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Let X be a projective normal toric variety and T0 a rank-1 subtorus of the defining
torus T of X . We show that the normalization of the Chow quotient X // T0, in
the sense of Kapranov, Sturmfels, and Zelevinsky, coarsely represents the moduli
space of stable log maps to X with discrete data given by T0 ⊂ X . We also
obtain similar results when T0→ T is a homomorphism that is not necessarily an
embedding.
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1. Introduction

Throughout, we work over an algebraically closed field k of characteristic 0.
Chow quotients of toric varieties were introduced by Kapranov, Sturmfels, and

Zelevinsky in [Kapranov et al. 1991]. Given a projective normal toric variety X and
a subtorus T0 of the defining torus T , the Chow quotient X // T0 has the property
that its normalization is the smallest toric variety that maps onto all GIT quotients
of X by T0. We show in this paper that when T0 has rank 1, the normalization of
X // T0 can be reinterpreted as the coarse moduli space of the stack of stable log
maps introduced in [Chen 2011; Abramovich and Chen 2011] and independently
in [Gross and Siebert 2013]. We also obtain similar results by replacing T0 ⊂ T
with a homomorphism T0→ T and the Chow quotient in the sense of [Kapranov
et al. 1991] with that of [Kollár 1996].
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Let X be a normal toric variety of dimension n with defining torus T . Denoting
by N ∼= Zn the cocharacter lattice of T , we see that every point v ∈ N corresponds
to a morphism of multiplicative groups

ιv : T0 := Gm→ T . (1-1)

It is convenient to view this map as the action of T0 on the identity element 1 ∈ T .
Let v = kω for some positive integer k and primitive lattice point ω ∈ N . Note that
ι is an embedding if and only if k = 1.

We begin by introducing the Chow quotient X // T0. For every point x ∈ T , the
closure Zx := T0x of the orbit of x under T0 with the reduced scheme structure is a
subvariety of X . Thus, we obtain a Chow cycle k ·[Zx ]. For x ∈ T , the orbit closures
Zx have the same dimension and homology class. Denoting by T ′ := [T/T0] the
stack quotient, we therefore obtain a morphism from T ′ to the Chow variety C(X)
of algebraic cycles of the given dimension and homology class. For the definition
and construction of the Chow variety C(X), we refer to [Kollár 1996, Chapter I].
Since the Chow variety is not actually a moduli space for cycles as above, one
may initially be worried that we only obtain a map on the level of closed points.
However, we will later see that there is a family of stable maps over T ′ whose image
is precisely the Chow cycle we obtained here; it then follows from [Kollár 1996,
Chapter I, 3.17 and 3.21] that there is a natural map T ′→ C(X). We define the
Chow quotient X // T0 to be the closure of the image T ′ in C(X) with the reduced
scheme structure.

Note that when k = 1, T ′ is a variety and X //T0 is the Chow quotient introduced
by Kapranov et al. [1991]. In this case, it is a toric variety and the fan of its
normalization is given explicitly in [Kapranov et al. 1991, §1].

As mentioned above, the goal of this paper is to relate X //T0 to moduli spaces of
stable log maps. Notice that by compactifying ι, we obtain a stable map f1 :P

1
→ X ,

where P1 is marked at the points {0,∞} = P1
\ T0. By viewing X as a log scheme

with its canonical log structure MX given by the boundary X \ T and P1 as a log
curve with log structure MP1 given by the two markings {0,∞}, we obtain a stable
log map

f1 : (P
1,MP1)→ (X,MX ).

Let β0 be the curve class of the stable map f1, and let c0 and c∞ be the contact
orders of 0 and∞ with respect to the toric boundary X \ T . Roughly speaking,
c0 and c∞ are functions that assign to the marked points their orders of tangency
with the components of X \ T (see [Abramovich et al. 2011] for more details). In
the toric case, the contact orders can be explained as the slopes and weights of the
unbounded edges of tropical curves associated to stable log maps; see Section 3.3.
Let K00(X) be the stack parametrizing stable log maps from rational curves with
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two marked points to X such that the curve class is β0 and the marked points have
contact orders given by c0 and c∞; here the notation

00 := (0, β0, 2, {c0, c∞}) (1-2)

keeps track of the discrete data consisting of genus, curve class, number of marked
points, and their tangency conditions. Our main result is:

Theorem 1.1. The normalization of X // T0 is the coarse moduli space of K00(X).

