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Stable operations and cooperations
in derived Witt theory with rational coefficients

Alexey Ananyevskiy

The algebras of stable operations and cooperations in derived Witt theory with
rational coefficients are computed and an additive description of cooperations
in derived Witt theory is given. The answer is parallel to the well-known case
of K-theory of real vector bundles in topology. In particular, we show that sta-
ble operations in derived Witt theory with rational coefficients are given by the
values on the powers of the Bott element.

1. Introduction

Derived Witt theory, introduced by Balmer [1999] (see also [Balmer 2005] for
an extensive survey), immerses Witt groups of (commutative, unital) rings and,
more generally, Witt groups of schemes, into the realm of generalized cohomology
theories, producing for a smooth variety X a sequence of groups W[n](X). This
sequence is 4-periodic in n with W[0](X) and W[2](X) being canonically identified
with the Witt group of symmetric vector bundles and the Witt group of symplec-
tic vector bundles, respectively. The latter groups were introduced by Knebusch
[1977]. All the groups W[n](X) are presented by generators and relations: roughly
speaking, one should repeat the classic definition of the Witt group of a field in the
setting of derived categories of coherent sheaves (or perfect complexes), carefully
treating the notion of metabolic objects. The above-mentioned periodicity yields
that in a certain sense we do not have “higher” derived Witt groups, in contrast to
the case of algebraic K-theory.

Another approach to derived Witt theory is given by higher Grothendieck–Witt
groups GW[n]i (X) (also known under the name of hermitian K-theory) defined for
schemes by Schlichting [2010b]; see also [Schlichting 2010a; 2017]. For an affine
scheme these groups coincide with hermitian K-groups introduced by Karoubi. It
turns out [Schlichting 2017, Proposition 6.3] that negative higher Grothendieck–
Witt groups coincide with the derived Witt groups defined by Balmer:

GW[n]i (X)∼=W[n−i](X) for i < 0.

MSC2010: 14F42, 14F99, 19G12.
Keywords: derived Witt groups, operations, cooperations.

517

http://msp.org
http://msp.org/akt
http://dx.doi.org/10.2140/akt.2017.2-4
http://dx.doi.org/10.2140/akt.2017.2.517


518 ALEXEY ANANYEVSKIY

If the characteristic of the base field is not 2, then higher Grothendieck–Witt
groups of smooth varieties are representable in the stable motivic homotopy cat-
egory; see [Hornbostel 2005] or [Schlichting and Tripathi 2015] for a geometric
model. It is well-known that derived Witt theory can be obtained from higher
Grothendieck–Witt groups inverting the Hopf element η; see, e.g., [Ananyevskiy
2016, Theorem 6.5]. The Hopf element η is the element in the motivic stable homo-
topy group π1,1(k) corresponding to the projection A2

−{0}→P1, (x, y) 7→ [x : y]
(see Definition 7.1). Thus derived Witt theory is represented in the stable motivic
homotopy category by a spectrum representing higher Grothendieck–Witt groups
with η inverted. We denote the latter spectrum KW. This spectrum is not only
(1, 1)-periodic via η but also (8, 4)-periodic with the periodicity realized by cup
product with a Bott element β ∈ KW−8,−4(pt). In this paper we compute the alge-
bras of operations and cooperations in derived Witt theory with rational coefficients,
that is, KW∗,∗

Q
(KWQ) and (KWQ)∗,∗(KWQ), and give an additive description of

the cooperations in derived Witt theory, KW∗,∗(KW) (see Definition 2.12 for the
notation). The answer is as follows (see Theorems 9.4, 10.2 and 10.4).

Theorem 1.1. Let k be a field of characteristic not 2. Then the homomorphism of
left KW0,0

Q
(Spec k)∼=WQ(k)-modules

Ev : KW0,0
Q
(KWQ)→

∏
m∈Z

WQ(k)

given by

Ev(φ)= (. . . , β2φ(β−2), βφ(β−1), φ(1), β−1φ(β), β−2φ(β2), . . .)

is an isomorphism of algebras. Here the product on the left is given by composition
and the product on the right is the componentwise one.

Moreover, KW p,q
Q
(KWQ)= 0 when 4 - p−q and the above isomorphism induces

an isomorphism of left KW∗,∗
Q
(Spec k)∼=WQ(k)[η±1, β±1

]-modules

KW∗,∗
Q
(KWQ)∼=

⊕
r,s∈Z

βrηs
∏
m∈Z

WQ(k)

with degβ = (−8,−4), deg η = (−1,−1).

Theorem 1.2. Let k be a field of characteristic not 2. Then the homomorphism of
WQ(k)[η±1

] ∼=
⊕
n∈Z

KWn,n
Q
(Spec k)-algebras

WQ(k)[η±1
][β±1

l , β±1
r ] → (KWQ)∗,∗(KWQ)

given by

βl 7→68,4β ∧ uKWQ
, βr 7→ uKWQ

∧68,4β
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is an isomorphism of rings. Here uKWQ
: S→ KWQ is the unit map and

68,4β ∧ uKWQ
, uKWQ

∧68,4β

∈ (KWQ)8,4(KWQ)= HomSH(k)(S∧S8,4,KWQ ∧KWQ).

Theorem 1.3. Suppose that k is a field of characteristic not 2 and let M be the
abelian subgroup of Q[v, v−1

] generated by polynomials

f j,n =
v−n ∏ j−1

i=0 (v− (2i + 1)2)
4 j (2 j)!

,

j ≥ 0, n ∈Z. Then there are canonical isomorphisms of left KW0,0(Spec k)∼=W(k)-
modules

KWp,q(KW)∼=

{
W(k)⊗Z M, 4 | p− q,
0, otherwise.

These theorems show that the algebras of stable operations and cooperations
in derived Witt theory with rational coefficients have structure similar to the well-
known case of (topological) K-theory of real vector bundles KOtop. This is not an
accidental coincidence; these theories have quite a lot in common. KOtop is built
out of real vector bundles and every real vector bundle over a compact space admits
a scalar product providing an isomorphism with the dual bundle. Derived Witt
theory, roughly speaking, is built out of vector bundles with a fixed isomorphism
with the dual bundle. In the motivic setting the element η is invertible in derived
Witt theory. Real points of the Hopf map give a double cover of S1, i.e., real points
of η correspond to 2 ∈ Z∼= π st

0 . Thus KOtop
1/2 (K-theory of real vector bundles with

inverted 2) should be a nice approximation to derived Witt groups. It is well-known
that (KOtop

1/2)
n is 4-periodic in n with

(KOtop
1/2)

0(pt)= Z
[ 1

2

]
, (KOtop

1/2)
n(pt)= 0, n = 1, 2, 3.

The same holds for derived Witt theory: W[n] is 4-periodic in n with

W[0](pt)=W(k), W[n](pt)= 0, n = 1, 2, 3.

In fact, over the real numbers one can show that the (real) realization functor takes
the motivic spectrum KW to the spectrum KOtop

1/2 and there are deep theorems
comparing W[n](X) to (KOtop)n(X (R)) for an algebraic variety X over the field
of real numbers; see [Brumfiel 1984; Karoubi et al. 2016]. Moreover, in a private
communication Oliver Röndigs outlined to me a strategy for obtaining a description
of
(
KW⊗ Z

[ 1
2

])
∗,∗

(
KW⊗ Z

[ 1
2

])
and KW∗,∗

Q
(KWQ) over a base field of charac-

teristic zero applying Brumfiel’s theory [1984] to the well-known computation of
cooperations and rational operations in topology [Adams et al. 1971].
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The algebras of stable operations and cooperations in KOtop
Q

can be described as
follows. Denote by β top

∈ (KOtop
Q
)−4(pt) the element inducing periodicity

(KOtop
Q
)n+4 ∼= (KOtop

Q
)n.

Every stable operation is uniquely determined by its values on the powers of β top,
yielding an isomorphism

(KOtop
Q
)∗(KOtop

Q
)∼=

⊕
n∈Z

(β top)n
∏
m∈Z

Q,

while for the cooperations one has

(KOtop
Q
)∗(KOtop

Q
)∼=Q[β±1

l , β±1
r ],

where βr and βl are similar to the ones from Theorem 1.2.
Computations of (KOtop

Q
)∗(KOtop

Q
) and (KOtop

Q
)∗(KOtop

Q
) could be carried out

quite easily using Serre’s theorem about finiteness of stable homotopy groups of
spheres. In the motivic setting the analogous result on stable homotopy groups is
not completely settled; moreover, our motivation is just the opposite one. It was
pointed out to me by Marc Levine that the above computations of stable operations
and cooperations in KWQ combined with the technique developed by Cisinski and
Déglise [2012] could possibly yield the motivic version of Serre’s finiteness. This
problem is addressed in a forthcoming paper [Ananyevskiy et al. 2017].

Our approach to the computation of stable operations and cooperations in KWQ

and cooperations in KW is straightforward. The spectrum KW is obtained by
localization from the spectrum KO representing higher Grothendieck–Witt groups,
hence

KW∗,∗
Q
(KWQ)= KW∗,∗

Q
(KO),

(KWQ)∗,∗(KWQ)= (KWQ)∗,∗(KO),

KW∗,∗(KW)= KW∗,∗(KO).

The odd spaces in the spectrum KO are all the same and coincide with the infinite
quaternionic Grassmannian HGr. Derived Witt theory of HGr is known to be given
by power series in characteristic classes [Panin and Walter 2010a, Theorem 9.1].
The pullbacks along the structure maps of KO can be described explicitly using the
following computation of characteristic classes of triple tensor products of rank 2
symplectic bundles (Lemma 8.2).

Lemma 1.4. Let E1, E2 and E3 be rank 2 symplectic bundles over a smooth variety
X. Put ξi = bKW

1 (Ei ) ∈ KW4,2(X) and denote by ξ(n1, n2, n3) the sum of all the
monomials lying in the orbit of ξ n1

1 ξ
n2
2 ξ

n3
3 under the action of S3. Then
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bKW
1 (E1⊗ E2⊗ E3)= βξ(1, 1, 1),

bKW
2 (E1⊗ E2⊗ E3)= βξ(2, 2, 0)− 2ξ(2, 0, 0),

bKW
3 (E1⊗ E2⊗ E3)= βξ(3, 1, 1)− 8ξ(1, 1, 1),

bKW
4 (E1⊗ E2⊗ E3)= βξ(2, 2, 2)+ ξ(4, 0, 0)− 2ξ(2, 2, 0).

This computation is a derived Witt analogue of the equality

cK
1 (L1⊗ L2)= cK

1 (L1)+ cK
1 (L2)− cK

1 (L1)cK
1 (L2)

in K-theory, i.e., an analogue of a formal group law. It turns out that the inverse
limit lim

←−−
KW∗+8n+4,∗+4n+2

Q
(HGr) can be easily computed yielding the desired an-

swer, while the lim
←−−

1 term vanishes. For the cooperations we employ a strategy
similar to the one used for operations, the main difference being that in place of the
result by Panin and Walter on the derived Witt theory of HGr we use Theorem 5.10,
which provides the following description of derived Witt homology of HGr (see
Definitions 5.8 and 5.9 for the details).

Theorem 1.5. Let k be a field of characteristic not 2. Then there is a canonical
isomorphism of KW∗,∗(Spec k)∼=W(k)[η±1, β±1

]-algebras

KW∗,∗(HGr+)∼=W(k)[η±1, β±1
][x1, x2, . . . ].

The paper is organized in the following way. In Section 2 we recall the well-
known definitions and constructions in generalized (co)homology theories repre-
sentable in the stable motivic homotopy category introduced by Morel and Voevod-
sky. The next section deals with the definitions and basic properties of cup and cap
products in the motivic setting. In Section 4 we recall the theory of symplectic ori-
entation in generalized motivic cohomology developed by Panin and Walter [2010a;
2010c]. Section 5 is dual to Section 4 and deals with symplectically oriented
homology theories. In Sections 6 and 7 we recall various representability prop-
erties of higher Grothendieck–Witt groups and derived Witt theory. In Section 8
we compute characteristic classes of triple tensor products of rank 2 symplectic
bundles. In the last two sections we compute the algebras of stable operations and
cooperations in KWQ and give an additive description of cooperations in KW.

2. Recollection on generalized motivic (co)homology

In this section we recall some basic definitions and constructions in the unstable
and stable motivic homotopy categories H•(k) and SH(k). We refer the reader
to the foundational papers [Morel and Voevodsky 1999; Voevodsky 1998] for an
introduction to the subject. We use the version of stable motivic homotopy category
based on HP1-spectra introduced in [Panin and Walter 2010b].

