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Symplectic structure perturbations and continuity
of symplectic invariants

JUN ZHANG

This paper studies how symplectic invariants created from Hamiltonian Floer theory
change under the perturbations of symplectic structures, not necessarily in the same
cohomology class. These symplectic invariants include spectral invariants, boundary
depth, and (partial) symplectic quasistates. This paper can split into two parts. In the
first part, we prove some energy estimations which control the shifts of symplectic
action functionals. These directly imply positive conclusions on the continuity of spec-
tral invariants and boundary depth in some important cases, including any symplectic
surface †g�1 and any closed symplectic manifold M with dimK H 2.M IK/D 1 .
This follows by applications on some rigidity of the subsets of a symplectic manifold
in terms of heaviness and superheaviness, as well as on the continuity property of
some symplectic capacities. In the second part, we generalize the construction in the
first part to any closed symplectic manifold. In particular, to deal with the change
of Novikov rings from symplectic structure perturbations, we construct a family of
variant Floer chain complexes over a common Novikov-type ring. In this setup, we
define a new family of spectral invariants called t –spectral invariants, and prove that
they are upper semicontinuous under the symplectic structure perturbations. This
implies a quasi-isometric embedding from .R1; j�j1/ to .eHam.M; !/; dH / under
some dynamical assumption, imitating the main result of Usher (Ann. Sci. Éc. Norm.
Supér. 46 (2013) 57–128).

37J05, 37K65, 53D40

1 Introduction

In Floer’s method [7] of solving Arnold’s conjecture (see also Hofer and Salamon [9])
Floer chain complexes were constructed. Let .M; !/ be a symplectic manifold. A
Floer chain complex symbolically depends on three parameters: an almost com-
plex structure J on TM, a Hamiltonian function H 2 C1.R=Z�M / and a sym-
plectic structure ! on M. Conventionally, a Floer chain complex is denoted by
.CF�.M;J;H; !/; @J ;H ;!/, where @J ;H ;! is the differential. With the help of the
symplectic action functional, a Floer chain complex can be viewed as a filtered chain
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complex .CF�.M;J;H; !/; @J ;H ;! ; `!;H /, where `!;H is a filtration function with
its values in R[f�1g.

A filtration function provides a “height” for each element in CF�.M;J;H; !/, and it
satisfies the non-Archimedean triangle inequality. From this filtered viewpoint, some
symplectic invariants were invented from a Floer chain complex or its homology,
such as spectral invariants �.a;H I!/ (see Viterbo [30], Schwarz [22], Oh [14] and
Usher [23]), boundary depth ˇ.�I!/ (see Usher [27] and Usher and Zhang [28]) and
(partial) symplectic quasistates �a.H I!/ (see Entov and Poltervich [5; 6]). They have
played important roles in the study of Hamiltonian dynamics as well as some rigidity
properties of the subsets of a symplectic manifold.

It is a natural question how these symplectic invariants change if the three parameters of
a Floer chain complex are perturbed. It is well known that the perturbations of almost
complex structures do not affect the values of these invariants. Meanwhile, all these three
invariants admit a Lipschitz continuity under the perturbations of Hamiltonian functions.
The main results of this paper focus on the change of these symplectic invariants under
the perturbations of symplectic structures. In this paper, our manifold M is always
assumed to be closed.

Denote by .M; !;H / a Hamiltonian system where ! is a symplectic structure on the
manifold M and H is a nondegenerate Hamiltonian function on .M; !/. Denote by
�2

closed.M / the set of all closed 2–forms of the manifold M. We call a closed 2–form
!0 a perturbation of ! if !0 is symplectic. We do not require that !0 and ! be in the
same cohomology class. Let !0 be a perturbation of ! . We call !0 sufficiently close
to ! if !0�! 2�2

closed.M / is sufficiently small under a certain norm (see Section 3).

Before we state the main results, it is necessary to point out that some perturbations of
a symplectic structure may change the Novikov field associated to .M; !/. Denote by
H S

2
.M / the image of �2.M / in H2.M IZ/=Tor under the Hurewicz map �W �2.M /!

H2.M IZ/. Let K be a fixed field. Recall that an often-used version of Novikov
field ƒK;�! is defined by

(1) ƒK;�! WD

� X
�2�!

a�T �
ˇ̌̌
a� 2 K and .8C 2R/.#fa� ¤ 0 j �� C g<1/

�
;

where �! D fImŒ!�W H S
2
.M /!Rg �R. Since ƒK;�! is the coefficient field of the

Floer chain complex .CF�.M;J;H; !/; @J ;H ;!/, a negative outcome is that, under a
perturbed symplectic structure, the Floer chain complex may be defined over a different
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coefficient field. This makes the comparison between the symplectic invariants from
this type of perturbation essentially harder than those from the perturbations of almost
complex structures and of Hamiltonian functions. For instance, comparing �.a;H I!/
with �.a;H I!0/ is in general ambiguous because where the class a is taken is in
question. In this paper, we will provide an approach to overcome this difficulty (see
Section 7). Finally, note that if our symplectic manifold .M; !/ is aspherical, that
is �2.M /D 0, then ƒK;�! D K , which is independent of the symplectic structures.
Therefore, depending on whether ƒK;�! changes or not, we will state our main results
in these two different situations.

1.1 Continuity on aspherical manifolds

Here is the first main result in our paper. Recall that QH�.M; !/ denotes the quantum
homology of .M; !/, that is QH�.M; !/DH�.M IK/˝Kƒ

K;�! . In particular, if M

is aspherical, then QH�.M; !/DH�.M IK/.

Theorem 1.1 Let .M; !;H / be a Hamiltonian system where M is aspherical. If !0

is a perturbation of ! and is sufficiently close to ! , then there exists a constant C

such that

(i) j�.a;H I!/� �.a;H I!0/j � C j! �!0j for any a 2H�.M IK/;

(ii) jˇ.H I!/�ˇ.H I!0/j � C j! �!0j.

A standard example that satisfies the assumption in Theorem 1.1 is a symplectic surface
.†g; !/ with genus g � 1. Next, from a “rescaling” argument, a direct corollary of
Theorem 1.1 is the following result under a slightly relaxed hypothesis on M.

Corollary 1.2 Let .M; !;H / be a Hamiltonian system where M satisfies the con-
dition dimK H 2.M IK/D 1. Denote by ŒM � the fundamental class of M. If !0 is a
perturbation of ! and is sufficiently close to ! , then there exist constants zC1 and zC2

such that

(i) j�.ŒM �;H I!/� �.ŒM �;H I!0/j � zC1j! �!
0j;

(ii) jˇ.H I!/�ˇ.H I!0/j � zC2j! �!
0j.

Note that Corollary 1.2 covers some important cases, for instance CPn for any n 2N.
Roughly speaking, the proof of Theorem 1.1 splits into two steps. First, as elaborated in
Section 3, if !0 is a perturbation of ! , then there exists a diffeomorphism on M which
“reduces” !0 to ��!0 in the sense that ��!0 coincides with ! near any Hamiltonian
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1–periodic orbit of the Hamiltonian system .M;H; !/ (see Definition 3.1). This
considerably simplifies our discussion. Second, the desired estimation in Theorem 1.1
comes from a Floer-type argument, which is based on some new energy estimations
established in Section 4. In this second step, !0 is required to be sufficiently close to ! .