Remark 1.2. In particular, we see that K00(X) is irreducible.

Remark 1.3. In Proposition 2.3, we prove that for any 0 = (0, β, 2, {c0, c∞}),
either the stack K0(X) is empty or 0 = 00 for some 00 as in (1-2). Thus, our
discussion covers all two-pointed stable log maps to toric varieties.

In the process of proving Theorem 1.1, we obtain an alternative description of
K00(X) that is more akin to the construction of the Chow quotient. As we saw
above, X // T0 is defined as the closure of T ′ in the Chow variety C(X). Replacing
C(X) by other moduli spaces, we obtain alternate spaces analogous to X // T0. For
each point x ∈ T , letting T0 act on x via the group morphism ι and taking the
closure, we obtain a stable log map

fx : (P
1,MP1)→ (X,MX )

again with curve class β0 and contact orders c0 and c∞. Note that for any point
x ′ ∈ T0x , the two stable log maps fx and fx ′ are canonically isomorphic. We thus
obtain a family of stable log maps over the stack quotient T ′. It is important to
notice that the log structure on T ′ is trivial (and is denoted by O∗). The stack K00(X)
comes equipped with a log structure, and the above discussion defines a morphism
of log stacks

(T ′,O∗T ′)→ (K00(X),MK00 (X)).

Forgetting the log structures, we obtain an immersion

T ′→M0,2(X, β0),

where M0,2(X, β0) denotes the Kontsevich space of stable maps to X with genus 0,
curve class β0, and two marked points. In analogy with the construction of the
Chow variety, we let M denote the closure of T ′ in M0,2(X, β0). Then we have:

Theorem 1.4. K00(X) is the normalization of M.

Remark 1.5. There is an analogous picture if one assumes that X is an affine
normal toric variety and replaces M0,2(X, β0) above by the toric Hilbert scheme, as
defined in [Peeva and Stillman 2002]. That is, for all x ∈ T , the Zx are T ′-invariant
closed subschemes of X that have the same discrete invariants. We therefore
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obtain an immersion from T ′ to an appropriate toric Hilbert scheme. The closure
of T ′ in this toric Hilbert scheme is called the main component. Olsson [2008,
Theorem 1.7] shows that the normalization of the main component has a natural
moduli interpretation in terms of log geometry. Theorem 1.4 above can therefore
be viewed as an analogue of Olsson’s theorem, replacing his use of the toric Hilbert
scheme by the Kontsevich space. That is, we show that the normalization of M
carries a moduli interpretation in terms of stable log maps.

Recall that given any collection of discrete data 0= (g, β, n, {ci }
n
i=1), it is shown

in [Chen 2011; Abramovich and Chen 2011; Gross and Siebert 2013] that there is a
proper Deligne–Mumford stack K0(X) that parametrizes stable log maps to X from
genus-g curves with n marked points having curve class β and contact orders given
by the ci .1 We show in Proposition 2.1 that if g = 0, then K0(X) is log smooth and
in particular normal. This is a key ingredient in the proof of Theorem 1.4, which
we give in Section 2. In Section 3, following [Nishinou and Siebert 2006; Gross
and Siebert 2013], we explain the relationship between tropical curves and stable
log maps to toric varieties. While the use of tropical curves is not strictly necessary
for this paper, they serve as a convenient tool to study the boundary of K0(X).
Theorem 1.1 is then proved in Section 4.

Remark 1.6. One of the purposes of the theory of stable log maps is to define
and compute Gromov–Witten invariants with tangency conditions. The authors
plan to calculate the Gromov–Witten invariants in the case of this paper once the
forthcoming paper [Abramovich et al. ≥ 2013] is ready to use; this latter paper will
carefully treat the virtual cycle of the space of stable log maps as well as a version
of the degeneration formula of Gromov–Witten invariants.

Prerequisites. We assume the reader is familiar with logarithmic geometry in the
sense of Fontaine, Illusie, and Kato (see for example [Kato 1989] or [Ogus 2006]).

2. Log smoothness and irreducibility

Throughout this section, X is a projective normal toric variety of dimension d and
0 is an arbitrary choice of discrete data (0, β, n, {ci }). Let T be the defining torus
of X and M be the character lattice of T .

Proposition 2.1. (K0(X),MK0(X)) is log smooth over (k,O∗k). Also, dim K0(X)=
dim X + n− 3.

