof
of Lemma 7.7. �

Remark 9.5. I don’t know whether Proposition 9.4 holds when m is even.

Corollary 9.6. (1) Any distinguished representation of J extending η is σ -selfdual.

(2) If `= 2, any σ -selfdual representation of J extending η is distinguished.

Proof. Let us fix a distinguished σ -selfdual representation κ of J extending η given by Proposition 9.4.
Let κ ′ be a distinguished representation of J extending η. Then κ ′ = κφ for some character φ of J trivial
on (J∩Gσ )J1. Thus φ(t)= 1 and φ induces the character α ◦det on G, where α is a character of l× trivial
on l×0 , or equivalently αq0+1

= 1. Thus we have φ(φ ◦ σ)= 1. This implies that κ ′ is σ -selfdual, which
proves the first assertion.

Now suppose that κ ′ is a σ -selfdual representation of J extending η. Then κ ′ = κξ for some character
ξ of J such that ξ(ξ ◦σ) is trivial. Thus ξ(t) ∈ {−1, 1} and there is a character ν of l× such that ξ induces
ν ◦ det on G and νq0+1

= 1. It follows that ξ is trivial on (J∩Gσ )J1. Thus, if `= 2, the representation κ ′

is distinguished. �

Remark 9.7. Let κ be a σ -selfdual representation of J extending η. Then the character χ of J ∩Gσ

associated to κ by Lemma 6.20 is quadratic and unramified.

9C. Distinction criterion in the unramified case. Let π be a σ -selfdual supercuspidal representation
of G. Associated to it by Proposition 5.14, there is a quadratic extension T/T0. We assume that T is
unramified over T0.

Recall that, by Theorem 6.1 and Proposition 5.17, the representation π is distinguished if and only any
of its σ -selfdual types is distinguished. The following result is the analogue of Proposition 7.9.

Proposition 9.8. Let π be a σ -selfdual supercuspidal representation of G, with unramified quadratic
extension T/T0 and relative degree m. Let (J,λ) be a σ -selfdual type in π . Let J1 be the maximal normal
pro-p-subgroup of J and η be an irreducible component of the restriction of λ to J1.
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(1) The integer m is odd.

(2) There is a distinguished representation of J extending η, and any such extension of η is σ -selfdual.

(3) Let κ be a distinguished representation of J extending η, and let ρ be the unique representation of J
trivial on J1 such that λ' κ ⊗ ρ. Then π is distinguished if and only if ρ is distinguished.

Proof. We may and will assume that J=J(a, β) for some maximal simple stratum [a, β] as in Remark 5.11.
Following Remark 5.16, the extension E is unramified over E0. We thus may apply the results of
Paragraph 9A.

Let κ be a σ -selfdual representation of J extending η, the existence of which is given by Lemma 9.3,
and let ρ be the irreducible representation of J trivial on J1 such that λ is isomorphic to κ ⊗ ρ. Since λ

and κ are σ -selfdual, ρ is σ -selfdual. Its restriction to J induces a cuspidal irreducible representation of
GLm(l), denoted ρ. Since π is supercuspidal, ρ is also supercuspidal by Fact 5.5. Lemma 2.3 implies
that m is odd. We thus apply Proposition 9.4, which gives us a σ -selfdual distinguished representation
extending η.

Part (2) of the proposition is given by Corollary 9.6. For (3), it suffices to fix a distinguished
representation κ of J extending η and to consider the canonical isomorphism

HomJ∩Gσ (κ, 1)⊗HomJ∩Gσ (ρ, 1)→ HomJ∩Gσ (λ, 1)

as in the ramified case. �

Remark 9.9. If one relaxes the supercuspidality assumption on π (that is, we only assume π to be
σ -selfdual cuspidal with T/T0 unramified), then its relative degree m need not be odd, in which case our
proof of Proposition 9.8(2) doesn’t apply (see Remarks 2.4 and 9.5). Unlike the ramified case, I thus
don’t know whether there is a distinguished and σ -selfdual extension κ of η when π is not supercuspidal.

Remark 9.10. In both the ramified and unramified cases, the distinguished representation κ of J extending
η is not unique in general, so neither is ρ. If κ is a distinguished representation of J extending η, the
other ones are exactly the κφ where φ ranges over the set of characters of J trivial on (J∩Gσ )J1.