As applications of Theorem 1.1, we can reprove results on some rigidity properties of
the subsets of a symplectic surface †g with genus g � 1. To this end, we need the
following definition from Kawasaki [12, Definition 2.9]:

Definition 1.3 For a fixed symplectic manifold .M; !/ and an element a2QH�.M; !/,
a subset U �M satisfies the bounded spectrum condition with respect to a if there
exists a constant K > 0 such that �.a;H I!/ �K for any Hamiltonian function H

supported in R=Z�U.

We can prove the following result:

Theorem 1.4 Let .†g; !/ be a symplectic surface with genus g�1. Then the disjoint
union of simply connected open subsets satisfies the bounded spectrum condition for
any a 2H�.†gIK/.

Recall that the concepts of heaviness and superheaviness of the subsets of a sym-
plectic manifold are introduced in [6] in order to study in a systematical way the
nondisplaceability properties (Definition 2.11). The following result is a corollary of
Theorem 1.4:

Corollary 1.5 Let .†g; !/ be a symplectic surface with genus g � 1.

(a) For a closed subset X �†g , if †g nX is a disjoint union of simply connected
open subsets, then it is a–superheavy for any a 2H�.†g; !/.

(b) If a closed subset X �†g is contained in a disk, then X is not a–heavy for any
a 2H�.†gIK/.

Notice that (a) includes the embedding of a wedge of circles
W2g

iD1
S1 ,! †g�1 .

This is studied in Ishikawa [11, Example 4.8], which generalizes the main result
from [12]. Also, (b) provides a topological obstruction for a closed subset to be
a–heavy. When a D ŒM �, a necessary and sufficient condition for a subset to be
a–heavy or a–superheavy on a symplectic surface is given in Humilière, Le Roux and
Seyfaddini [10].
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Another application of Theorem 1.1 and Corollary 1.2 is on the continuity of some
symplectic capacities under the perturbations of symplectic structures. Let A be a
subset of M. Here we mainly focus on the displacement energy e!.A/, Hofer–Zehnder
capacity c!HZ.A/ and the spectral capacity c!� .A/. Recall that the displacement energy
is defined by e!.A/ WD inffkHkH j �1

H
.A/\AD∅g and k�kH is the Hofer norm.

The capacities c!HZ.A/ and c!� .A/ are defined in Definitions 6.3 and 6.4, respectively.
Here we put the symplectic structure ! in all the notation to emphasize the dependence
on the symplectic structures. It is well known, as the energy–capacity inequality (see
Frauenfelder, Ginzburg and Schlenk [8, Theorem 1]), that

(2) c!HZ.A/� c!� .A/� e!.A/:

In general, we should not expect any continuity of e!.A/ under the perturbations of
symplectic structures, due to the following easy example:

Example 1.6 Take .M D S2; !0 D !std/ and let A be the open upper hemisphere.
Then the subset A is displaceable under !0 and e!0.A/D 2� . Consider a sequence of
symplectic structures !n! !0 with !n D !0C˛n , where ˛n is positively supported
over a nonempty open subset of A and negatively supported over a nonempty open
subset of M n xA such that the total area of M remains the same for each !n . Then A

is not displaceable under !n by an area consideration. By definition, e!n.A/D1,
which implies that e!.A/ is not upper semicontinuous at !0 .

However, we have the following “boundedness” conclusion:

Theorem 1.7 Let .M; !/ be a symplectic manifold and A�M be a subset. If M is
aspherical or dimK H 2.M IK/D 1, then for any � > 0, there exists a neighborhood
U!.�/ of ! in �2

closed.M / such that e!
0

.A/ � c!� .A/ � � � c!HZ.A/ � � for any
!0 2 U!.�/.

1.2 Semicontinuity on general manifolds

For general symplectic manifolds, we will deal with the coefficient-change problem
of Floer chain complexes in the following way. First of all, due to Moser’s trick, it
is easy to see how the symplectic invariants change when the perturbation is formed
from an exact 2–form. Then the discussion on perturbations can be simplified to
be in H 2.M IK/. Since H 2.M IK/ is a finite-dimensional vector space, for a fixed
symplectic structure ! there exist Œ!1�; : : : ; Œ!m� as vertices forming a polygon �.!/
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in H 2.M IK/ such that each !i is a perturbation of ! and Œ!� 2�ı.!/, the interior
of �.!/. Then, if a perturbation !0 is sufficiently close to ! ,

(3) Œ!0�D t0Œ!�C t1Œ!1�C � � �C tmŒ!m�

for some nonnegative t0; : : : ; tm where
Pm

iD0 ti D 1. To simplify our discussion
further, due to Proposition 3.2, all the perturbations of ! here are assumed to coincide
with ! near any Hamiltonian 1–periodic orbit of the Hamiltonian system .M; !;H /

(see Definition 3.1). For any Hamiltonian system .M; !;H /, we give the following
definition:

Definition 1.8 Define a Novikov ring with multifiniteness condition as

ƒ�.!/D

� X
A2H S

2
.M /

aAT A
ˇ̌̌
aA2K and

.8C 2R/.8!02�.!//.#faA¤0 j Œ!0�.A/�C g<1/

�
:

Proposition 7.6 implies that there exists a well-defined family of (filtered) Floer chain
complexes parametrized by �.!/ over this common coefficient ring ƒ�.!/ . This
family of filtered complexes is denoted by

(4) f.CF�.!/.M;H /; @!0 ; `!0/g!02�.!/:

The construction of (4) takes its inspiration from Ono [16]. Moreover, for every two
parameters !1; !2 2�.!/, Proposition 7.7 says that their corresponding filtered Floer
chain complexes from (4) are homotopy equivalent to each other. Therefore, there exists
a well-defined homology HF�.!/.M;H / over ƒ�.!/ . In other words, we manage to
assemble the information of Floer chain complexes or their homologies under various
perturbations of ! into a family of filtered chain complexes or a single homology,
but over a complicated coefficient ring. It can be shown that HF�.!/.M;H / '

H�.M IK/˝Kƒ�! WDQH�.!/.M /. If we choose a class a2QH�.!/.M /, then there
will be no ambiguity when we compare spectral invariants under different symplectic
structures. In fact, from HF�.!/.M;H /, we can define a �.!/–family of spectral
invariants, denoted by �!0.a;H / for any a 2 QH�.!/.M / (see Definition 8.1). Our
next main result is on the continuity of this new spectral invariants:

Theorem 1.9 Let .M; !;H / be a Hamiltonian system, and a 2 QH�.!/.M / be a
fixed class. Then the map from �.!/ to R by !0!�!0.a;H / is upper semicontinuous
at ! .
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Meanwhile, Lemma 8.2 compares the standard spectral invariants �.a;H I!/ with
�!.a;H /, and they turn out to be the same. Therefore, we directly get the following
corollary on the continuity of the standard spectral invariants:

Corollary 1.10 Let .M; !;H / be a Hamiltonian system, and a 2 QH�.!/.M / be a
fixed class. Then the map from �.!/ to R by !0! �.a;H I!0/ is upper semicontinu-
ous at ! .

Remark 1.11 There is an obvious question on the lower semicontinuity of the spectral
invariants under the perturbations of symplectic structures. Unfortunately, the method
we provide here can not conclude any positive or negative conclusion on the lower
semicontinuity (see Remark 8.5).

