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On nonprimitive Weierstrass points
Nathan Pflueger

We give an upper bound for the codimension in Mg,1 of the variety MS
G,1 of marked curves (C, p) with a

given Weierstrass semigroup. The bound is a combinatorial quantity which we call the effective weight of
the semigroup; it is a refinement of the weight of the semigroup, and differs from the weight precisely
when the semigroup is not primitive. We prove that whenever the effective weight is less than g, the
variety MS

G,1 is nonempty and has a component of the predicted codimension. These results extend
previous results of Eisenbud, Harris, and Komeda to the case of nonprimitive semigroups. We also survey
other cases where the codimension of MS

G,1 is known, as evidence that the effective weight estimate is
correct in wider circumstances.

1. Introduction

Given a point p on a smooth curve C of genus g, there is an associated numerical semigroup

S(C, p)= {−valp( f ) : f ∈ 0(C \ {p},OC)},

given by the pole orders of rational functions with no poles away from p. Weierstrass’s Lückensatz (now
an easy consequence of the Riemann–Roch formula) states that there are exactly g gaps in S(C, p).1

In reverse, any numerical semigroup S with g gaps defines a (not necessarily closed) subvariety
MS

g,1 ⊆Mg,1 of the moduli space of curves with a marked point. These loci stratify Mg,1, with the locus
defined by the ordinary semigroup Hg = {0, g+ 1, g+ 2, . . .} dense and open, and the value of the i-th
gap (i = 1, 2, . . . , g) an upper semicontinuous function.

The link between the combinatorics of these numerical semigroups and the geometry of curves and their
moduli is a wide and fascinating story that remains largely mysterious, though many intriguing special
cases (specific types of semigroups) are well understood. The core of the difficulty (and excitement)
in this story lies in the fact that S(C, p) is not an arbitrary sequence of integers, but a semigroup; this
combinatorial restriction reflects itself in the geometry of the stratification.

Our objective is to propose a partial answer to a basic question: given a semigroup S, what is the
codimension of MS

g,1 in Mg,1?

MSC2010: 14H55.
Keywords: Weierstrass points, numerical semigroups, algebraic curves, limit linear series.

1The author has heard conflicting stories about whether the number of gaps in a numerical semigroup is called the “genus”
due to this fact from geometry, or as a joking reference to the “number of holes” in the semigroup.
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Definition 1.1. The effective weight of a numerical semigroup S is

ewt(S)=
∑

gaps b

(# generators a < b).

Alternatively, ewt(S) is the number of pairs (a, b), where 0< a < b, a is a generator, and b is a gap.

In almost every situation where codimMS
g,1 is known for an explicit family of semigroups (as well

as for all semigroups of genus up to 6), it is equal to ewt(S); we summarize a number of these cases in
Section 2. The first genus in which the author is aware of a semigroup with codimMS

g,1 < ewt(S) is
g = 9 (the example is discussed in Section 2F).

Our main results are the following, which give much stronger evidence for the utility of ewt(S) in the
study of this stratification of Mg,1.

Theorem 1.2. If MS
g,1 is nonempty and X is any irreducible component of it, then

dim X ≥ dimMg,1− ewt(S).

We call a point or irreducible component of MS
g,1 effectively proper if the local dimension of MS

g,1 is
exactly dimMg,1− ewt(S).

Theorem 1.3. If S is a genus g numerical semigroup with ewt(S)≤ g− 2, then MS
g,1 has an effectively

proper component. If char k = 0, then the same is true for all numerical semigroups with ewt(S)≤ g− 1.

The effective weight is a refinement of a more naive quantity, the weight of a semigroup, and the two
quantities are equal for S if and only if S is primitive, meaning that the sum of any two nonzero elements
is greater than the largest gap (see Section 2A).

Theorems 1.2 and 1.3 were originally proved, with a characteristic 0 hypothesis, for primitive semi-
groups (using the weight) by Eisenbud and Harris [1987] and Komeda [1991]. Our proofs are based on
theirs, using the theory of limit linear series as the central technical tool. Our primary innovation is to
apply the machinery of limit linear series to produce incomplete linear series with specified vanishing
data on smooth curves. The basic technique is the same: curves with Weierstrass semigroups of genus g
are constructed by choosing a suitable genus g−1 semigroup and a marked curve realizing it, attaching
an elliptic curve at the Weierstrass point, marking a second point on the elliptic curve differing by torsion,
and deforming the resulting nodal curve.

Remark 1.4. The choice of terminology “effective weight” was made in reference to terminology from
the numerical semigroup literature. The set of all numerical semigroups can be arranged in a rooted tree,
with each level corresponding to a different genus, where the parent of a semigroup S is given by adding
the largest gap back into S. The children of a given semigroup S correspond to the “effective generators”
of S, which are defined to be the generators that are larger than the largest gap. For details, and a study of
the structure of this tree, see [Bras-Amorós and Bulygin 2009]. The effective weight of S is determined
by examining, in the path from the root (genus 0 semigroup) to S, the index of the effective generator
removed at each step (when the effective generators are listed in increasing order). If a similar procedure
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were followed, arranging all cofinite subsets of N into a tree (not just semigroups), then the quantity
constructed in the same way would be the weight, rather than the effective weight.

1A. Speculation and conjectures. While there are semigroups S for which codimMS
g,1< ewt(S), to the

author’s knowledge all such examples fall in the range g ≤ codimMS
g,1 ≤ 2g. Therefore, we (somewhat

speculatively) conjecture that no such semigroups exist in codimension less than g.

Conjecture 1.5. If MS
g,1 has a component of codimension less than g in Mg,1, then all components of

MS
g,1 have codimension exactly ewt(S).

Curiously, we are not aware of any numerical semigroups of any genus for which codimMS
g,1 > 2g.

Therefore we also make the following (equally speculative) conjecture.

Conjecture 1.6. For any numerical semigroup such that MS
g,1 6= ∅, all components of MS

g,1 have
codimension at most 2g.

Note that in the above conjectures, g and 2g perhaps ought to be replaced with g+C1 and 2g+C2

for some constants C1 and C2, the value of which we have no strong beliefs about. We have stated the
conjectures as above merely to make them specific.

Although not relevant to the present paper, we also mention a purely combinatorial conjecture about
the effective weight that arose during this work. We have verified this conjecture by a computer search2

up to genus 50.

Conjecture 1.7. For any numerical semigroup of genus g,

ewt(S)≤
⌊
(g+ 1)2

8

⌋
.

Remark 1.8. If true, this conjecture is sharp. For g ≤ 5, this follows from case analysis. For g ≥ 6,
this follows from a general construction. Let η be an integer between −2 and 2 inclusive such that
η ≡ g+ 1 (mod 4) (there are two choices if g ≡ 1 (mod 4), and one otherwise). Let c = 1

4(3g+ 3+ η)
and d = 1

4(5g+ 1+ 3η). Then the semigroup

S = 〈c, c+ 1, . . . , d − 1, d〉 = N \ {1, 2, . . . , c− 1, d + 1, d + 2, . . . , 2c− 1}

has genus g and effective weight 1
8(g+ 1)2− 1

8η
2
=
⌊ 1

8(g+ 1)2
⌋
. For 10≤ g ≤ 50, a computer search

shows that these are the only semigroups of this effective weight, while for g≤ 9 there are some additional
sporadic examples achieving the same maximum.

The semigroups above (that appear, empirically, to maximize ewt(S) in a given genus) also provide
examples where codimMS

g,1 < ewt(S) [Pflueger 2016].

2C++ source code is available on the author’s website. The search took approximately 17 hours on a 3.4Ghz Intel i7-3770 CPU.
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Outline of the paper

We summarize in Section 2 several cases where codimMS
g,1 is known in the literature, including the

simplest case where strict inequality codimMS
g,1 < ewt(S) occurs. Section 3 summarizes background on

linear series and limit linear series needed for the proofs of the main theorems. Theorem 1.2 is proved in
Section 4. Section 5 is purely combinatorial, and provides some preliminary results on the structure of
numerical semigroups of low effective weight. Section 6 gives the proof of Theorem 1.3.

Conventions

Throughout this paper, we work over an algebraically closed field k. In Section 2, we assume char k = 0.
A point of a scheme will always refer to a closed point, and when we say that a general point of a scheme
satisfies a property, we mean that there exists a dense open subset in which all points satisfy the property.
A curve is always reduced, connected, and complete. A marked curve is a pair (C, p) of a curve C and a
point p ∈ C .