1Strictly speaking, [Chen 2011; Abramovich and Chen 2011] only consider log schemes that are
generalized Deligne–Faltings (see Definition A.1), so to apply their theory, one must first show that
the natural log structure on X satisfies this hypothesis. This is done in Proposition A.4, which we
relegate to the Appendix since the theory developed in [Gross and Siebert 2013] is already known to
apply to toric varieties.
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Proof. The universal curve on K0(X) induces a morphism of log stacks

π : (K0(X),MK0(X))→ (M0,n,MM0,n ),

where (Mg,n,MMg,n ) denotes the log stack of (g, n)-prestable curves; see [Kato
2000] and [Olsson 2007, Theorem 1.10] for the definition and construction of this
log stack. Since (Mg,n,MMg,n ) is log smooth over (k,O∗k), it suffices to show that
π is log smooth. By [Olsson 2003, Theorem 4.6], this is equivalent to showing that
the induced morphism

π ′ : K0(X)→ Log(M0,n,MM0,n )

of stacks is smooth, where Log(S,MS)
is the stack of log morphisms to a log scheme

(S,MS) as defined in the introduction of [loc. cit.].
Let i : Spec A→ Spec A′ be a square zero thickening of Artin local rings, and let

Spec A //

i
��

K0(X)

π ′

��

Spec A′ // Log(M0,n,MM0,n )

be a commutative diagram. We may view this as a commutative diagram of log
stacks by endowing the Artin local rings with the log structure pulled back from
Log(M0,n,MM0,n )

. Hence, the two vertical arrows are strict. Denote the induced log
structures on Spec A and Spec A′ by MA and MA′ , respectively. We therefore have
a log smooth curve h′, a cartesian diagram

(C,MC) //

h
��

(C ′,MC ′)

h′
��

(Spec A,MA) // (Spec A′,MA′)

and a minimal stable log map f : (C,MC)→ (X,MX ), which we must show deforms
to a minimal stable log map f ′ : (C ′,MC ′) → (X,MX ). Since the minimality
condition is open by [Chen 2011, Proposition 3.5.2], it suffices to show that f
deforms as a morphism of log schemes.

By standard arguments in deformation theory, it is enough to consider the case
where the kernel I of A′→ A is principal and killed by the maximal ideal m of A′.
Then the obstruction to deforming f to a morphism of log schemes lies in

Ext1( f ∗0 �
1
(X,MX )/k,OC0)⊗k I,

where f0 denotes the reduction of f mod m and C0 denotes the fiber of C over
A′/m= k. By [Kato 1996, Example 5.6], �1

(X,MX )/k ' OX ⊗Z M . Therefore,
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Ext1( f ∗0 �
1
(X,MX )/k,OC0)= H 1(Od

C0
)= 0,

where the last equality holds because C0 is a curve of arithmetic genus 0. This
shows that (K0(X),MK0(X)) is log smooth.

To prove the claim about the dimension of K0(X), note that

dim Ext0( f ∗0 �
1
(X,MX )/k,OC0)= dim H 0(Od

C0
)= d,

and so π has relative dimension d . Since dimM0,n = n− 3, we see dim K0(X)=
d + n− 3. �

Let K◦0(X) denote the nondegeneracy locus, that is, the locus of K0(X)where the
log structure MK0(X) is trivial. By Proposition 2.1 and [Nizioł 2006, Proposition 2.6],
K◦0(X) is an open dense subset of K0(X). Consider the Kontsevich moduli space
of stable maps M0,n(X, β). The forgetful map

8 : K0(X)→M0,n(X, β)

sending a stable log map to its underlying stable map induces a locally closed
immersion

K◦0(X)→M0,n(X, β).

Since the forgetful map does not change the underlying markings or the underlying
maps, no stabilization of the underlying curve is needed here. Let M0(X) be the
closure of K◦0(X) in M0,n(X, β). Then 8 factors through a morphism

φ : K0(X)→M0(X).

Lemma 2.2. φ is the normalization map.

Proof. By [Abramovich and Chen 2011, Corollary 3.10] and Proposition A.4, the
morphism 8 is representable and finite and so is φ. Since (K0(X),MK0(X)) is fs
and log smooth over (k,O∗k) by Proposition 2.1, it follows that K0(X) is normal.
Since φ is an isomorphism over K◦0(X), it is birational, and so by Zariski’s main
theorem, φ is the normalization map. �

Now we consider the case 0 = (0, β, 2, {c0, c∞}), where β is an arbitrary curve
class, and c0 and c∞ are two arbitrary contact orders along the two different
markings. Note that both c0 and c∞ are nontrivial. Otherwise, there is a curve in
toric variety intersect the boundary at only one point, which is impossible. Then
we have the following result:

Proposition 2.3. (1) If K0(X) 6=∅, then 0=00 for some 00 as in (1-2), obtained
from a group morphism (1-1).

