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A Dolbeault–Hilbert complex
for a variety with isolated singular points

John Lott

Given a compact Hermitian complex space with isolated singular points, we con-
struct a Dolbeault-type Hilbert complex whose cohomology is isomorphic to the
cohomology of the structure sheaf. We show that the corresponding K-homology
class coincides with the one constructed by Baum, Fulton and MacPherson.

1. Introduction

The program of doing index theory, or more generally elliptic theory, on singu-
lar varieties goes back at least to [Singer 1971, §4]. This program takes various
directions — for example, the relation between L2-cohomology and intersection
homology. In this paper we consider a somewhat different direction, which is
related to the arithmetic genus. This is motivated by work of Baum, Fulton and
MacPherson [Baum et al. 1975; 1979].

Let X be a projective complex algebraic variety and let S be a coherent sheaf
on X . In [Baum et al. 1979], the authors associated to S an element [S]BFM ∈K0(X)
of the topological K-homology of X . This class enters into their Riemann–Roch
theorem for singular varieties. In particular, under the map p : X → pt, the
image p∗[S]BFM ∈ K0(pt) ∼= Z is expressed in terms of sheaf cohomology by∑

i (−1)i dim(Hi (X;S)).
In view of the isomorphism between topological K-homology and analytic K-

homology [Baum and Douglas 1982; Baum et al. 2007], the class [S]BFM can be
represented by an “abstract elliptic operator” in the sense of [Atiyah 1970]. This
raised the question of how to find an explicit cycle in analytic K-homology, even if
X is singular, that represents [S]BFM. The most basic case is when S is the structure
sheaf OX . If X is smooth then the operator representing [OX ]BFM is ∂+ ∂∗. Hence
we are looking for the right analog of this operator when X may be singular.

A second related question is to find a Hilbert complex, in the sense of [Brüning
and Lesch 1992], whose cohomology is isomorphic to H?(X;OX ). We want the

Research partially supported by NSF grant DMS-1810700.
MSC2010: 19K33, 19L10, 32W05, 58J10.
Keywords: Dolbeault, singular, variety, Riemann–Roch.

707

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2019.4-4
http://dx.doi.org/10.2140/akt.2019.4.707


708 JOHN LOTT

complex to be intrinsic to X . Also, if X is smooth then we want to recover the
∂-complex on (0, ?)-forms.

In this paper, we answer these questions when X has isolated singular points.
To see the nature of the problem, suppose that X is a complex curve, whose nor-
malization has genus g. In this case, the Riemann–Roch theorem says

dim(H0(X;OX ))− dim(H1(X;OX ))= 1− g−
∑

x∈Xsing

δx , (1.1)

where δx is a certain positive integer attached to the singular point x [Hartshorne
1977, p. 298]. To find the appropriate Hilbert complex, it is natural to start with
the Dolbeault complex �0,0

c (Xreg)
∂
−→�0,1

c (Xreg) of smooth compactly supported
forms on Xreg and look for a closed operator extension, where Xreg is endowed with
the induced Riemannian metric from its projective embedding. For the minimal
closure ∂s , one finds Index(∂s)= 1− g. Taking a different closure can only make
the index go up [Brüning et al. 1990], whereas in view of (1.1) we want the index
to go down. (Considering complete Riemannian metrics on Xreg does not help.)
However, on the level of indices, we can get the right answer by enhancing the
codomain by

⊕
x∈Xsing

Cδx .
Now let X be a compact Hermitian complex space of pure dimension n. For

technical reasons, we assume that the singular set Xsing consists of isolated singu-
larities. (In the bulk of the paper we allow coupling to a holomorphic vector bundle,
but in this introduction we only discuss the case when the vector bundle is trivial.)
Let ∂s be the minimal closed extension of the ∂-operator on Xreg = X − Xsing.
Its domain Dom(∂0,?

s ) can be localized to a complex of sheaves Dom(∂0,?
s ). Let

H0,?(∂s) denote the cohomology, a sum of skyscraper sheaves on X if ? > 0. We
write Os for H0,0(∂s), which is the sheaf of germs of weakly holomorphic functions
on X , the latter being in the sense of [Whitney 1972, Section 4.3]. Then Os/OX

is also a sum of skyscraper sheaves on X . Its vector space of global sections will
be written as (Os/OX )(X). Both H0,?(∂s) and Os/OX can be computed using a
resolution of X [Ruppenthal 2018, Corollary 1.2].