We denote by N the set of nonnegative integers; a numerical semigroup is a cofinite subset S ⊆ N

containing 0 and closed under addition. The elements of N \ S are called the gaps of S, and the number
of gaps is called the genus. A positive element of S that is not equal to the sum of two positive elements
of S is called a generator, and a sum of two positive elements is called composite.

We denote the set {0, g+ 1, g+ 2, . . .} by Hg, which we call the ordinary semigroup of genus g.

2. Background

The classification question of Weierstrass points can be asked on various levels. Hurwitz [1892] first
raised the simple existence question, while we are concerned with the more geometric dimension question.

Question 2.1. For which S is MS
g,1 6=∅?

Question 2.2. Given S, how many irreducible components does MS
g,1 have? What are their codimensions?

Question 2.3. Given S, what is the maximum codimension of an irreducible component of MS
g,1?

The number of semigroups of genus g grows exponentially with g with limiting ratio 1+
√

5
2 [Zhai 2013],

and present knowledge, even about Question 2.1, becomes quite sparse for large genus if all semigroups
are considered (see [Kaplan and Ye 2013]). This is one reason we prefer to focus on Questions 2.2 and 2.3:
if one hopes for general results, matters become much more tractable upon restricting to the more plentiful
sorts of semigroups, i.e., those for which codimMS

g,1 is small compared to g.
This restriction, to semigroups expected to appear in low codimension, is what allowed Eisenbud and

Harris to prove their rather strong results, later extended by Komeda. The downside of their results is that
they needed to impose not just a quantitative restriction (weight being less than g) but a qualitative one:
that the semigroup is primitive.

In the remainder of this section, we summarize some known results and simple cases of answers to
these questions, in order to highlight the extent to which the effective weight brings many known cases



On nonprimitive Weierstrass points 1927

under one umbrella. We conclude in Section 2F, however, with the first example we know in which the
effective weight does not give the correct codimension.

Throughout this background section, we will assume that char k = 0, as much of the literature makes
this assumption.

2A. The work of Eisenbud, Harris and Komeda. The weight of a numerical semigroup is most simply
defined as the sum of the gaps minus

(g+1
2

)
. An alternate description, more suggestive of the link to the

effective weight, is that wt(S) is the number of pairs (a, b) where 0 < a < b, a ∈ S, and b 6∈ S. This
description shows that wt(S)− ewt(S) is equal to the number of pairs (a, b) where a < b, a is composite,
and b is a gap; hence wt(S)= ewt(S) if and only if S is primitive.

All semigroups satisfy codimMS
g,1 ≤ wt(S) (see Remark 4.3 for one argument), and a point of MS

g,1

at which equality holds locally is called dimensionally proper. Eisenbud and Harris [1987] proved that
if S is primitive and wt(S) ≤ g − 2, then MS

g,1 has dimensionally proper points. Their proof made
a characteristic 0 assumption, since this assumption was built into their theory of limit linear series
developed in [Eisenbud and Harris 1986], but modern treatments of limit linear series (e.g., [Osserman
2006; 2013]) make no such assumption. The proofs of Eisenbud and Harris [1987] can therefore be
carried to characteristic p with no modification.

The argument of Eisenbud and Harris [1987] proceeds by induction on g. It nearly succeeds in proving
the same result for primitive semigroups with wt(S)≤ g− 1 (rather than g− 2), except that the inductive
step fails for one very specific class of semigroups of weight g − 1. Komeda’s contribution [1991]
is to prove the theorem in this special case by a different argument, without limit linear series (and
with a characteristic 0 hypothesis), thus extending the results of Eisenbud and Harris [1987] to the case
wt(S)= g− 1. A second argument for this special case appears in [Coppens and Kato 1994].

Eisenbud and Harris observe [1987, Corollary on p. 497] that the primitivity hypothesis is necessary,
i.e., codimMS

g,1 <wt(S) if S is nonprimitive. This fact of course also now follows from our Theorem 1.2.
This is no minor difficulty, as many semigroups, including those that appear with low codimension in
the Weierstrass stratification of Mg,1, are not primitive. The main example, which provided substantial
motivation regarding how to refine wt(S), is the following.

Example 2.4. A hyperelliptic curve of genus g has 2g+ 2 points with semigroup {2, 4, 6, . . . , 2g− 2} ∪
H2g = 〈2, 2g+ 1〉 (the ramification points of the double cover of P1), while the rest of the points have
the ordinary semigroup (see e.g., [Arbarello et al. 1985, Exercise I.E-3]). Furthermore, if 2 ∈ S(C, p)
then C is necessarily hyperelliptic. Hence S = 〈2, 2g + 1〉 is called the hyperelliptic semigroup, and
codimMS

g,1 = g− 1 (the codimension of the hyperelliptic locus in Mg plus 1).
The hyperelliptic semigroup has the distinction of having the maximum weight of all genus g semi-

groups, namely
(g

2

)
. So the weight bound is spectacularly off in this case. However ewt(S)= g− 1.

Remark 2.5. Since the semigroups of maximum weight provide a nice example where the weight bound
fails to be exact (and suggested the definition of the effective weight), it seems reasonable to try to find
cases where the effective weight bound fails to be exact in the semigroups of maximum effective weight.
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Indeed, these semigroups provide such examples; see [Pflueger 2016]. See also Conjecture 1.7 and the
remark following it.

One notable extension of Eisenbud and Harris’s result, and method of proof, was given by Bullock
[2013]. Using a variation on Eisenbud and Harris’s inductive argument, Bullock proves that for the
nonprimitive semigroup

S = {0, g− 1, g+ 1, g+ 2, . . . , 2g− 2} ∪ H2g

of weight g, the locus MS
g,1 is irreducible of codimension g− 1. The manner in which Bullock treated a

nonprimitive semigroup with Eisenbud and Harris’s basic method provided inspiration for our method in
proving the more general Theorem 1.3. Note that S is “barely nonprimitive,” as there is only one gap
exceeding one composite element. See Remark 2.9 for more about Bullock’s work.

2B. The Deligne bound and negatively graded semigroups. The best general-purpose lower bound on
codimMS

g,1 is the Deligne bound, defined below.

Definition 2.6. For any numerical semigroup S, let λ(S) be the number of gaps b 6∈ S such that b+a ∈ S
for all positive elements a ∈ S.

Proposition 2.7. Let S be a numerical semigroup of genus g. If MS
g,1 is nonempty, then

codimMS
g,1 ≥ g− λ(S).

Proof. This bound follows from results of Deligne [SGA 7II 1973], first applied to the moduli of Weierstrass
points by Pinkham [1974, Theorems 10.3 and 13.9]. For a discussion of the bound in this form, see [Rim
and Vitulli 1977, Corollary 6.3]. �

In most cases, the Deligne bound and the effective weight bound do not coincide. Interestingly, the
cases where they do coincide are semigroups of a particular structure: they are the “negatively graded
semigroups” studied by Rim and Vitulli. Rim and Vitulli [1977, Theorem 4.7] prove that a semigroup is
negatively graded (a deformation-theoretic condition) if and only if it is one of the following.

Definition 2.8. Let g ≥ 2 be a positive integer. For each integer e between 1 and g− 1 inclusive, define:

NG1
g,e = (g− e+ 1) ·Z∪ Hc, where c = g+bg/(g− e)c,

NG2
g,e = {0, g, g+ 1, . . . , g+ e− 1} ∪ Hg+e,

and also define, for g ≥ 3,

NG3
g = {0, g− 1, g+ 1, g+ 2, . . . , 2g− 2} ∪ H2g−1.

Observe that ewt(NG1
g,e) = ewt(NG2

g,e) = e, and ewt(NG3
g) = g− 1. Note that NG1

g,1 = NG2
g,1 and

NG1
3,2 = NG3

3, but in all other cases the semigroups described above are distinct. Therefore for g ≥ 4,
there is one negatively graded semigroup of effective weight 1, two negatively graded semigroups of
effective weight e for 2≤ e ≤ g− 2, and three negatively graded semigroups of effective weight g− 1.
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Half of the semigroups NG1
g,e
(
those for which e ≤ g

2

)
, and all of the semigroups NG2

g,e are primitive,
while NG3

g and the other half of the NG1
g,e are not.

Remark 2.9. The three semigroups NG1
g,g−1, NG2

g,g−1, and NG3
g of effective weight g− 1 were studied

by Bullock [2013]; they correspond to the three irreducible components of the locus of “subcanonical
points” {(C, p) ∈Mg,1 : (2g− 2)p ∼ KC}; see [Kontsevich and Zorich 2003] for further background
about this locus. All three are called symmetric semigroups, since a positive integer n is a gap if and only
if 2g− 1− n is not a gap; this condition is equivalent to the condition that 2g− 1 is a gap.

