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On local tameness of certain graphs of groups

RITA GITIK

Let G be the fundamental group of a finite graph of groups with Noetherian edge
groups and locally tame vertex groups. We prove that G is locally tame. It follows
that if a finitely presented group H has a nontrivial JSJ–decomposition over the
class of its VPC.k/ subgroups for k D 1 or k D 2 , and all the vertex groups in the
decomposition are flexible, then H is locally tame.

20F65; 20E06, 20F34, 57M07, 57M10

1 Introduction

Let H be a subgroup of a group G given by any presentation G D hX jRi. Let K be
the standard presentation 2–complex of G, ie K has one vertex, K has an edge, which
is a loop, for every generator x 2X, and K has a 2–cell for every relator r 2R. The
Cayley complex of G, denoted by Cayley2.G/, is the universal cover of K . Denote
by Cayley2.G;H / the cover of K corresponding to a subgroup H of G.

Definition 1 (see Gitik [3] and Mihalik [8]) A finitely generated subgroup H

of a finitely presented group G is tame in G if, for any finite subcomplex C of
Cayley2.G;H / and for any component C0 of Cayley2.G;H /�C, the group �1.C0/

is finitely generated.

Note that Definition 1 makes sense for any subgroup H and for any presentation of a
group G, however it was shown in [8] that tameness of a finitely generated subgroup H

is independent of a finite presentation of a group G. As we are interested in investigating
a property of a group, rather than a property of a presentation, we will work with finitely
presented groups, unless explicitly stated otherwise.

It is not known if there exists a finitely generated subgroup H of a finitely presented
group G such that H is not tame in G. Moreover, it is not known if the trivial subgroup
is tame in any finite presentation of a group. However, an infinitely generated subgroup
might not be tame in a finitely presented group.
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Example 2 Let F D hx;yi be a free group of rank two, and let F 0 be its commutator
subgroup. The complex Cayley2.F;F

0/ is one-dimensional and is homeomorphic to a
lattice in the Euclidean plane, consisting of the horizontal lines fy D n j n 2 Zg and
the vertical lines fx D n j n 2 Zg. As the fundamental group of the complement of
any finite connected subcomplex C in Cayley.F;F 0/ is infinitely generated, F 0 is not
tame in F.

The following definition was given in Gitik [4]:

Definition 3 A finitely presented group G is locally tame if all finitely generated
subgroups of G are tame in G.

Note that Definition 3 makes sense for any presentation of a group G.

A finite subgroup can be tame in an infinite presentation of a group. Moreover, an
infinite presentation of a group can be locally tame.

Example 4 Let F D hX i be an infinitely generated free group and let H be a finitely
generated subgroup of F. Note that Cayley2.F;H / is one-dimensional. It has a finite
subcomplex, called the core, which carries H, and the complement of the core in
Cayley2.F;H / is a forest. Hence, for any finite subcomplex of Cayley2.F;H /, the
fundamental group of any component of Cayley2.F;H / � C is finitely generated.
Therefore any free group is locally tame.

Definition 1 was motivated by the topology of 3–manifolds.

A manifold M is called a missing boundary manifold if it can be embedded in a
compact manifold M such that M�M is a closed subset of the boundary of M. Simon
conjectured in [13] that if M0 is a compact orientable irreducible 3–manifold, and M

is the cover of M0 corresponding to a finitely generated subgroup of �1.M0/, then
M is a missing boundary manifold. Perelman’s solution of Thurston’s geometrization
conjecture in 2003 implies that Simon’s conjecture holds for all compact orientable
irreducible 3–manifolds; see Bessières, Besson, Maillot, Boileau and Porti [1] and
Kleiner and Lott [7].

Tucker proved in [14] that a noncompact orientable irreducible 3–manifold M is
a missing boundary manifold if and only if for any compact submanifold C of M

the fundamental group of any connected component of M �C is finitely generated.
It follows that �1.M / is tame in �1.M0/, so the fundamental groups of compact
orientable irreducible 3–manifolds are locally tame.
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Tameness of a subgroup is connected to other properties which have been studied for a
long time.