Define vector spaces T ∗ by

T 0
=Dom(∂0,0

s ),

T 1
=Dom(∂0,1

s )⊕ (Os/OX )(X), (1.2)

T ?
=Dom(∂0,?

s )⊕ (H0,?−1(∂s))(X), if 2≤ ?≤ n.

To define a differential on T ∗, let 40,?
s be the Laplacian associated to ∂s . Let

PKer(40,?
s ) be orthogonal projection onto the kernel of40,?

s . As elements of Ker(40,?
s )

are ∂s-closed, for each x ∈ Xsing there is a well-defined map Ker(40,?
s )→(H0,?(∂s))x

to the stalk of H0,?(∂s) at x . For ? > 0, putting these together for all x ∈ Xsing, and
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precomposing with PKer(40,?
s ), gives a linear map γ : Dom(∂0,?

s )→ (H0,?(∂s))(X).
For ?= 0, we similarly define γ :Dom(∂0,0

s )→ (Os/OX )(X). Define a differential
d : T ∗→ T ∗+1 by

d(ω)=(∂sω, γ (ω)), if ?= 0,

d(ω, a)=(∂sω, γ (ω)), if ? > 0.
(1.3)

Theorem 1.4. The cohomology of (T, d) is isomorphic to H∗(X;OX ).

Theorem 1.4 can be seen as an extension of [Ruppenthal 2018, Corollary 1.3],
which implies the result when X is normal and has rational singularities. To prove
Theorem 1.4, we construct a certain resolution of OX by fine sheaves. The coho-
mology of the complex (T̃ , d̃) of global sections is then isomorphic to H∗(X;OX ).
The complex (T̃ , d̃) is not quite the same as (T, d) but we show that they are
cochain-equivalent, from which the theorem follows.

The spectral triple (C(X), T, d + d∗) defines an element [OX ]an ∈ K0(X) of the
analytic K-homology of X .

Theorem 1.5. If X is a projective algebraic variety with isolated singularities then
[OX ]an = [OX ]BFM in K0(X).

There has been some interesting earlier work on the questions addressed in this
paper. Ancona and Gaveau [1994] gave a resolution of the structure sheaf of a
normal complex space X , assuming that the singular locus is smooth, in terms of
differential forms on a resolution of X . The construction depended on the choice
of resolution. Fox and Haskell [2000] discussed using a perturbed Dolbeault op-
erator on an ambient manifold to represent the K-homology class of the structure
sheaf. Andersson and Samuelsson [2012] gave a resolution of the structure sheaf
by certain currents on X that are smooth on Xreg. After this paper was written, Bei
and Piazza [2019] posted a preprint which also has a proof of Proposition 5.1.

The structure of the paper is the following. In Section 2, given a holomorphic
vector bundle V on X , we recall the definition of the minimal closure ∂V,s and show
that ∂V,s + ∂

∗

V,s gives an element of the analytic K-homology group K0(X), in the
unbounded formalism for the Kasparov KK-group KK(C(X);C). In Section 3 we
construct a resolution of the sheaf V by fine sheaves. Their global sections give a
Hilbert complex. In Section 4 we deform this to the complex (TV , dV ). Section 5
has the proof of Theorem 1.5. More detailed descriptions appear at the beginning
of the sections.

2. Minimal closure and compact resolvent

In this section we consider a holomorphic vector bundle V on a compact complex
space X with isolated singularities. We define the minimal closure ∂V,s . We show
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that the spectral triple (C(X), ∂V,s + ∂
∗

V,s, �
0,∗
L2 (Xreg; V )) gives a well-defined ele-

ment of the analytic K-homology group K0(X), in the unbounded formalism. The
main issue is to show that ∂V,s + ∂

∗

V,s has a compact resolvent. When V is trivial,
this was shown in [Øvrelid and Ruppenthal 2014].

Let X be a reduced compact complex space of pure dimension n. For each x ∈ X ,
there is a neighborhood U of x with an embedding of U into some domain U ′⊂CN ,
as the zero set of a finite number of holomorphic functions on U ′.