(2) K00(X) is irreducible.



Chow quotients of toric varieties as moduli of stable log maps 2319

Proof. Assume that K0(X) 6= ∅; hence, K◦0(X) 6= ∅ by Proposition 2.1. Let
s ∈ K◦0(X)(k) and f : P1

→ X be the stable log map corresponding to s. Note
that the log structure of the boundary of X is everywhere nontrivial. Since the log
structure is trivial at s, the image of f necessarily meets T . After acting on f by
some element of T , we may assume that f sends 1 ∈ P1 to 1 ∈ T ⊂ X . Choose a
maximal cone σ in the fan of X such that the associated affine open toric variety
U ⊂ X contains f (0). Restricting f to U , we obtain a map f ′ : V = Spec k[t]→U .

Let P be the monoid σ∨∩M , and let e1, . . . , el be the irreducible elements of P .
We see that for each i ,

f ∗(ei )= tci ai ,

where ci is the contact order prescribed by 0 and ai is some element of k[t]. Note
that if α ∈ k is a zero of ai , then the point t = α is mapped to the toric boundary;
however, the contact order given by 0 implies that t = 0 is the only point in V that
maps to the boundary. Hence, ai must be a power of t . But if ai is divisible by t ,
then the contact order of t = 0 along ei = 0 is greater than ci . Therefore, ai must
be a nonzero constant.

Now observe that the point 1∈ T ⊂U is given by ei = 1 for all i . Since f (1)= 1,
the equation f ∗(ei ) = tci ai shows that ai = 1. Note that such f defines a group
morphism ιv as in (1-1). This implies that first statement.

To prove the second statement, it is enough to show that K◦0(X) is irreducible,
which again follows from the above statement. �

Now we set 0=00 as in (1-2) and use the setting and notation of the introduction.
As discussed in the introduction, we have an immersion T ′→ K0(X). Let X0 be
the closure of T ′ in K0(X). The forgetful morphism 8 then induces a map

φ′ : X0→M.

Since K0(X) is irreducible, Theorem 1.4 follows from the next lemma.

Lemma 2.4. X0 is an open substack of K0(X), and so φ′ is the normalization map.

Proof. As in the proof of Lemma 2.2, φ′ is representable and finite. If X0 is an
open substack of K0(X), it is then normal. Since φ′ is an isomorphism over T ′,
Zariski’s main theorem shows that it is the normalization map.

To show that X0 is open in K0(X), it suffices to prove that X◦0 := X0 ∩K◦0(X)
has the same dimension as K◦0(X). Since T ′ is dense in X0, we see that X0 has
dimension d − 1. On the other hand, the map

π : (K0(X),MK0(X))→ (M0,2,MM0,2)

in the proof of Proposition 2.1 induces a map

K◦0(X)→M◦0,2,
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where M◦0,2 denotes the open substack of M0,2 with smooth fiber curves. By
Proposition 2.1, we see that K◦0(X) has dimension d − 1. �

3. Tropical curves associated to stable log maps

The goal of this section is to prove Proposition 3.8. Following [Nishinou and Siebert
2006; Gross and Siebert 2013], we explain the connection between tropical curves
and stable log maps to toric varieties.

3.1. Review of tropical curves. Let G be the geometric realization of a weighted,
connected finite graph with weight function ω. That is, G is the CW complex
associated to a finite connected graph with vertex set G[0] and edge set G[1], and

ω : G[1]→ N

is a function. Here we allow G to have divalent vertices. Given an edge l ∈ G[1],
we denote its set of adjacent vertices by ∂l. If l is a loop, then we require ω(l)= 0.

Let G[0]∞ ⊂ G[0] be the set of one-valent vertices, and let

G := G \G[0]
∞
.

Let G[1]∞ be the set of noncompact edges in G, which we refer to as unbounded
edges. A flag of G is a pair (v, l) where l is an edge and v ∈ ∂l. We let FG be the
set of flags of G, and for each vertex v, we let

FG(v) := {(v, l) ∈ FG}.