Remark 1.12 Recall that boundary depth is defined from the standard Floer chain
complex. In the general setup, it is difficult to conclude any quantitative conclusion
between two standard Floer chain complexes that are defined from different symplectic
structures, so we can appeal to the variant Floer chain complex (4) when comparing
two boundary depths. For instance, one can define a �.!/–parametrized boundary
depth from (4). However, our method and estimations are unable to give any positive
or negative conclusion on its continuity.

Next, we want to say a few words on (partial) symplectic quasistates. The method we
used in this paper can’t apply to study the continuity of (partial) symplectic quasistates.
The main reason is that in our discussion the Hamiltonian function H should be fixed
whenever a symplectic structure is perturbed. In general, one should not expect any
continuity result for (partial) symplectic quasistates. We illustrate this by the following
easy example, similarly to Example 1.6:

Example 1.13 Take .M D S2; !0D !std/ centered at the origin in xyz–coordinates.
The standard equation LD fz D 0g is a heavy subset and then it is not displaceable by
any Hamiltonian diffeomorphism. For any given �>0, let S� WDf.x;y;z/2S2 jz���g

and H be a time-independent Hamiltonian function supported on S� such that H jLD1

and !0.supp.H //D 1
2
!0.S

2/. Consider a closed 2–form ˛ only positively supported
on S2 nS� . For any class a 2QH�.S2; !0/ and any ı > 0, Definition 2.11 of a heavy
subset says that

�a.H I!0/� inf
L

H D 1:

However, �a.H I!0Cı˛/D0 because .!0Cı˛/.supp.H //< 1
2
.!0Cı˛/.S

2/ implies
that the support of H is displaceable in .S2; !0C ı˛/.
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Remark 1.14 Our choice of the perturbation in Example 1.13 is quite special. It
is easy to see that there are plenty of other perturbations that we can take so that
symplectic quasistates are invariant (in particular change continuously). In general, it
would be interesting to systematically study in which way we can perturb the symplectic
structure so that symplectic quasistates can satisfy a continuity result.

Recall that dH denotes Hofer’s metric on the universal cover of Hamiltonian diffeo-
morphism group of .M; !/ denoted by eHam.M; !/. As a standard application of
Theorem 1.9, we have the following Theorem 1.15, which is similar to [27, Theorem 1.1].
It concludes a large-scale geometric property of the metric space . eHam.M; !/; dH /

when M satisfies a certain dynamical condition. This dynamical condition imitates
the assumption in [27, Theorem 1.1].

Theorem 1.15 Suppose that a manifold M admits a symplectic structure ! satisfying
the saa condition (2) in Definition 9.1. Then there exists an embedding ˆW R1 !
eHam.M; !/ such that , for every Ev; Ew 2R1 , we have

jEv� Ewj1 � dH .ˆ.Ev/;ˆ. Ew//� osc.Ev� Ew/;

where jEaj1Dmaxi jai j and osc.Ea/Dmaxi;j jai�aj j for the vector EaD .a1; a2; : : : /.

Outline of the paper

In Section 2, the background of Hamiltonian Floer theory and several symplectic
invariants derived from this theory are briefly reviewed. In Section 3, we explain
how a general perturbation of a symplectic structure can be simplified into a reduced
perturbation (see Definition 3.1), and this key step is given by Proposition 3.2. Imitating
the standard homotopy argument between two Hamiltonian functions in Hamiltonian
Floer theory, Section 4 discusses various energy estimations in terms of the perturbations
of symplectic structures. The main results in this section are Proposition 4.3 and
Proposition 4.6. In Sections 5 and 6, the main results of this paper, Theorems 1.1
and 1.2 as well as Theorems 1.4 and 1.7 on applications, are proved. In particular, the
proof of Theorem 1.4 takes inspiration from Ostrover’s trick [17]. Section 7 serves as an
algebraic preparation for the discussion of any closed symplectic manifold (in the sense
that Novikov fields have to be considered). In this section, we define a parametrized
Floer chain complex over an extended version of the Novikov ring (see Proposition 7.6).
Based on this discussion, another main result of this paper, Theorem 1.9, is proved
in Section 8. Finally, Theorem 1.15 on an application of the Hofer geometry on
eHam.M; !/ is proved in Section 9.
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2 Preliminaries

2.1 Floer chain complex

In this subsection, we will briefly review the constriction of a Floer chain complex. In
an abstract language, a Floer chain complex is an example of a filtered complex defined
as follows. Denote by ƒK;� an abstract Novikov field (over ground field K), that is,

ƒK;�
WD

�X
�2�

a�T �
ˇ̌̌
� �R; a� 2 K and .8C 2R/.#fa� ¤ 0 j �� C g<1/

�
:

By this finiteness condition on ƒK;� , there exists a well-defined valuation �W ƒK;� !

R[f1g which simply takes the minimal exponent � of any element in ƒK;� .

Definition 2.1 We call .C�; @C ; `C / a filtered complex over ƒK;� if .C�; @C / is
a chain complex and Ck is a finite-dimensional vector space over ƒK;� for each
degree k 2 Z. Moreover, `C W C� ! R [ f�1g is a function that satisfies (i) the
non-Archimedean triangle inequality; (ii) `C .@C x/ < `C .x/; and (iii) `C .�x/ D

`C .x/� �.�/ for any x 2 C and � 2ƒK;� .

On the level of chain complexes, we can compare two filtered complexes over the same
coefficient field ƒK;� . The following definition is taken from Definition 1.3 in [28]:

Definition 2.2 Let .C�; @C ; `C / and .D�; @D ; `D/ be filtered complexes over ƒK;�

and ı � 0. A ı–quasiequivalence between C� and D� is a quadruple .ˆ;‰;K1;K2/

where:

(1) ˆW C�!D� and ‰W D�! C� are chain maps, with `D.ˆc/� `C .c/C ı and
`C .‰d/� `D.d/C ı for all c 2 C� and d 2D� .
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(2) The maps K1W C�!C�C1 and K2W D�!D�C1 obey the homotopy equations
‰ ıˆ�1C� D @C K1CK1@C and ˆ ı‰�1D� D @DK2CK2@D , and for all
c 2C� and d 2D� we have `C .K1c/� `C .c/C2ı and `D.K2d/� `D.d/C2ı .

Thus we say .C�; @C ; `C / and .D�; @D ; `D/ are ı–quasiequivalent if there exists a
ı–quasiequivalence between them.

Example 2.3 Recall that the Hofer norm of any function H 2 C1.R=Z �M / is
defined by kHkH WD

R 1
0 .maxM Ht �minM Ht / dt . Then a Floer chain complex,

denoted by .CF�.M;J;H; !/; @J ;H ;! ; `H ;!/, is a filtered complex over a Novikov
field. Moreover, for two pairs .J�;H�/ and .JC;HC/, the Floer chain complexes
.CF�.M;JC;HC;!/;@JC;HC;! ; `HC;!/ and .CF�.M;J�;H�;!/;@J�;H�;! ; `H�;!/

are kHC�H�kH –quasiequivalent.