Let OX be the analytic structure sheaf of X . Let Xsing be the set of singular
points of X and put Xreg = X − Xsing.

We equip X with a Hermitian metric g on Xreg which satisfies the property that
for each x ∈ X , there are U and U ′ as above, along with a smooth Hermitian metric
G on U ′, so that g|Xreg∩U = G|Xreg∩U .

Let V be a finite dimensional holomorphic vector bundle on X or, equivalently,
a locally free sheaf V of OX -modules. For each x ∈ X , there are U and U ′ as
above so that V |U is the restriction of a trivial holomorphic bundle U ′×CN on U ′.
Let h be a Hermitian inner product on V |Xreg which satisfies the property that for
each x ∈ X , there are such U and U ′ so that h|Xreg∩U is the restriction of a smooth
Hermitian metric on U ′×CN .

Let ∂V,s be the minimal closed extension of the ∂V -operator on Xreg. That
is, the domain of ∂V,s is the set of ω ∈ �0,∗

L2 (Xreg; V ) so that there are a se-
quence of compactly supported smooth forms ωi ∈ �

0,∗(Xreg; V ) on Xreg and
some η ∈�0,∗+1

L2 (Xreg; V ) such that

lim
i→∞

ωi = ω in �0,∗
L2 (Xreg; V ),

lim
i→∞

∂V,sωi = η in �0,∗+1
L2 (Xreg; V ).

We then put ∂V,sω = η, which is uniquely defined.
Hereafter we assume that Xsing is finite.

Proposition 2.1. The spectral triple (C(X), ∂V,s + ∂
∗

V,s, �
0,∗
L2 (Xreg; V )) gives a

well-defined element of the analytic K-homology group K0(X).

Proof. Put DV = ∂V,s + ∂
∗

V,s , with dense domain Dom(∂V,s) ∩Dom(∂∗V,s). Put
D = ∂s + ∂

∗
s , the case when V is the trivial complex line bundle. Put

A= { f ∈ C(X) : f (Dom(DV ))⊂ Dom(DV ) and [DV , f ] is bounded}. (2.2)

Using the local trivializations of V , it follows that

A= { f ∈ C(X) : f (Dom(D))⊂ Dom(D) and [D, f ] is bounded}. (2.3)

To satisfy the definitions of unbounded analytic K-homology [Baaj and Julg 1983;
Forsyth et al. 2014; Kaad 2019], we first need to show that A is dense in C(X).
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Given F ∈ C(X) and ε > 0, we can construct f ∈ C(X) such that

• for each x j ∈ Xsing, there is a neighborhood U j ⊂ X of x j on which f is
constant, with f (x j )= F(x j );

• f is smooth on Xreg;

• supx∈X | f (x)− F(x)|< ε.

Then f (Dom(D)) ⊂ Dom(D) and ‖[D, f ]‖ ≤ const. ‖∇h f ‖∞ <∞. It follows
that A is dense in C(X).

To prove the proposition, it now suffices to prove the following lemma.

Lemma 2.4. The operator (DV + i)−1 is compact.

Proof. If V is trivial then the lemma is true [Øvrelid and Ruppenthal 2014]. We
use a parametrix construction to prove it for general V .

Let us first prove the lemma for a special inner product h′ on V . We write
Xsing = {x j }

r
j=1. For each j , let U j be a neighborhood of x j on which V is

trivialized as above, with U j ∩Uk =∅ for j 6= k. Choose open sets with smooth
boundary x j ∈ Z j ⊂ Y j ⊂ W j ⊂ U j , with Z j ⊂ Y j , Y j ⊂ W j and W j ⊂ U j . Let
φ j ∈ C(X) be identically 1 on Y j , with support in W j , and smooth on U j −Y j . Let
η j ∈ C(X) be identically 1 on W j , with support in U j , and smooth on U j −Y j , so
that η j is 1 on the support of φ j .

Define an inner product h′ on V by first taking it to be a trivial inner product
on each U j , in terms of our given trivializations, and then extending it smoothly to
the rest of Xreg. Let V j be the extension of the trivialization U j ×CN to a product
bundle on X ×CN on X , as a smooth vector bundle with trivial inner product. Let
DV j = D⊗ IN be the corresponding operator. As (D+i)−1 is compact [Øvrelid and
Ruppenthal 2014], the same is true for DV j . Let DAPS be the operator ∂V + ∂

∗

V on
X −

⋃
j Z j , with Atiyah–Patodi–Singer boundary conditions [Atiyah et al. 1973].