Throughout this paper k is a field of characteristic different from 2.
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Definition 2.1. Let Sm/k be the category of smooth varieties over k. A motivic
space over k is a simplicial presheaf on Sm/k. Each X ∈ Sm/k defines an un-
pointed motivic space HomSm/k( – , X) constant in the simplicial direction. We
often write pt for Spec k regarded as a motivic space. Inverting all the weak motivic
equivalences in the category of the pointed motivic spaces, we obtain the pointed
motivic unstable homotopy category H•(k).

Definition 2.2. Define S1,1
= (A1

−{0}, 1), S1,0
= S1

s =1
1/∂(11) and

Sp+q,q
= (S1,1)∧q

∧ (S1,0)∧p

for the integers p, q ≥ 0. Let T= A1/(A1
−{0}) be the Morel–Voevodsky object,

which is canonically isomorphic to S2,1 in H•(k) [Morel and Voevodsky 1999,
Lemma 3.2.15].

Definition 2.3. Let V = (k⊕4, φ), φ(x, y) = x1 y2 − x2 y1 + x3 y4 − x4 y3, be the
standard symplectic vector space over k of dimension 4. The quaternionic pro-
jective line HP1 is the variety of symplectic planes in V . Alternatively, it can be
described as HP1

= Sp4/Sp2×Sp2. Write ∗ = 〈e1, e2〉 ∈ HP1(k) for the standard
basis e1, e2, e3, e4 of V . If not otherwise specified we consider HP1 as a pointed
motivic space (HP1, ∗). Let HP1 be the pushout of

A1 0
←− pt

∗
−→ HP1.

There is an obvious isomorphism HP1 '
−→ HP1 in H•(k) given by a contraction of

A1 and we usually identify these two objects in H•(k).

Remark 2.4. The only reason that we need HP1 is Definition 6.7, since the mor-
phisms that we use there do no exist for HP1.

Lemma 2.5 [Panin and Walter 2010b, Theorem 9.8]. There exists a canonical
isomorphism HP1 ∼= T∧T in H•(k).

Corollary 2.6. There exists a canonical isomorphism HP1 ∼= S4,2 in H•(k).

Proof. This follows from the lemma by applying the canonical isomorphism T∼=S2,1

[Morel and Voevodsky 1999, Lemma 3.2.15]. �

Definition 2.7. An HP1-spectrum A is a sequence of pointed motivic spaces

(A0, A1, A2, . . . )

equipped with structural maps σn :HP1
∧ An→ An+1. A morphism of HP1-spectra

is a sequence of morphisms of pointed motivic spaces compatible with the struc-
tural maps. Inverting the stable motivic weak equivalences as in [Jardine 2000], we
obtain the motivic stable homotopy category SH(k)= SHHP1(k). This category
has a canonical symmetric monoidal structure. From now on, by a spectrum we
mean an HP1-spectrum.
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Lemma 2.8 [Panin and Walter 2010b, Theorem 12.1]. The stable homotopy cate-
gories of T-spectra and of HP1-spectra are equivalent.

Definition 2.9. Every pointed motivic space Y gives rise to a suspension spectrum

6∞HP1Y = (Y,HP1
∧ Y, (HP1)∧2

∧ Y, . . . ).

Put S=6∞HP1pt+ for the sphere spectrum.

Definition 2.10. Let A = (A0, A1, . . . ) be an HP1-spectrum and m be an integer.
Denote by A{m} = (A{m}0, A{m}1, . . . ) the spectrum given by

A{m}n =
{

Am+n, m+ n ≥ 0,
pt, m+ n < 0,

with the structure maps induced by the structure maps of A.

Definition 2.11. It follows from Corollary 2.6 that in SH(k) there is a canonical
isomorphism (A∧S4,2){−1} ∼= A. The suspension functors – ∧Sp+q,q , p, q ≥ 0,
become invertible in SH(k), so we extend the notation to arbitrary integers p, q in
an obvious way.

Definition 2.12. For A, B ∈ SH(k) put

Ai, j (B)= HomSH(k)(B, A∧Si, j ), A∗,∗(B)=
⊕
i, j∈Z

Ai, j (B),

Ai, j (B)= HomSH(k)(S∧Si, j, A∧ B), A∗,∗(B)=
⊕
i, j∈Z

Ai, j (B).

Let f : B→ B ′ be a morphism in SH(k). Denote by

f A
: A∗,∗(B ′)→ A∗,∗(B), f A : A∗,∗(B)→ A∗,∗(B ′)

the natural morphisms given by composition with f .

Remark 2.13. Using suspension spectra we may treat every pointed motivic space
as a spectrum; in particular, we may treat a smooth variety X as a suspension
spectrum 6∞HP1(X+,+). Thus all the definitions involving A∗,∗(B) and A∗,∗(B)
are applicable to the case of B being a pointed motivic space or a smooth variety.

Definition 2.14. For A, B ∈ SH(k) we have suspension isomorphisms

6 p,q
: A∗,∗(B)

'
−→ A∗+p,∗+q(B ∧Sp,q),

6 p,q
: A∗,∗(B)

'
−→ A∗+p,∗+q(B ∧Sp,q),
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given by smash product – ∧ idSp,q . The isomorphisms from [Morel and Voevodsky
1999, Lemma 3.2.15] and Corollary 2.6 induce suspension isomorphisms

6T : A∗,∗(B)
'
−→ A∗+2,∗+1(B∧T), 6T : A∗,∗(B)

'
−→ A∗+2,∗+1(B∧T),

6HP1 : A∗,∗(B)
'
−→ A∗+4,∗+2(B∧HP1), 6HP1 : A∗,∗(B)

'
−→ A∗+4,∗+2(B∧HP1),

6HP1 : A∗,∗(B)
'
−→ A∗+4,∗+2(B∧HP1), 6HP1 : A∗,∗(B)

'
−→ A∗+4,∗+2(B∧HP1).

We write 6n
T, 6n

HP1 and 6n
HP1 for the n-fold composition of the respective suspen-

sion isomorphisms.

Definition 2.15. Let A = (A0, A1, . . . ) be an HP1-spectrum. Denote Trn A the
spectrum given by

(Trn A)m =
{

Am, m ≤ n,
(HP1)∧m−n

∧ Am, m > n,

with the structure maps induced by the structure maps of A.

Remark 2.16. The obvious map 6∞HP1 An{−n} → Trn A clearly becomes an iso-
morphism in SH(k).

Lemma 2.17. Consider A ∈ SH(k) and let B = (B0, B1, . . .) be an HP1-spectrum
with structure maps σn :HP1

∧ Bn→ Bn+1. Then:

(1) The canonical homomorphism

lim
−−→

A∗+4n,∗+2n(Bn)→ A∗,∗(B)

is an isomorphism, where the limit is taken with respect to the morphisms

(σn)A ◦6HP1 : A∗+4n,∗+2n(Bn)→ A∗+4(n+1),∗+2(n+1)(Bn+1).

(2) There is a short exact sequence

0→ lim
←−−

1 A∗+4n−1,∗+2n(Bn)→ A∗,∗(B)→ lim
←−−

A∗+4n,∗+2n(Bn)→ 0,

where the limit is taken with respect to the morphisms

6−1
HP1 ◦ σ

A
n : A∗+4(n+1),∗+2(n+1)(Bn+1)→ A∗+4n,∗+2n(Bn).

Proof. Straightforward, using B = lim
−−→

Trn B and a mapping telescope. In the
motivic setting see, for example, [Panin et al. 2009, Lemma A.34]. �

3. Cup and cap product on generalized motivic (co)homology

In this section we recall the well-known constructions of cup and cap product
in generalized (co)homology. A classic reference for this theme in (nonmotivic)
stable homotopy theory is [Adams 1974, III.9].
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Definition 3.1. A commutative ring spectrum A is a commutative monoid

(A,m A : A∧ A→ A, u A : S→ A)

in (SH(k),∧,S).

Definition 3.2. Let (A,mA,uA) be a commutative ring spectrum and f : B→C∧D
a morphism in SH(k). The cup product

∪ f : Ap,q(C)× Ai, j (D)→ Ap+i,q+ j (B)

is given by a ∪ f b = (m A ∧ σ) ◦ (idA∧τSp,q,A∧ idSi, j ) ◦ (a ∧ b) ◦ f ,

a ∪ f b =


B

f // C ∧ D a∧b // A∧Sp,q
∧ A∧Si, j

idA∧τSp,q ,A∧idSi, j

ss
A∧ A∧Sp,q

∧Si, j m A∧σ // A∧Sp+i,q+ j

 ,
where τSp,q,A : Sp,q

∧ A
'
−→ A∧Sp,q and σ : Sp,q

∧Si, j '
−→ Sp+i,q+ j are permutation

isomorphisms. We usually omit the subscript f from the notation when the mor-
phism is clear from the context. The cup product is clearly bilinear and associative.
We are going to use this product in the following special cases:

(1) Let U1,U2 ⊂ X be open subsets of a smooth variety X and

f : X/(U1 ∪U2)→ X/U1 ∧ X/U2

be the morphism induced by the diagonal embedding. Then the above con-
struction gives a cup product

∪ : Ap,q(X/U1)× Ai, j (X/U2)→ Ap+i,q+ j (X/(U1 ∪U2)).

In particular, for U1 =U2 =∅ we obtain a product

∪ : Ap,q(X)× Ai, j (X)→ Ap+i,q+ j (X)

endowing A∗,∗(X) with a ring structure.

(2) Consider B ∈ SH(k) and let

f1 = id : B→ B ∧S, f2 = id : B→ S∧ B

be the identity maps. Then we obtain cup products

∪ : Ap,q(B)× Ai, j (pt)→ Ap+i,q+ j (B),

∪ : Ap,q(pt)× Ai, j (B)→ Ap+i,q+ j (B)

endowing A∗,∗(B) with the structure of an A∗,∗(pt)-bimodule.
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Definition 3.3. Let τS2,1,S2,1 : S2,1
∧S2,1 '

−→ S2,1
∧S2,1 be the permutation isomor-

phism and let (A,m A, u A) be a commutative ring spectrum. Put

ε =6−4,−2τ A
S2,1,S2,16

4,2u A ∈ A0,0(pt).

Note that ε2
= 1.

Lemma 3.4. Let (A,m A, u A) be a commutative ring spectrum and f : B→C ∧D
a morphism in SH(k). Write f τ = τ ◦ f : B→ D ∧C with τ : C ∧ D

'
−→ D∧C

being the permutation isomorphism. Then

a ∪ f b = (−1)piεq j b∪ f τ a ∈ Ap+i,q+ j (B)

for every a ∈ Ap,q(C) and b ∈ Ai, j (D).

Proof. Examining the definition one notices that

a ∪ f b = (6−p−i,−q− jτSp,q,Si, j )∪ b∪ f σ a,

where τSp,q,Si, j : Sp,q
∧Si, j '

−→ Si, j
∧Sp,q is the permutation isomorphism. By clas-

sical homotopy theory one has 6−2,0(τS1,0,S1,0)=−1, so the claim follows. �

Definition 3.5. Let (A,mA,uA) be a commutative ring spectrum and f : B→C∧D
be a morphism in SH(k). The cap product

∩ f : Ap,q(C)× Ai, j (B)→ Ai−p, j−q(D)

is given by a ∩ f x =6−p,−q((m A ∧ τSp,q ,D) ◦ (idA∧a ∧ idD) ◦ (idA ∧ f ) ◦ x),

a ∩ f x =6−p,−q


S∧Si, j x // A∧ B

idA ∧ f // A∧C ∧ D

idA∧a∧idD

ss
A∧ A∧Sp,q

∧ D
m A∧τSp,q ,D // A∧ D∧Sp,q

 ,
where τSp,q ,D : Sp,q

∧D
'
−→ D∧Sp,q is the permutation isomorphism. The subscript

f is usually omitted from the notation when the morphism is clear from the context.
We are going to use this product in the following special cases:

(1) Let Y be a pointed motivic space and let f =1 : Y → Y ∧ Y be the diagonal
embedding. Then we obtain the cap product

∩ : Ap,q(Y )× Ai, j (Y )→ Ai−p, j−q(Y ).

One can easily check that (a ∪ a′)∩ x = a ∩ (a′ ∩ x). This product endows
A∗,∗(Y ) with a left A∗,∗(Y )-module structure.
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(2) Let U be an open subset of a smooth variety X and f : X/U → (X/U )∧ X+
the morphism induced by the diagonal embedding. Then we obtain the cap
product

∩ : Ap,q(X/U )× Ai, j (X/U )→ Ai−p, j−q(X).

(3) Consider B ∈ SH(k) and let f = id : B→ B ∧S be the identity morphism.
Then we obtain the Kronecker pairing

〈 – , – 〉 : Ap,q(B)× Ai, j (B)→ Ai−p, j−q(pt)∼= Ap−i,q− j (pt).