To justify Example 2.3, we elaborate three objects: the generators of CF�.M;J;H; !/,
the construction of @J ;H ;! and the constructions of homotopy K1 and K2 from
Definition 2.2. Given a smooth function H 2 C1.R=Z�M / on a closed symplectic
manifold .M; !/, the Hamiltonian flow �t

H
comes from the differential equation

d�t

dt
DXH ı�t ; where !. � ;XH /D d.H.t; � //:

The generators of CF�.M;J;H; !/ are Hamiltonian contractible loops 
 W R=Z!M,
where 
 .t/D �t

H
.
 .0//. With a nondegeneracy condition, there are only finitely many

such generators. Set �! D fImŒ!�W H S
2
.M /!Rg �R, where H S

2
.M / is the image

of �2.M / in H2.M IZ/=Tor under the Hurewicz map �W �2.M /!H2.M IZ/; then

CF�.M;J;H; !/ WD spanƒK;�! hHamiltonian contractible loopsi:

The grading of each generator is given by the Conley–Zehnder index �CZ;! . Its explicit
definition can be found in [19]. Moreover, since each generator 
 is a contractible
loop, we can fix a disk w spanning 
 and assign a value to each pair .
; w/ via the
symplectic action functional defined as

(5) AH ;!..
; w//D�

Z
D2

w�!C

Z 1

0

H.t; 
 .t// dt:

Then define `H ;! W CF�.M;J;H; !/!R[f�1g by

(6) `H ;!

�X
i

�i.
i ; wi/

�
Dmax

i
fAH ;!.
i ; wi/� �.�i/g:
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Conventionally, to simplify the discussion we usually replace the pair .
; w/ with an
equivalence class Œ
; w�. We choose to define that .
; w/ is equivalent to .�; v/ if and
only 
 .t/D �.t/ and Œw#.�v/� is homologically trivial. Note that the symplectic action
functional AH ;! and Conley–Zehnder index �CZ;! are both well defined over Œ
; w�.
Thus, `H ;! is well defined over any linear combination of the equivalence classes.

Remark 2.4 In most literature, the equivalence relation between .
; w/ and .�; v/
is weaker than what is given above. Explicitly, .
; w/ is equivalent to .�; v/ if and
only if 
 .t/ D �.t/ and Œw # .�v/� 2 ker.Œ!�/\ ker.c1/ where c1 is the first Chern
class of .M; !/. Since later in this paper the perturbations of symplectic structures
are considered, we need an equivalence relation that is independent of symplectic
structures.

The Floer boundary operator @J ;H ;! W CF�.M;J;H; !/ ! CF��1.M;J;H; !/ is
defined by counting solutions (modulo R–translation) of the partial differential equation

(7) @u

@s
CJt .u.s; t//

�
@u

@t
�XH .t;u.s; t//

�
D 0;

where fJtg0�t�1 is a family of almost complex structures that are compatible with !
and u.s; t/W R�R=Z!X is such that

� u has finite energy E.u/D
R

R�R=Z

ˇ̌
@u
@s

ˇ̌2
dt ds ;

� u has asymptotic condition u.s; � /! 
˙. � / as s!˙1;

� �CZ.Œ
�; w��/��CZ.Œ
C; wC�/D 1 and Œ
C; wC�D Œ
C; w� # u�.

The celebrated Gromov compactness theorem guarantees that @J ;H ;! is well defined
over ƒK;�! . Moreover, the Floer chain complex .CF�.M;J;H; !/; @J ;H ;!/ defines
a homology HF�.M;J;H; !/, called Floer homology, which only depends on the
manifold M itself, so is denoted as HF�.M /. Explicitly, up to a degree shift, one
gets that HF�.M / ' H�.M;K/˝K ƒ

K;�! , where the right-hand side is called the
quantum homology of M and denoted as QH�.M; !/. A standard way to prove
this isomorphism is via the PSS–map, denoted as PSS� . For its explicit construction,
see [18].

Finally, given two different pairs .J�;H�/ and .JC;HC/, consider a homotopy .J ;H/
where HDHs DH.s; t;x/W R�R=Z�M !R between H�.t;x/ and HC.t;x/ in
the form of

H.s; t;x/D .1�˛.s//H�.t;x/C˛.s/HC.t;x/;
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where ˛.s/ is a cut-off function, ie ˛.s/D 0 for s 2 .�1; 0�, ˛.s/D 1 for s 2 Œ1;1/

and 0� ˛0.s/� 1 for s 2 .0; 1/; J D Js is a homotopy (compatible with ! ) between
J� and JC by a cut-off function, too. Then, similarly to the boundary operator @J ;H ;! ,
the construction of continuation map ˆ is by counting solutions u.s; t/W R�R=Z!M

of a parametrized pseudoholomorphic equation

(8) @u

@s
CJs.u.s; t//

�
@u

@t
�XHs

.t;u.s; t//
�
D 0

such that

� u has finite energy E.u/D
R

R�R=Z

ˇ̌
@u
@s

ˇ̌2
dt ds ;

� u has asymptotic condition u.s; � /! 
˙. � / as s!˙1;

� �CZ.Œ
�; w��/��CZ.Œ
C; wC�/D 0 and Œ
C; wC�D Œ
C; w� # u�.

There are two well-known facts [21]. One is that ˆ is a chain map by a gluing argument;
the other is that, for any other homotopy .J 0;H0/, the associated chain map ˆ0 is
chain homotopic to ˆ. Here we give some details on the shift of symplectic actions.
Since the symplectic structures are the same, for brevity, denote the symplectic action
functional by AH if the Hamiltonian function is H. The standard computation goes as
follows:

AHC.Œ
C; wC�/�AH�.Œ
�; w��/

D

Z 1
�1

d

ds
AHs

.Œu.s; � /; .w� # u/.s; � /�/ ds

D�E.u/C

Z 1
�1

Z 1

0

˛0.s/.HC�H�/.t;u.s; t// dt ds

� �E.u/C

Z 1

0

max
M
.HC�H�/.t;u.s; t// dt

�

Z 1

0

max
M
.HC�H�/ dt:

To pass from the upper bound
R 1

0 maxM .HC �H�/ dt to kHC �H�kH , strictly
speaking we need to normalize HC and H� so that both have mean values zero over M

(and this can be done simply by a constant shift due to our assumption that M is closed).
This implies that

R 1
0 minM .HC �H�/ dt � 0 and then

R 1
0 maxM .HC �H�/ dt �

kHC�H�kH .
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2.2 Some symplectic invariants

2.2.1 Spectral invariant The filtration `H ;! defined in (6) can be used to define a
measurement for elements in HF�.M /, and the outcomes of this measurement are
called spectral invariants.

Definition 2.5 For any a 2 QH�.M; !/, define its spectral invariant with respect to
the Hamiltonian system .M; !;H / by

�.a;H I!/ WD inff`H ;!.˛/ j ˛ 2 CF�.M;J;H; !/ with Œ˛�D PSS�.a/g:

Recall that PSS� is the well-known isomorphism from QH�.M; !/ and HF�.M /. It
is easy to see that spectral invariants are independent of the almost complex structures.
Also, they enjoy many useful properties. The following result will be used later, which
is Theorem 1.4 in [23]:

Theorem 2.6 Let .M; !;H / be a Hamiltonian system. Then , for any a2QH�.M; !/,
there exists some ˛ 2 CF�.M;J;H; !/ such that Œ˛�D PSS�.a/ and �.a;H I!/D

`H ;!.˛/. In other words, define Spec.H; !/ WD f`H ;!.˛/ j ˛ 2 CF�.M;J;H; !/g;
then �.a;H I!/ 2 Spec.H; !/.