Remark 2.10. The semigroups NG2
g,e are among the first semigroups for which MS

g,1 was studied in
detail; see [Pinkham 1974, Theorem 14.7].

In fact, the negatively graded semigroups are precisely the semigroups for which the Deligne lower
bound (on codimension) and the effective weight upper bound coincide.

Proposition 2.11. For any numerical semigroup S of genus g,

ewt(S)≥ g− λ(S),

with equality if and only if S is either ordinary or one of the semigroups NG1
g,e, NG2

g,e, or NG3
g.

Proof. Let E denote the set of pairs (a, b) ∈N2 such that a < b, a is a generator of S, and b is a gap. Let
3 denote the set of gaps b such that b+a ∈ S for all positive elements a ∈ S. By definition, ewt(S)= |E |
and λ(S)= |3|.

For all (a, b) ∈ E , b − a is necessarily a gap that is not in 3. Conversely, any gap b′ that is not
an element of 3 must be equal to b− a for some (a, b) ∈ E . This shows that the complement of 3
in N \ S has at most |E | elements, hence ewt(S) ≥ g − λ(S). Furthermore, this argument shows that
equality holds if and only if each (a, b) ∈ E gives a distinct difference b−a. Assume now that S satisfies
ewt(S)= g−λ(S); we will show that S is of one of the three forms stated. The case where S is ordinary
is immediate, so assume that S is nonordinary. Denote by m, n the first two generators of S.

Case 1: Suppose there are no gaps above n. In this case S = NG1
g,g−m+1.

Case 2: Suppose that n=m+1. There can be no two consecutive gaps b and b+1 of S greater than m+1,
since otherwise (m, b) and (m+ 1, b+ 1) both lie in E . Similarly, there is at most one gap b such that
b− 1 is a generator. Since all elements of S less than 2m are generators, these two facts show that there
is at most one gap b of S between m and 2m. If there are no gaps between m and 2m, then S is ordinary.
If there is one gap b between m and 2m, then S contains {m,m+1, . . . , b−1, b+1, b+2, . . . , 2m−1},
which generate all integers greater than 2m (recall that b > n = m+ 1 by assumption), so in fact b is the
only gap greater than m. Hence S = NG2

g,b−g.

Case 3: Suppose that n ≥m+2 and there is some gap b> n. Assume that b is the smallest such gap. The
gap b is less than m+n, since otherwise b−m would be an element of S and b could not be a gap. Since
(n, b) ∈ E and 1≤ b−n ≤m−1, it follows that not all of (m,m+1), . . . , (m, 2m−1) can lie in E ; this
implies that n ≤ 2m− 1, hence m+ 3≤ b ≤ 3m− 1. The pair (m,m+ 1) lies in E , so (b− 1, b) cannot
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lie in E , hence b− 1 is a composite element of S. The only possibility is that b = 2m + 1. Therefore
(2m−1, 2m+1)∈ E . This shows that (m,m+2) 6∈ E , so n=m+2. Therefore m+2,m+3, . . . , 2m ∈ S
and 2m + 1 6∈ S. The numbers m,m + 2,m + 3, . . . , 2m generate all integers greater than 2m + 1, so
2m+ 1 is the largest gap of S. Therefore m = g− 1 and S = NG3

g in this case. �

Remark 2.12. It would be interesting to find a more direct connection between negative grading and the
equality of the Deligne and effective weight bounds. It seems improbable that the fact that the same list
of semigroups is found in both contexts is merely a combinatorial coincidence.

2C. Semigroups of low genus. The exact codimension of MS
g,1 is known for all semigroups of genus

less than or equal to 6; in all of these cases, ewt(S) = codimMS
g,1. We now summarize where these

results can be found in the literature.
Most of these loci MS

g,1 have been described by Nakano; see Table 2 of [Nakano 2008].3 Of the rows
in Nakano’s table where dimMS

g,1 is not known, all but one are in fact one of the negatively graded
semigroups discussed in Section 2B, hence codimMS

g,1 is equal to ewt(S) in those cases. The remaining
semigroup is S = 〈5, 7, 9, 11, 13〉 (N (6)12, in the naming system of [Nakano 2008]). The discussion in
[Bullock 2014, Section 2.2] shows that for this semigroup, MS

g,1 has a component of codimension ewt(S)
(equal to wt(S) in this case since S is primitive), and the main theorem of [Bullock 2014] shows that this
is the only component.

2D. Two-generator semigroups. We now show that any numerical semigroup S with only two generators
exists as a Weierstrass semigroup, and that MS

g,1 is irreducible of codimension ewt(S) in Mg,1. This
furnishes an infinite family of nonprimitive semigroups of effective weight larger than g for which the
effective weight gives the correct codimension.

Let 1< e < d be relatively prime integers and let S = 〈e, d〉. The genus of S is 1
2(e− 1)(d − 1), as a

short combinatorial argument shows.
The effective weight is the number of gaps greater than e plus the number of gaps greater that d , which

can be expressed as:

ewt(S)= 2g− d − e+
⌊

d
e

⌋
+ 2.

To analyze MS
g,1, we use the following description.

Proposition 2.13. Let S, g, d, e be as above, and let P denote the convex lattice polygon {(i, j) ∈ R2
:

i, j ≥ 0, ei + d j ≤ ed}. Let (ci, j )(i, j)∈P be coefficients such that the affine curve C̃ defined by

0=
∑

(i, j)∈P∩Z2

ci, j x i y j

3There is a typographical error in that table: the semigroup 〈5, 6, 7〉 is stated in one column to be 11-dimensional, while the
following column indicates that MS

g,1 is an open subset of a 10-dimensional weighted projective space. The second column is

correct.
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is smooth, and such that the coefficients cd,0 and c0,e are nonzero. Then the completion C of C̃ has only
one additional point p, which has Weierstrass semigroup S. Viewing the coordinates x and y as rational
functions on C regular on C̃ , the pole orders of x and y at p are d and e, respectively.

Conversely, given any (C, p) ∈MS
g,1 and rational functions f and g of pole orders e and d at p and

regular elsewhere, the map ( f, g) embeds C̃ = C \ {p} as an affine curve of the form above.

Proof. Embed the affine plane as the set U = {(x, y, 1)} in the weighted projective plane P(e, d, 1), and
let C denote the closure of C̃ in P(e, d, 1). Denote by X , Y and Z the weighted homogeneous coordinates
on P(e, d, 1). The equation of C is

0=
∑

(i, j)∈P∩Z2

ci, j X i Y j Zde−ei−d j . (1)

Note that the nonvanishing of cd,0 and c0,e ensures that the scheme cut out by this homogeneous
equation has no components supported on the complement of U , so since this scheme matches C̃ on U it
is indeed equal to the closure of C̃ .

Neither of the points (1, 0, 0), (0, 1, 0) lie on C since cd,0 and c0,e are nonzero. Therefore any points of
C \ C̃ lie on {(x, y, 0) : x, y 6= 0} ∼= Spec k[u, u−1

], where u = XdY−e. The scheme-theoretic intersection
of C with this curve is given by the equation cd,0u+c0,e = 0. Hence C meets the boundary transversely in
a single point; it follows that C is smooth, hence it is the completion of C̃ , and has exactly one additional
point on the boundary; denote this point by p.