(The paper [Atiyah et al. 1973] assumes a product structure near the boundary, but
this is not necessary.) Then (DAPS+ i)−1 is compact. Put φ0 = 1−

∑
j φ j , with

support in X −
⋃

j Z j . Pick η0 ∈ C(X) with support in X −
⋃

j Z j , and smooth
on Xreg, such that η0 is one on the support of φ0.

For ω ∈�0,∗
L2 (Xreg; V ), put

Qω = η0(DAPS+ i)−1(φ0ω)+
∑

j

η j (DV j + i)−1(φ jω). (2.5)

Then Q is compact and

(DV+i)Qω
= ω+[D, η0](DAPS+i)−1(φ0ω)+

∑
j

[D, η j ](DV j+i)−1(φ jω), (2.6)
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so

(DV+i)−1

= Q−(DV+i)−1
(
[D, η0](DAPS+i)−1φ0+

∑
j

[D, η j ](DV j+i)−1φ j

)
. (2.7)

As [D, η0], [D, η j ] and (DV + i)−1 are bounded, it follows that (DV + i)−1 is
compact.

As (DV + i)−1 (for the inner product h′) is compact, the spectral theorem for
compact operators and the functional calculus imply that (I + D2

V )
−1 is compact.

Writing 4V,s = D2
V , there is then a Hodge decomposition

�
0,∗
L2 (Xreg; V )= Ker(40,?

V,s)⊕ Im(∂V,s)⊕ Im(∂∗V,s), (2.8)

where the right-hand side is a sum of orthogonal closed subspaces. In particular,

(1) Im(∂V,s) is closed,

(2) Ker(∂V,s)/ Im(∂V,s) is finite dimensional and

(3) the map ∂V,s : �
0,∗
L2 (Xreg; V )/Ker(∂V,s)→ Im(∂V,s) is invertible and the in-

verse is compact, i.e., sends bounded sets to precompact sets.

(The inverse map Im(∂V,s)→�
0,∗
L2 (Xreg; V )/Ker(∂V,s)∼= Im(∂∗V,s) is DG, where

G is the Green’s operator for 4V,s .) As the L2-inner products on �0,∗
L2 (Xreg; V )

coming from h′ and h are relatively bounded, the above three properties also hold
for h. It follows that there is a Hodge decomposition relative to the inner product h,
and (I + D2

V )
−1 is compact. Hence (DV + i)−1 is compact.

This completes the proof of the lemma, and hence the proposition. �

3. Resolution

In this section we construct a certain resolution of the sheaf of holomorphic sections
of a holomorphic vector bundle V on X . To begin, we define a sheaf Dom(∂0,?

V,s)

on X , following [Ruppenthal 2018, Section 2.1].
Given an open set U ⊂ X and a compact subset K ⊂ U , we write Ureg for

U ∩ Xreg and Kreg for K ∩ Xreg.
Let V be a finite dimensional holomorphic vector bundle on X equipped with a

Hermitian metric, in the sense of Section 2. There is a sheaf �0,?
V,L2

loc
on X whose

sections over an open set U ⊂ X are the locally square integrable V -valued forms
of degree (0, ?) on Ureg, i.e., they are square integrable on Kreg for any compact set
K ⊂U . Convergence means L2-convergence on each such Kreg. By definition, the
sections of Dom(∂0,?

V,s) over U are the elements ω ∈�0,?
L2

loc
(Ureg; V ) so that there are

• a sequence fi ∈�
0,?
C∞c
(Ureg; V ) and

• some η ∈�0,?+1
L2

loc
(Ureg; V )
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such that for any compact K ⊂U , we have

• limi→∞ fi = ω in �0,?
L2 (Kreg; V ) and

• limi→∞ ∂V fi = η in �0,?+1
L2 (Kreg; V ).

Then we put ∂Vω = η.
This gives a complex of fine sheaves

. . .
∂V
−→ Dom(∂0,?−1

V,s )
∂V
−→ Dom(∂0,?