Let N be a lattice and M = N∨. We let NQ := N ⊗Z Q and NR := N ⊗Z R.

Definition 3.2. A parametrized tropical curve in NQ is a proper map ϕ : G→ NR

of topological spaces satisfying the following conditions:

(1) For every edge l of G, the restriction ϕ|l acts as dilation by a factor ω(l) with
image ϕ(l) contained in an affine line with rational slope. If ω(l) = 0, then
ϕ(l) is a point.

(2) For every vertex v of G, we have ϕ(v) ∈ NQ.

(3) For each (v, l) ∈ FG(v), let uv,l be a primitive integral vector emanating from
ϕ(v) along the direction of h(l). Then

εv :=
∑

(v,l)∈FG(v)

ω(l)uv,l = 0,

which we refer to as the balancing condition.

An isomorphism of tropical curves ϕ :G→ NR and ϕ′ :G ′→ NR is a homeomor-
phism 8 : G→ G ′ compatible with the weights of the edges such that ϕ = ϕ′ ◦8.

A tropical curve is an isomorphism class of parametrized tropical curves.
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3.3. Tropical curves from nondegenerate stable log maps. Let (X,MX ) be a toric
variety with its standard log structure, and let T ⊂ X be its defining torus. We denote
by N the lattice of one-parameter subgroups of T . Let f : (C,MC)→ (X,MX ) be
a stable log map over (S,MS) with S a geometric point. Further assume that f is
nondegenerate; that is, the log structure MS is trivial.

In this subsection, we show how to assign a tropical curve Trop( f ) : G→ NR

to any such nondegenerate stable log map f . Note that in this case, the points on
the source curve with nontrivial log structures are marked points or nodal points.
To begin, let G be the graph with a single vertex v, which we think of as being
associated to the unique component of C , and with one unbounded edge for each
marked point of C . We let Trop( f )(v)= 0.

Let l be an edge corresponding to a marked point p of C . If p has trivial contact
orders, then we set ω(l)= 0 and let Trop( f ) contract l to 0. Otherwise, the contact
order is equivalent to giving a nontrivial map

cl :MX, f (p)→MC,p = N.

Note that we have a surjective cospecialization map of groups

M := N∨→M
gp
X, f (p)

corresponding to the specialization of the generic point of T to f (p). Composing
with cgp

l , we obtain a map
µl : M→ Z,

which defines an element µl ∈ N . Let ul be the primitive vector with slope given by
µl ∈ N . We define ω(l) to be the positive integer such that µl = ω(l)ul and define
the image Trop( f )(l) to be the unbounded ray emanating from 0 along the direction
of ul . This defines our desired map Trop( f ) : G→ NR up to reparametrization.

Proposition 3.4. Trop( f ) : G→ NR defines a tropical curve.

Proof. It remains to check that the balancing condition holds. That is, we must show
εv = 0. Note that every m ∈ M defines a rational function on C and that the degree
of the associated Cartier divisor is 0= εv(m). Therefore, εv ∈ N = M∨ is 0. �

3.5. Tropical curves from stable log maps over the standard log point. Suppose
(X,MX ) is a toric variety with its standard log structure, and let T ⊂ X be its
defining torus. Fix discrete data 0= (g, β, n, {ci }), and let f : (C,MC)→ (X,MX )

be a stable log map with discrete data 0 over the standard log point (S,MS); that
is, S is a geometric point and MS is the log structure associated to the map N→ OS

sending 1 to 0. This is equivalent to giving a (not necessarily strict) log map

(S,MS)→ (K0(X),MK0(X)),
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and the stable log map f is obtained by pulling back the universal stable log map
over (K0(X),MK0(X)). In this subsection, we associate a tropical curve

Trop( f ) : G→ NR

to f by modifying the construction given in [Gross and Siebert 2013, §1.3].
We define G to be the dual graph of C where we attach an unbounded edge for

each marked point. Given a vertex v, let t be the generic point of the corresponding
component of C . We therefore have a morphism

MX, f (t)→MC,t = N

of monoids. Taking the associated groups and composing with the cospecialization
map M→M

gp
X, f (t) yields a map

τv : M→ Z

and hence a point in N . We define Trop( f )(v)= τv.
Let l be an edge of G. If ∂l = {v, v′} and v 6= v′, then we define the image of l

under Trop( f ) to be the line segment joining τv and τv′ . In this case, τv′−τv = elµl ,
where el ∈MS = N is the section that smooths the node corresponding to l, and µl

is an element of N . We define ω(l) to be the positive integer such that µl = ω(l)ul ,
where ul is a primitive integral vector.