It is shown in Mihalik and Tschantz [9] that if the trivial subgroup is tame in G

then �1
1
.G/ (the fundamental group at infinity of G ) is pro-finitely generated. It is

shown in [8] that if a finitely generated subgroup H is tame in G then �1
1
.G;H / is

pro-finitely generated.

It is shown in [9] that if the trivial subgroup is tame in G then G is QSF (quasi-simply-
filtrated).

Recall that a group is called Noetherian or slender if all its subgroups are finitely
generated. A group is polycyclic if it is Noetherian and solvable. For n� 0 a group G

is VPC.n/ (virtually polycyclic of length n) if it has nC 1 subgroups, G0; : : : ;Gn ,
such that GiC1 is a normal subgroup of Gi for 0 � i � n� 1, the quotient groups
Gi=GiC1 are isomorphic to Z for 0� i � n� 1, Gn is the trivial subgroup, and G0

has finite index in G.

Note that VPC.0/ groups are finite, VPC.1/ groups are finite extensions of Z, and
VPC.2/ groups are finite extensions of an extension of Z by Z. There are only two
nonisomorphic extensions of Z by Z, namely the fundamental group of a torus and
the fundamental group of a Klein bottle.

It is unknown whether all finitely presented Noetherian groups are virtually polycyclic
(Question 11.38 from the Kourovka notebook in Khukhro and Mazurov [6]), however
there exist finitely generated Noetherian groups that are not virtually polycyclic, for
example the Tarski monster.

The main result of this paper is the following theorem:

Theorem 5 Let G be the fundamental group of a finite graph of groups with Noether-
ian edge groups such that the presentation of G given by that graph-of-groups structure
is finite. If all the vertex groups of G are locally tame then G is locally tame.

Theorem 5 has the following corollary:

Lemma 6 The fundamental group of a surface is locally tame.

Remark 7 The fundamental group of a compact two-dimensional orbifold is locally
tame. Indeed, the fundamental group of a compact two-dimensional orbifold is a finite
extension of the fundamental group of a surface, so the result follows from Lemma 6
and Remark 11.
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Recall that a subgroup H is elliptic in a graph of groups G if H is contained in a
conjugate of a vertex group. A vertex group K of a JSJ–decomposition of G which fails
to be elliptic in some other JSJ–decomposition of G is called flexible; see Guirardel
and Levitt [5, page 6]. For a background on JSJ–decompositions see Fujiwara and
Papasoglu [2], Guirardel and Levitt [5] and Scott and Swarup [10].

Theorem 5 implies the following interesting result:

Lemma 8 If a finitely presented group G has a nontrivial JSJ–decomposition over
the class of its VPC.k/ subgroups for k D 1 or k D 2, and all the vertex groups in the
decomposition are flexible, then G is locally tame.

Corollary to the proof of Lemma 8 Let G be the fundamental group of a finite graph
of groups which has all the vertex groups isomorphic to the product of Z with a finitely
generated surface group, and all the edge groups isomorphic to either Z or Z �Z.
Then G is locally tame.

Indeed, Z and Z �Z are Noetherian. The proof of Lemma 8 demonstrates that a
product of Z with a finitely generated surface group is locally tame, so the result
follows from Theorem 5.

Remark 9 (see [5, Corollary 6.3]) Let G be a finitely presented group which has a
JSJ–decomposition over the class of its VPC.nC 1/ subgroups. Let K be a flexible
vertex group of this decomposition. Then K is either VPC.nC 1/ or K has a finite-
index subgroup L such that L has a normal VPC.n/ subgroup N with L=N the finitely
generated fundamental group of a surface. Furthermore, if L=N is the fundamental
group of a closed surface, then K DG.

Conjecture If a finitely presented group G has a nontrivial JSJ–decomposition over
the class of its VPC.nC 1/ subgroups for n � 0, and all the vertex groups in the
decomposition are flexible, then G is locally tame.