(4) Consider B ∈ SH(k) and let f = id : B→ S∧ B be the identity morphism.
Then we obtain a cap product

∩ : Ap,q(pt)× Ai, j (B)→ Ai−p, j−q(B)

endowing A∗,∗(B) with a left A∗,∗(pt)-module structure.

Lemma 3.6. Let A be a commutative ring spectrum. Then for a commutative
square

C ∧ D r∧s // C ′ ∧ D′

B

f

OO

t // B ′
f ′

OO

in SH(k) and a ∈ A∗,∗(C ′), x ∈ A∗,∗(B) we have

sA(r A(a)∩ x)= a ∩ tA(x).

Proof. Straightforward. �

Definition 3.7. Let A be a commutative ring spectrum and let p : X → Y be a
morphism of pointed motivic spaces. Then the pairing

pA ◦ ( – ∩ – ) : A∗,∗(X)× A∗,∗(X)→ A∗,∗(Y )

is A∗,∗(Y )-bilinear. Denote by

Dp : A∗,∗(X)→ HomA∗,∗(Y )(A∗,∗(X), A∗,∗(Y ))

the adjoint homomorphism of left A∗,∗(X)-modules.

Definition 3.8. Let (A,m A, u A) and (B,m B, u B) be commutative ring spectra.
The product

– ? – : Ap,q(B)× Ai, j (B)→ Ai+p, j+q(B)
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is given by x ? y = (m A ∧m B) ◦ (idA ∧τB,A ∧ idB) ◦ (y ∧ x) ◦ σ ,

x ? y =


S∧Si+p, j+q σ // S∧Si, j

∧S∧Sp,q y∧x // A∧ B ∧ A∧ B
idA ∧τB,A∧idB

rr
A∧ A∧ B ∧ B

m A∧m B // A∧ B

 ,
where σ : Si+p, j+q '

−→ Si, j
∧ Sp,q and τB,A : B ∧ A

'
−→ A∧ B are the permutation

isomorphisms. This product endows A∗,∗(B) with a ring structure. Moreover, one
immediately checks that it agrees with the cap product introduced in the end of
Definition 3.5 under the homomorphism

A−p,−q(pt)' Ap,q(pt)
(u B)A
−−−→ Ap,q(B).

4. Symplectically oriented cohomology theories

In this section we provide a list of results from the theory of symplectic orientation
in generalized motivic cohomology developed in [Panin and Walter 2010c].

Definition 4.1. We adopt the following notation dealing with Grassmannians and
flags of symplectic spaces (see [Panin and Walter 2010c]).

• H− =
(
k⊕2,

( 0
−1

1
0

))
is the standard symplectic plane.

• HGr(2r, 2n)= Sp2n /Sp2r ×Sp2n−2r is the quaternionic Grassmannian. Alter-
natively, it can be described as the open subscheme of Gr(2r,H⊕n

− ) parametriz-
ing subspaces on which the standard symplectic form is nondegenerate.

• U s
2r,2n is the tautological rank 2r symplectic vector bundle over HGr(2r, 2n).

• HPn
= HGr(2, 2n+ 2) is the quaternionic projective space.

• H(1)= U s
2,n+2 is the tautological rank 2 symplectic vector bundle over HPn .

• HFlag(2r , 2n) = Sp2n /(Sp2 × · · · × Sp2 × Sp2n−2r ) is the quaternionic flag
variety. Alternatively, it can be described as the variety of flags V2 ≤ V4 ≤

· · · ≤ V2r ≤ H⊕n
− such that dim V2i = 2i and the restriction of the symplectic

form is nondegenerate on V2i for every i .

• HGr(2r, E),HP(E),HFlag(2r , E) are the relative versions of the above vari-
eties defined for a rank 2n symplectic bundle E over a smooth variety X .

Definition 4.2 [Panin and Walter 2010c, Definition 14.2; 2010a, Definition 12.1].
A symplectic orientation of a commutative ring spectrum A is a rule which assigns
to each rank 2n symplectic bundle E over a smooth variety X an element

th(E)= thA(E) ∈ A4n,2n(E/(E − X))

with the following properties:
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(1) For an isomorphism u : E
'
−→ E ′, one has th(E)= u A th(E ′).

(2) For a morphism of varieties f : X → Y , symplectic bundle E over Y and
pullback morphism fE : f ∗E→ E , one has f A

E th(E)= th( f ∗E).

(3) The homomorphisms – ∪ th(E) : A∗,∗(X)→ A∗+4n,∗+2n(E/(E − X)) are
isomorphisms.

(4) We have th(E ⊕ E ′)= q A
1 th(E)∪ q A

2 th(E ′), where q1, q2 are the projections
from E ⊕ E ′ to its factors.

We refer to the classes th(E) as Thom classes. A commutative ring spectrum A
with a chosen symplectic orientation is called a symplectically oriented spectrum.

Lemma 4.3. Let A be a symplectically oriented spectrum, X be a smooth variety
and let p : X→ pt be the projection. Identify H⊕r

− /(H
⊕r
− −{0})∼= T∧2r . Then

th(p∗H⊕r
−
)= a62r

T 1X

for some invertible element a ∈ A0,0(pt).

Proof. We have the following isomorphisms:

A0,0(pt)
–∪62r

T 1pt
−−−−−→ A4r,2r (T∧2r )∼= A4r,2r (H⊕r

−
/(H⊕r
−
−{0}))

–∪th(H⊕r
− )

←−−−−−− A0,0(pt),

and thus th(H⊕r
− ) = a62r

T 1pt for some invertible a ∈ A0,0(pt). The claim follows
from the functoriality of Thom classes. �

Remark 4.4. There is a canonical bijection between the sets of symplectic orien-
tations satisfying the additional condition of normalization (th(H−) = 62

T1) and
homomorphisms of monoids MSp→ A. See [Panin and Walter 2010a, Theorems
12.2 and 13.2] for the details.

Remark 4.5. The main example of a symplectically oriented cohomology theory
that we are interested in is that of higher Grothendieck–Witt groups (hermitian
K-theory). See Definition 6.7 and Theorems 6.8 and 6.10 for the details.

Definition 4.6 [Panin and Walter 2010c, Definition 14.1]. A theory of Borel classes
on a commutative ring spectrum A is a rule assigning to every symplectic bundle E
over a smooth variety X a sequence of elements bi (E)= bA

i (E) ∈ A4i,2i (X), i ≥ 1,
satisfying:

(1) For E ∼= E ′ we have bi (E)= bi (E ′) for all i .

(2) For a morphism of varieties f : X→ Y and symplectic bundle E over Y we
have f Abi (E)= bi ( f ∗E) for all i .

(3) For every variety X the homomorphism

A∗,∗(X)⊕ A∗−4,∗−2(X)→ A∗,∗(HP1
× X)
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given by a + a′ 7→ pA(a) + pA(a′) ∪ b1(H(1)) is an isomorphism. Here
p : HP1

× X→ X is the canonical projection.

(4) b1(H−)= 0 ∈ A4,2(pt).

(5) For E of rank 2r we have bi (E)= 0 for i > r .

(6) For symplectic bundles E, E ′ over X we have bt(E)bt(E ′) = bt(E ⊕ E ′),
where

bt(E)= 1+ b1(E)t + b2(E)t2
+ · · · ∈ A∗,∗(X)[t].

We refer to bi (E) as Borel classes of E and bt(E) is the total Borel class.

Remark 4.7. In [Panin and Walter 2010c] the above classes were called Pontryagin
classes, but as I learned from I. Panin, it was noted by V. Buchstaber that these
classes act much more like symplectic Borel classes than Pontryagin classes in
topology, so we prefer to adopt this new notation. See also [Ananyevskiy 2015,
Definition 7].

Theorem 4.8 [Panin and Walter 2010c, Theorem 14.4]. Let A be a commutative
ring spectrum. Then there is a canonical bijection between the set of symplectic
orientations of A and the set of Borel class theories on A.

Proof. We give a sketch of the definition of a Borel class theory on a symplectically
oriented spectrum. First one defines b1(E) = z A th(E) for a rank 2 symplectic
bundle E over a smooth variety X and morphism z : X→ E/(E − X) induced by
the zero section. Then the higher Borel classes are introduced using Theorem 4.9
below. In particular, we have br (E)= z A th(E) for a rank 2r symplectic bundle E .
See [Panin and Walter 2010c] for the details, but note that we omit the minus sign
in front of b1(E). �

Theorem 4.9 [Panin and Walter 2010c, Theorem 8.2]. Let A be a symplectically
oriented spectrum and E a rank 2r symplectic bundle over a smooth variety X.
Denote by HP(E) the relative quaternionic projective space associated to E and
put ξ = b1(H(1))∈ A4,2(HP(E)). Then the homomorphism of left A∗,∗(X)-modules

r−1⊕
i=0

A∗−4i,∗−2i (X)→ A∗,∗(HP(E))

given by
∑r−1

i=0 ai 7→
∑r−1

i=0 ai ∪ ξ
i is an isomorphism.

Corollary 4.10. Let A be a symplectically oriented spectrum and let E be a rank
2r symplectic bundle over a smooth variety X. Denote by U1,U2, . . . ,Us the tauto-
logical rank 2 symplectic bundles over HFlag(2s, E) and put ξi = b1(Ui ). Then the
homomorphism of left A∗,∗(X)-modules
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0≤ni≤(r−i)

i=1···s

A∗−4(n1+···+ns),∗−2(n1+···+ns)(X)→ A∗,∗(HFlag(2s, E))

given by ∑
0≤ni≤(r−i)

i=1···s

an1n2···ns 7→

∑
0≤ni≤(r−i)

i=1···s

an1n2···ns ∪ ξ
n1
1 ξ

n2
2 · · · ξ

ns
s

is an isomorphism.

Proof. This follows from the theorem, since one can present HFlag(2s, E) as an
iterated quaternionic projective bundle

HFlag(2s, E)→ HFlag(2s−1, E)→ · · · → HFlag(2, E)= HP(E). �

Theorem 4.11 [Panin and Walter 2010c, Theorem 10.2]. Let A be a symplectically
oriented spectrum and E a rank 2r symplectic bundle over a smooth variety X.
Then there exists a canonical morphism of smooth varieties f : Y → X such that

(1) f A
: A∗,∗(X)→ A∗,∗(Y ) is injective,

(2) f ∗E ∼= E1⊕ E2⊕ · · · ⊕ Er for some canonically defined rank 2 symplectic
bundles Ei . In particular,

bi (E)= σi (b1(E1), b1(E2), . . . , b1(Er ))

for the elementary symmetric polynomials σi .

Definition 4.12. Let E be a rank 2r symplectic bundle over a smooth variety X .
In the notation of Theorem 4.11 we refer to {b1(E1), b1(E2), . . . , b1(Er )} as Borel
roots of E and denote ξi = ξi (E) = b1(Ei ). Write sn(E) for the power sums of
Borel roots of E ,

sn(E)= ξ n
1 + ξ

n
2 + · · ·+ ξ

n
r ∈ A4n,2n(X),

and let
st(E)= s1(E)t + s2(E)t2

+ · · · ∈ A∗,∗(X)[[t]].

It follows from the standard relations between power sums and elementary sym-
metric polynomials that

st(E)=−t d
dt

ln b−t(E).

Theorem 4.13 [Panin and Walter 2010c, Theorem 11.2]. Let A be a symplectically
oriented spectrum. Then the homomorphism of A∗,∗(pt)-algebras

A∗,∗(pt)[b1, b2, . . . , br ]/(hn−r+1, . . . , hn)→ A∗,∗(HGr(2r, 2n))

induced by bi 7→ bi (U s
2r,2n) is an isomorphism. Here h j = h j (b1, b2, . . . , br ) is the

polynomial representing the j-th complete symmetric polynomial in r variables via
elementary symmetric polynomials.
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Definition 4.14. We have the following ind-objects considered as pointed motivic
spaces:

• HGr(2r)= lim
−−→

n
(HGr(2r, 2n), ∗),

• HGr= lim
−−→
r,n
(HGr(2r, 2n), ∗),

where ∗ = HGr(2, 2) ∈ HGr(2r, 2n).

Definition 4.15. We have the following classes over the infinite Grassmannians:

• bi (U s
2r ) ∈ A4i,2i (HGr(2r)) satisfying bi (U s

2r )|HGr(2r,2n) = bi (U s
2r,2n),

• bi (τ
s) ∈ A4i,2i (HGr) satisfying bi (τ

s)|HGr(2r,2n) = bi (U s
2r,2n).

The next theorem yields that these elements are uniquely defined by the given
restrictions.

Definition 4.16. Let R be a graded ring and let bi be variables of degree di ∈ N.
We denote by R[[b1, b2, . . .]]h the ring of homogeneous power series.