Suppose now that l is an unbounded edge corresponding to a marked point p. If
p has trivial contact orders, then we set ω(l)= 0 and let Trop( f ) contract l to τv,
where ∂l = {v}. Otherwise, the contact orders of p define a nontrivial map

cl :MX, f (p)→MC,p = N⊕MS→ N,

where the last map is the projection. Again taking the associated groups and
composing with the cospecialization map M→M

gp
X, f (p), we obtain

µl : M→ Z.

We define ω(l) to be the positive integer such that µl = ω(l)ul , where ul ∈ N is a
primitive integral vector, and we let Trop( f )(l) be the unbounded ray emanating
from τv in the direction of ul .

Proposition 3.6. Trop( f ) : G→ NR defines a tropical curve.

Proof. We must check that the balancing condition holds for each vertex v of G.
As in the proof of Proposition 3.4, every m ∈ M defines a rational function on the
irreducible component of C corresponding to v. The associated Cartier divisor has
degree 0= εv(m), and so εv= 0; see [Gross and Siebert 2013, Proposition 1.14]. �
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Remark 3.7. Let R be the complete local ring of A1 at the origin, and let MR be the
log structure on R induced by the standard log structure on A1. Denote the closed and
generic points of Spec R by 0 and η, respectively. Suppose h : (C,MC)→ (X,MX )

is a stable log map over R with discrete data 0 such that h0 = f . Note that hη is
a nondegenerate stable log map. For each marked section p : Spec R→ C, let l0

and lη be the edges of the dual graphs of C0 and Cη corresponding to the marked
points p0 and pη, respectively. Consider the morphism

MX |h(p)→MC|p = N⊕MR→ N,

where the last map is the projection. Taking associated groups and precomposing
with the map M → M

gp
X |h(p), we obtain a map M → Z of constant sheaves on

Spec R whose special and generic fibers are µl0 and µlη . Hence, we see µl0 = µlη .
Denote by Trop( fη) and Trop( f0) the tropical curves associated to the generic and

closed fiber of f . Then the above argument implies that Trop( fη) is the asymptotic
fan of Trop( f0) as defined in [Nishinou and Siebert 2006, Definition 3.1].

The following result plays an important role in the proof of Theorem 1.1:

Proposition 3.8. If the discrete data 0 is given by g = 0, n = 2, and β 6= 0, then
Trop( f ) is an embedding whose image is a line. Moreover, C is a chain of P1s and
f does not contract any components of C.

Proof. Since K0(X) is log smooth by Proposition 2.1, there exists a stable log map
h : (C,MC)→ (X,MX ) over (R,MR) as in Remark 3.7. Let p, p′ : Spec R→ C

be the two marked sections, and let l0, l ′0, lη, and l ′η be the corresponding edges of
the dual graphs of C and Cη. Since β 6= 0, the two marked points pη and p′η of Cη
have nontrivial contact orders. The balancing condition for Trop(hη) then shows
µl ′η =−µlη 6= 0. By Remark 3.7, we therefore have µl ′0 =−µl0 6= 0. In particular,
Trop( f ) maps l0 and l ′0 to unbounded rays.

We next show that if l is an edge of G, then Trop( f )(l) is a point or it is a line
segment or ray parallel to µl0 . Suppose Trop( f )(l) is not a point. If Trop( f )(l)
is unbounded, then l is l0 or l ′0, and so Trop( f )(l) is parallel to µl0 . Otherwise,
Trop( f )(l) is a line segment and ∂l = {v, v1} with v 6= v1. If Trop( f )(l) is not
parallel to µl0 , then the balancing condition shows that there is an edge l1 6= l such
that v1 ∈ ∂l1 and Trop( f )(l1) is not parallel to µl0 . Hence, l1 is a line segment with
endpoints v1 and v2. Again, the balancing condition shows that there is an edge l2

containing v2 such that Trop( f )(l2) is a line segment which is not parallel to µl0 .
Since C has genus 0, we see l, l1, and l2 are distinct. Continuing in this manner,
we produce an infinite sequence of distinct edges li of the dual graph of C . This is
a contradiction.