2.2.2 Boundary depth Boundary depth is defined on the chain complex level.

Definition 2.7 For a Floer chain complex .CF�.M;J;H; !/; @J ;H ;! ; `H ;!/, define
its boundary depth by

ˇ.H I!/ WD sup
x2Im @J;H;!

inff`H ;!.y/� `H ;!.x/ j @J ;H ;!y D xg:

More generally, the same formula as above defines the boundary depth ˇ for any
filtered complex .C; @C ; `C /.

By Remark 3.3 in [25], boundary depth is independent of the almost complex structures.
What needs to be emphasized is that though boundary depth is even well defined on
Ham.M; !/ by Corollary 5.4 in [27], we still use the notation ˇ.H I!/. The main
reason is that the process that passes from a Hamiltonian function H to its correspond-
ing Hamiltonian diffeomorphism � D �1

H
2 Ham.M; !/ depends on the symplectic

structure ! . Similarly to spectral invariants, boundary depth also enjoys many useful
properties. The following ones will be used later. They are [27, Theorem 7.4] and
[27, Proposition 3.8], respectively.
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Theorem 2.8 For any Floer chain complex .CF�.M;J;H; !/; @J ;H ;! ; `H ;!/, there
exists y 2CF�.M;J;H; !/ such that ˇ.H I!/D `H ;!.y/�`H ;!.@y/. In other words,
ˇ.H I!/ 2 Spec�.H; !/ WD fs� t j s; t 2 Spec.H; !/g.

Theorem 2.9 Let .C1; @1; `1/ and .C2; @2; `2/ be two filtered complexes. Denote
their boundary depths by ˇ1 and ˇ2 , respectively. If these two filtered chain complexes
are ı–quasiequivalent, then jˇ1�ˇ2j � ı .

2.2.3 (Partial) symplectic quasistate In general, any stable homogenous quasimor-
phism [4; 5] induces a quasistate, ie a functional �W C1.M / ! R satisfying the
following properties:

� If fF;Gg D 0, then �.H C aG/D �.H /C a�.G/ for any a 2R.

� If H �G, then �.H /� �.K/.

� �.1/D 1.

In particular, if we use spectral quasimorphism, which is constructed from spectral
invariants [4], we can get (partial) symplectic quasistates. More directly:

Definition 2.10 For any a 2QH�.M; !/, define a function �a.�I!/W C1.M /!R

by

�a.H I!/D lim
k!1

�.a; kH I!/

k
:

This function is called the (partial) symplectic quasistate associated to the class a.

Symplectic quasistates are powerful tools to study the rigidity of intersections of subsets
in a symplectic manifold. The closely related concepts are heavy subset and superheavy
subset.

Definition 2.11 For a given a2QH�.M; !/, we call a closed subset X �M a–heavy
if �a.H I!/� infX H for all H 2C1.M / and a–superheavy if �a.H I!/� supX H

for all H 2 C1.M /.

To end this section, we emphasize that the quasiequivalence conclusion for Floer chain
complexes in Example 2.3 readily implies that all three symplectic invariants introduced
above satisfy 1–Lipschitz continuity under the perturbations of Hamiltonian functions.
Here we summarize them into the following theorem, and they are from Theorem I(5)
in [14], Theorem 1.4(iii) in [27] and Theorem 3.2 in [3], respectively.
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Theorem 2.12 We have the following continuity results, where k�kH is the Hofer
norm (see Example 2.3):

(a) Given any a 2 QH�.M; !/, for any H;G 2 C1.R=Z�M /, we have

j�.a;H I!/� �.a;GI!/j � kH �GkH :

(b) For any H;G 2 C1.R=Z�M /, we have

jˇ.H I!/�ˇ.GI!/j � kH �GkH :

(c) Given any idempotent element a 2 QH�.M; !/, for any H;G 2 C1.M /,

min
M
.H �G/� �a.H I!/� �a.GI!/�max

M
.H �G/:

3 Reduced perturbation

Given a Hamiltonian system .M; !;H /, denote by Per.!;H / the collection of all
nonconstant geometrically distinct Hamiltonian 1–periodic orbits, where x.t/ denotes
a generic element in Per.!;H /. Since H is nondegenerate and M is assumed to be
closed, Per.!;H / contains only finitely many elements. Consider the following subset
of �2

closed.M /:

(9) �!;H D
˚
˛ 2�2

closed.M / j ˛ vanishes in a neighborhood of
each x.t/ 2 Per.!;H /

	
:

This leads to the following definition:

Definition 3.1 Given a Hamiltonian system .M; !;H /, we call a perturbation !0 a
reduced perturbation of ! if !0 D !C˛ for some ˛ 2�!;H .

In this section, we will explain how any perturbation of a given symplectic structure !
can be reduced to a reduced perturbation as defined in Definition 3.1. Explicitly, we
have the following result:

Proposition 3.2 Let .M; !;H / be a Hamiltonian system. If !0 is a perturbation
of ! , then there exists a diffeomorphism � 2 Diff.M / such that ��!0 �! 2�!;H
and dC 0.�;1M /� C j!0�!j for some constant C that does not depend on !0.

Here let us elaborate on the measurement j�j on the closed 2–forms in Proposition 3.2.
It is well known that for any k 2 Z, we can associate the k –norm on the space of
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closed differential n–forms �n
closed.M / for any n 2 Z. Explicitly, fixing a local chart

f.Ui ; �i/g
m
iD1

of M, any ˛ 2�n.M / can be locally expressed as

.��1
i /�.˛jUi

/D
X

.s;t/2f1;:::;2ng�f1;:::;2ng

fi;s;t dxs ^ dxt ;

where fx1; : : : ;x2ng is the coordinate of R2n and fi;s;t W �i.Ui/! R. Then define
the k –norm

k˛kk WD max
i2f1;:::;mg

max
.s;t/2f1;:::;2ng�f1;:::;2ng

max
l�k
kfi;s;tkC l ;

where k�kC l is the standard C l –norm defined over the function space. In particular,
.�n

closed.M /; k � kk/ is a normed vector space. Moreover, there exists a sequence of
positive real numbers E� D .�k/k�0 such that, under the E�–norm defined by k˛kE� WDP

k�0 �kk˛kk , the space �n
closed.M /E� D f˛ 2�

n
closed.M / j k˛kE� <1g is a complete

normed vector space under k�kE� . For brevity, we denote k�kE� as j�j. In a similar
way, we can define a seminorm on H n

dR.M IR/ as follows: given any a 2H n
dR.M IR/,

define jajh D inffj˛j j Œ˛�D ag.

Remark 3.3 Due to the E�–norm, our proposed space �!;H defined in (9) should be
modified to be �!;H \�2

closed.M /E� . For brevity, we still use the notation �!;H as
well as the corresponding definition of the reduced perturbations in Definition 3.1.