Theorem 4.17 [Panin and Walter 2010a, Theorem 9.1]. Let A be a symplectically
oriented spectrum. Then the following homomorphisms of A∗,∗(pt)-algebras are
isomorphisms:

(1) A∗,∗(pt)[[b1, b2, . . . , br ]]h→ A∗,∗(HGr(2r)+), induced by bi 7→ bi (U s
2r ),

(2) A∗,∗(pt)[[b1, b2, . . .]]h→ A∗,∗(HGr+), induced by bi 7→ bi (τ
s).

5. Symplectically oriented homology theories

The results of this section are dual to the results of the previous one: we compute
symplectically oriented homology of quaternionic Grassmannians and flag vari-
eties. Throughout this section A denotes a symplectically oriented commutative
ring spectrum in the sense of Definition 4.2.

Lemma 5.1. Let E be a rank 2r symplectic bundle over a smooth variety X. Then

th(E)∩− : A∗,∗(E/(E − X))→ A∗−4r,∗−2r (X)

is an isomorphism.

Proof. Using a standard Mayer–Vietoris argument we may assume that E is a
trivial bundle, i.e., E = p∗H⊕r

− for the projection p : X → pt. By Lemma 4.3
th(E)= a62r

T 1X , and thus th(E)∩ – coincides up to an invertible scalar with the
suspension isomorphism 6−2r

T . �
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Definition 5.2. Let i : Y → X be a codimension 2r closed embedding of smooth
varieties. Suppose that the normal bundle Ni is equipped with a symplectic form.
The transfer map in homology i !A is given by composition

i !A : A∗,∗(X)
pA
−→ A∗,∗(X/(X−Y ))

dA
−→ A∗,∗(Ni/(Ni−Y ))

th(Ni )∩ –
−−−−−→ A∗−4r,∗−2r (Y ).

Here

• X
p
−→ X/(X − Y ) is the canonical quotient morphism,

• d : X/(X − Y )
'
−→ Ni/(Ni − Y ) is the deformation to the normal bundle iso-

morphism [Morel and Voevodsky 1999, Theorem 3.2.23].

With this notation the localization sequence in homology could be rewritten as

· · ·
∂
−→ A∗,∗(X − Y )

jA
−→ A∗,∗(X)

i !A
−→ A∗−4r,∗−2r (Y )

∂
−→ · · · .

Lemma 5.3. Let i : Y → X be a codimension 2r closed embedding of smooth
varieties. Suppose that the normal bundle Ni is equipped with a symplectic form.
Then the transfer map i !A is a homomorphism of A∗,∗(X)-modules, i.e.,

i !A(a ∩ x)= i A(a)∩ i !A(x)

for every x ∈ A∗,∗(X) and a ∈ A∗,∗(X).

Proof. The morphisms pA and dA are homomorphisms of A∗,∗(X)-modules by
Lemma 3.6, while cap product with the Thom class induces a homomorphism of
A∗,∗(X)-modules by Lemma 3.4. �

Lemma 5.4 (cf. [Panin and Walter 2010c, Proposition 7.6]). Let E be a rank 2r
symplectic bundle over a smooth variety X and let s : X→ E be a section meeting
the zero section z : X → E transversally in Y . Let i : Y → X be the closed em-
bedding. Equip the normal bundle Ni with a symplectic form using the canonical
isomorphism i∗E ∼= Ni . Then for every x ∈ A∗,∗(X) we have

i Ai !A(x)= br (E)∩ x .

Proof. Consider the following diagram:
A∗,∗(Ni/(Ni − Y ))

th(Ni )∩ –

��

jA

~~

A∗,∗(X)
pA //

sA

��

z A

��

A∗,∗(X/(X − Y ))

sA

��

dA

66

A∗−4r,∗−2r (Y )

i A

��
A∗,∗(E)

πA

]]

qA // A∗,∗(E/(E − z(X)))
th(E)∩ – // A∗−4r,∗−2r (X)
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Here

• the morphisms pA and qA are induced by the quotient maps,

• dA is induced by the deformation to the normal bundle isomorphism,

• πA is induced by the canonical projection π : E→ X ,

• jA is induced by the isomorphism i∗E ∼= Ni .

In the left side of the diagram, sA and z A are homomorphisms inverse to an isomor-
phism πA, so sA = z A and the left square commutes. The middle triangle commutes
by the functoriality of the deformation to the normal bundle isomorphism. The
right side commutes by the functoriality of Thom classes. Hence

i Ai !A(x)= i A(th(Ni )∩ dA pA(x))= th(E)∩ (qAz A(x)).

By Lemma 3.6 we have

th(E)∩ (qAz A(x))= z Aq A(th(E))∩ x = br (E)∩ x . �

Theorem 5.5. Let E be a symplectic bundle of rank 2r+2 over a smooth variety X.
Denote by p : HP(E)→ X the canonical projection and set ξ = b1(H(1)). Then
the homomorphism of left A∗,∗(X)-modules

A∗,∗(HP(E))→
r⊕

n=0

A∗−4n,∗−2n(X)

given by x 7→ pA(x)+ pA(ξ ∩ x)+ · · ·+ pA(ξ
r
∩ x) is an isomorphism.

Proof. A usual Mayer–Vietoris argument yields that it is sufficient to treat the case
of a trivial symplectic bundle E , i.e., HP(E)=HPr

×X . The proof does not depend
on the base X , so we omit it from the notation.

By [Panin and Walter 2010c, Theorems 3.1, 3.2 and 3.4] there is a closed sub-
variety Y ⊂ HPr satisfying

• Y is a transversal intersection of a section s :HPr
→H(1) and the zero section

z : HPr
→H(1),

• HPr
− Y is A1-homotopy equivalent to a point,

• there is a morphism π :Y→HPr−1 which is an A2-bundle such that π∗H(1)∼=
i∗H(1), where i : Y → HPr is the closed embedding.

Equip the normal bundle Ni with the symplectic form induced by the isomorphism
i∗H(1)∼= Ni . Identifying A∗,∗(HPr

− Y )∼= A∗,∗(pt) and A∗,∗(Y )∼= A∗,∗(HPr−1),
we obtain a long exact sequence in homology

· · ·
∂
−→ A∗,∗(pt)

jA
−→ A∗,∗(HPr )

i !A
−→ A∗−4,∗−2(HPr−1)

∂
−→ · · · .
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Here j is the composition pt∼= HPr
− Y → HPr . The projection HPr

→ pt splits
the first morphism, thus i !A is surjective. Denote by q : HPr−1

→ pt the canonical
projection and consider the following diagram:

A∗,∗(pt)
jA //

=

��

A∗,∗(HPr )
i !A //

r∑
n=0

pA(ξ
n
∩ – )

��

A∗−4,∗−2(HPr−1)

r−1∑
n=0

qA(ξ
n
∩ – )

��
A∗,∗(pt) u //

r⊕
n=0

A∗−4n,∗−2n(pt) v //
r−1⊕
n=1

A∗−4n,∗−2n(pt)

Here u is the injection on the zeroth summand and v is the projection forgetting
about the zeroth summand. The left square commutes by Lemma 3.6:

ξ n
∩ jA(x)= jA( j A(ξ n)∩ x)=

{
jA(x), n = 0,
jA(0∩ a)= 0, n > 0.

The right square commutes by Lemmas 3.6 and 5.4:

qA(ξ
n
∩ i !Ax)= pAi A(ξ

n
∩ i !Ax)= pA(ξ

n
∩ i Ai !Ax)= pA(ξ

n+1
∩ x).

The claim follows by induction. �

Corollary 5.6. Let E be a symplectic bundle of rank 2r over a smooth variety X
and U1,U2, . . . ,Us the tautological rank 2 symplectic bundles over HFlag(2s, E).
Set ξi = b1(Ui ) and let p : HFlag(2s, E)→ X be the canonical projection. Then
the homomorphism of A∗,∗(X)-modules

A∗,∗(HFlag(2s, E)) →
⊕

0≤ni≤(r−i)
i=1···s

A∗−4(n1+n2+···+ns),∗−2(n1+n2+···+ns)(X)

given by
x 7→

∑
0≤ni≤(r−i)

i=1···s

pA((ξ
n1
1 ξ

n2
2 · · · ξ

ns
s )∩ x)

is an isomorphism.

Proof. This follows from Theorem 5.5, since one can present HFlag(2s, E) as an
iterated quaternionic projective bundle

HFlag(2s, E)→ HFlag(2s−1, E)→ · · · → HFlag(2, E)=HP(E). �

Theorem 5.7. Let E be a symplectic bundle of rank 2r over a smooth variety X.
Denote by p : HFlag(2s, E)→ X and q : HGr(2s, E)→ X the canonical pro-
jections. Then the following duality homomorphisms, given by Definition 3.7, are
isomorphisms:

Dp : A∗,∗(HFlag(2s, E))→ HomA∗,∗(X)(A∗,∗(HFlag(2s, E)), A∗,∗(X)),

Dq : A∗,∗(HGr(2s, E))→ HomA∗,∗(X)(A∗,∗(HGr(2s, E)), A∗,∗(X)).
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Proof. The first morphism is an isomorphism by Corollaries 4.10 and 5.6.
Denote by p′ : HFlag(2s, E)→ HGr(2s, E) the canonical projection and abbre-

viate HF= HFlag(2s, E), HG= HGr(2s, E). Recall that HF is a quaternionic flag
bundle over HG. Thus,

Dp′ : A∗,∗(HF)→ HomA∗,∗(HG)(A∗,∗(HF), A∗,∗(HG))

is an isomorphism by the above. Since A∗,∗(HF) is a free A∗,∗(HG)-module by
Corollary 4.10, it is sufficient to check that the composition

A∗,∗(HF)

(Dq )∗◦Dp′ ++

Dp′

'

// HomA∗,∗(HG)(A∗,∗(HF), A∗,∗(HG))

(Dq )∗
��

HomA∗,∗(HG)
(

A∗,∗(HF),HomA∗,∗(X)(A∗,∗(HG), A∗,∗(X))
)

is an isomorphism. The claim follows from the commutativity of the following
diagram, which is straightforward.

HomA∗,∗(HG)
(

A∗,∗(HF),HomA∗,∗(X)(A∗,∗(HG), A∗,∗(X))
)

A∗,∗(HF)

(Dq )∗◦Dp′

33

Dp

'

++

HomA∗,∗(X)(A∗,∗(HF)⊗A∗,∗(HG) A∗,∗(HG), A∗,∗(X))

∼=

OO

HomA∗,∗(X)(A∗,∗(HF), A∗,∗(X))

∼=

OO

�

Definition 5.8. The operation of orthogonal sum of symplectic bundles yields a
morphism HGr+ ∧HGr+→ HGr+ endowing A∗,∗(HGr+) with a ring structure

A∗,∗(HGr+)× A∗,∗(HGr+)→ A∗,∗(HGr+).

Definition 5.9. For n ≥ 0 denote by χn ∈ A4n,2n(HP∞
+
) the unique collection of

elements satisfying
〈ξm, χn〉 =

{
1, m = n,
0, m 6= n,

for ξ = b1(H(1)). The existence and uniqueness of these elements is guaranteed by
Theorem 5.7 (consider s = 1). Also, by the same theorem we know that A∗,∗(HP∞

+
)

is a free A∗,∗(pt)-module with a basis given by {1, χ1, χ2, . . . }. Abusing the nota-
tion, we denote by the same letters the elements χn = i A(χn) ∈ A4n,2n(HGr+) for
the canonical embedding i : HP∞

+
→ HGr+.

Theorem 5.10. Identify

A∗,∗(HGr+)∼= A∗,∗(pt)[[b1, b2, . . .]]h ∼= A∗,∗(pt)[[ξ1, ξ2, . . .]]
S∞
h
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by Theorems 4.11 and 4.17 via bi (τ
s)↔ bi ↔ σi (ξ1, ξ2, . . .). Given a partition

λ= {λ1 ≥ λ2 ≥ · · · ≥ λk > 0} denote by ξ(λ) ∈ A∗,∗(pt)[[ξ1, ξ2, . . .]]
S∞
h the sum of

all the elements in the orbit of ξλ1
1 ξ

λ2
2 · · · ξ

λk
k . Then

(1) 〈ξ(λ), χ l1
1 χ

l2
2 · · ·χ

lr
r 〉 =

{
1, l j = #{λi = j} for all j ≥ 1,
0, otherwise,

(2) the homomorphism of A∗,∗(pt)-algebras

A∗,∗(pt)[x1, x2, . . . ] → A∗,∗(HGr+)

induced by xi 7→ χi is an isomorphism.