From now, we will thus assume that κ is a distinguished σ -selfdual representation of J extending η.
Proposition 9.8 reduces the problem of the distinction of π to that of ρ. We now investigate the distinction
of ρ.

Let ρ be the representation of GLm(l) defined by restricting ρ to J. It is σ -selfdual. By Fact 5.5, it is
also supercuspidal.

Let (K/E, ξ) be an admissible pair of level 0 attached to ρ in the sense of Definition 5.7. Since ρ is
σ -selfdual, Proposition 5.19 tells us that there is a unique involutive E0-automorphism of K, which we
denote by σ , which is nontrivial on E and satisfies ξ ◦ σ = ξ−1. Let K0 be the σ -fixed points of K and
E0 = K0 ∩E.

Lemma 9.11. The representation ρ is distinguished if and only if it is trivial on E×0 .
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Proof. Note that ρ(x)= ξ(x)·id for all x ∈E×, thus ρ is trivial on E×0 if and only if ξ is. The representation
ρ is σ -selfdual, thus distinguished (see Lemma 2.5). We thus have

HomJ∩Gσ (ρ, 1)⊆ HomJ∩Gσ (ρ, 1)' HomGLm(l0)(ρ, 1)

where the space on the right-hand side is nonzero (and has dimension 1). Since J∩Gσ is generated by
J∩Gσ and t , we deduce that ρ is distinguished if and only if t acts trivially on the space HomJ∩Gσ (ρ, 1),
that is, if and only if ξ(t) is trivial. The result follows from the fact that, since ξ is σ -selfdual, it is trivial
on the E/E0-norms in E×0 , thus on the units of E0. �

Let ε0 denote the restriction of the character ξ to T×0 .

Lemma 9.12. The character ε0 is quadratic and unramified.

Proof. As has been said in the proof of Lemma 9.11, the character ξ is trivial on the subgroup of
E/E0-norms in E×0 , since ρ is σ -selfdual. Thus the restriction of ξ to E×0 is either trivial or (if ` 6= 2) equal
to ωE/E0 . We get the expected result by restricting to T×0 , since E is unramified over E0 and e(E0/T0) is a
p-power with p odd. �

We will see below (Remark 10.7) that the character ε0 is uniquely determined by π .

Theorem 9.13. Let π be a σ -selfdual supercuspidal representation of G. Suppose that T is unramified
over T0.

(1) The representation π is distinguished if and only if ε0 is trivial.

(2) Suppose that the characteristic of R is not 2. Then π is ω-distinguished if and only if ε0 is nontrivial.

Remark 9.14. If R has characteristic 2, then π is always distinguished. If R has characteristic not 2, then
π is either distinguished or ω-distinguished, but not both.

Proof. By Proposition 9.8, the representation π is distinguished if and only if ρ is distinguished.
Lemma 9.11 tells us that it is distinguished if and only if ξ(t)= 1. The restriction of ξ to E×0 is a quadratic
unramified character. Since the ramification index of E0 over T0 is odd (for it is a p-power), ξ is trivial
on E×0 if and only if it is trivial on T×0 . The first assertion is proven.

Now suppose that R has characteristic different from 2, and let χ be an unramified character of F×

extending ω. Note that the twisted representation π ′ = π(χ−1
◦ det) is supercuspidal and σ -selfdual, and

that the character associated with π ′ is ε′0 = ε0(χ
−m
◦NE/F)|T×0

where NE/F is the norm map from E to F.
Thus

π is ω-distinguished⇔ π ′ is distinguished

⇔ the character ε′0 is trivial on T×0
⇔ the character ε0 coincides with χm

◦NE/F on T×0 .

The restriction of χ ◦NE/F to T×0 is equal to ω ◦NT0/F0 = ωT/T0 to the power of [E0 : T0], which is a
p-power. The second assertion then follows from the fact that p and m are odd. �
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Corollary 9.15. Let π be a supercuspidal representation of G. Suppose that T/T0 is unramified, and that
the ramification index of T/F is odd. Then π is distinguished if and only if it is σ -selfdual and its central
character is trivial on F×0 .

Proof. Suppose that π is σ -selfdual and that its central character ωπ is trivial on F×0 . By using a σ -selfdual
type (J,λ) contained in π as above, we can express ωπ as the product ωκωρ , where ωκ and ωρ are the
central characters of κ and ρ on F×, respectively. Since κ is distinguished, its central character is trivial
on F×0 , thus ωπ and ε0 coincide on F×0 . It remains to prove that ε0 is trivial if and only if it is trivial on F×0 .