Lastly, we show that every irreducible component A of C has exactly two special
points. Hence, C is a chain of P1s, f does not contract any component of C ,
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and Trop( f )(G) is a line parallel to µl0 . Suppose A is a component with at least
three special points, and let v be the vertex of G corresponding to A. Then G \ v
is a disjoint union of nonempty trees T1, T2, . . . , Tm with m ≥ 3. Without loss
of generality, T1 only contains bounded edges. The argument in the preceding
paragraph then shows that Trop( f ) maps every edge of T1 to a single point. If C1

denotes the subcurve of C corresponding to T1, then we see that every special point
of C1 has a trivial contact order, and so f contracts C1. Since T1 is a tree, C1 contains
components with only two special points. This contradicts the stability of f . �

4. The Chow quotient as the coarse moduli space

Throughout this section, we let 0 = 00 and C(X) denote the Chow variety as in
the introduction. Let K be the normalization of X // T0. Since the stack K0(X) is
normal, it follows from [Kollár 1996, Chapter I, 3.17 and 3.21] that there is a map

F : K0(X)→ C(X)

sending a stable log map f : (C,MC)→ (X,MX ) to the image cycle f∗[C]. Since
K0(X) is irreducible by Theorem 1.4, F factors as

K0(X)
F ′
−→ X // T0

i
−→ C(X),

where i is the natural inclusion. Since F is an isomorphism over T ′ and K0(X) is
normal, by Proposition 2.1, we obtain an induced morphism

G : K0(X)→ K .

To prove Theorem 1.1, we show:

Proposition 4.1. G is a coarse space morphism.

Proof. Note that both K0(X) and K are normal and proper, and G is bijective on the
level of closed points over T ′. To show that K is the coarse moduli space of K0(X),
by Zariski’s main theorem, it suffices to show G is quasifinite. To do so, it is enough
to show F ′ is quasifinite at the level of closed points. That is, we show that if
x ∈ X // T0 is a closed point and Ex denotes the corresponding cycle of X , then
there are finitely many stable log maps whose image cycles are given by Ex . Let

Ex =
∑

ai Zi ,

where the ai are positive integers and the Zi are reduced irreducible closed sub-
schemes of X . Let Z̃i be the normalization of Zi . Since Ex is of dimension 1, we
have Z̃i ' P1.

We claim that if f : (C,MC)→ (X,MX ) is a stable log map that defines a
closed point of K0(X) such that the image cycle of f is Ex , then f can only be
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ramified at the special points of C . Given this claim, F ′ is quasifinite. Indeed,
since Proposition 3.8 shows that no component of C is contracted under f , the
number of irreducible components of C is bounded by

∑
ai . For each irreducible

component A of C , the restriction f |A factors as

A→ Z̃i → X

for some i . Since the first map A → Z̃i can only be ramified at the two fixed
special points, it is determined by the degree of f |A. This implies that there are
only finitely many choices for the underlying map C → X . Since the forgetful
morphism 8 : K0(X)→M0,2(X, β) is finite, there are finitely many choices for
the stable log map f .

It remains to prove the claim. By Proposition 2.3, K0(X) is irreducible and T ′

is dense, so there exists a toric morphism A1
→ K0(X) such that the fiber over

0 ∈ A1 is our given stable log map f : (C,MC)→ (X,MX ) whose image cycle
is Ex . Let R denote the complete local ring ÔA1,0 and let

C
h
//

��

X

Spec R

be the associated underlying stable map. Let η ∈ Spec R be the generic point.
We first handle the case when X is smooth. Let C◦ be the open subset of C

obtained by removing the special points. Note that C◦ is normal, and h|C◦ is
quasifinite by Proposition 3.8. By the purity of the branch locus theorem [Altman
and Kleiman 1971, p. 461], if h|C◦ is ramified, then the ramification locus D is
pure of codimension 1. Since h|C◦ is not everywhere ramified over the central fiber,
D must intersect the generic fiber. However, h|C◦ is unramified over the generic
fiber, so we conclude that D is empty.