V,s)
∂V
−→ Dom(∂0,?+1

V,s )
∂V
−→ · · · . (3.1)

The cohomology of the complex is the sheaf H0,?(∂V,s). For ?> 0, it is a direct sum
of skyscraper sheaves, with support in Xsing. We write V s for H0,0(∂V,s), i.e., the
kernel of ∂V acting on Dom(∂0,0

V,s). Then V s/V is also a direct sum of skyscraper
sheaves with support in Xsing.

Although we do not need it here, there is a description of these skyscraper
sheaves in terms of a resolution of X . Suppose that π : M → X is a resolu-
tion. From [Ruppenthal 2018, Corollary 1.2], if x ∈ X then we can identify the
stalk (H0,q(∂V,s))x with Vx ⊗ (Rqπ∗OM)x . In particular, we can identify V s with
V ⊗OX π∗OM or, more intrinsically, with the sheaf of weakly holomorphic sections
of V , i.e., bounded holomorphic sections of V |Xreg .

There is a quotient morphism of sheaves:

q : Ker(∂0,?
V,s)→ H0,?(∂V,s).

As H0,?(∂V,s) is an injective sheaf for ? > 0, we can extend q to a morphism
α :Dom(∂0,?

V,s)→H0,?(∂V,s). More specifically, if x is a singular point then the stalk
(H0,?(∂V,s))x is a finite dimensional complex vector space, so we are extending the
quotient map qx : (Ker(∂0,?

V,s))x → (H0,?(∂V,s))x from the germs of ∂V -closed V -
valued forms at x , to the germs of forms in the domain of ∂V,s .

Considering H0,?(∂V,s) to be a complex of sheaves with zero differential, α is
a morphism of complexes that is an isomorphism on cohomology in degree ? > 0
by construction. Let cone(αV ) be the mapping cone of αV , with cone0,?(αV ) =

Dom(∂0,?
V,s) ⊕ H0,?−1(∂V,s) and differential dcone(ω, h) = (∂Vω, αV (ω)). It has

vanishing cohomology in degree ? > 1. Define a complex of sheaves C0,?
V by

C0,?
V =


Dom(∂0,0

V,s), ?= 0,

Dom(∂0,1
V,s), ?= 1,

Dom(∂0,?
V,s)⊕H0,?−1(∂V,s), ? > 1,

(3.2)

where the differential in degree ? = 0 is ∂V , the differential in degree ? = 1 is
(∂V , αV ), and the differential in degrees ? > 1 is dcone. Then CV is a resolution of
V s by fine sheaves.
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There is a short exact sequence of sheaves

0→ V → V s→ V s/V → 0. (3.3)

We can think of V s/V as a resolution of itself, when concentrated in degree zero.
Together with the resolution of V s from (3.2), we can construct a resolution of
V as follows. As V s/V is a finite sum of skyscraper sheaves, we can extend the
quotient map V s → V s/V to a morphism βV : Dom(∂0,0

V,s)→ V s/V . Define a
complex of sheaves C̃V by

C̃ 0,?
V =


Dom(∂0,0

V,s), ?= 0,

Dom(∂0,1
V,s)⊕ V s/V , ?= 1,

Dom(∂0,?
V,s)⊕H0,?−1(∂V,s), ? > 1,

(3.4)

where the differential in degree ?= 0 is (∂V , βV ), the differential in degree ?= 1
sends (ω, v) to (∂Vω, αV (ω)), and the differential in degrees ? > 1 is dcone. Then
C̃V is a resolution of V by fine sheaves; see [Iversen 1986, proof of Proposi-
tion I.6.10].

Taking global sections of C̃ 0,?
V gives a cochain complex (T̃V , d̃V ):

0→ Dom(∂0,0
V,s)→ Dom(∂0,1

V,s)⊕ (V s/V )(X)

→ Dom(∂0,2
V,s)⊕ (H

0,1(∂V,s))(X)→ · · ·

→ Dom(∂0,n
V,s)⊕ (H

0,n−1(∂V,s))(X)→ 0. (3.5)

For the last term, we use the fact that in terms of a resolution π : M→ X , we have
(H0,n(∂V,s))x = Vx ⊗ (Rnπ∗OM)x = 0.

Proposition 3.6. The cohomology of (T̃V , d̃V ) is isomorphic to H∗(X; V ).