Proof. Put |l| = l1+ l2+ · · ·+ lr and consider the canonical embedding

i : (HP∞×HP∞× · · ·×HP∞︸ ︷︷ ︸
|l|

)+→ HGr+

given by orthogonal sum. Identify

A∗,∗((HP∞×HP∞× · · ·×HP∞)+)=
⊕
i j≥0

A∗,∗(pt)ξ i1 ⊗ ξ i2 ⊗ · · ·⊗ ξ il ,

A∗,∗((HP∞×HP∞× · · ·×HP∞)+)=
⊕
i j≥0

A∗,∗(pt)χi1 ⊗χi2 ⊗ · · ·⊗χil .

Put

χ l
= χ

l1
1 χ

l2
2 · · ·χ

lr
r , χ l

⊗
= χ1⊗ . . .⊗χ1︸ ︷︷ ︸

l1

⊗χ2⊗ · · ·⊗χ2︸ ︷︷ ︸
l2

⊗ · · ·⊗χr ⊗ · · ·⊗χr︸ ︷︷ ︸
lr

,

and denote by ξ⊗(λ) the sum of all the elements in the orbit of ξλ1⊗ξλ2⊗· · ·⊗ξλl

under the action of Sl . Here λ j = 0 for j > k.
We have i A(χ

l
⊗
)= χ l and

i A(ξ(λ))=

{
0, k > |l|,
ξ⊗(λ), k ≤ |l|.

By Lemma 3.6 we have 〈ξ(λ), χ l
〉 = 〈i A(ξ(λ)), χ l

⊗
〉.

If k > |l| then i A(ξ(λ))= 0 and 〈ξ(λ), χ l
〉 = 0 by the above.

If k ≤ |l| then we have

〈ξ(λ), χ l
〉 = 〈ξ⊗(λ), χ

l
⊗
〉

=

∑
(λ′1,...,λ

′

l )

=(λσ(1),...,λσ(l))
for some σ ∈ Sl

〈ξλ
′

1, χ1〉 · · · 〈ξ
λ′l1, χ1〉〈ξ

λ′l1+1, χ2〉 · · · 〈ξ
λ′l1+l2, χ2〉 · · · 〈ξ

λ′l, χr 〉.

This expression equals 1 if l j = #{λi = j} for every j ≥ 1 and equals zero otherwise,
so the first claim follows.
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Lemma 2.17 together with Theorem 5.7 yield

A∗,∗(HGr+)= lim
−−→

A∗,∗(HGr(2r, 2n))

= lim
−−→

HomA∗,∗(pt)(A∗,∗(HGr(2r, 2n)), A∗,∗(pt)).

We have an explicit computation of A∗,∗(HGr(2r, 2n)) given by Theorem 4.13, so
the second claim follows from the first one. �

6. Preliminaries on KO

In this section we gather the representability results for higher Grothendieck–Witt
groups (also known as hermitian K-theory) and fix a symplectic orientation on it.
Recall that the characteristic of the base field is assumed to be different from 2.

Definition 6.1. Let X be a smooth variety and U ⊂ X an open subset. For n, i ∈ Z

denote by GW[n]i (X,U ) higher Grothendieck–Witt groups defined by Schlicht-
ing [2010b, Definition 8]; see also [Schlichting 2010a; 2017]. Recall that by
[Schlichting 2017, Proposition 6.3] (cf. [Walter 2003, Theorem 2.4]) for i < 0
there is a canonical identification GW[n]i (X,U )∼=W[n−i](X,U ), where the latter
groups are derived Witt groups defined by Balmer [1999]. Moreover, GW[0]0 (X)
and GW[2]0 (X) coincide with the Grothendieck–Witt group of X introduced by
Knebusch [1977] and its symplectic version respectively.

For an orthogonal (resp. symplectic) bundle E over a smooth variety X we
denote by

• 〈E〉 ∈ GW[0]0 (X) (resp. 〈E〉 ∈ GW[2]0 (X)) the corresponding element in the
Grothendieck–Witt group,

• [E] ∈W[0](X) (resp. [E] ∈W[2](X)) the corresponding element in the Witt
group.

Definition 6.2. We need the following notation complementary to the one intro-
duced in Definition 4.1 (see [Panin and Walter 2010b]).

• H+ =
(
k⊕2,

( 0
1

1
0

))
is the standard hyperbolic plane.

• RGr(2r, 2n) = O2n /(O2r × O2n−2r ) is the real Grassmannian. Here the
orthogonal groups are taken with respect to the hyperbolic quadratic form
x1x2+x3x4+· · ·+x2n−1x2n . Similarly to the quaternionic case, the real Grass-
mannian could be described as the open subscheme of Gr(2r,H⊕n

+ ) parametriz-
ing subspaces on which the standard hyperbolic quadratic form is nondegen-
erate.

• Uo
2r,2n is the tautological rank 2r orthogonal vector bundle over RGr(2r, 2n).

• RGr= lim
−−→r,n(RGr(2r, 2n), ∗) is the infinite real Grassmannian considered as

a pointed motivic space. Here ∗ = RGr(2, 2) ∈ RGr(2r, 2n).
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Theorem 6.3 ([Schlichting and Tripathi 2015, Theorem 1.1]; see also [Panin and
Walter 2010b, Theorem 8.2]). Let X be a smooth variety and U an open subset
of X. Denote by Z the sheaf associated to the presheaf Z. Then there are natural
isomorphisms

HomH•(k)(X/U,Z×RGr)∼= GW[0]0 (X,U ),

HomH•(k)(X/U,Z×HGr)∼= GW[2]0 (X,U ).

Under these isomorphisms the tautological morphisms

RGr(2r, 2n)→ {m}×RGr,

HGr(2r, 2n)→ {m}×HGr
correspond to

〈Uo
2r,2n〉+ (m− r)〈H+〉 ∈ GW[0]0 (RGr(2r, 2n)),

〈U s
2r,2n〉+ (m− r)〈H−〉 ∈ GW[2]0 (HGr(2r, 2n)),

respectively.

Remark 6.4. Let A be a symplectically oriented spectrum. Then this theorem via
the Yoneda lemma allows us to interpret characteristic classes, i.e., elements of
A∗,∗(HGr), as natural transformations GW[2]0 (X)→ A∗,∗(X).

Definition 6.5. Let Y be a pointed motivic space. Put

GW[0]0 (Y )= HomH•(k)(Y,Z×RGr),

GW[2]0 (Y )= HomH•(k)(Y,Z×HGr).

For a family of pointed smooth varieties (X1, x1), (X2, x2), . . . , (Xm, xm) and n=0
or 2, we identify GW[n]0 ((X1, x1)∧ (X2, x2)∧ · · · ∧ (Xm, xm)) with the subgroup
of GW[n]0 (X1× X2× · · ·× Xm) consisting of all the elements α satisfying

α|X1×···×X j−1×{x j }×X j+1×···×Xm = 0
for all j .

Definition 6.6. Let τ s
∈ GW[2]0 (HGr) and τ o

∈ GW[0]0 (RGr) be the tautologi-
cal elements over the infinite Grassmannians represented by identity morphisms
HGr→ {0}×HGr and RGr→ {0}×RGr and satisfying

τ s
|HGr(2r,2n) = 〈U s

2r,2n〉− r〈H−〉, τ o
|RGr(2r,2n) = 〈Uo

2r,2n〉− r〈H+〉.

Definition 6.7. The periodic HP1-spectrum KO is given by the spaces

KO= (RGr,HGr,RGr,HGr, . . . )

and structure maps

σ o
KO :HP1

∧RGr→ HGr, σ s
KO :HP1

∧HGr→ RGr
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satisfying

(σ o
KO)

GW(τ s)|HP1∧RGr(2r,2n) = (〈H(1)〉− 〈H−〉)� τ
o
|RGr(2r,2n),

(σ s
KO)

GW(τ o)|HP1∧HGr(2r,2n) = (〈H(1)〉− 〈H−〉)� τ
s
|HGr(2r,2n).

Here � is induced by the external tensor product of vector bundles,

E1 � E2 = p∗1 E ⊗ p∗2 E2

for vector bundles E1 over X1 and E2 over X2 with projections pi : X1× X2→ X i .
Note that an (external) tensor product of two symplectic vector bundles has a canon-
ical orthogonal structure, while an (external) tensor product of a symplectic and an
orthogonal bundle is symplectic.

The above morphisms σ o
KO and σ s

KO exist as morphisms of pointed sheaves by
[Panin and Walter 2010b, Proposition 12.4, Lemmas 12.5 and 12.6]. This defined
spectrum is canonically isomorphic in SH(k) to the spectra BOgeom and BO con-
structed in [Panin and Walter 2010b].

Theorem 6.8 [Panin and Walter 2010b, Theorems 1.3 and 1.5]. The spectrum KO
can be endowed with the structure of a commutative ring spectrum (KO,mKO, uKO).
Moreover, this commutative ring spectrum represents higher Grothendieck–Witt
groups, i.e., for every smooth variety X and an open subset U ⊂ X there exist
canonical functorial isomorphisms

2 : KOi, j (X/U )
'
−→ GW[ j]2 j−i (X,U )

satisfying

(1) 2 commutes with the connecting homomorphisms ∂ in localization sequences,

(2) the ∪-product on KO∗,∗( – ) induced by the monoid structure of KO agrees
with the Gille–Nenashev right pairing (see [Gille and Nenashev 2003, Theo-
rem 2.9]) lifted to GW[∗]0 ( – ) (as in [Panin and Walter 2010b, §4]),

(3) 2(1)= 1, 2(ε)= 〈−1〉.

Remark 6.9. In view of the above theorem we identify KO0,0(X) ∼= GW[0]0 (X)
and KO4,2(X)∼= GW[2]0 (X).

Theorem 6.10. The rule which assigns to a rank 2 symplectic bundle E over a
smooth variety X class bKO

1 (E)=〈E〉−〈H−〉 ∈KO4,2(X) can be uniquely extended
to a Borel class theory and by Theorem 4.8 induces a symplectic orientation of KO.

Proof. Existence of the Borel class theory follows from [Panin and Walter 2010b,
Theorem 5.1], while uniqueness follows from [Panin and Walter 2010c, Theo-
rem 14.4b] �

The next two lemmas follow immediately from the construction of 2.
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Lemma 6.11. Let X be a smooth variety. Then the following diagram commutes:

HomH•(k)(X+,HGr)

i
��

6∞
HP1 // HomSH(k)(6

∞

HP1 X+, 6∞HP1HGr)

∼= φ

��
HomH•(k)(X+,Z×HGr)

∼=f

��

HomSH(k)(6
∞

HP1 X+,Tr1KO∧HP1)

j
��

HomSH(k)(6
∞

HP1 X+,KO∧HP1)

=

��
GW[2]0 (X) KO4,2(X)2

∼=

oo

Here

• i is induced by the identity morphism HGr→ {0}×HGr,

• φ is induced by the canonical isomorphisms

6∞HP1HGr
'
←−6∞HP1HGr{−1} ∧HP1 '

−→ Tr1KO∧HP1,

• j is induced by the canonical morphism Tr1KO→ KO,

• f and 2 are given by Theorems 6.3 and 6.8, respectively.

Lemma 6.12. The following diagram commutes:

6∞HP1HP1
{−1}

φ

'

//

u′KO **

S

uKO

��
KO

Here

• uKO is the unit morphism,

• φ is an isomorphism which is identity starting from the first space,

• u′KO = ( f0, f1, f2, . . .) with fn : (HP1)∧n
→ KOn satisfying

f GW
2m−1(τ

s)= (〈H(1)〉− 〈H−〉)� · · ·� (〈H(1)〉− 〈H−〉)︸ ︷︷ ︸
2m−1

,

f GW
2m (τ o)= (〈H(1)〉− 〈H−〉)� · · ·� (〈H(1)〉− 〈H−〉)︸ ︷︷ ︸

2m

for n ≥ 1.
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Corollary 6.13. Let H(1) be the tautological rank 2 symplectic bundle over HP1.
Then

(1) 6HP11= bKO
1 (H(1)) ∈ KO4,2(HP1),

(2) 6HP11= χ1 ∈ KO4,2(HP1).

Proof. With our definition bKO
1 (H(1))= 〈H(1)〉− 〈H−〉, the first claim is straight-

forward from the above two lemmas. The second claim follows from the first one
since 〈61

HP11, 61
HP11〉 = 1 for the Kronecker product. �

Definition 6.14. The cohomology theory KO∗,∗( – ) is (8, 4)-periodic with the pe-
riodicity isomorphism induced by

KO∧S8,4 ∼= KO∧ (HP1)∧2 '
−→ KO{2} ∼= KO.

Here the first isomorphism is given by Corollary 2.6, the second isomorphism is
the canonical one identifying double HP1-suspension with shift by 2 and the third
isomorphism is given by the identity map.