The rational functions x and y are regular on C̃ and their divisors of zeros are degree e and d,
respectively, hence they have poles of orders e and d at p. It follows that the Weierstrass semigroup of
p contains e and d, hence it contains all of S. It suffices to verify that the genus of C is equal to the
genus of S, which is 1

2(d − 1)(e− 1). This can be deduced from standard results in the geometry of
toric surfaces; we summarize an argument using results from [Cox et al. 2011]. To the convex lattice
polygon P , we may associate, as described in [loc. cit.], a toric variety X P together with a projective
embedding. The variety X P is isomorphic to P(e, d, 1) [loc. cit., Exercise 10.2.6(a)]. The hyperplane
sections in this embedding are subschemes cut out by equations of the form of (1), so the curve C is one
such hyperplane section. By [loc. cit., Proposition 10.5.8], the arithmetic genus of the subscheme cut out
by (1) is equal to the number of interior lattice points of P . The area of P is 1

2 de, and the number of
boundary vertices of P is d + e+ 1 (since d and e are relatively prime, there are no lattice points interior
to the edge from (d, 0) to (0, e), so we need only count the points on the other two edges). It follows
from Pick’s theorem that the number of interior lattice points of P is 1

2(d − 1)(e− 1), as desired.
For the converse, suppose that f and g are rational functions on C as in the proposition statement, and let

C̃ be C\{p}. Then ( f, g) defines a map from C̃ to the affine plane. The ring generated by f and g includes
functions of every possible pole order at p, hence this ring includes all regular functions on C̃ , and ( f, g) is
an embedding. Both f d and ge have pole order de at p, so some linear combination of them has a strictly
smaller pole order, hence is expressible as a linear combination of functions f i g j , where ei + d j ≤ de.
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In other words, C̃ satisfies a relation of the form 0=
∑

(i, j)∈P∩Z2 ci, j x i y j . Since there can be no relations
of smaller degree, this must be the generator of the ideal of (the image in the affine plane of) C̃ . �

We can use this description to determine the dimension of MS
g,1. The dimension of the space of curves

in the affine plane of the form in the Proposition is |P ∩Z2
| − 1. Using Pick’s theorem and the fact that

there are d + e+ 1 vertices on the boundary of P (as in the proof of the proposition), this dimension is
1
2(d+1)(e+1). This exceeds dimMS

g,1 by the dimension of the set of ways to embed a given (C, p)∈MS
g,1

in this manner, which is equal to h0(OC(e· p))+h0(OC(d · p)), which in turn is equal to 4+
⌊ d

e

⌋
. Therefore

dimMS
g,1 =

1
2(d + 1)(e+ 1)− 4−

⌊ d
e

⌋
= g+ d + e− 4−

⌊d
e

⌋
.

Combining with the earlier calculation of ewt(S), we have proved:

Proposition 2.14. Let S=〈e, d〉 be a numerical semigroup with two generators. Then MS
g,1 is irreducible

of codimension ewt(S) in Mg,1.

2E. Total inflection points of nodal plane curves. Another naturally arising class of semigroups for
which the effective weight bound is exact are those arising from nodal plane curves. These have been
investigated by Coppens and Kato [1994]. Although they do not explicitly analyze the dimension of MS

g,1,
their results readily give its value, which coincides with the value that the effective weight would predict.

Definition 2.15. Let d ≥ 3 be an integer, and δ a nonnegative integer less than
(d−1

2

)
. Let

Nd,δ = 〈d − 1, d〉 ∪ Hc,

where g =
(d−1

2

)
− δ and c is the gth gap in 〈d − 1, d〉.

Remark 2.16. The genus of the semigroup 〈d−1, d〉 is
(d−1

2

)
, so this is well defined. The semigroup Nd,δ

can be thought of as the “simplest” (e.g., the lowest-effective-weight) semigroup of genus g containing
both d and d−1. It can also be described as the genus g ancestor of 〈d−1, d〉 in the semigroup tree (see
Remark 1.4).

Theorem 2.17 [Coppens and Kato 1994, Theorem 2.3]. Let L be a fixed line in P2. Let X denote the
variety of degree d plane curves C with δ simple nodes and smooth at all other points, such that C
intersects L at a smooth point of C to multiplicity d. Then for a general point [C] ∈ X , the Weierstrass
semigroup of (C, p) is Nd,δ.

Proposition 2.18. For S = Nd,δ, with d and δ as in Definition 2.15, MS
g,1 is irreducible of codimension

ewt(S) in Mg,1.

Proof. The genus of S is g =
(d−1

2

)
− δ by definition, and its only generators that are below any gaps are

d − 1 and d, which lie below all gaps of S except 1, 2, . . . , d − 2. Therefore

ewt(S)= 2g− 2d + 4.

Let X be the variety in the statement of Theorem 2.17. It has a dense open subset U consisting of curves
C such that the normalization of (C, p) lies in MS

g,1, and the induced map U →MS
g,1 has irreducible
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fibers of dimension 6, since there is a 6-dimensional space of automorphisms of P2 fixing a line. The
map is dominant since any (C, p) with Weierstrass semigroup S may be given a morphism to P2 using
two rational functions of pole orders d − 1 and d at p; the image curve will be smooth at the image
of p, and the image of p will be a total inflection point since the divisor d · p must be the pullback of
some hyperplane section. Therefore dim X = dimMS

g,1 + 6. It suffices to show that X is irreducible
of dimension g + 2d. The dimension of X is equal to g + 2d by [Harris 1986, Lemma 2.4], and the
irreducibility of X follows from [Ran 1989, Irreducibility Theorem (bis)]. �

2F. A case where codimMS
g,1 6= ewt(S). The smallest genus in which we are aware of a semigroup S

for which codimMS
g,1 6= ewt(S) is g = 9.

The example is
S = 〈6, 7, 8〉 = N \ {1, 2, 3, 4, 5, 9, 10, 11, 17}.

For this semigroup, ewt(S) = 12, but we claim that codimMS
g,1 = 11. We will sketch a proof of

this fact, omitting the full details. In [Pflueger 2016], we describe MS
g,1 for all semigroups of the form

〈d − r + 1, d − r + 2, . . . , d〉 in complete detail. These semigroups furnish a large collection of cases
where codimMS

g,1 < ewt(S).
If (C, p) ∈MS

g,1, then one can show that the complete linear series |8p| embeds C in P3 as the
complete intersection of a quadric Q and a quartic R, and in this embedding the osculating plane H at p
meets C at p only. Hence we can study MS

g,1 via the variety of triples (C, H, p) of a smooth complete
intersections C of a quadric and quartic, a hyperplane H , and a point p such that C and H meet at p
only. One can calculate that the dimension of this variety is 29, and verify that for a general point of this
variety, (C, p) does indeed have Weierstrass semigroup S. Since a point (C, p) ∈MS

g,1 determines the
triple (C, H, p) up to automorphisms of P3, this shows that dimMS

g,1 = 29− dim Aut P3
= 14, hence

codimMS
g,1 = 25− 14= 11.

3. Dimensionally proper linear series

This section collects several key facts and definitions about families of linear series on marked algebraic
curves, including a “regeneration lemma” from the theory of limit linear series. The regeneration lemma
is the basic inductive tool in the proof of Theorem 1.3.

Our discussion will be brief, and a number of proofs and precise definitions are omitted where they are
not necessary for the application in this paper. A complete discussion of these matters can be found in
[Osserman 2013, Chapter 4]; other useful references are [Arbarello et al. 1985, Chapter IV], [Harris and
Morrison 1998, Chapter 5] and [Arbarello et al. 2011, Chapter XXI].

3A. Varieties of linear series with specified ramification.

Definition 3.1. Let C be a smooth curve. A linear series of rank r and degree d on C , or “a gr
d ,” is a pair

(L , V ) consisting of a degree d line bundle on C and an (r + 1)-dimensional vector space V of global
sections of L . We will sometimes refer to the linear series simply as V .
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Let p be a point of C . The vanishing sequence aV
0 (p), . . . , aV

r (p) of V consists of the r + 1 distinct
orders of vanishing of elements s ∈ V at the point p, in (strictly) increasing order.

We will often use the phrase vanishing sequence to refer to a set of r +1 nonnegative integers between
0 and d inclusive (when the values of r and d are clear from context). Vanishing sequences will be
denoted by capital roman letters, while the individual elements of a vanishing sequence will be denoted by
the corresponding lowercase letter, with a subscript. For example, the elements of a vanishing sequence
A will be denoted a0, a1, . . . , ar , in increasing order.

In the following two definitions, we describe the set of closed points of a scheme without specifying
the scheme structure. We hope the reader will forgive this, as the scheme structure is not relevant to our
application. Full details, including the functors that these schemes represent, can be found in [Osserman
2013, Section 4.1]. Although we only need the following two definitions in the cases n = 1 and n = 2,
we state them in fuller generality.

Definition 3.2. Let C be a smooth curve, p1, . . . , pn be distinct points of C , and A1, . . . , An be vanishing
sequences. Denote by

Gr
d(C; (p1, A1), . . . , (pn, An))

a scheme whose closed points correspond to the gr
ds (L , V ) on C such that for i=1, . . . , n and j=0, . . . , r ,

the inequality aV
j (pi )≥ai

j holds (recall that we write ai
j to denote the j -th element of the set Ai ). Denote by

G̃r
d(C; (p1, A1), . . . , (pn, An))

the open subscheme where equality aV
j (pi )= ai

j holds for all i and j .

Remark 3.3. In this definition and those that follow, our notation differs slightly from that of, for example,
[Osserman 2013]. In particular, we specify the vanishing sequence at each marked point, whereas most
authors specify the ramification sequence, defined by αi (p) = ai (p) − i . We have chosen to work
exclusively with vanishing orders, as it significantly reduces clutter in several parts of the present paper.