Suppose ε0 is trivial on F×0 . By Lemma 9.12, it is unramified, thus εe(T0/F0)

0 is trivial on T×0 . Since
e(T/F) is odd, e(T0/F0) is odd too, and the expected result follows from the fact that ε0 is quadratic. �

Remark 9.16. In particular, when n is odd and F is unramified over F0, a supercuspidal representation of
G is distinguished if and only if it is σ -selfdual and its central character is trivial on F×0 . This has been
proved by Prasad [2001] when R has characteristic 0. Note that, since m and p are odd here, n is odd if
and only if [T : F] is odd.

Remark 9.17. Note that, in the proof of Prasad [2001, Theorem 4], the isomorphism of π with πσ∨

gives an element g ∈ G which has the property that gσ(g) ∈ J = J(a, β), but g has a priori no reason
to normalize J. Anyway, g can be chosen in the maximal compact open subgroup a× which contains J
(which derives from [Bushnell and Kutzko 1993, Theorem 3.5.11]), thus the group generated by g and J
will indeed be compact mod center.

10. Statement of the final results

In this section we put together the main results of Sections 7–9. Let π be a σ -selfdual supercuspidal
representation of G. Associated to it, there are its relative degree m and the quadratic extension T/T0. It
is convenient to introduce the following definition, which comes from [Anandavardhanan et al. 2018].

Definition 10.1. A σ -selfdual type in π is said to be generic if either T/T0 is unramified or T/T0 is
ramified and this type has index bm/2c.

Remark 10.2. It is proved in [Anandavardhanan et al. 2018, Proposition 5.5] that a σ -selfdual type is
generic in the sense of Definition 10.1 if and only if there are a σ -stable maximal unipotent subgroup N
of G and a σ -selfdual nondegenerate character ψN of N such that HomJ∩N(λ, ψN) is nonzero.

Definition 10.1 is convenient to us because of the following result, which subsumes Propositions 7.1
and 8.1 (compare with Theorem 6.1).

Theorem 10.3. A σ -selfdual cuspidal representation of G is distinguished if and only if any of its generic
σ -selfdual types is distinguished.

Let (J,λ) be a generic σ -selfdual type contained in π . Let [a, β] be a σ -selfdual simple stratum such
that J= J(a, β). The restriction of λ to the maximal normal pro-p-subgroup J1 is made of copies of a
single irreducible representation η. We fix a distinguished σ -selfdual representation κ of J extending η,
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the existence of which is given by Propositions 7.9 and 9.8. Let ρ be the representation of J trivial on J1

such that λ is isomorphic to κ ⊗ ρ. Let (K/E, ξ) be a admissible pair of level 0 attached to ρ and σ be
the involution of K given by Proposition 5.19. Let K0 be the field of σ -fixed points of K. We thus have
K' K0⊗F0 F.

Definition 10.4. Let D be the maximal tamely ramified subextension of K/F. Write D0 = D∩K0, and
let δ0 be the restriction of ξ to D×0 .

It follows immediately from the definition that D0/F0 is tamely ramified and the character δ0 is
quadratic, either trivial or (if ` 6= 2) equal to ωD/D0 .

Proposition 10.5. The quadratic extension D/D0 and the character δ0 are uniquely determined by π up
to F0-equivalence. That is, if D′/D′0 and δ′0 are another quadratic extension and character associated
to π , then there is an F0-isomorphism ϕ : D→ D′ such that ϕ(D0)= D′0 and δ0 = δ

′

0 ◦ϕ.

Proof. Start with a generic σ -selfdual type contained in π . Since it is unique up to Gσ -conjugacy, we
may assume this is (J,λ). Fix a σ -selfdual stratum [a′, β ′] such that J= J(a′, β ′). By [Anandavardhanan
et al. 2018, Lemma 4.29], we may assume that the maximal tamely ramified subextension of E′ = F[β ′]
over F is equal to T. Fix a distinguished σ -selfdual representation κ ′ of J extending η, let ρ ′ be the
representation of J trivial on J1 corresponding to this choice and (K′/E′, ξ ′) be an admissible pair of level
0 attached to ρ ′. This gives us a quadratic extension D′/D′0 and a character δ′0 of D′×0 .