One may identify these periodicity isomorphisms with

KO∧S8,4 –∪68,4β
−−−−−→ KO,

where β ∈ KO−8,−4(pt) is the element corresponding to 1 ∈ KO0,0(pt) under the
categorical periodicity isomorphism

KO0,0(pt)∼= GW[0]0 (pt)∼= GW[−4]
0 (pt)∼= KO−8,−4(pt),

i.e., β is the unique element satisfying

62
HP1β = (〈H(1)〉− 〈H−〉)� (〈H(1)〉− 〈H−〉) ∈ KO0,0(HP1

∧HP1).

We refer to β as the Bott element.

Remark 6.15. For a spectrum K representing algebraic K-theory there exists a
morphism KO

F
−→ K that induces forgetful maps

F : GW[0]0 (X)∼= KO0,0(X)→ K0,0(X)∼= K0(X).

Recall that K is (2, 1)-periodic with the periodicity realized by cup product with
the element βK ∈ K−2,−1(pt) satisfying

6P1βK = [O(−1)] − 1 ∈ K0,0(P1,∞).

One can show that F(β)= β4
K.

Remark 6.16. Let E1, E2 be symplectic bundles over a smooth variety X . Then

β ∪ 〈E1〉 ∪ 〈E2〉 = 〈E1⊗ E2〉.
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Here, on the left side we consider E1, E2 as elements of KO4,2(X) and on the right
side we consider them as symplectic bundles, so E1⊗ E2 is an orthogonal bundle
which we treat as an element of KO0,0(X).

7. Hopf element and KW

In this section we recall the definition of the Hopf element and identify KO[η−1
]

as a spectrum representing derived Witt groups.

Definition 7.1. The Hopf map is the projection

H : A2
−{0} → P1

given by H(x, y)= [x, y]. Pointing A2
−{0} by (1, 1) and P1 by [1 : 1] and taking

the suspension spectra we obtain a morphism

6∞HP1 H ∈ HomSH(k)
(
6∞HP1(A

2
−{0}, (1, 1)),6∞HP1(P

1, [1 : 1])
)
.

The Hopf element η =6−3,−26∞HP1 H ∈ S−1,−1(pt) is the element corresponding
to 6∞HP1 H under the suspension isomorphism and canonical isomorphisms

(P1, [1 : 1])∼= S2,1, (A2
−{0}, (1, 1))∼= S3,2

given by [Morel and Voevodsky 1999, Lemma 3.2.15, Corollary 3.2.18 and Exam-
ple 3.2.20].

Definition 7.2. Define

S[η−1
] = hocolim

(
S
∪η
−→ S∧S−1,−1 ∪η

−→ S∧S−2,−2 ∪η
−→ · · ·

)
,

KW= KO∧S[η−1
].

This spectrum inherits the structure of an (8, 4)-periodic symplectically oriented
commutative ring spectrum from KO.

Remark 7.3. We clearly have

KW∗,∗(KW)= KW∗,∗(KO), KW∗,∗(KW)= KW∗,∗(KO).

It is well-known that the spectrum KW represents derived Witt groups defined
by Balmer [1999] (see, for example, [Ananyevskiy 2016, Theorem 6.5]).

Theorem 7.4. For every smooth variety X there exists an isomorphism functorial
in X , 2W : KWi, j (X) '−→W[i− j](X), such that the square

KO2n,n(X) 2

'

//

��

GW[n]0 (X)

��
KW2n,n(X)

2W

'

// W[n](X)
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commutes for all n. Here the left vertical morphism is the canonical one arising
from localization and the right vertical morphism is given by killing metabolic
elements.

Remark 7.5. With the above theorem in mind we identify KW0,0(X) with W[0](X)
and KW4,2(X) with W[2](X). In particular, we have bKW

1 (E)= [E] ∈ KW4,2(X)
for a rank 2 symplectic bundle E over X .

8. Borel classes of triple tensor products in KW

In this section, in Lemma 8.2 we compute characteristic classes of a triple tensor
product of rank 2 symplectic bundles. This computation is a derived Witt analogue
of the equality

cK
1 (L1⊗ L2)= cK

1 (L1)+ cK
1 (L2)− cK

1 (L1)cK
1 (L2)

in K-theory, where L i are line bundles and cK
1 (L i ) = 1− [L∨i ] is the first Chern

class in K-theory. As an intermediate step we show how to express Borel classes
in derived Witt groups using external powers.

Lemma 8.1. Let E be a symplectic bundle of rank 8 over a smooth variety X. Then

bKW
1 (E)= [E], βbKW

3 (E)= [33 E] − 3[E],

βbKW
2 (E)= [32 E] − 4, β2bKW

4 (E)= [34 E] − 2[32 E] + 2.

Proof. Using Theorem 4.11 we may assume that E = E1⊕ E2⊕ E3⊕ E4 for rank
2 symplectic bundles Ei . Then β[n/2]bKW

n (E)= σn(E1, E2, E3, E4).
Expanding

3 j (E1⊕ E2⊕ E3⊕ E4) =
⊕

i1+i2+i3+i4= j

3i1 E1⊗3
i2 E2⊗3

i3 E3⊗3
i4 E4

and using the given trivializations 32 Ei = 1X , we obtain

31 E = σ1(E1, E2, E3, E4),

32 E = σ2(E1, E2, E3, E4)+ 4,

33 E = σ3(E1, E2, E3, E4)+ 3σ1(E1, E2, E3, E4),

34 E = σ4(E1, E2, E3, E4)+ 2σ2(E1, E2, E3, E4)+ 6.

The claim follows. �

Lemma 8.2. Let E1, E2 and E3 be rank 2 symplectic bundles over a smooth variety
X. Put ξi = bKW

1 (Ei ) ∈ KW4,2(X) and denote by ξ(n1, n2, n3) the sum of all the
monomials lying in the orbit of ξ n1

1 ξ
n2
2 ξ

n3
3 under the action of S3. Then
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bKW
1 (E1⊗ E2⊗ E3)= βξ(1, 1, 1),

bKW
2 (E1⊗ E2⊗ E3)= βξ(2, 2, 0)− 2ξ(2, 0, 0),

bKW
3 (E1⊗ E2⊗ E3)= βξ(3, 1, 1)− 8ξ(1, 1, 1),

bKW
4 (E1⊗ E2⊗ E3)= βξ(2, 2, 2)+ ξ(4, 0, 0)− 2ξ(2, 2, 0).

Proof. Consider the representation ring

Rep(Sp2×Sp2×Sp2)
∼= Z[χ±1

1 , χ±1
2 , χ±1

3 ]
Z/2×Z/2×Z/2

= Z[χ1+χ
−1
1 , χ2+χ

−1
2 , χ3+χ

−1
3 ]

with the action of the i-th copy of Z/2 given by χi ↔ χ−1
i . The exterior powers of

representations give rise to the operations

3m
:Z[χ1+χ

−1
1 , χ2+χ

−1
2 , χ3+χ

−1
3 ]→Z[χ1+χ

−1
1 , χ2+χ

−1
2 , χ3+χ

−1
3 ], m∈N0,

which are compatible with the operations

3m
: Z[χ±1

1 , χ±1
2 , χ±1

3 ] → Z[χ±1
1 , χ±1

2 , χ±1
3 ], m ∈ N0,

characterized by the following properties:

(1) 3m(0)= 0,

(2) 3m(χ
i1
1 χ

i2
2 χ

i3
3 )=


1, m = 0,
χ

i1
1 χ

i2
2 χ

i3
3 , m = 1,

0, otherwise,
(3) 3m( f + g)=

⊕
m1+m2=m(3

m1 f )(3m2 g).

Set ei = χi +χ
−1
i . A straightforward computation in Z[χ±1

1 , χ±1
2 , χ±1

3 ] shows that

31(e1e2e3)= e1e2e3,

32(e1e2e3)= e2
1e2

2+ e2
1e2

3+ e2
2e2

3− 2(e2
1+ e2

2+ e2
3)+ 4,

33(e1e2e3)= e3
1e2e3+ e1e3

2e3+ e1e2e3
3− 5e1e2e3,

34(e1e2e3)= e4
1+ e4

2+ e4
3+ e2

1e2
2e2

3− 4(e2
1+ e2

2+ e2
3)+ 6.

Thus

31(E1⊗ E2⊗ E3)= E1⊗ E2⊗ E3,

32(E1⊗ E2⊗ E3)= E2
1 ⊗ E2

2 + E2
1 ⊗ E2

3 + E2
2 ⊗ E2

3 − 2(E2
1 + E2

2 + E2
3)+ 4,

33(E1⊗ E2⊗ E3)= E3
1 ⊗ E2⊗ E3+ E1⊗ E3

2 ⊗ E3

+ E1⊗ E2⊗ E3
3 − 5E1⊗ E2⊗ E3,

34(E1⊗ E2⊗ E3)= E4
1 + E4

2 + E4
3 + E2

1 ⊗ E2
2 ⊗ E2

3 − 4(E2
1 + E2

2 + E2
3)+ 6.

The claim of the lemma follows by Lemma 8.1. �
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9. Stable operations in KWQ

In this section, we compute the algebra of stable operations in KWQ, that is,
KW∗,∗

Q
(KWQ). The computation is straightforward and based on Lemma 2.17

combined with Theorem 4.17.

Lemma 9.1. Let B ∈ HomH•(k)(HP1
∧HP1

∧HGr,HGr) be the morphism charac-
terized by the property

BGW(τ s)=
(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
� τ s .

Then
BKW(sKW

i (τ s))= [H(1)�H(1)] ∪ (ai sKW
i (τ s)+ ci sKW

i−2 (τ
s))

for

a2 j+1 = (2 j + 1)2, c2 j+1 =−β
−18 j (2 j + 1), a2 j = c2 j = 0.

Proof. As noted in Remark 6.4, we may interpret sKW
i as a natural transformation

GW[2]0 → KW4n,2n , whence

BKW(sKW
i (τ s))= sKW

i (BGW(τ s)).

Thus we need to compute sKW
i

((
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
� τ s

)
. The

classes sKW
i are additive and sKW

i (〈H−〉)= 0, so it is sufficient to show that

sKW
i
((
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

))
= [H(1)�H(1)] ∪

(
ai sKW

i (〈H(1)〉)+ ci sKW
i−2 (〈H(1)〉)

)
for(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
�
(
〈H(1)〉− 〈H−〉

)
∈ GW[2]0 (HP1

∧HP1
∧HP∞).

Define

x = bKW
1 (H(1)�1�1), y = bKW

1 (1�H(1)�1), ξ = bKW
1 (1�1�H(1)),

bt(x, y, ξ)= bKW
t (H(1)�H(1)�H(1)),

st(x, y, ξ)= sKW
t (H(1)�H(1)�H(1)).

In this notation the claim is equivalent to

st(x, y, ξ)− st(0, y, ξ)− st(x, 0, ξ)− st(x, y, 0)

+ st(0, 0, ξ)+ st(0, y, 0)+ st(x, 0, 0)− st(0, 0, 0)= βxy
∑
i≥1

(aiξ
i
+ ciξ

i−2)t i .

The main summand on the left side is st(x, y, ξ) and the other summands just
cancel from st(x, y, ξ) all the terms that do not contain xyξ . Since x2

= y2
= 0,
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Lemma 8.2 yields

bt(x, y, ξ)= 1+βxyξ t − 2ξ 2t2
+ (βxyξ 3

− 8xyξ)t3
+ ξ 4t4.

Thus
st(x, y, ξ)= − t d

dt
ln b−t(x, y, ξ)

= − t
d
dt

(
(1− ξ 2t2)2− xyξ(βt + (βξ 2

− 8)t3)
)

(1− ξ 2t2)2− xyξ(βt + (βξ 2− 8)t3)
.

Put
A(ξ, t)= (1− ξ 2t2)2, B(ξ, t)= ξ(βt + (βξ 2

− 8)t3).

Recall that x2
= y2
= 0, whence (xy)2 = 0 and

st(x, y, ξ)= − t
d
dt (A(ξ, t)− xy B(ξ, t))

A(ξ, t)− xy B(ξ, t)

= − t

( d
dt (A(ξ, t)− xy B(ξ, t))

)
(A(ξ, t)+ xy B(ξ, t))

A(ξ, t)2
.