Definition 3.4. Let C→ B be a smooth, proper family of curves and s1, . . . , sn be disjoint sections. In
the case n = 0, assume that the family has at least one section. Denote by

Gr
d(C/B; (s1, A1), . . . , (sn, An))→ B

a scheme whose fiber over b ∈ B is Gr
d(Cb; (s1(b), A1), . . . , (sn(b), An)).

Denote by Gr
g,d(A

1, . . . , An)→Mg,n the scheme formed by gluing these schemes together (or, more
precisely, gluing these schemes together over a versal family of n-marked curves, and then taking the
quotient by a finite group action).

The notation G̃r
d or G̃r

g,d will refer to the open subscheme where the vanishing sequences match the
prescribed sequences exactly.
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Here, Mg,n denotes the coarse moduli space of smooth curves with n distinct marked points. We
omit the details of the gluing process; it suffices for our purposes that a scheme Gr

g,d(A
1, . . . , An) exists,

whose fibers over Mg,n are isomorphic to the varieties Gr
d(C; (p1, A1), . . . , (pn, An)).

3B. Dimensionally proper points.

Definition 3.5. For integers g, r, d and vanishing sequences A1, . . . , An , define

ρg(r, d; A1, . . . , An)= (r + 1)(d − r)− rg−
n∑

i=1

r∑
j=0

(ai
j − j).

When g, r, d, A1, . . . , An are clear from context, we will denote this number simply by ρ.

Lemma 3.6. If Gr
d(C/B; (s1, A1), . . . , (sn, An)) is nonempty, its local dimension at any point is greater

than or equal to dim B+ ρ.

Proof. See, for example, [Osserman 2013, Theorem 4.1.3] for full details; what follows is a brief summary.
First, describe Gr

d(C/B) (where we must assume that C→ B has a section) as a degeneracy locus of a
map of vector bundles over the relative Picard scheme Picd(C/B), and bound its dimension with this
description. Note that the assumption that C→ B has a section is needed to construct the relative Picard
scheme Picd(C/B). Then impose the vanishing conditions by intersecting the pullback of n Schubert
cells under n maps of Grassmannian bundles; this imposes at most a number of conditions equal to the
double summation in the formula for ρ. �

Definition 3.7. A linear series (L , V ) ∈ Gr
d(C; (p1, A1), . . . , (pn, An)) is called dimensionally proper

(with respect to the choice of A1, . . . , An) if there exists a deformation (C/B, s1, . . . , sn) of (C, p1, . . . , pn)

such that
dim Gr

d(C/B; (s1, A1), . . . , (sn, An))= dim B+ ρ,

locally at (L , V ).
Equivalently, (L , V ) is dimensionally proper if the local dimension of Gr

g,d(A
1, . . . , An) at (L , V ) is

equal to 3g+ n− 3+ ρ.

3C. Regeneration. We will reduce the proof of Theorem 1.3 to the existence of dimensionally proper
points of a suitable variety of linear series. The existence results will come from an induction on genus,
made possible by the following “regeneration lemma.”

Lemma 3.8. Fix positive integers g1, g2, d, r and two vanishing sequences A and A′. Denote by d − A
the vanishing sequence {d − ar , d − ar−1, . . . , d − a0}.

If G̃r
g1,d(A) and G̃r

g2,d(d − A, A′) both have dimensionally proper points, then G̃r
g1+g2,d(A

′) also has
dimensionally proper points.

This lemma is a standard application of the theory of limit linear series, pioneered by Eisenbud and
Harris [1986]. It is essentially a special case of the “smoothing theorem” [Eisenbud and Harris 1986, Theo-
rem 3.4], which is referred to as the “regeneration theorem” in the expository account [Harris and Morrison
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C1 C2

p q

Figure 1. The nodal curve X of Situation 3.9.

1998, Theorem 5.41]. Both of these sources work over the complex numbers and work locally in the
complex-analytic setting. We give a proof of Lemma 3.8 below based on the more recent [Osserman 2006],
which is therefore valid in characteristic p. The theory of limit linear series has subsequently been expanded
(for example, to include curves not of compact type) in various ways (e.g., [Osserman 2014a; Osserman
2014b; Amini and Baker 2015]), but for our purposes the theory developed in [Osserman 2006] is sufficient.

Limit linear series, as their name suggests, provide a way to construct, from a family of smooth
algebraic curves degenerating to a nodal curve and a family of linear series on the smooth curves, an
object over the nodal curve that serves as a well-defined limit of the linear series on smooth curves. For
the purpose of Lemma 3.8, we need only consider particularly simple nodal curves.

Situation 3.9. Fix positive integers g1 and g2. Let C1 and C2 be smooth curves of genus g1 and g2

respectively, let p1 be a point of C1 and let p2 and q be distinct points of C2. Denote by X the nodal
curve obtained by gluing p1 to p2, and denote the attachment point by p ∈ X . See Figure 1.

We will only require a specific type of limit linear series, namely refined series. In general, the refined
series form an open subset of all limit linear series. We do not require nonrefined series (called coarse
series in the Eisenbud and Harris theory) for our application, so we will not discuss them.

Definition 3.10. In Situation 3.9, a refined limit linear series of rank r and degree d on X (or a limit gr
d

on X ), is a pair ((L1, V1), (L2, V2)) of gr
ds on C1 and C2 respectively, such that for i = 0, 1, . . . , r ,

aV1
i (p1)= d − aV2

r−i (p2). (2)

Equation (2) is called the compatibility condition. The linear series (L i , Vi ) is called the Ci -aspect of the
limit linear series.

Another way to view a refined limit linear series on X is that it consists of a choice of vanishing
sequence A (with respect to the data r, d) and a point in

G̃r
d(C1; (p1, A))× G̃r

d(C2; (p2, d − A)).

Therefore a natural way to define a scheme structure for the set of refined limit linear series is as follows.

Definition 3.11. In Situation 3.9, the scheme of refined limit gr
ds on X is

Gr,ref
d (X)=

⋃
A

G̃r
d(C1; (p1, A))× G̃r

d(C2; (p2, d − A)),

where the union is taken within the scheme Gr
d(C1)×Gr

d(C2).
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Definition 3.11 extends in an obvious way to families X → B of two-component curves. What is less
obvious is that it can also be extended to certain families of curves in which some members are smooth
and some are singular. For our purposes, we require the following facts:

(1) There is a special type of family X → B of nodal curves, called a smoothing family [Osserman
2006, Definition 3.1]. For every flat, proper family X → B of genus g curves, all are either smooth
curves or two-component curves with one node, with X regular and B regular and connected, and for
every choice of point b ∈ B, there is an étale neighborhood B ′→ B of b such that the fiber product
X ′→ B ′ is a smoothing family [loc. cit., Lemma 3.3].

(2) If X → B is a smoothing family of curves, all either smooth or two-component, there is a scheme
Gr,ref

d (X/B)→ B, whose fiber over any b ∈ B is either Gr
d(Xb) (if Xb is smooth) or Gr,ref

d (Xb) (if
Xb is a two-component curve) [loc. cit., Proposition 6.6].

(3) For such a smoothing family, the dimension bound

dim Gr,ref
d (X/B)≥ dim B+ ρg(r, d)

holds locally at every point [loc. cit., Theorem 5.3].

(4) With a family X → B as above, given a section s whose image lies in the smooth locus of every
fiber, and a vanishing sequence A, there also exists a scheme

G̃r,ref
d (X/B; (s, A))→ B,

whose fiber over a point b ∈ B such that Xb is smooth is isomorphic to G̃r
d(Xb; (s(b), A)), and whose

fiber over a point b ∈ B such that Xb is singular consists (set-theoretically) of those refined limit
linear series such that the aspect of the component on which s(b) lies has vanishing sequence equal
to A at s(b) [loc. cit., Corollary 6.10].

(5) In the previous situation, the dimension bound

dim Gr,ref
d (X/B; (s, A))≥ dim B+ ρg(r, d; A)

holds locally at every point [loc. cit., Theorem 4.4.10].

With this machinery in place, we can prove the regeneration lemma.