2 Proof of Theorem 5

Let G be a group generated by a set X and let H be a subgroup of G. Let fHgg be
the set of right cosets of H in G.
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The coset graph of G with respect to H, denoted by Cayley.G;H /, is the oriented
graph whose vertices are the cosets fHgg, the set of edges is fHgg � .X [X�1/,
and for x 2 X [ X�1 the edge .Hg;x/ begins at the vertex Hg and ends at the
vertex Hgx . Denote the Cayley graph of G by Cayley.G/. Note that Cayley.G;H /

is the quotient of Cayley.G/ by left multiplication by H. Also note that the 1–skeleton
of Cayley2.G/ is Cayley.G/, and the 1–skeleton of Cayley2.G;H / is Cayley.G;H /.

Let G be generated by a disjoint union of sets Xi for 1� i � n. We call a connected
subcomplex of Cayley2.G;H / an Xi –component if all the edges in the 1–skeleton of
that subcomplex have the form .Hg;x/ with x 2Xi [X�1

i .

Proof of Theorem 5 Let G be the fundamental group of a finite graph of groups
with vertex groups Vi for 1 � i � n and edge groups Ej for 1 � j � m. As the
presentation of G given by that graph-of-groups structure is finite and all the edge
groups are Noetherian, hence finitely generated, Lemma 10 implies that all the vertex
groups are finitely presented. Let the vertex group Vi be generated by a finite set Xi

such that the sets Xi and Xk are disjoint for i ¤ k .

The group G acts on the Bass–Serre tree T of the graph-of-groups decomposition
of G ; see [12], Chapter 5. The vertices of the tree T are the G–cosets of the vertex
groups Vi and the edges of T are the G –cosets of the edge groups Ej . The stabilizer
of a vertex gVi of T is the subgroup gVig

�1 of G and the stabilizer of an edge gEj

of T is the subgroup gEj g�1 of G.

Consider a finitely generated subgroup H of G. It acts on the tree T . The H –stabilizer
of a vertex gVi of T is gVig

�1\H and the H –stabilizer of an edge gEj of T is
gEj g�1 \H. Hence H is the fundamental group of a (possibly infinite) graph of
groups which has the vertex groups of the form gVig

�1 \H and the edge groups
of the form gEj g�1 \H ; see [11, pages 157 and 162]. As the edge groups of G

are Noetherian, the edge groups of H are also Noetherian, hence they are finitely
generated. As H is finitely generated, Lemma 10 implies that the vertex groups of H

are finitely generated.

Note that as the presentation of G is given by the graph-of-groups structure, any 2–cell
in Cayley2.G/ belongs to either a maximal Xi –component of Cayley2.G/ or to the
union of two such components. Hence a maximal Xi –component of Cayley2.G/ is
simply connected because it contains all the 2–cells of Cayley2.G/ with boundaries
in that maximal Xi –component.
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All maximal Xi –components of Cayley2.G;H / have fundamental groups which are
the vertex groups of H. Indeed, let Yi be the maximal Xi –component of Cayley2.G/

containing 1G , the basepoint of Cayley2.G/. The set Xi generates the vertex group Vi

and the vertices of Cayley2.G/ are the elements of G. For v 2 Vi consider the vertices
g and gv of gYi . There exists h2H such that hgDgv if and only if gvg�1Dh2H.
So the fundamental group of the image of gYi under the quotient map of Cayley2.G/

to Cayley2.G;H / is isomorphic to gVig
�1\H, which is a finitely generated vertex

group of H.

Therefore the maximal Xi –components of Cayley2.G;H / are homeomorphic to
Cayley2.Vi ;Ui/, with Ui a finitely generated subgroup of Vi .

As H is finitely generated, there exists a finite connected subcomplex .K;H � 1/ of
Cayley2.G;H / such that the inclusion map of .K;H � 1/ in Cayley2.G;H / induces
an epimorphism of �1.K;H � 1/ with �1.Cayley2.G;H /;H � 1/DH.