Expanding the numerator, applying x2 y2
= 0 and omitting all the terms that do

not contain xyξ we obtain

st(x, y, ξ)= − t

( d
dt A(ξ, t)

)
xy B(ξ, t)− A(ξ, t) d

dt (xy B(ξ, t))
A(ξ, t)2

= xyt d
dt

(
B(ξ, t)
A(ξ, t)

)
= βxyt d

dt

(
ξ t + (ξ 3

− 8β−1ξ)t3

(1− ξ 2t2)2

)
= βxyt d

dt

(
(ξ t + (ξ 3

− 8β−1ξ)t3)

(∑
j≥0

( j + 1)ξ 2 j t2 j
))

= βxyt d
dt

(∑
j≥0

((2 j + 1)ξ 2 j+1
− 8β−1 jξ 2 j−1)t2 j+1

)
= βxy

∑
j≥0

((2 j + 1)2ξ 2 j+1
− 8β−1 j (2 j + 1)ξ 2 j−1)t2 j+1. �

Lemma 9.2. The following diagram commutes:

KW∗,∗
Q
(KO)

R
��

// lim
←−−

KW∗+8n+4,∗+4n+2
Q

(HGr)

T
��

KW∗+8,∗+4
Q

(KO) // lim
←−−

KW∗+8(n+1)+4,∗+4(n+1)+2
Q

(HGr)

Here the horizontal homomorphisms are the canonical ones given by Lemma 2.17,
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T is induced by the shift∏
n≥0

KWQ
∗+8n+4,∗+4n+2(HGr)→

∏
n≥0

KWQ
∗+8(n+1)+4,∗+4(n+1)+2(HGr),

(t1, t3, t5, . . .) 7→ (t3, t5, . . .)

and R is given by R(γ )= (68,4γ ) ◦ ( – ∪β−1).

Proof. Straightforward from the commutativity of the diagram

Tr2n+1KO

i
��

= // (Tr2(n+1)+1KO){2}

i
��

KO
–∪β−1

// KO∧S8,4 ' // KO{2} �

Lemma 9.3. Let γ ∈ KW0,0
Q
(KO) be a stable operation such that

γ 7→ (γ1, γ3, . . .) ∈ lim
←−−

KW8n+4,4n+2
Q

(HGr)

under the canonical morphism given by Lemma 2.17. Let X be a pointed motivic
space and let

f = ( f0, f1, f2, . . .) :6
∞

HP1 X{−1} → KO

be a morphism of spectra. Then

γ ( f )=6−1
HP1γ1( f1),

where f1 ∈ HomH•(k)(X,HGr) is treated as an element of GW[2]0 (X) and γ1 is
treated as an operation GW[2]0 → KW4,2

Q
.

Proof. This follows from Lemma 6.11. �

Theorem 9.4. The homomorphism of left KW0,0
Q
(pt)∼=WQ(k)-modules

Ev : KW0,0
Q
(KWQ)→

∏
m∈Z

WQ(k)

given by

Ev(φ)=
(
. . . , β2φ(β−2), βφ(β−1), φ(1), β−1φ(β), β−2φ(β2), . . .

)
is an isomorphism of algebras. Here the product on the left is given by composition
and the product on the right is the componentwise one.

Moreover, KW p,q
Q
(KWQ)= 0 when 4 - p−q and the above isomorphism induces

an isomorphism of left KW∗,∗
Q
(pt)∼=WQ(k)[η±1, β±1

]-modules

KW∗,∗
Q
(KWQ)∼=

⊕
r,s∈Z

βrηs
∏
m∈Z

WQ(k)

with degβ = (−8,−4), deg η = (−1,−1).
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Proof. Having in mind the canonical identifications

KW∗,∗
Q
(KWQ)= KW∗,∗

Q
(KOQ)= KW∗,∗

Q
(KO),

we focus on the computation of KW∗,∗
Q
(KO).

Lemma 2.17 yields the short exact sequence

0→ lim
←−−

1 KW∗+8n+3,∗+4n+2
Q

(HGr)→ KW∗,∗
Q
(KO)

→ lim
←−−

KW∗+8n+4,∗+4n+2
Q

(HGr)→ 0

with the limit taken with respect to the morphisms

6−2
HP1 ◦ BKW

: KW∗+8n+12,∗+4n+6
Q

(HGr)→ KW∗+8n+4,∗+4n+2
Q

(HGr),

where B = σ o
KO ◦ (idHP1 ∧σ s

KO) is the same morphism as in Lemma 9.1 up to the
canonical identification HP1 ∼= HP1.

Consider the following diagram:

KW∗+8n+12,∗+4n+6
Q

(HGr) π //

BKW

��

IQ∗+8n+12,∗+4n+6
Q

(HGr)

SQ

��

S′
Q

tt

KW∗+8n+12,∗+4n+6
Q

(HP1
∧HP1

∧HGr)

6−2
HP1
��

KW∗+8n+4,∗+4n+2
Q

(HGr) π // IQ∗+8n+4,∗+4n+2
Q

(HGr)

Here

• IQ∗,∗
Q
(HGr)= lim

←−−m,n IQ(KW∗,∗
Q
(HGr(2m, 2n), ∗)) is the indecomposable quo-

tient (i.e., the ring modulo the reducible elements) of KW∗,∗
Q
(HGr). The New-

ton identities yield

(−1)i+1ibKW
i (τ s)= sKW

i (τ s)

in the indecomposable quotient, and thus Theorem 4.17 allows us to identify

IQ∗,∗
Q
(HGr)=

(∏
i≥1

KW∗−4i,∗−2i
Q

(pt)bKW
i (τ s)

)
h
=

(∏
i≥1

KW∗−4i,∗−2i
Q

(pt)si

)
h

for si = sKW
i (τ s).

• π is the canonical projection.

• S′
Q

is given by S′
Q
(si )= βai si + ci si−2 with

a2 j = c2 j = 0, a2 j+1 = (2 j + 1)2, c2 j+1 =−8 j (2 j + 1).

• SQ = π ◦ S′
Q

.
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The ring KW∗,∗
Q
(HP1

∧HP1
∧HGr) has trivial multiplication by Theorem 4.13

(since bKW
1 (H(1))2 = 0 on HP1). Thus BKW factors through the indecomposable

quotient and Lemma 9.1 yields commutativity of the diagram. It follows that the
canonical homomorphisms

π : lim
←−−

KW∗+8n+4,∗+4n+2
Q

(HGr)
'
−→ lim
←−−

IQ∗+8n+4,∗+4n+2
Q

(HGr),

π1
: lim
←−−

1 KW∗+8n+3,∗+4n+2
Q

(HGr)
'
−→ lim
←−−

1 IQ∗+8n+3,∗+4n+2
Q

(HGr)

are isomorphisms.
The morphism

SQ :

(∏
i≥1

KW∗+8n−4i+12,∗+4n−2i+6
Q

(pt)si

)
h
→

(∏
i≥1

KW∗+8n−4i+4,∗+4n−2i+2
Q

(pt)si

)
h

is given by the matrix 

βa1 0 c3 0 0 0 · · ·
0 0 0 0 0 0 · · ·
0 0 βa3 0 c5 0 · · ·
0 0 0 0 0 0 · · ·
0 0 0 0 βa5 0 · · ·
0 0 0 0 0 0 · · ·
...

...
...

...
...

...
. . .


,

where a2 j+1 and c2 j+1 are invertible. Clearly we have

Im(SQ ◦ SQ)= Im(SQ)=

(∏
j≥0

KW∗+8(n− j),∗+4(n− j)
Q

(pt)s2 j+1

)
h
,

so the lim
←−−

1 term vanishes. For 4 - p− q we have

KW p+8(n− j),q+4(n− j)
Q

(pt)∼=W[p−q+4(n− j)]
Q

(k)= 0,

whence the limit is trivial and KW p,q
Q
(KWQ)= 0. In view of the periodicities

given by η and β, from now on we deal with KW0,0
Q
(KWQ). Moreover, it is suffi-

cient to show that the homomorphism Ev from the statement of the theorem is an
isomorphism, since it clearly agrees with the products.

In order to compute the above limit for SQ we may drop all the terms involving
s2 j and consider

SQ :

∏
j≥0

KW8(n− j),4(n− j)
Q

(pt)s2 j+1→
∏
j≥0

KW8(n− j),4(n− j)
Q

(pt)s2 j+1.
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For every j ≥ 0, choose

ρ2 j+1 =
∑
l≥ j

α2 j+1,2l+1s2l+1 ∈
∏
j≥0

KW−8 j,−4 j
Q

(pt)s2 j+1

such that

(1) SQ(ρ1)= 0,

(2) SQ(ρ2 j+1)= βρ2 j−1,

(3) α1,1 = 1.

The kernel of SQ is a free module of rank 1. Thus (1) and (3) uniquely determine ρ1.
Item (2) together with the condition that the sum for ρ2 j+1 does not contain s1

uniquely determines ρ2 j+1. One can easily see that α2 j+1,2 j+1 is invertible for
every j , whence∏

j≥0

KW8(n− j),4(n− j)
Q

(pt)s2 j+1 =
∏
j≥0

KW∗+8n,∗+4n
Q

(pt)ρ2 j+1.

In the new basis consisting of the ρ2 j+1, the morphism SQ is just a shift multiplied
by β. Thus we can easily compute the inverse limit, obtaining

lim
←−−

KW8n+4,4n+2
Q

(HGr)= lim
←−−

IQ8n+4,4n+2
Q

(HGr)=
∏
m∈Z

KW0,0
Q
(pt)ρst

m ,

where deg ρst
m = (0, 0) and the structure morphisms∏

m∈Z

KW0,0
Q
(pt)ρst

m → KW8n+4,4n+2
Q

(HGr)

are given by

ρst
m 7→

{
β−nρ2(m+n)+1, m+ n ≥ 0,
0, m+ n < 0,

for ρ2(m+n)+1 =
∑

l≥m+n α2(m+n)+1,2l+1s2l+1 ∈ KW4,2
Q
(HGr).

In order to obtain the claim of the theorem it is sufficient to check that

β−nρst
m (β

n)=

{
1, n = m,
0, n 6= m.

It follows from Lemma 9.2 that ρst
m (β

n)= βnρst
m−n(1), so it is sufficient to check

that

ρst
m (1)=

{
1, m = 0,
0, m 6= 0.

Lemma 9.3 yields

ρst
m (1)=6

−1
HP1ρ2m+1

(
〈H(1)〉− 〈H−〉

)
.
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By the definition of ρ2m+1 we have

ρ2m+1
(
〈H(1)〉− 〈H−〉

)
=

{∑
l≥m α2m+1,2l+1sKW

2l+1

(
〈H(1)〉− 〈H−〉

)
, m ≥ 0,

0, m < 0.

All the higher characteristic classes of 〈H(1)〉− 〈H−〉 vanish while

sKW
1
(
〈H(1)〉− 〈H−〉

)
= [H(1)].

Thus

ρ2m+1
(
〈H(1)〉− 〈H−〉

)
=

{
[H(1)] =61

HP11, m = 0,
0, m 6= 0,

and the claim follows. �

Remark 9.5. One can restate Theorem 9.4 as follows. Let

B = (68m,4mβm)m∈Z :

⊕
m∈Z

S∧S8m,4m
→ KWQ

be the morphism induced by 68m,4mβm
: S∧S8m,4m

→ KWQ. Then the pullback
homomorphism

BKWQ : KW∗,∗
Q
(KWQ)→ KW∗,∗

Q

(⊕
m∈Z

S∧S8m,4m
)

is an isomorphism.

10. Stable cooperations in KWQ and KW

In this section we compute the algebra of cooperations in KWQ and give an additive
description of the cooperations in KW. The approach is dual to the one used in the
proof of Theorem 9.4 and based on Lemma 2.17 and Theorem 5.10.

Lemma 10.1. The following diagram commutes:

lim
−−→
(KWQ)∗+8n+4,∗+4n+2(HGr)

∼= //

T
��

(KWQ)∗,∗(KO)

– ?βr

��
lim
−−→
(KWQ)∗+8(n+1)+4,∗+4(n+1)+2(HGr)

∼= // (KWQ)∗+8,∗+4(KO)

Here the horizontal isomorphisms are the canonical ones given by Lemma 2.17, T
is induced by the shift⊕

n≥0

(KWQ)∗+8n+4,∗+4n+2(HGr)→
⊕
n≥0

(KWQ)∗+8(n+1)+4,∗+4(n+1)+2(HGr),

(t1, t3, t5, . . .) 7→ (t3, t5, . . .),

βr = uKWQ
∧68,4β ∈ (KWQ)8,4(KO) and – ? βr is given by Definition 3.8.
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Proof. This follows from the commutativity of the diagram

Tr2n+1KO

i
��

= // (Tr2(n+1)+1KO){−2}

i
��

KO
–∪β // KO∧S−8,−4 ' // KO{−2} �

Theorem 10.2. Let uKWQ
: S→ KWQ be the unit map. Then the homomorphism

of WQ(k)[η±1
] ∼=

⊕
n∈Z KWn,n

Q
(pt)-algebras

WQ(k)[η±1
][β±1

l , β±1
r ] → (KWQ)∗,∗(KWQ)

given by
βl 7→68,4β ∧ uKWQ

, βr 7→ uKWQ
∧68,4β

is an isomorphism. Here the product on the right is given by Definition 3.8.

Proof. Abusing the notation, put

βl =6
8,4β ∧ uKWQ

, βr = uKWQ
∧68,4β.