First, suppose that [a′, β ′] = [a, β] and K′ = K. We have κ ′ = κφ for some character φ of J trivial on
(J∩Gσ )J1, thus ρ ′ is isomorphic to ρφ−1. Thus ξ ′ is E-isomorphic to ξα−1 for some tamely ramified
character α of K× trivial on K×0 . Restricting to D0, we get δ′0 = δ0.

We now go back to the general case. By the previous argument, we may assume that κ ′ = κ , thus
ρ ′ = ρ. Since D and D′ are both unramified of same degree m over T, they are T-isomorphic. Let us fix a
T-isomorphism f : D→ D′. Write σ ′ for the involutive automorphism of K′ given by Proposition 5.19.

Lemma 10.6. We have σ ′ ◦ f = f ◦ σ .

Proof. Let us identify the residual fields of K and D, denoted t , and those of E and T, denoted l . Note that,
if ϕ is any T-automorphism of D, then it commutes with σ since ϕ and σ ◦ϕ ◦σ−1 are both in Gal(D/T)
and have the same image in Gal(t/l).

We now consider the pair (D/T, ξ |D×). Since D/T is unramified of degree m, it is admissible of level 0.
Moreover, the l-regular character of t× it induces is Gal(t/l)-conjugate to the one induced by (K/E, ξ),
which doesn’t depend on the identifications of residual fields we have made. We have a similar result for
(D/T, ξ ′ ◦ f ) and (K′/E′, ξ ′). Since ρ ′ = ρ we deduce that ξ ′ ◦ f = ξ ◦ϕ for some ϕ ∈ Gal(D/T). Let α
be the T-automorphism σ ′ ◦ f ◦ σ−1

◦ f −1 of D′. We have

ξ ′ ◦α = ξ ′−1
◦ f ◦ σ−1

◦ f −1
= ξ−1

◦ϕ ◦ σ−1
◦ f −1

= ξ ◦ϕ ◦ f −1
= ξ ′.

It follows from admissibility of ξ ′ that α is trivial, as expected. �
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Lemma 10.6 implies that D0 and D′0 are T0-isomorphic. We thus now may assume that D = D′

and D0 = D′0, thus K, K′ have the same maximal unramified subextension D over T and there is an
automorphism ϕ ∈ Gal(D/T) such that ξ ′(x) = ξ ◦ ϕ(x) for all x ∈ D×. Restricting to D×0 , we deduce
that δ′0 = δ0. �

Remark 10.7. In particular, the character ε0 of Paragraph 9C, which is the restriction of δ0 to T×0 , is
uniquely determined by π .

We state the dichotomy and disjunction theorem.

Theorem 10.8. Let π be a σ -selfdual supercuspidal representation of G. Let ` be the characteristic of R.

(1) If ` 6= 2, then π is either distinguished or ω-distinguished, but not both.

(2) If `= 2, then π is always distinguished.

Proof. See Remarks 8.5 and 9.14. �

We now state the distinction criterion theorem.

Theorem 10.9. Let π be a σ -selfdual supercuspidal representation of G. Attached to it, there are the
quadratic extensions T/T0 and D/D0 and the character δ0.

(1) Suppose that n is odd. Then π is distinguished if and only if its central character is trivial on F×0 .

(2) If ` 6= 2, T/T0 is ramified and D/D0 is unramified, then π is distinguished if and only if the character
δ0 is nontrivial.

(3) Otherwise, π is distinguished if and only if δ0 is trivial.

Proof. Item (1) is an immediate consequence of Theorem 10.8 as explained in Paragraph 1D. If ` 6= 2, a
σ -selfdual supercuspidal representation π is either distinguished or ω-distinguished. In the latter case,
the restriction of its central character to F×0 is ωn , which is trivial if and only if n is even. See also
Remarks 8.7 and 9.16.

For the remaining items, see Theorems 8.4 and 9.13; it suffices to check that, if T/T0 is unramified,
then δ0 is trivial if and only if its restriction ε0 to T×0 is trivial, which follows from the fact that m is odd
in that case. �

Remark 10.10. The following conditions are equivalent:

(1) D/D0 is ramified.

(2) T/T0 is ramified and m = 1.

Indeed this follows from Remark 5.16, Lemma 5.20 and Proposition 8.1. The following conditions are
thus also equivalent:

(1) T/T0 is ramified and D/D0 is unramified.

(2) F/F0 is ramified, T0/F0 has odd ramification order and D/D0 is unramified.