Let C be a compact subcomplex of Cayley2.G;H /. Note that C has nonempty
intersection with only finitely many maximal Xi –components of Cayley2.G;H /. The
complex K can be enlarged to contain C. It can be enlarged more, so that it consists of
finitely many maximal Xi –components of Cayley2.G;H / which have nontrivial inter-
section with K and the 2–cells with boundaries in the union of those Xi –components.
Denote the enlarged complex by L. The complex K is finite but the complex L might
be infinite. By construction, L� C has a finite number of connected components.
Note that even though the inclusion of �1.K;H � 1/ into �1.Cayley2.G;H /;H � 1/ is
an epimorphism, the inclusion of �1.L;H � 1/ into �1.Cayley2.G;H /;H � 1/ is an
isomorphism, because �1.L;H � 1/ is the fundamental group of a subgraph of groups;
see [11, Proposition 3.6].

As the vertex groups Vi are locally tame, the fundamental group of each component
of the complement of C in any maximal Xi –component is finitely generated, so
each component of L�C is a finite union of 2–complexes with finitely generated
fundamental groups. Note that if a locally finite complex M is the union of two
connected subcomplexes A and B such that �1.A/ and �1.B/ are finitely generated
and A\B is connected, then �1.M / is finitely generated. Note also that if a locally
finite complex M has finitely generated fundamental group and contains disjoint
isomorphic subcomplexes A and B, then the fundamental group of the complex
obtained by identifying A and B is finitely generated. It follows that the fundamental
group of each component of L�C is finitely generated.
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By construction, Cayley2.G;H / � C D .Cayley2.G;H / �L/ [ .L � C /. Let W

be a connected component of the closure of Cayley2.G;H /�L. Then W \L is
connected and �1.W \L/ is isomorphic to �1.W / because L carries the fundamental
group of Cayley2.G;H /. So, for each component Li of L�C which intersects W

nontrivially, �1.Li \W / D �1.W /. Let W i be the (possibly infinite) union of all
components of Cayley2.G;H /�L which have nontrivial intersection with Li . Then
�1.W

i [Li/D �1.Li/, which is finitely generated. Hence the fundamental group of
each component of Cayley2.G;H /�C is finitely generated, proving Theorem 5.

Lemma 10 Let G be the fundamental group of a possibly infinite graph of groups.

(1) If the presentation of G given by that graph-of-groups structure is finitely
generated and all the edge groups of G are finitely generated, then all the vertex
groups of G are finitely generated.

(2) If the presentation of G given by that graph-of-groups structure is finite and all
the edge groups of G are finitely generated, then all the vertex groups of G are
finitely presented.

Proof We give a proof in a special case, when G is a product of A and B amalgamated
over a finitely generated group C.

(1) If G is finitely generated then A and B are also finitely generated. Indeed,
assume without loss of generality that A is not finitely generated. Then AD

S1
iD1 Ai

with Ai ¤ AiC1 , and all Ai are finitely generated. As C is finitely generated, there
exists j > 0 such that C � Aj . Consider a sequence Gi D Ai �C B for i � j . By
construction, Gi ¤ GiC1 and

S
Gi D G. Hence G should be infinitely generated,

contradicting the assumptions. Therefore both A and B are finitely generated.

(2) Assume that G is finitely presented. We claim that in this case both A and B

are finitely presented. Indeed, assume that A is infinitely presented. We have proved
already that A is finitely generated, so A D ha1; : : : ; an j r1; r2; : : : ; rk ; : : : i. Let
BDhb1; : : : ; bm j s1; : : : ; sp; : : : i and let C be generated by a finite set c1; : : : ; cl . Let
fA and fB be the inclusions of C in A and B, respectively, defining the amalgamated
free product G DA�C B. Then, as G is finitely presented, there exists N > 0 such
that

G D
˝
a1; : : : ; an; b1; : : : ; bm j r1; r2; : : : ; rN ; s1; : : : ; sp; : : : ;

fA.c1/D fB.c1/; : : : ; fA.cl/D fB.cl/
˛
:
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Consider a sequence of groups Ai D ha1; : : : ; an j r1; r2; : : : ; rii. There is a surjection
from Ai to AiC1 for every i � 1 and each Ai maps onto A. Let Gi denote the group
obtained from Ai and B by adding the gluing relations in C, even though C may
not be a subgroup of Ai . In particular, consider the map GN to G, where N is as
defined above. That map is an isomorphism, hence the map of AN to A is also an
isomorphism, so the group A is finitely presented.