Proof of Lemma 3.8. Suppose that there are two dimensionally proper linear series

(L1, V1) ∈ G̃r
d(C1; (p1, A)) and (L2, V2) ∈ G̃r

d(C2; (p2, d − A), (q, A′)),

where C1 and C2 are smooth curves of genus g1 and g2, respectively. Form from (C1, p1) and (C2, p2, q)
a nodal two-component marked curve (X, q) as in Situation 3.9. Let (X/B, s) be a versal deformation
of (X, q), and let 1⊂ B denote the locus of singular curves, which is of codimension 1 in B. We may
assume (perhaps after taking a base change to an étale neighborhood) that X/B is a smoothing family, and
hence form the scheme G̃r,ref

d (X/B; (s, A′)) of refined limit linear series. The two linear series (L1, V1)
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and (L2, V2) constitute the aspects of a refined limit linear series on X . Since both of these aspects are
dimensionally proper, the local dimension, at this point, of the preimage of1 in G̃r,ref

d (X/B; (s, A′))must
be equal to exactly dim1+ ρg1(r, d; A)+ ρg2(r, d; d − A, A′). A bit of algebra shows that this is equal
to dim1+ρg(r, d; A′) (this bit of algebra is sometimes referred to as “the additivity of the Brill–Noether
number,” e.g., in [Eisenbud and Harris 1986, Lemma 3.6]). On the other hand, the local dimension, at
this same point, of the entire space G̃r,ref

d (X/B; (s, A′)) is at least dim B + ρg(r, d; A′); since 1 has
codimension one, it follows that the local dimension of G̃r,ref

d (X/B; (s, A′)) is in fact exactly equal to
dim B+ρg(r, d; A′), and that no irreducible component containing this point lies entirely over 1. Taking
any irreducible component and restricting it to the complement of 1 in B, we obtain a dimensionally
proper family of gr

ds on smooth marked curves of genus g, with imposed vanishing sequence A′ at the
marked point. Hence G̃r

g,d(A
′) has dimensionally proper points. �

4. The effective weight bound

We will prove Theorem 1.2 in this section. The proof comes from the dimension bound of Lemma 3.6,
applied to carefully chosen vanishing data at the marked point. Our main point of departure from previous
work on this subject (e.g., [Eisenbud and Harris 1987; Bullock 2013]) is that we consider incomplete linear
series (that is, (L , V ) where V is a strict subspace of the space of global sections of L), which nonetheless
determine the Weierstrass semigroup. This innovation allows the weight bound to be improved to the
effective weight bound.

Definition 4.1. Let S ⊂ N be a numerical semigroup of genus g. An effective subsequence for S is a
finite subset T ⊂ S such that

(1) T contains 0,

(2) T contains all generators of S, and

(3) T does not contain any composite elements of S that are less than the largest gap of S.

In the statement below and elsewhere, we will write d − T to denote the set {d − t : t ∈ T }.

Lemma 4.2. Let T be an effective subsequence for a numerical semigroup S of genus g, and d ≥max T
an integer. Let r = |T | − 1. For any smooth marked curve (C, p) of genus g:

(1) If the Weierstrass semigroup of (C, p) is not S, then

G̃r
d(C; (p, d − T ))=∅.

(2) If the Weierstrass semigroup of (C, p) is S, then the reduced structure of G̃r
d(C; (p, d − T )) is

isomorphic to the affine space of dimension

ρg(r, d; d − T )+ ewt(S).

Proof. Suppose that (L , V ) ∈ G̃r
d(C; (p, d − T )). Since 0 ∈ T , one of the vanishing orders of V must be

d itself. Therefore L must be OC(d · p), and V may be regarded as a vector space of rational functions
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on C , regular away from p, including functions of pole orders t ∈ T and no others. In particular, T is a
subset of the Weierstrass semigroup of p. Hence S(C, p) contains all of the generators of S, and hence is
precisely equal to S since S and S(C, p) have the same genus. This proves part (1).

Now suppose that the Weierstrass semigroup of (C, p) is S. Let W be the vector space of global
sections of OC(d · p); regard the elements of W as rational functions on C . This space has a complete
flag {0} = W0 ⊂ W1 ⊂ · · · ⊂ W` = W , where Wi consists of those rational functions of pole order
less than si , where S = {0 = s0, s1, s2, . . .} (written in increasing order). Then the reduced structure
of G̃r

d(C; (p, d − T )) may be identified with an open Schubert cell in the Grassmannian of (r + 1)-
dimensional subspaces of W with respect to this flag, hence it is isomorphic to an affine space. If we
write T = {s ji : i = 0, . . . , r} ( ji increasing with i), then the dimension of this Schubert cell is equal to∑r

i=0( ji − i). For i = 0, 1, 2, . . . , r , s ji − ji is equal to the number of gaps below s ji , and therefore

ji − i = (s ji − i)− g+ (#gaps of S greater than sji ).

Summing over all i and performing some algebra, we obtain

dim G̃r
d(C; (p, d − T ))= ρg(r, d; d − T )− g+

∑
t∈T

(#gaps of S greater than t).

Now, the value 0 ∈ T contributes g to the sum on the right side of this equation, the set of generators of S
contribute ewt(S) total to the sum, and all elements of T that are composite in S have no gaps of S above
them, thus contribute 0. Therefore dim G̃r

d(C; (p, d − T ))= ρg(r, d; d − T )+ ewt(S). �

Remark 4.3. If T were selected to be S ∩ {n ∈ N : n ≤ 2g− 1} (that is, if we include many composite
elements), then the same proof would show that G̃r

d(C; (p, d − T )) is either empty or a single point,
and the following corollary would prove the ordinary weight bound codimMS

g,1 ≤ wt(S). Omitting the
composite elements is precisely what strengthens the bound from wt(S) to ewt(S).

Corollary 4.4. Let (C/B, s) be a smooth, proper family of genus g curves with a section, and consider
the subvariety

BS
= {b ∈ B : (Cb, s(b)) ∈MS

g,1}

of marked curves with Weierstrass semigroup S. If BS is nonempty, then dim BS
≥ dim B− ewt(S).

Proof. The morphism G̃r
d(C/B; (s, d − T ))→ B has image equal to BS , and all fibers of dimension

ρg(T )+ ewt(S). Hence

dim BS
= dim G̃r

d(C/B; (s, d − T ))− ρg(r, d; d − T )− ewt(S).

Lemma 3.6 now gives the result. �

Proposition 4.5. Let S be a numerical semigroup and let T be an effective subsequence for S. Let d
be any integer greater than or equal to max T . Also let g be the genus of S and r = |T | − 1. The map
G̃r

g,d(d − T )→Mg,1 gives a bijection between the irreducible components of G̃r
g,d(d − T ) and MS

g,1.
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Under this bijection, the effectively proper components of MS
g,1 correspond to the dimensionally proper

components of G̃r
g,d(d − T ).

In particular, MS
g,1 has effectively proper points if and only if G̃r

g,d(d − T ) has dimensionally
proper points.

Proof. The fiber of this morphism over the point corresponding to a marked curve (C, p) is equal to
G̃r

d(C; (p, d− T )). By Lemma 4.2, this fiber is either irreducible of dimension ρg(r, d; d− T )+ ewt(S)
(if (C, p) ∈MS

g,1), or empty (otherwise). From this it follows that the irreducible components are in
bijection, and that a component of MS

g,1 has dimension dimMg,1−ewt(S) if and only if the corresponding
component of G̃r

g,d(d − T ) has dimension dimMg,1+ ρg(r, d; d − T ). �

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Let (C, p) be any marked smooth curve with Weierstrass semigroup S. Let
(C/B, s) be a versal deformation of (C, p). Corollary 4.4, applied to (C/B, s), implies that the local
dimension of MS

g,1 at (C, p) is at least dimMg,1− ewt(S). For any irreducible component X of MS
g,1, a

general point of X lies on no other irreducible components, hence dim X ≥ dimMg,1− ewt(S). �

5. Secundive semigroups

This section collects several purely combinatorial ingredients needed to perform the inductive proof of
Theorem 1.3.

Definition 5.1. A numerical semigroup S is called secundive if the largest gap is smaller than the sum of
the two smallest generators.

Remark 5.2. The author has chosen “secundive” as a weaker form of “primitive” (“primus” and “secundus”
meaning, respectively, “first” and “second” in Latin).

Lemma 5.3. If S is a semigroup with ewt(S)≤ g− 1, then S is secundive.

Proof. Let S be a semigroup that is not secundive; we will show that ewt(S) ≥ g. Let m and n be the
smallest and second-smallest generators of S, and let f be the largest gap of S. Since S is not secundive,
f > m+ n.

Consider the following three subsets of N×N:

(1) {(m, a) : m < a and a 6∈ S}.

(2) {(n, a) : n ≤ a < m+ n and a 6∈ S}.