Proof. This holds because C̃V is a resolution of V by fine sheaves. �

Put arbitrary inner products on the finite dimensional vector spaces (V s/V )(X)
and (H0,∗(∂V,s))(X).

4. Hilbert complex

The differential d̃V in the Hilbert complex (T̃V , d̃V ) of the previous section involved
somewhat arbitrary choices of αV and βV . In this section we replace (T̃V , d̃V ) by
a more canonical Hilbert complex (TV , dV ).

For brevity of notation, we put

A∗V =
{
(V s/V )(X), ?= 0,
(H0,?(∂V,s))(X), ? > 0.

(4.1)
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Then the complex T̃V has entries T̃ 0,?
V =Dom(∂0,?

V,s)⊕A?−1
V . Combining αV and βV ,

we have constructed a linear map γV : Dom(∂0,?
V,s)→ A?V so that the differential of

T̃V is given by
d̃V (ω, a)= (∂Vω, γV (ω)). (4.2)

Note that γV ◦ ∂V,s = 0.
Let PKer(40,?

V,s)
be orthogonal projection onto Ker(40,?

V,s)⊂�
0,?
L2 (Xreg; V ). Define

a new differential dV on T̃V by

dV (ω, a)= (∂Vω, γV (PKer(40,?
V,s)
ω)). (4.3)

Call the resulting cochain complex (TV , dV ).
As in (2.8), there is a Hodge decomposition

Dom(∂0,?
V,s)= Ker(40,?

V,s)⊕ Im(∂V,s)⊕ Im(∂∗V,s). (4.4)

Here the terms on the right-hand side of (4.4) are the intersections of Dom(∂0,?
V,s)

with the corresponding terms in (2.8). In particular, Ker(40,?
V,s) and Im(∂V,s) are

the same, while the elements of Im(∂∗V,s) now lie in an H 1-space. Put

IV = ∂V,s |Im(∂∗V,s)
: Im(∂∗V,s)→ Im(∂V,s), (4.5)

an isomorphism.
Define a linear map mV : Dom(∂0,?

V,s)⊕ A?−1
V → Dom(∂0,?

V,s)⊕ A?−1
V by saying

that if

(h, ω1, ω2, a) ∈ Ker(40,?
V,s)⊕ Im(∂V,s)⊕ Im(∂∗V,s)⊕ A?−1

V , (4.6)
then

mV (h, ω1, ω2, a)= (h, ω1, ω2, a+ γV (I−1(ω1))). (4.7)

Its inverse is given by

m−1
V (h, ω1, ω2, a)= (h, ω1, ω2, a− γV (I−1(ω1))). (4.8)

Proposition 4.9. The linear maps mV and m−1
V are chain maps between (TV , dV )

and (TV , d̃V ), i.e., mV ◦ dV = d̃V ◦mV and m−1
V ◦ d̃V = dV ◦m−1

V .

Proof. We check that mV ◦ dV = d̃V ◦mV ; the proof that m−1
V ◦ d̃V = dV ◦m−1

V is
similar. Given (h, ω1, ω2, a) as in (4.6), we have

dV (h, ω1, ω2, a)= (0, ∂Vω2, 0, γV (h)),

mV (dV (h, ω1, ω2, a))= (0, ∂Vω2, 0, γV (h)+ γV (ω2)),

mV (h, ω1, ω2, a)= (h, ω1, ω2, a+ γV (I−1(ω1))),

d̃V (mV (h, ω1, ω2, a))= (0, ∂Vω2, 0, γV (h)+ γV (ω2)).

(4.10)

This proves the proposition. �

Theorem 4.11. The cohomology of (TV , dV ) is isomorphic to H∗(X; V ).
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Proof. This follows from Propositions 3.6 and 4.9. �

We can now reprove a result from [Fulton 1998, Example 18.3.3 on p. 362].