Before giving the proof of Proposition 3.2, we want to explain how we use it. In order
to compare the symplectic invariants under different symplectic structures, we need to
compare their associated Floer chain complexes, that is, .CF�.M;J;H; !/; @J ;H ;!/

and .CF�.M;J;H; !0/; @J ;H ;!0/, where !0 is a perturbation of ! . We can simplify
this procedure by taking the � concluded from Proposition 3.2 and inserting two
intermediate steps,

CF�.M;J;H; !/
.1/

.4/

CF�.M;J;H; !0/

.2/

CF�.M;J;H; ��!0/
.3/

CF�.M; ��J; ��H; ��!0/

where (1) is the desired comparison. Observe that (2) will not change spectral invariants,
boundary depth and (partial) symplectic quasistates. Moreover, (3) only results in a
small difference due to the second conclusion of Proposition 3.2 and 1–Lipschitz
continuities from Theorem 2.12. In other words, the original comparison (1) can be
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replaced by (4) if we forgive the small defect from (3). Hence, by the first conclusion
of Proposition 3.2, we only need to consider the reduced perturbations. Moreover, if
!0 is any reduced perturbation of ! , the following proposition says that the generators
of CF�.M;J;H; !/ and CF�.M;J;H; !0/ are the same, and also their degrees are
the same. However, their boundary operators are different in general.

Proposition 3.4 Let .M; !;H / be a Hamiltonian system. Then, for any reduced per-
turbation !0 of ! , Per.!;H /D Per.!0;H /. Moreover, �CZ;!.x.t//D �CZ;!0.x.t//

for each contractible Hamiltonian 1–periodic orbit x.t/ 2 Per.!;H /.

Proof By definition, since !0 coincides with ! on
S

i Ui , where Ui is a neighbor-
hood of xi.t/ 2 Per.!;H /, Per.!0;H / has at least as many Hamiltonian 1–periodic
orbits as Per.!;H / has. Next, we claim that there are no other orbits in Per.!0;H /

outside
S

i Ui . Without loss of generality, we assume Per.!;H / consists of only
one element x.t/ with a neighborhood U. We will prove our claim by contrapositive.
Suppose there exists a sequence of symplectic structures f!1=ng approaching to !
and, for each !1=n , there exists some zn.t/ such that zn.t/ 2 Per.!1=n;H / and
zn.t/ �M nU. Since M is compact, by the Arzelà–Ascoli theorem, passing to a
subsequence, zn.t/ converges to some z0.t/ in M nU. Because X

!1=n

H
converges

to X!
H

uniformly on M, it is easy to check z0.t/ is indeed a Hamiltonian 1–periodic
orbit under ! . Thus we get a contradiction.

For the second conclusion, fix a disk w spanning x.t/; then one gets a trivialization
‰W w�TM!D2�R2n . Restricting to the neighborhood of @D2 , one gets a symplectic
path 
‰.t/ by the relation .‰ ı d�t

H ;!
ı‰�1/.t; Ev/ D .t; 
‰.t/Ev/. Meanwhile, the

defining property of a reduced perturbation implies flow �t
H ;!
jU D �

t
H ;!0
jU . Since

Conley–Zehnder indices are computed from the same symplectic path, they have the
same indices, as desired.

Now, let us give the proof of Proposition 3.2.

Proof of Proposition 3.2 For each orbit xi.t/ 2 Per.!;H /, take a neighborhood Ui

of xi.t/ such that Ui deformation retracts to xi.t/. This can be done by taking a union
of sufficiently small Darboux neighborhoods of the points on xi.t/. Moreover, if it
is necessary we shrink Ui so that Ui \Uj D∅ whenever i ¤ j . Consider the long
exact sequence

(10) � � � !H 2
dR

�
M;

[
i

Ui IR

�
��
�!H 2

dR.M IR/!H 2
dR

�[
i

Ui IR

�
! � � � ;
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where �W �2
closed

�
M;

S
i Ui

�
!�2

closed.M / is the inclusion. By our choice of the neigh-
borhood Ui ,

S
i Ui deformation retracts to

F
i xi.t/, so by a dimension consideration,

H 2
dR

�S
i Ui IR

�
D 0. Now, let

H 2
dR.M IR/D

mM
jD1

R � cj for some cj 2H 2
dR.M IR/:

Then H 2
dR

�S
i Ui IR

�
D 0 implies that for each basis element cj , there exists some

j̨ 2�
2
closed

�
M;

S
i Ui

�
such that cj D ��Œ j̨ �. By definition, j̨ vanishes in every Ui .

Meanwhile, for ! and its perturbation !0,

Œ!0�� Œ!�D

mX
jD1

tj cj D

mX
jD1

tj ��Œ j̨ � for some .t1; : : : ; tm/ 2Rm:

Therefore, Œ!1�!0�D
�Pm

jD1 tj �. j̨ /
�
. Moreover, by the definition of seminorm j�jh

on H�dR.M IR/, for any ı > 0, there exists an exact 2–form d� such that

˛ WD

mX
jD1

tj �. j̨ /C d�

and j˛j � jŒ˛�jh C ı D jŒ!0 � !�jh C ı � j!0 � !j C ı . We can choose ı such that
j!0�!jC ı � C1 j!

0�!j for any preferred constant C1 > 1; then

(11) j˛j � C1 j!
0
�!j:

Moreover, by (10) again we know d�D �.d
 / for some 
 2�2
�
M;

S
i Ui

�
. Therefore,

the ˛ chosen above vanishes near every Hamiltonian 1–periodic orbit, ie ˛ 2�!;H .

Next, consider the homotopy ht D .1� t/.!C˛/C t!0, where t 2 Œ0; 1�. Note that�
dht

dt

�
D Œ!0�! �˛�D Œ!0�!�� Œ˛�D Œ˛�� Œ˛�D 0:

Therefore, ht represents the same cohomology class for each t 2 Œ0; 1�; then, by Moser’s
trick, there exists some � 2 Diff.M / such that

��!0 D !C˛:

More explicitly, � is the time-one map of the flow �t of vector field Xt defined as

ht .Xt ;�/D�� and d� D !0� .!C˛/:

By the triangle inequality, we know

jd� j � j!0�!jC j˛j � .1CC1/j!
0
�!j:
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Therefore, using the dual norm of E�–norm on the space of vector fields, we get
jXt j � C2 j!

0�!j over M for some constant C2 . This implies

dC 0.�;1M /D sup
x2M

dist.�.x/;x/� C3 j!
0
�!j

for some constant C3 . Here C2 and C3 involve the integration of forms and smooth
vector fields along the manifold M. Because M is assumed to be closed, both constants
are finite and only depend on M. Thus we get the conclusion by setting C D C3 .

4 Energy estimations

Similarly to the analysis from the perturbations of Hamiltonian functions (see Section
2.1), the comparison between two Floer chain complexes with different symplectic
structures starts from a homotopy between two symplectic structures. Explicitly, fix
a symplectic structure !0 and consider a reduced perturbation !1 D !0C˛ . Take a
smooth cut-off function �.s/ such that �.s/D0 for s2 .�1; 0�, �.s/D1 for s2 Œ1;1/

and �0.s/ > 0 for s 2 .0; 1/. Define an interpolating homotopy s 7! !s between !0

and !1 by

(12) !s D .1� �.s//!0C �.s/!1:

Note that !s is also a reduced perturbation of !0 for each s 2R. Now take a family
of pairs .Js; !s/ where, for each s 2 R, Js is an !s –compatible almost complex
structure. They induce a family of Riemannian metrics gs.v; w/ WD !.v;Jsw/. Then
we can give the following definition:

Definition 4.1 Given a Hamiltonian system .M; !0;H / and a reduced perturbation !1,
denote s 7! !s as an interpolating homotopy between !0 and !1 . A parametrized
Floer operator Fs is defined as

(13) Fs
D
@

@s
CJs

�
@

@t
�X

!s

H

�
;

where X
!s

H
D Js grad!s

H and grad!s
H is the gradient of H with respect to the

induced metric gs . Moreover, we call a map u.s; t/W R�S1!M an Fs –trajectory
if u satisfies Fs.u/D 0.