The proof of the general case is obtained by collapsing all the edges in the graph-of-
groups structure of G which are not incident to A. This yields a new graph-of-groups
structure for G in which every edge is incident to A. Now we can apply the above
arguments using all the vertices in the new graph of groups at once to construct the
groups Gi .

3 Proofs of Lemmas 6 and 8

Remark 11 The following result was proved in [4]. Let K0 be a finite-index subgroup
of a finitely presented group K . A finitely generated subgroup H of K is tame in K

if and only if H \K0 is tame in K0 .

It follows that virtually locally tame groups are locally tame.

Proof of Lemma 6 Example 4 shows that any free group is locally tame, so the
fundamental group of a nonclosed surface is tame.

It is shown in [4] that finitely generated abelian groups are locally tame, so the funda-
mental group of a torus is locally tame.

Note that the fundamental group of a closed orientable surface of genus greater than
one can be written as a product of two free groups amalgamated over a cyclic subgroup.
Hence Theorem 5 implies that the fundamental groups of closed orientable surfaces of
genus greater than one are locally tame.

As any nonorientable closed surface is double-covered by an orientable closed surface,
Remark 11 implies that the fundamental groups of nonorientable closed surfaces are
locally tame.

Proof of Lemma 8 Consider, first, the case when a finitely presented group G has a
nontrivial JSJ–decomposition over the class of its VPC.1/ subgroups and all the vertex
groups in the decomposition are flexible. Note that VPC.1/ groups are Noetherian.
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The flexible vertex groups in such a JSJ–decomposition are either VPC.1/ or virtually
a finitely generated fundamental group of surfaces; see [5, Corollary 6.3]. Furthermore,
if a vertex group M in that decomposition is virtually the fundamental group of a
closed surface, then G DM.

Hence, Remark 11 and Lemma 6 imply that the group G satisfies the conditions of
Theorem 5, therefore it is locally tame.

Next, consider the case when a finitely presented group G has a nontrivial JSJ–
decomposition over the class of its VPC.2/ subgroups and all the vertex groups in the
decomposition are flexible. Note that VPC.2/ subgroups are Noetherian.

The flexible vertex groups in such JSJ–decomposition are either VPC.2/ or virtually
cyclic by a finitely generated surface group; see [5, Corollary 6.3]. Furthermore, if a
flexible vertex group K in that decomposition is virtually cyclic by a closed surface
group, then G DK .

If a group L is cyclic by a finitely generated surface group then there exists a surface M

and a normal cyclic subgroup N of L such that the sequence

1!N !L! �1.M /! 1

is exact and L is the fundamental group of a bundle X over M with fiber S1 .

If H is a finitely generated subgroup of L then either H \ N D f1g or H \ N

is isomorphic to Z. Let K be the image of H in �1.M /. Note that K is finitely
generated. Let MK be the cover of M with fundamental group K . Then H is the
fundamental group of a bundle XH over MK with fiber either S1 if H \N D Z

or R if H \N D f1g. As K is finitely generated, MK is a missing boundary surface.
It follows that, in either case, XH is a missing boundary 3–manifold, so L is locally
tame.

If a group L is VPC.2/ then it is virtually either the fundamental group of a torus or
the fundamental group of a Klein bottle, hence Remark 11 and Lemma 6 imply that L

is locally tame.

Therefore, Remark 11 implies that the group G satisfies the conditions of Theorem 5,
so it is locally tame.