We now consider the case when X is singular. Let p : X̃→ X be a toric resolution.
We may replace R by a ramified extension as this does not affect the set of closed
points. By the properness of K0(X), we can assume we have a stable log map
h̃ : (C̃,MC̃)→ (X̃ ,MX̃ ) and a commutative diagram of the underlying maps

C̃
h̃
//

q
��

X̃

p
��

C
h
// X

over R. Here h is the underlying map of the stable log map to X , which can be
also obtained by taking the stabilization of the prestable map p ◦ h̃. The previous
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paragraph shows that h̃ only ramifies at the special points. Since Proposition 3.8
shows that C̃ and C are both chains of P1s, we see that h only ramifies at the special
points as well. �

Appendix: Toric varieties have generalized Deligne–Faltings log structures

The theory of moduli spaces of stable log maps K0(Y,MY ) is developed in [Chen
2011; Abramovich and Chen 2011] and [Gross and Siebert 2013] for different
classes of log schemes (Y,MY ). In [Chen 2011; Abramovich and Chen 2011],
Abramovich and the first author consider log schemes that are generalized Deligne–
Faltings (see Definition A.1); Gross and Siebert [2013] consider log schemes that are
quasigenerated Zariski. It is shown in [Abramovich and Chen 2011, Proposition 4.8]
that when (Y,MY ) is both generalized Deligne–Faltings and quasigenerated Zariski,
the Abramovich–Chen and Gross–Siebert constructions are identical. Gross and
Siebert show that the standard log structure MX on a normal toric variety X is
always quasigenerated Zariski. Here we show that if X is also projective, then MX

is generalized Deligne–Faltings. Therefore, the two theories agree for projective
normal toric varieties.

Definition A.1. A log structure MY on a scheme Y is called generalized Deligne–
Faltings if there exists a fine saturated sharp monoid P and a morphism P→MY

that locally lifts to a chart P→MY .

Remark A.2. Given a fine saturated sharp monoid P , let AP = Spec k[P] with its
standard log structure MAP . Then there is a natural action of TP := Spec k[Pgp

]

on (AP ,MAP ) induced by the morphism P→ P ⊕ Pgp sending p to (p, p). The
log structure MAP descends to yield a log structure M[AP/TP ] on the quotient stack
[AP/TP ]. By [Olsson 2003, Remark 5.15], a log scheme (Y,MY ) is generalized
Deligne–Faltings if and only if there exists a strict morphism

(Y,MY )→ ([AP/TP ],M[AP/TP ])

for some fine saturated sharp monoid P .

Let X be a projective normal toric variety, and let MX be its standard log structure.
Let Q ⊂Rn be a polytope associated to a sufficiently positive projective embedding
of X . Placing Q at height 1 in Rn

×R and letting P be the monoid of lattice points
in the cone over Q, we have X = Proj k[P]. Note that P is fine, saturated, and
sharp. Let (AP ,MAP ) be as in Remark A.2, let U be the compliment of the closed
subscheme of AP defined by the irrelevant ideal of k[P], and let MU = MAP |U .
The function deg : P→ Z sending an element to its height induces a Gm-action on
(AP ,MAP ). Hence, MU descends to yield a log structure MP on X .

Lemma A.3. MP is generalized Deligne–Faltings.
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Proof. We have a cartesian diagram

(U,MU ) //

��

(AP ,MP)

��

(X,MP) // ([AP/Gm],M[AP/Gm ])

where all morphisms are strict and the vertical morphisms are smooth covers. Note
that the Gm-action on (AP ,MAP ) is induced from the morphism σ : P→ P ⊕Z

defined by p 7→ (p, deg p). Since σ factors as

P→ P ⊕ Pgp
→ P ⊕Z

where the first map is p 7→ (p, p) and the second is (p, ξ) 7→ (p, deg ξ), we see
that there is a strict smooth cover

([AP/Gm],M[AP/Gm ])→ ([AP/TP ],M[AP/TP ]).

Hence, Remark A.2 shows that MP is generalized Deligne–Faltings. �

Note that MP |T = O∗T , where T is the torus of X . We therefore obtain a map

ψ :MP → j log
∗ O∗T =:MX .

Proposition A.4. ψ is an isomorphism, and so (X,MX ) is generalized Deligne–
Faltings.

Proof. To show ψ is an isomorphism, it is enough to look Zariski locally on X .
Note that X has an open cover by the Xv := Spec k[Qv], where v is a vertex of
the polytope Q and Qv is the monoid of lattice points in the cone over Q− v :=
{q − v | q ∈ Q ⊂ Rn

}. Let Pv be the submonoid of Pgp generated by P and −v.
Then we have a cartesian diagram

APv
i
//

π

��

U

��

Xv // X

where π is induced from the map Qv→ Pv embedding Qv at height 0 in Pv and
where the composite of i and U → AP is induced from the inclusion P → Pv.
Hence,

MQv
= (MPv )

Gm ,

and so ψ is an isomorphism over Xv. �
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