We need to show that

(KWQ)∗,∗(KWQ) =
⊕

n,p,q∈Z

KWn,n
Q
(pt)β p

l ? β
q
r .

Identifying (KWQ)∗,∗(KWQ)= (KWQ)∗,∗(KO) and applying the reasoning dual
to the one used in the proof of Theorem 9.4 we obtain that

(KWQ)∗,∗(KWQ)= lim
−−→
(PEQ)∗+8n+4,∗+4n+2(HGr),

where
(PEQ)∗,∗(HGr)=

⊕
i≥1

(KWQ)∗−4i,∗−2i (pt)s∨i

is the subspace of (KWQ)∗,∗(HGr) dual to IQ∗,∗
Q
(HGr) (see Theorem 5.10). Here

s∨i ∈ PE4i,2i (HGr) satisfies 〈si , s∨i 〉 = 1 and 〈sl, s∨i 〉 = 0 for l 6= i . The limit is taken
with respect to the morphisms

S∨Q :
⊕
i≥1

(KWQ)∗+8n−4i+4,∗+4n−2i+2(pt)s∨i
→

⊕
i≥1

(KWQ)∗+8n−4i+12,∗+4n−2i+6(pt)s∨i

given by S∨
Q
(s∨i )= βai s∨i + ci+2s∨i+2 for

a2 j = c2 j = 0, a2 j+1 = (2 j + 1)2, c2 j+1 =−8 j (2 j + 1)
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just as in the proof of Theorem 9.4. The matrix of S∨
Q

is

βa1 0 0 0 0 0 . . .

0 0 0 0 0 0 . . .

c3 0 βa3 0 0 0 . . .

0 0 0 0 0 0 . . .

0 0 c5 0 βa5 0 . . .

0 0 0 0 0 0 . . .
...

...
...

...
...

...
. . .


.

We can drop all the terms involving s∨2 j , obtaining

(KWQ)∗,∗(KWQ)= lim
−−→

n

⊕
j≥0

(KWQ)∗+8(n− j),∗+4(n− j)(pt)s∨2 j+1.

For 4 - p− q the group (KWQ)p,q(KWQ) vanishes, and in view of the periodicity
realized by cap product with η and cap product with β (that coincides with multi-
plication by βl ; see Definition 3.8) from now on we deal with (KWQ)0,0(KWQ).

Let τ1 = s∨1 and τ2 j+1 = β
−1S∨

Q
(τ2 j−1). One can easily check that⊕

j≥0

(KWQ)8(n− j),4(n− j)(pt)s∨2 j+1 =
⊕
j≥0

(KWQ)8n,4n(pt)τ2 j+1.

In this basis S∨
Q

is a shift composed with multiplication by β, so the limit is easily
computed:

lim
−−→

n

⊕
j≥0

(KWQ)8n,4n(pt)τ2 j+1 =
⊕
m∈Z

(KWQ)0,0(pt)τ st
m

with the structure morphisms⊕
j≥0

(KWQ)8n,4n(pt)τ2 j+1→
⊕
m∈Z

(KWQ)0,0(pt)τ st
m

given by τ2 j+1 7→ β−nτ st
j−n . Lemma 10.1 yields that

τ st
m = β

−1
l ? τ st

m−1 ? βr ,

whence τ st
m = β

−m
l ? τ st

0 ? βm
r and

(KWQ)0,0(KWQ)=
⊕
m∈Z

(KWQ)0,0(pt)β−m
l ? τ st

0 ? βm
r .

In order to check that τ st
0 = uKWQ

∧ uKWQ
(whence β−m

l ? τ st
0 ? β

m
r = β

−m
l ? βm

r )
recall that s∨1 = χ1 and consider the following diagram:
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KWQ ∧ (6
∞

HP1HP1
{−1})

idKWQ
∧i
//

∼=

��

KWQ ∧ (6
∞

HP1HGr{−1})

∼=

��
S

uKWQ
∧idS

//

uKWQ
∧6−1

HP1χ1
55

τ st
0 ))

KWQ ∧S

idKWQ
∧uKO

��

KWQ ∧Tr1KO

idKWQ
∧ jss

KWQ ∧KO

Here

• i is induced by the canonical embedding HP1
→ HGr,

• j is the canonical morphism Tr1KO→ KO.

The right half of the diagram commutes by Lemma 6.12, the upper triangle com-
mutes by Corollary 6.13 and the outer contour commutes by the definition of τ st

0 .
Thus the lower triangle commutes as well and the claim follows. �

Remark 10.3. One can restate Theorem 10.2 as follows. Let

B = (68m,4mβm)m∈Z :

⊕
m∈Z

S∧S8m,4m
→ KWQ

be the morphism given by 68m,4mβm
: S ∧ S8m,4m

→ KWQ. Then the induced
homomorphism in homology

BKWQ
: (KWQ)∗,∗

(⊕
m∈Z

S∧S8m,4m
)
→ (KWQ)∗,∗(KWQ)

is an isomorphism.

Now we turn to the description of integral cooperations.

Theorem 10.4. Let M be the abelian subgroup of Q[v, v−1
] generated by polyno-

mials

f j,n =
v−n ∏ j−1

i=0 (v− (2i + 1)2)
4 j (2 j)!

, j ≥ 0, n ∈ Z.

Then there are canonical isomorphisms of left KW0,0(pt)∼=W(k)-modules

KWp,q(KW)∼=

{
W(k)⊗Z M, 4 | p− q,
0, otherwise.

Rationally WQ(k)⊗Z M∼= (KWQ)r,r−4t(KW) is given by

vm
7→ ηr−8tβ t−m

l ? βm
r

in the notation of Theorem 10.2.
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Proof. Applying the reasoning dual to the one used in the beginning of the proof
of Theorem 9.4, we obtain that

KW∗,∗(KW)= lim
−−→

⊕
i≥1

KW∗+8n−4i+4,∗+4n−2i+2(pt)b∨i .

Here b∨i belongs to the submodule of KW∗,∗(HGr) dual to the indecomposable
quotient IQ∗,∗(HGr) and satisfies 〈bi , b∨i 〉 = 1, 〈bl, b∨i 〉 = 0 for l 6= i . The limit
is computed along the morphisms S∨ dual to the corresponding morphisms S be-
tween indecomposable quotients. Recall that S is induced by a desuspension of an
appropriate morphism HP1

∧HP1
∧HGr→ HGr.

It follows from Lemma 8.2 that S(bi ) is a Z[β, β−1
]-linear combination of prod-

ucts of Borel classes b j (cf. Lemma 9.1), thus there exists a linear map

SZ :

∏
i≥1

Z[β, β−1
]bi →

∏
i≥1

Z[β, β−1
]bi

inducing

S :
∏
i≥1

KW∗+8n−4i+12,∗+4n−2i+6(pt)bi →
∏
i≥1

KW∗+8n−4i+4,∗+4n−2i+2(pt)bi .

Moreover, SZ gives rise to the dual map

S∨Z :
⊕
i≥1

Z[β, β−1
]b∨i →

⊕
i≥1

Z[β, β−1
]b∨i .

and

S∨ :
⊕
i≥1

KW∗+8n−4i+4,∗+4n−2i+2(pt)b∨i →
⊕
i≥1

KW∗+8n−4i+12,∗+4n−2i+6(pt)b∨i

is given by S∨ = idKW∗,∗(pt)⊗Z[β,β−1]S∨Z .
The proof of Lemma 9.1 yields

SZ(s2 j )= 0, SZ(s2 j+1)= β(2 j + 1)2s2 j+1− 8 j (2 j + 1)s2 j−1.

From the Newton identities we have 〈si , b∨i 〉 = (−1)i+1i and 〈sl, b∨i 〉 = 0 for l 6= i .
Combining this with the above, we obtain

〈s2 j , S∨Z (b
∨

i )〉 = 〈SZ(s2 j ), b∨i 〉 = 0,

〈s2 j+1, S∨Z (b
∨

i )〉 = 〈SZ(s2 j+1), b∨i 〉 =


β−1(2 j + 1)3, i = 2 j + 1,
−8 j (2 j − 1)(2 j + 1), i = 2 j − 1,
0, otherwise.

Hence S∨Z (b
∨

2 j ) = 0 and S∨Z (b
∨

2 j+1) = (2 j + 1)2βb∨2 j+1 − 8( j + 1)(2 j + 1)b∨2 j+3.
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We may therefore drop all of the b∨2 j , obtaining

KW∗,∗(KW)= lim
−−→

⊕
j≥0

KW∗+8(n− j),∗+4(n− j)(pt)b∨2 j+1.

Specifying to the degree (p, q), 4 - p− q , we obtain KWp,q(KW)= 0 since

KWp+8(n− j),q+4(n− j)(pt)∼=W[q−p−4(n− j)](k)= 0.

In view of the periodicities given by cap-product with η and β, from now on we
deal with KW0,0(KW).

We have

KW0,0(KW)= lim
−−→

n

⊕
j≥0

KW8(n− j),4(n− j)(pt)b∨2 j+1 = lim
−−→

n

⊕
j≥0

W(k)βn− j b∨2 j+1,

where the colimit is computed with respect to the morphism

S∨ :
⊕
j≥0

W(k)βn− j b∨2 j+1→
⊕
j≥0

W(k)βn+1− j b∨2 j+1

given by

S∨(βn− j b∨2 j+1)= (2 j + 1)2βn+1− j b∨2 j+1− 8( j + 1)(2 j + 1)βn− j b∨2 j+3.

Colimit commutes with tensor product, so

KW0,0(KW)=W(k)⊗Z

(
lim
−−→

n

⊕
j≥0

Zβn− j b∨2 j+1

)
with the morphisms

S∨Z :
⊕
j≥0

Zβn− j b∨2 j+1→
⊕
j≥0

Zβn+1− j b∨2 j+1

in the bases {βn− j b∨2 j+1} j≥0 and {βn+1− j b∨2 j+1} j≥0 given by
a1 0 0 0 · · ·
c′3 a3 0 0 · · ·
0 c′5 a5 0 · · ·
0 0 c′7 a7 · · ·
...

...
...

...
. . .

 ,

where a2 j+1 = (2 j + 1)2 and c′2 j+1 =−8 j (2 j − 1).
The terms in the last colimit are torsion-free, so the canonical morphism

lim
−−→

n

⊕
j≥0

Zβn− j b∨2 j+1→ lim
−−→

n

⊕
j≥0

Qβn− j b∨2 j+1
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is injective. One computes the right-hand side colimit as in the proof Theorem 10.2.
Let

T∨Z = (β
−1
∩ – ) ◦ S∨Z :

⊕
j≥0

Zβn− j b∨2 j+1→
⊕
j≥0

Zβn− j b∨2 j+1

and choose a basis of
⊕

j≥0 Qβn− j b∨2 j+1 to be

{βnb∨1 , T∨Q (β
nb∨1 ), (T

∨

Q )
2(βnb∨1 ), . . . }.

In these bases S∨
Q

is a shift, so

lim
−−→

n

⊕
j≥0

Qβn− j b∨2 j+1 =
⊕
m∈Z

Q · [β−m
l ? βm

r ]

with the canonical morphisms⊕
j≥0

Qβn− j b∨2 j+1→
⊕
m∈Z

Qβ−m
l ? βm

r

given by (T∨
Q
)m(βnb∨1 ) 7→ β−m

l ? βm
r (the notation is consistent with the one used

in the proof of Theorem 10.2). The limit lim
−−→

n

⊕
j≥0 Zβn− j b∨2 j+1 is the union of the

images for the canonical morphisms

φn :
⊕
j≥0

Zβn− j b∨2 j+1→
⊕
m∈Z

Qβ−m
l ? βm

r .

We claim that these morphisms are given by

φn(β
n− j b∨2 j+1)=

(β−m
l ? βm

r )
∏ j−1

i=0 (β
−1
l ? βr − a2i+1)∏ j

i=1 c′2i+1

,

where the multiplication on the right-hand side is componentwise, i.e.,

(β−n
l ? βn

r )(β
−m
l ? βm

r )= β
−n−m
l ? βn+m

r .

Indeed, for j = 0 we have φn(β
nb∨1 ) = β

n
l ? β

−n
r . The general case follows from

the equalities

φn+1(a2 j−1β
n+1− j b∨2 j−1+ c′2 j+1β

n− j b∨2 j+1)

= φn+1(S∨Z (β
n− j+1b∨2 j−1))= φn(β

n− j+1b∨2 j−1).

The claim of the theorem follows. �

Remark 10.5. It follows from the above theorem applied to k = R (or any other
field satisfying W(k) = Z) that M is an algebra for the usual multiplication of
polynomials, i.e., that products f j1,n1 f j2,n2 can be expressed as linear combinations
of the f j,n . For example we have

f 2
1,0 = 9 f1,−1+ 198 f2,−1+ 720 f3,−1.
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