(3) {(a, f ) : n ≤ a < m+ n,m -a, and a ∈ S}.

These three sets are disjoint, and every pair (x, y) in one of the three sets consists of a generator x and
a gap y, with x < y. Therefore the sum of the sizes of the three sets is less than or equal to ewt(S).
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The size of the first set is g−m+ 1. The sum of the sizes of the second and third sets is equal to the
number of integers a ∈ {n, n+ 1, . . . ,m+ n− 1} that are not divisible by m. There is exactly one a such
that m | a and n ≤ a <m+ n, hence the sum of the sizes of the second and third sets is equal to m− 1. It
follows that ewt(S)≥ g. �

Remark 5.4. The method of the proof above, with slight modification, shows that the inequality ewt(S)≥g
is sharp (for nonsecundive semigroups), and provides a method to enumerate the equality cases. In fact,
there exist nonsecundive semigroups with ewt(S)= g for all g ≥ 6. On the other hand, all semigroups of
genus g ≤ 5 are secundive.

Our inductive argument requires reducing the study of one secundive semigroup to another, which
must be smaller both in genus and in effective weight. This is accomplished with the following operation.

Definition 5.5. For two integers s and k, with k ≥ 2, define

slidek(s)=


s if s ≡ 0 mod k,
s− 2 if s ≡ 1 mod k,
s− 1 otherwise.

For a set S of integers and an integer k ≥ 2, define

slidek(S)= {slidek(s) : s ∈ S}.

In other words, slidek fixes all multiples of k in place, and replaces each nonmultiple with the preceding
nonmultiple. In particular, this function is order-preserving when restricted to nonmultiples of k; this is
the feature which makes it interact well with the effective weight.

Definition 5.6. Let S be a secundive numerical semigroup of genus g. Call an element k ∈ S a good
slider if the following three conditions are met:

(a) S′ = slidek(S) is a secundive numerical semigroup of genus g− 1.

(b) ewt(S′)= ewt(S)− 1.

(c) There exists an effective subsequence (Definition 4.1) T for S such that slidek(T ) is an effective
subsequence for S′.

Lemma 5.7. Let S be a secundive numerical semigroup and let m be the smallest generator of S:

(1) If m+ 1 6∈ S, then m is a good slider.

(2) If the largest gap of S is less than 2m− 1, then any k ∈ S such that k+ 1 6∈ S is a good slider.

(3) If m ≥ 3, 2m− 2 ∈ S and 2m− 1 is the largest gap of S, then 2m− 2 is a good slider.

Proof. Part (1). Suppose that m+ 1 6∈ S, and let S′ = slidem(S). Let n be the second-smallest generator
of S, and let f be the largest gap of S; note that neither is divisible by m. Then m is the smallest positive
element of S′ (this is where we use the hypothesis that m+ 1 6∈ S), the smallest element of S′ that isn’t a
multiple of m is n′ = slidem(n), and the largest integer that is not in S′ is f ′ = slidem( f ).
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Since S is secundive, f − n ≤ m − 1. Equivalently, there are fewer than m − 1 nonmultiples of m
between n and f inclusive. The same is true of n′ and f ′ since sliding preserves order among nonmultiples
of m, hence f ′− n′ ≤ m− 1 as well.

The sum of any two elements of S′ is either a multiple of m or exceeds m + n′, which exceeds f ′,
hence this sum lies in S′. So S′ is indeed a numerical semigroup. Since m+n′ > f ′, S′ is secundive. The
gaps of S′ are precisely {slidem(a) : a 6∈ S, a ≥ 2}, so the genus of S′ is g− 1.

To compare ewt(S) and ewt(S′), observe first that in a secundive semigroup, an element a smaller than
the largest gap is a generator if and only if it is either equal to m or not divisible by m. All other generators
(those larger than the largest gap) do not contribute to the effective weight. Next observe that m has one
fewer gap above it in S′ than in S. Finally, note that slidem establishes a bijection between the generators
of S between m and f exclusive and the generators of S′ between m and f ′ exclusive, and that the number
of gaps above a given generator is preserved by this bijection. This shows that ewt(S′)= ewt(S)− 1.

For part (c) of Definition 5.6, let T consist of 0 and also the smallest positive element of S in each con-
gruence class modulo m. This set necessarily includes all generators of S, and the fact that S is secundive
implies that any composite elements of S in T exceeds the largest gap, hence T is an effective subsequence
of S. The set T ′ = slidem(T ) is precisely equal to the set containing 0 and the smallest positive element
of S′ in each congruence class modulo m, so since S′ is also a secundive semigroup, T ′ is an effective
subsequence of S′ by the same reasoning. This completes the proof that m is a good slider when m+1 6∈ S.

Part (2). Now assume that the largest gap of S is less than 2m − 1, and that k ∈ S is an element
with k + 1 6∈ S. Then S is primitive. The smallest positive element of S′ is either m − 1 or m, and the
largest gap of S′ is less than 2m − 2, hence S′ is in fact a primitive semigroup as well. The operation
slidek preserves the number of gaps above every element of S, except in one case: the number of gaps
of S′ above slidek(k) = k is one less than the number of gaps above k in S. So ewt(S′) = ewt(S)− 1.
Finally, the set T can be constructed in a manner similar to Part (1): let T consist of 0 and the smallest
positive element of S in each congruence class modulo k. Then T ′ = slidek(T ) is the result of an identical
construction applied to S′, and a set constructed this way contains all generators of the semigroup. Since
S and S′ are primitive, the sets T and T ′ are effective subsequences, since the condition of containing
no composite elements less than the largest gap is vacuous.

Part (3). Now assume that 2m − 2 ∈ S, 2m − 1 6∈ S, and all integers larger than 2m are in S. Then
again, S is primitive. The largest gap of S′ = slide2m−2(S) is 2m− 3, and the smallest element of S′ is
m − 1 (note that m 6= 2m − 2 since we are assuming m ≥ 3), so S′ is also a primitive semigroup. The
rest of the argument is now analogous to the proof of Part (2). �

Lemma 5.8. Let S be a secundive numerical semigroup and let m be the smallest generator of S. If
m + 1 ∈ S, 2m − 2 6∈ S, and 2m − 1 6∈ S, then ewt(S) ≥ g− 1. Furthermore, equality ewt(S) = g− 1
occurs if and only if S = {0,m,m+ 1} ∪ H2m .

Proof. Note that the hypotheses imply that m ≥ 4, so m+1< 2m−2. Also note that since S is secundive
and contains m+ 1, in fact S is primitive and the largest gap is 2m− 1.
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Since all elements of S less than the largest gap are generators, the effective weight (which is equal to
the weight) is equal to the size of the set E = {(a, b) ∈ N2

: 0< a < b, a ∈ S, b 6∈ S}.
The elements of E can be partitioned into four types:

(1) The pairs (m, 2m− 2), (m, 2m− 1), (m+ 1, 2m− 2), and (m+ 1, 2m− 1).

(2) Pairs of the form (m, a) or (m+ 1, a), where m+ 2≤ a ≤ 2m− 3 and a 6∈ S.

(3) Pairs of the form (a, 2m− 2) or (a, 2m− 1), where m+ 2≤ a ≤ 2m− 3 and a ∈ S.

(4) Pairs of the form (a, b), where m+ 2≤ a < b ≤ 2m− 3, a ∈ S, and b 6∈ S.

There are four pairs of the first type. Since every element a between m+2 and 2m−3 inclusive appears
in either two pairs of the second type or two pairs of the third type (depending on whether or not a ∈ S),
the total number of pairs of either the second or third type is exactly 2(m−4). Therefore, adding the four
pairs of the first type, ewt(S) is equal to 2m− 4 plus the number of pairs of the fourth type. On the other
hand, the genus of S is at most (m− 1)+ (m− 2)= 2m− 3, with equality if and only if S contains no
elements between m+2 and 2m−3 inclusive. Hence g−1≤ 2m−4≤ ewt(S), with equality throughout
if and only if S consists precisely of 0,m,m+ 1 and all integers greater than or equal to 2m. �

Corollary 5.9. If S is a numerical semigroup with 1 ≤ ewt(S) ≤ g − 2, then S has a good slider. If
ewt(S)= g− 1, then S has a good slider unless S = {0,m,m+ 1} ∪ H2m for some m ≥ 4.