For each Fs –trajectory u, one defines its energy by

E.u/D

Z 1
�1

Z 1

0

ˇ̌̌
@u

@s

ˇ̌̌2
gs

dt ds:
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Definition 4.2 We call an Fs –trajectory admissible if it satisfies the following condi-
tions:

(a) The energy of u is finite, that is, E.u/ <1.

(b) u.s; t/ satisfies the following asymptotic condition, where 
�.t/ and 
C.t/ are
contractible Hamiltonian 1–periodic orbits:

lim
s!�1

u.s; t/D 
�.t/ and lim
s!1

u.s; t/D 
C.t/:

(c) Œ
CwC�D Œ
C; w� # u�, where the equivalent class is defined by the relation

Œx; v�D Œy; w� () x.t/D y.t/ and Œv # .�w/�D 0 2H2.M IR/:

Note that the symplectic action functional defined in (5) depends on symplectic struc-
tures. Along this interpolating homotopy s 7! !s , the corresponding symplectic action
functional at !s is

(14) AH ;!s
.Œ
; w�/D�

Z
D2

w�!sC

Z 1

0

H.
 .t/; t/ dt:

Since the Hamiltonian function H remains the same in our perturbation discussion,
for brevity, we simply denote AH ;!s

by A!s
. Our first main result in this section is

the following energy estimation. Recall the notation ˛ D !1�!0 .

Proposition 4.3 Suppose that uW R�S1!M is an admissible Fs –trajectory from
Œ
�; w�� to Œ
C; wC�. Then we have the energy estimation between the symplectic
action functionals

�.1CC j˛j/E.u/�

Z
D2

.w�/
�˛ �A!1

.Œ
C; wC�/�A!0
.Œ
�; w��/

� �.1�C j˛j/E.u/�

Z
D2

.w�/
�˛

for some positive constant C which is independent of u.

Here let us state a “local” version of Proposition 4.3. Given an interpolating homotopy
between !0 and !1 , for any s < t in Œ0; 1� the following proposition gives an energy
estimation with respect to !s and !t along this interpolating homotopy between !0

and !1 :

Proposition 4.4 Suppose that uW R�S1!M is an admissible Fs –trajectory from
Œ
�; w�� to Œ
C; wC�. Then we have the energy estimation between the symplectic
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action functionals

�.1CCs;t j˛j/E.u/C.s� t/

Z
D2

.w�/
�˛ �A!t

.Œ
C; wC�/�A!s
.Œ
�; w��/

� �.1�Cs;t j˛j/E.u/C.s� t/

Z
D2

.w�/
�˛

for constant Cs;t D .t � s/ �C, where C is the constant from Proposition 4.3.

The proof of Proposition 4.4 is exactly the same as the proof of Proposition 4.3. For
simplicity, we only give the proof of Proposition 4.3.

Proof of Proposition 4.3 First of all,

A!1
.Œ
C; wC�/�A!0

.Œ
�; w��/D

Z 1
�1

d

ds
A!s

��
u.s; � /; w� # u..�1; s��S1/

��
ds:

For any s 2R, denote ws D w� # u..�1; s��S1/ and topologically it is a disk D2

spanning the loop fu.s; t/gt2S1 . By the definition of !s and the symplectic action
functional A!s

,

A!s

��
u.s; � /; w� # u..�1; s��S1/

��
D�

Z
D2

w�s !sC

Z 1

0

H.u.s; t/; t/ dt

D�

Z
D2

w�s .!0C �.s/˛/C

Z 1

0

H.u.s; t/; t/ dt

D�

Z
D2

w�s !0� �.s/

Z
D2

w�s ˛C

Z 1

0

H.u.s; t/; t/ dt:

It is easy to check that for any closed 2–form ! ,

(15) d

ds

Z
D2

w�s ! D

Z 1

0

!
�
@u

@s
;
@u

@t

�
dt:

In particular, for closed 2–forms !0 and ˛ , one gets

d

ds

�
�

Z
D2

w�s !0� �.s/

Z
D2

w�s ˛

�
D�

Z 1

0

!0

�
@u

@s
;
@u

@t

�
dt � �0.s/

Z
D2

w�s ˛� �.s/

Z 1

0

˛
�
@u

@s
;
@u

@t

�
dt

D��0.s/

Z
D2

w�s ˛�

Z 1

0

!s

�
@u

@s
;
@u

@t

�
dt:
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On the other hand,

d

ds

Z 1

0

H.u.s; t/; t/ dt D

Z 1

0

d

ds
H.u.s; t/; t/ dt

D

Z 1

0

dH
�
@u

@s

�
dt D�

Z 1

0

!s

�
X
!s

H
;
@u

@s

�
dt:

Moreover, since u satisfies F!s .u/D 0, we know that the vector field X
!s

H
is X

!s

H
D

Js.u/ grad!s
H D Js.u/

�
�
@u
@s
�Js.u/

@u
@t

�
D

@u
@t
�Js.u/

@u
@s

. Therefore,

�

Z 1

0

!s

�
X
!s

H
;
@u

@s

�
dt D�

Z 1

0

!s

�
@u

@t
�Js.u/

@u

@s
;
@u

@s

�
dt

D

Z 1

0

!s

�
@u

@s
;
@u

@t

�
dt �

Z 1

0

ˇ̌̌
@u

@s

ˇ̌̌2
gs

dt:

Combining these computations, one gets the equality

(16) A!1
.Œ
C; wC�/�A!0

.Œ
�; w��/D�E.u/�

Z 1
�1

�0.s/

Z
D2

w�s ˛ ds:

For the second term in (16), from an integration by parts,Z 1
�1

�0.s/

Z
D2

w�s ˛ dsD

Z 1
�1

d

ds

�
�.s/

Z
D2

w�s ˛

�
ds�

Z 1
�1

�.s/

�
d

ds

Z
D2

w�s ˛

�
ds

D

Z
D2

.w�#u/�˛�

Z 1
�1

�.s/

�
d

ds

Z
D2

w�s ˛

�
ds

D

Z
D2

.w�/
�˛C

Z 1
�1

Z 1

0

.1��.s//˛
�
@u

@s
;
@u

@t

�
dt ds:

Notice that the last term satisfies the inequality

�

Z 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;
@u

@t

�ˇ̌̌
dt ds �

Z 1

0

.1� �.s//˛
�
@u

@s
;
@u

@t

�
dt ds

�

Z 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;
@u

@t

�ˇ̌̌
dt ds:

Now, we claim that there exist some constant C 0 and N , independent of the trajectory u,
such that

(17)
Z 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;
@u

@t

�ˇ̌̌
dt ds � j˛j �C 0 �

E.u/
p

N
Cj˛j �E.u/:
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In fact, using the relation X
!s