(3) F/F0 is ramified, T0/F0 has odd ramification order and m 6= 1.
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We now state the distinguished lift theorem. For the notion of the reduction mod ` of an integral irre-
ducible Q`-representation of G, we refer to [Vignéras 1996; 2004]. If π is an irreducible F`-representation
of G, we say an integral irreducible Q`-representation of G is a lift of π if its reduction mod ` is irreducible
and isomorphic to π .

Theorem 10.11. Let π be a σ -selfdual supercuspidal F`-representation of G.

(1) The representation π admits a σ -selfdual supercuspidal lift to Q`.

(2) Let π̃ be a σ -selfdual lift of π , and suppose that ` 6= 2. Then π̃ is distinguished if and only if π is
distinguished.

Proof. Let (J,λ) be a σ -selfdual type in π . Let η be the Heisenberg representation contained in the
restriction of λ to J1, with associated simple character θ . As in the proof of Lemma 7.7, let θ̃ be the
lift of θ with values in Q` and η̃ be the associated Heisenberg representation, whose reduction mod ` is
isomorphic to η. Propositions 7.9 and 9.4 tell us that there is a distinguished σ -selfdual representation κ̃

of J which extends η̃. Its reduction mod `, denoted κ , is a σ -selfdual representation of J extending η
and it is distinguished thanks to Lemma 2.6. (Note that, as in the proof of Lemma 8.2, the fact that κ

is σ -selfdual implies that it has finite image; it thus can be considered as a representation of a finite
group.) Let ρ be the irreducible representation of J trivial on J1 such that λ is isomorphic to κ ⊗ ρ. It is
σ -selfdual.

The representation ρ admits a σ -selfdual Q`-lift ρ̃ on J trivial on J1. Indeed, let (K/E, ξ) be an
admissible pair of level 0 attached to ρ. Then, as in the proof of Lemma 8.2, the canonical Q`-lift ξ̃ of ξ
defines a pair (K/E, ξ̃ ) which is admissible of level 0, and the Q`-representation ρ̃ of J trivial on J1 which
is attached to it is both σ -selfdual and a lift of ρ. The representation κ̃ ⊗ ρ̃ is thus a σ -selfdual `-adic
type whose reduction mod ` is λ. Inducing κ̃ ⊗ ρ̃ to G, we get a σ -selfdual supercuspidal lift π̃ of π .

Suppose that ` 6= 2 and let ω̃ be the canonical `-adic lift of ω, that is, the Q`-character of F×0 of
kernel NF/F0(F

×). By Theorem 10.8, since the representation π̃ is σ -selfdual, it is either distinguished or
ω̃-distinguished, but not both. Using the reduction argument of invariant linear forms as in Lemma 2.6,
we see that if π̃ is distinguished (respectively, ω̃-distinguished), then π is distinguished (respectively,
ω-distinguished). By Theorem 10.8 applied to π , this is an equivalence. �

We end with the following result, which is useful in [Anandavardhanan et al. 2018].

Proposition 10.12. Suppose that π is a distinguished supercuspidal representation of G and that ` 6= 2.
Then π has no ω-distinguished unramified twist if and only if D/D0 is ramified, that is, if and only if
T/T0 is ramified and m = 1.

Proof. Consider an unramified twist π ′ = π(χ ◦ det) of π , where χ is an unramified character of F×. We
are looking for a χ such that π ′ is ω-distinguished. First, π ′ is σ -selfdual if and only if πχ(χ ◦ σ)' π ,
that is, if and only if

(χ(χ ◦ σ))t (π) = χ2t (π)
= 1 (10-1)
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where t (π) denotes the torsion number of π , that is the number of unramified characters α of G such that
πα ' π . By [Mínguez and Sécherre 2014b, Section 3.4], we have t (π)= f (K/F)= f (D/F). Now the
quadratic character associated with π ′ is δ′0 = δ0(χ ◦NK/F)|D×0

and we have

(χ ◦NK/F)|D×0
= (χ ◦ND0/F0)

[K:D]. (10-2)

By Theorem 10.11, the representation π ′ is ω-distinguished if and only if the character (10-2) is equal
to ωD/D0 . If D is ramified over D0, this is not possible since χ is unramified. If D/D0 is unramified,
choosing an unramified character χ of order f (D0/F0) gives us an ω-distinguished twist π ′. �
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