Acknowledgment

The author would like to thank Mike Mihalik and Peter Scott for helpful discussions
and the referee for helpful comments.

Algebraic & Geometric Topology, Volume 19 (2019)



3710 Rita Gitik

References
[1] L Bessières, G Besson, S Maillot, M Boileau, J Porti, Geometrisation of 3–manifolds,

EMS Tracts in Mathematics 13, Eur. Math. Soc., Zürich (2010) MR

[2] K Fujiwara, P Papasoglu, JSJ–decompositions of finitely presented groups and com-
plexes of groups, Geom. Funct. Anal. 16 (2006) 70–125 MR

[3] R Gitik, Tameness and geodesic cores of subgroups, J. Austral. Math. Soc. Ser. A 69
(2000) 153–161 MR

[4] R Gitik, On tame subgroups of finitely presented groups, Ann. Math. Qué. 43 (2019)
213–220 MR

[5] V Guirardel, G Levitt, JSJ decompositions of groups, Astérisque 395, Soc. Math.
France, Paris (2017) MR

[6] E I Khukhro, V D Mazurov, Unsolved problems in group theory: the Kourovka note-
book, preprint (2018) arXiv

[7] B Kleiner, J Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587–2855
MR

[8] M L Mihalik, Compactifying coverings of 3–manifolds, Comment. Math. Helv. 71
(1996) 362–372 MR

[9] M L Mihalik, S T Tschantz, Tame combings of groups, Trans. Amer. Math. Soc. 349
(1997) 4251–4264 MR

[10] P Scott, G A Swarup, Regular neighbourhoods and canonical decompositions for
groups, Astérisque 289, Soc. Math. France, Paris (2003) MR

[11] P Scott, T Wall, Topological methods in group theory, from “Homological group
theory” (C T C Wall, editor), London Math. Soc. Lecture Note Ser. 36, Cambridge Univ.
Press (1979) 137–203 MR

[12] J-P Serre, Trees, Springer (1980) MR

[13] J Simon, Compactification of covering spaces of compact 3–manifolds, Michigan Math.
J. 23 (1976) 245–256 MR

[14] T W Tucker, Non-compact 3–manifolds and the missing-boundary problem, Topology
13 (1974) 267–273 MR

Department of Mathematics, University of Michigan
Ann Arbor, MI, United States

ritagtk@umich.edu

Received: 29 August 2018 Revised: 28 November 2018

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.4171/082
http://msp.org/idx/mr/2683385
http://dx.doi.org/10.1007/s00039-006-0550-2
http://dx.doi.org/10.1007/s00039-006-0550-2
http://msp.org/idx/mr/2221253
http://dx.doi.org/10.1017/S1446788700002147
http://msp.org/idx/mr/1775175
http://dx.doi.org/10.1007/s40316-018-0102-9
http://msp.org/idx/mr/3925143
http://msp.org/idx/mr/3758992
http://msp.org/idx/arx/1401.0300v13
http://dx.doi.org/10.2140/gt.2008.12.2587
http://msp.org/idx/mr/2460872
http://dx.doi.org/10.1007/BF02566425
http://msp.org/idx/mr/1418943
http://dx.doi.org/10.1090/S0002-9947-97-01772-8
http://msp.org/idx/mr/1390045
http://msp.org/idx/mr/2032389
http://dx.doi.org/10.1017/CBO9781107325449.007
http://msp.org/idx/mr/564422
http://dx.doi.org/10.1007/978-3-642-61856-7
http://msp.org/idx/mr/607504
http://dx.doi.org/10.1307/mmj/1029001718
http://msp.org/idx/mr/431176
http://dx.doi.org/10.1016/0040-9383(74)90019-6
http://msp.org/idx/mr/353317
mailto:ritagtk@umich.edu
http://msp.org
http://msp.org

	1. Introduction
	2. Proof of Theorem 5
	3. Proofs of Lemmas 6 and 8
	Acknowledgment

	References