Proof. Suppose that 1 ≤ ewt(S) ≤ g − 1 and that S does not have a good slider. By Lemma 5.3, S
is secundive. Let m be the smallest generator of S. By Lemma 5.7(1), m + 1 ∈ S; this must be the
second-smallest generator. Since S is secundive, the largest gap of S is less than m + (m + 1), so it is
at most 2m − 1. Since ewt(S) > 0, the largest gap is greater than m, hence at least m + 2. Therefore
m + 2 ≤ 2m − 1, so m ≥ 3. By Lemma 5.7(2), the largest gap is in fact equal to 2m − 1, and by
Lemma 5.7(3), 2m− 2 6∈ S. This implies that m+ 1< 2m− 2, hence m ≥ 4. By Lemma 5.8, it follows
that ewt(S) is equal to g− 1 and S = {0,m,m+ 1} ∪ H2m . �

6. Existence of effectively proper points

We can now prove Theorem 1.3 by assembling the ingredients of the previous sections and the following
statement about elliptic curves. This lemma is similar to [Eisenbud and Harris 1987, Proposition 5.2],
and plays an analogous role in our argument.

Lemma 6.1. Fix integers d and r , and let T and T ′ be two vanishing sequences. As usual, denote the
elements of these, in increasing order, by ti and t ′i . Suppose that there exists an integer k, 1 ≤ k ≤ r ,
such that:

(1) t0 = t ′0 = 0 and tk = t ′k .

(2) for all i 6∈ {0, k}, neither ti nor t ′i is divisible by tk .

(3) for all i 6∈ {0, k}, the inequalities ti−1 ≤ t ′i < ti hold.

Then G̃r
1,d(T

′, d − T ) has dimensionally proper points.
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Proof. Denote the number tk = t ′k by m. Fix an elliptic curve E with a point p. Consider the trivial
family E × E→ E given by projection to the second coordinate, with two sections s1(q)= (p, q) and
s2(q) = (q, q). Fix a point q0 ∈ E differing from p by torsion of order exactly m. Let B be the open
subset of E given by removing p and all points q ′ differing from p by torsion of order dividing m,
except the point q0 itself. We can now regard (E × B, s1, s2) as a family of twice-marked elliptic curves
{(E, p, q)}q∈B , with the property that exactly one member (E, p, q0) of this family has p− q of torsion
order m, and all others have p−q either nontorsion or torsion of order not dividing m. We will show that
G̃r

d(E × B/B; (s1, T ′), (s2, d − T )) is nonempty of dimension ρ1(r, d; T ′, d − T )+ 1, which will prove
the result.

More specifically, we will show that if p and q are points not differing by torsion of order divid-
ing m (which is the case for all but one member of the family), G̃r

d(E; (p, T ′), (q, d − T )) is empty,
while if p and q differ by torsion of order exactly m (the case for one member of the family), then
G̃r

d(E; (p, T ′), (q, d − T )) is nonempty of dimension ρ1(r, d; T ′, d − T )+ 1.
Suppose that (E, p, q) is a twice-marked elliptic curve and (L , V ) is some linear series with vanishing

orders exactly T ′ at p and d − T at q .
The key observation is that for any i ∈ {0, 1, . . . , r}, the subspace

Vi = V (−t ′i p− (d − ti )q)

of V consisting of sections vanishing to order at least t ′i at p and order at least d− ti at q must be at least
1-dimensional.

In particular, for i = 0 and i = k it follows that the divisors d ·q and m · p+ (d−m) ·q are both in the
divisor class defined by the line bundle L . Hence L must be the line bundle OE(d ·q), and the points p and q
must differ by an element of Pic0(E) of order dividing m. This shows that Gr

d(E; (p, T ′), (q, d − T )) is
indeed empty whenever p, q do not differ by torsion of order dividing m.

We will now assume that p and q differ by torsion of order exactly m.

Claim 1. For i=0,1, . . . , r−1, there are no sections s∈V whose divisor of zeros contains t ′i+1 p+(d−ti )q.

Proof of claim 1. If i = 0, k− 1, or k, then the divisor t ′i+1 p+ (d − ti )q has degree greater than d, so it
certainly cannot be contained in the divisor of zeros of s. Otherwise, t ′i+1+ (d − ti )≥ d , so the only way
for the divisor of s to contain such a divisor is if t ′i+1 = ti and the divisor of s is exactly ti p+ (d − ti )q.
But this implies that p− q is ti -torsion, which is impossible since m -ti when i 6= 0, k. �

Claim 2. The space Vi is exactly 1-dimensional, and a nonzero section of Vi vanishes to order exactly
t ′i at p and d − ti at q.

Proof of claim 2. The second statement follows from claim 1. The first part follows from the second: in a
2-dimensional space of sections, there must be 2 distinct orders of vanishing at any given point. �

Therefore we see that (L , V ) has a very simple form: L =OE(d ·q) and V is the span of r+1 disjoint
1-dimensional subspaces Vi , each of which is spanned by a section of L vanishing along the divisor
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t ′i p+ (d − ti )q. Conversely, it is clear that any choice of these r + 1 spaces Vi gives rise to a point of
G̃r

d(E; (p, T ′), (q, d − T )). From this description, we can calculate from Riemann–Roch:

dim G̃r
d(E; (p, T ′), (q, d − T ))=

r∑
i=0

dim PH 0(L(−t ′i p− (d − ti )q))

=

r∑
i=0

dim PH 0(OE(−t ′i p+ ti q))

= 2+
r∑

i=0

(ti − t ′i − 1).

In the third line, we use the fact that for all i 6∈ {0, k}, ti − t ′i > 0, hence h1(E,OE(−t ′i p+ ti q)) = 0,
while for i = 0 and i = k, h1(OE(−t ′i p+ ti q))= h1(OE)= 1.

On the other hand, a bit of algebra shows that

ρ1(r, d; T ′, d − T )= 1+
r∑

i=0

(ti − t ′i − 1).

So we have established that, in the case where p− q differ by torsion of order m,

dim Gr
d(E; (p, T ′), (q, d − T ))= 1+ ρ1(r, d; T ′, d − T ).

By the remarks in the first paragraph, this proves that G̃r
1,d(T

′, d−T ) has dimensionally proper points. �

Corollary 6.2. If S is a secundive numerical semigroup, k is a good slider for S, and Mslidek(S)
g−1,1 has

effectively proper points, then MS
g,1 has effectively proper points.

Proof. Let T be an effective subsequence of S such that T ′ = slidek(T ) is an effective subsequence
of S′ = slidek(S). Removing some elements if necessary, we may assume that T and T ′ contain no
multiples of k other than 0 and k. Let r = |T |− 1 and let d =max T . By Proposition 4.5, G̃r

g−1,d(d− T ′)
has dimensionally proper points. By Lemma 6.1, G̃r

1,d(T
′, d − T ) also has dimensionally proper points.

The regeneration lemma, Lemma 3.8, implies that G̃r
g,d(d − T ) also has dimensionally proper points;

Proposition 4.5 now implies that MS
g,1 has an effectively proper component. �

Remark 6.3. In fact, the proof of Corollary 6.2 shows that the existence of effectively proper points of
MS

g,1 can be deduced from the existence of effectively proper points of MS′
g−1,1 whenever S′ and S are

semigroups of genus g− 1 and g respectively possessing effective subsequences T ′ and T that satisfy the
hypotheses of Lemma 6.1. It is possible that more MS

g,1 can be shown to have effective proper points by
constructing S′ in a different way from the slide construction.

Proof of Theorem 1.3. Let S be a numerical semigroup of genus g, such that ewt(S) ≤ g− 2. We will
prove that MS

g,1 has effectively proper components by induction on g. For g = 1 the only semigroup
is H1, and there is nothing to prove.
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Suppose that g ≥ 2 and the result holds for genus g − 1. If ewt(S) = 0, then S = Hg and MS
g,1 is

a dense open subset of Mg,1, so the result follows. Otherwise, Corollaries 5.9 and 6.2 show that the
existence of an effectively proper point of MS

g,1 follows from the existence of an effectively proper point
of MS′

g−1,1 for some semigroup S′ of genus g−1 and effective weight ewt(S)−1≤ g−3. This completes
the induction.

Now suppose that char k = 0 and S is a numerical semigroup of genus g such that ewt(S)= g−1. The
argument above works without modification, except in one case: g is odd and S={0, 1

2 g+ 3
2 ,

1
2 g+ 5

2}∪Hg+3

(this is the exception in Corollary 5.9). The main theorem of [Komeda 1991] is that for this specific
semigroup, in characteristic 0, MS

g,1 has dimensionally proper points (which are the same as effectively
proper points, since S is primitive). With this possibility accounted for, the induction is complete in the
case ewt(S)= g− 1 as well. �
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