Proposition 4.12. In terms of a resolution π : M→ X , we have
n∑

i=0

(−1)i dim(Hi (X;OX ))=

∫
M

Td(TM)− dim((π∗OM/OX )(X))

+

n∑
i=1

(−1)i−1 dim((Riπ∗OM)(X)). (4.13)

Proof. Let (T1, d1) denote the complex (TV , dV ) when the vector bundle V is
the trivial bundle. From Theorem 4.11, the left-hand side of (4.13) is the index
of d1 + d∗1 . We can deform the chain complex (T1, d1) to make the differential
equal to ∂s ⊕ 0 without changing the index. The new index is

n∑
i=0

(−1)i dim(Hi (∂s))

− dim((Os/OX )(X))+
n−1∑
i=1

(−1)i−1 dim((H0,i (∂s))(X)). (4.14)

From [Pardon and Stern 1991], we have Hi (∂s)∼= H0,i (M), so
n∑

i=0

(−1)i dim(Hi (∂s))=

n∑
i=0

(−1)i dim(H0,i (M))=
∫

M
Td(TM). (4.15)

From [Ruppenthal 2018, Corollary 1.2], Os ∼= π∗OM and H0,i (∂s)∼= Riπ∗OM . The
proposition follows. �

Remark 4.16. We can write
∫

M Td(TM)=
∫

X π∗ Td(TM), where we are integrat-
ing a top-degree form on Xreg. It is not so clear what the relevant theory of charac-
teristic classes on X should be, for which this would be an example. We have in
mind a Chern–Weil theory on Xreg with control on how the forms behave near Xsing.
We note that there is a rational homology class π∗(PD[Td(TM)]) on X , where
PD[Td(TM)] ∈Heven(M;Q) is the Poincaré dual of [Td(TM)] ∈Heven(M;Q), and
if X is connected then

∫
M Td(TM) can be identified with the degree-zero compo-

nent of π∗(PD[Td(TM)]).

5. K-homology class

In this section we prove Theorem 1.5. We first show that if π : M→ X is a resolu-
tion of singularities, with a simple normal crossing divisor, then the K-homology
class [∂s+∂

∗
s ] ∈K0(X) from Proposition 2.1, with V trivial, equals the pushforward

π∗[∂M + ∂
∗

M ]. We then prove Theorem 1.5.

Proposition 5.1. Let π : M→ X be a resolution of singularities, with π−1(Xsing)

being a simple normal crossing divisor. Then [∂s + ∂
∗
s ] = π∗[∂M + ∂

∗

M ].
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Proof. The method of proof comes from [Haskell 1987]. Consider the following
part of the K-homology exact sequence for the pair (X, Xsing):

K0(Xsing)
α
−→ K0(X)

β
−→ K0(X, Xsing). (5.2)

Lemma 5.3. We have β([∂s + ∂
∗
s ])= β(π∗[∂M + ∂

∗

M ]) in K0(X, Xsing).

Proof. Put D = π−1(Xsing)⊂ M . Since it has simple normal crossings, there is a
small regular neighborhood of D whose closure C ′ is homotopy equivalent to D.
We can also assume that C = π(C ′) is homotopy equivalent to Xsing [Milnor 1968,
Theorem 2.10]. As [∂M + ∂

∗

M ] is independent of the choice of Hermitian metric
on M , we can choose a Hermitian metric on M so that π restricts to an isometry
from M −C ′ to X −C .

Consider the commutative diagram

K0(M) //

π∗
��

K0(M, D)
∼=
//

��

K0(M,C ′)
∼=
//

��

KK(C0(M −C ′);C)

��

K0(X)
β
// K0(X, Xsing)

∼=
// K0(X,C)

∼=
// KK(C0(X −C);C)

(5.4)

Starting with [∂M + ∂
∗

M ] ∈ K0(M) and going along the top row, its image in
KK(C0(M −C ′);C) is the restriction of the analytic K-homology class, i.e., one
only acts by functions that vanish on C ′. The right vertical arrow of the diagram
is an isomorphism coming from the bijection between M − C ′ and X − C . By
the commutativity of the diagram, we now know what β(π∗[∂M + ∂

∗

M ]) is as an
element of KK(C0(X −C);C). However, this is isomorphic to the restriction of
[∂s + ∂

∗
s ] ∈K0(X) to an element of KK(C0(X −C);C) (since π gives an isometry

between M −C ′ and X −C). The latter restriction is the same as β([∂s + ∂
∗
s ]).

This proves the lemma. �

Returning to the proof of Proposition 5.1, we know now that [∂s+∂
∗
s ]−π∗[∂M+∂

∗

M]

lies in the kernel of β, and so lies in the image of α. For the purpose of the proof,
we can assume that X is connected. Let a : pt→ X be an arbitrary fixed embedding
and let a∗ :K0(pt)→K0(X) be the induced homomorphism. The connectedness of
X implies that Im(α)= Im(a∗). Let b : X→ pt be the unique point map. Consider
pt a
−→ X b

−→ pt and the induced homomorphisms K0(pt) a∗
−→ K0(X)

b∗
−→ K0(pt).

Then the map b∗ restricts to an isomorphism between Im(a∗) and K0(pt). Hence,
to prove the proposition, it suffices to show that b∗[∂s + ∂

∗
s ] = b∗(π∗[∂M + ∂

∗

M ])

in K0(pt)∼= Z.
Now b∗[∂s + ∂

∗
s ] is the index of ∂s + ∂

∗
s , i.e.,

∑n
i=0(−1)i dim(Hi (∂s)), while

b∗(π∗[∂M + ∂
∗

M ]) is the index of ∂M + ∂
∗

M , i.e.,
∑n

i=0(−1)i dim(Hi (∂M)). From
[Pardon and Stern 1991], these are equal term-by-term. This proves the proposi-
tion. �
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Proof of Theorem 1.5. Suppose that X is a connected projective algebraic variety.
In terms of the resolution π : M → X , it was pointed out in [Baum et al. 1975,
p. 104] that there is an identity in K0(X):

[OX ]BFM−π∗[OM ]BFM =
∑

j

n j [OV j ]BFM. (5.5)

Here the n j are certain integers and the V j are irreducible subvarieties of the sin-
gular locus of X . In our case of isolated singularities, the V j are just the points x j

in Xsing. As [OM ]BFM = [∂M + ∂
∗

M ], Proposition 5.1 implies that

[OX ]BFM = [∂s + ∂
∗

s ] +
∑

j

n j [OV j ]BFM. (5.6)

Let (T1, d1) denote the complex (TV , dV ) when the vector bundle V is the trivial
bundle. Let [OX ]an ∈ K0(X) be the K-homology class coming from the operator
d1+ d∗1 . We can deform the chain complex (T1, d1) to make the differential equal
to ∂s ⊕ 0 without changing the K-homology class arising from the complex. Then
(5.6) implies that [OX ]an and [OX ]BFM have the same image in K0(X, Xsing); cf.
the proof of Lemma 5.3. Let b : X → pt be the unique point map. As in the
proof of Proposition 5.1, to conclude that [OX ]an = [OX ]BFM in K0(X), it now
suffices to show that b∗[OX ]an = b∗[OX ]BFM in K0(pt) ∼= Z. Now b∗[OX ]an is
the index of d1 + d∗1 which, from Theorem 4.11, equals the arithmetic genus∑n

i=0(−1)i dim(Hi (X;OX )). On the other hand, from [Baum et al. 1979, Sec-
tion 3], we also have b∗[OX ]BFM =

∑n
i=0(−1)i dim(Hi (X;OX )). This proves the

theorem. �

Remark 5.7. We mention some of the issues involved in extending the present
paper to nonisolated singularities. First, it seems to be open whether ∂s + ∂

∗
s

has compact resolvent, so the unbounded KK-formalism may not be applicable.
However, it is known that the unreduced cohomology of the ∂s-complex is finite
dimensional, being isomorphic to the cohomology of a resolution [Pardon and Stern
1991]. Hence the ∂s-complex is Fredholm and one could use the bounded KK-
description of K-homology, although it would be more cumbersome.

We expect that Proposition 5.1 still holds if X has nonisolated singularities. It is
known that taking resolutions π : M→ X , the pushforward π∗[∂M + ∂

∗

M ] ∈K0(X)
is independent of the choice of resolution [Hilsum 2018].

One could ask for an extension of Theorem 4.11 to the case of nonisolated singu-
larities. As an indication, one would expect that taking products of complex spaces
would lead to tensor products of the cochain complexes. In particular, suppose that
Z is a smooth Hermitian manifold and X has isolated singular points. Then the
cochain complex for Z × X would have contributions from differential forms along
the singular locus.
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In a related vein, in principle one can apply (5.5) inductively to get an expression
for [OX ]BFM.
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