H
C Js.u/

@u
@s
D

@u
@t

, what we want to estimate can be
rewritten asZ 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;X

!s

H
CJs.u/

@u

@s

�ˇ̌̌
dt ds

�

Z 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;X

!s

H

�ˇ̌̌
dt dsC

Z 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;J.u/

@u

@s

�ˇ̌̌
dt ds:

The second term is bounded from above by j˛j � E.u/. For the first term, by the
asymptotic property of u and the definition of ˛ (which vanishes near orbits 
�.t/
and 
C.t/), we know that there exists some su 2R, depending on u, such that ˛ D 0

when s 2 .�1;�su�[ Œsu;C1/. So

(18)
Z 1
�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;X

!s

H

�ˇ̌̌
dt ds D

Z su

�su

Z 1

0

ˇ̌̌
˛
�
@u

@s
;X

!s

H

�ˇ̌̌
dt ds:

Meanwhile, by Lemma 5.2 in [29], there exists some constant positive N , independent
of u, such that for any s� 2 Œ�su; su� (enlarge su if necessary),

j@su.s; t/j2
L2

ˇ̌
sDs�
D

Z 1

0

ˇ̌̌
@u

@s

ˇ̌̌2
sDs�

dt �N:

In other words, if we set

I D
˚
s� 2R W j@su.s; t/j2

L2

ˇ̌
sDs�
�N

	
then Œ�su; su�� I . So, for (18), we can improve it to be integrated over R=Z� I . It
will not change the value of the integral by the vanishing property of ˛ . Therefore, we
have Z 1

�1

Z 1

0

ˇ̌̌
˛
�
@u

@s
;X

!s

H

�ˇ̌̌
dt ds D

Z
I

Z 1

0

ˇ̌̌
˛
�
@u

@s
;X

!s

H

�ˇ̌̌
dt ds

� j˛j �C 0
Z
I

Z 1

0

ˇ̌̌
@u

@s

ˇ̌̌
gs

dt ds;

where C 0 is an upper bound of the uniform norm of the vector field X
!s

H
for any

s 2 Œ0; 1� on the closed manifold M. On the other hand, due to the energy constraint,
the (Lebesgue) measure of I satisfies �.I/�E.u/=N . Applying the Cauchy–Schwarz
inequality, we get�Z

I

Z 1

0

1 �
ˇ̌̌
@u

@s

ˇ̌̌
gs

dt ds

�2

�

�Z
I

Z 1

0

12 dt ds

�
�

�Z
I

Z 1

0

ˇ̌̌
@u

@s

ˇ̌̌2
gs

dt ds

�
�

E.u/2

N
:

Together, we get the desired conclusion by setting C WD C 0=
p

N C 1.
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For later use, we need an energy estimation of another type:

Definition 4.5 Fix a finite number R 2 R. Choose a “symmetric” cut-off function
as follows. Let �.s/ D 0 for s 2 .�1;�.R C 1/� [ ŒR C 1;1/ and �.s/ D 1

for s 2 Œ�R;R�. Moreover, �0.s/ > 0 for s 2 .�.RC 1/;�R/ and �0.s/ < 0 for
s 2 .R;RC 1/. Using this �.s/, we can define a symmetric homotopy s 7! !s as
in (12) from !0 to itself which passes through !1 . Accordingly, we can define a
Floer operator Fs

sym and an Fs
sym –trajectory as in Definition 4.1, and an admissible

Fs
sym –trajectory as in Definition 4.2.

Then we have the following energy estimation:

Proposition 4.6 Suppose that uW R�S1!M is an admissible Fs
sym –trajectory from

Œ
�; w�� to Œ
C; wC�. Then we have the energy estimation, between the symplectic
action functionals,

�.1CC j˛j/E.u/�A!0
.Œ
C; wC�/�A!0

.Œ
�; w��/� �.1�C j˛j/E.u/;

where the constant C is the one from Proposition 4.3.

Proof Denote ws D w� # u..�1; s��S1/. Similarly to (16), one gets

A!0
.Œ
C; wC�/�A!0

.Œ
�; w��/D�E.u/�

Z 1
�1

�0.s/

Z
D2

w�s ˛ ds:

Then, integrating by parts, one getsZ 1
�1

�0.s/

Z
D2

w�s ˛ dsD

Z 1
�1

d

ds

�
�.s/

Z
D2

w�s ˛

�
ds�

Z 1
�1

�.s/

�
d

ds

Z
D2

w�s ˛

�
ds

D�

Z 1
�1

�.s/

�
d

ds

Z
D2

w�s ˛

�
ds

D�

Z 1
�1

Z 1

0

�.s/˛

�
@u

@s
;
@u

@t

�
dt ds:

The last equality comes from (15). Moreover,

�C j˛jE.u/�

Z 1
�1

Z 1

0

�.s/˛
�
@u

@s
;
@u

@t

�
dt ds � C j˛jE.u/

by claim (17). Therefore, we get the conclusion.
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Observe that there is no term
R

D2 w
�
�˛ in the estimation from Proposition 4.6 exactly

because the cut-off function �.s/ for Fs
sym is symmetric. When working on a general

symplectic manifold, the value of
R

D2 w
�
�˛ depends on the disk w� spanning 
� ,

so the action on w� from �2.M / can possibly change this value. In other words,
the estimation from Proposition 4.3 does not provide a uniform bound, which causes
an algebraic difficulty involving the Novikov finiteness condition. On a different
topic, when using the energy estimation from Proposition 4.3 or Proposition 4.6, we
always assume j˛j is sufficiently small (which is equivalent to an assumption that the
perturbation !1 is sufficiently close to !0 ), so that C j˛j< 1.

5 Proof of Theorem 1.1

The main part of the proof of Theorem 1.1 is from the following quantitative comparison.
Recall that the definition of a ı–quasiequivalence is given by Definition 2.2.

Lemma 5.1 Let .M; !;H / be a Hamiltonian system where M is aspherical, and
!0 is a perturbation of ! . Then there exists an S.˛/–quasiequivalence between
filtered complexes .CF�.M;J;H; !/; @! ; `!/ and .CF�.M;J;H; !0/; @!0 ; `!0/ for
some constant S.˛/ that depends on ˛ .

Since M is aspherical, the Novikov field ƒK;� equals K . Therefore, both Floer chain
complexes .CF�.M;J;H;!/; @!/ and .CF�.M;J;H;!0/; @!0/ are finite-dimensional
over K .

Proof Fix a basis of CF�.M;J;H; !/ over K , say fŒx1; w1�; : : : ; Œxn; wn�g. They
are also a basis for CF�.M;J;H; !0/ by Proposition 3.4. We need to find a quadruple
.ˆ;‰;K;K0/ that satisfies the conditions in Definition 2.2.

First, fix any interpolating homotopy between ! and !0 as in (12). Recall that the
Floer operator Fs and the admissible Fs –trajectories are defined in Definitions 4.1
and 4.2. Consider a map ˆW CF�.M;J;H; !/! CF�.M;J;H; !0/ defined by

(19) ˆ.Œxi ; wi �/D
X

j2f1;:::;ng
�CZ.Œxi ;wi �/D�CZ.Œxj ;wj �/

n.Œxi ; wi �; Œxj ; wj �/Œxj ; wj �;

where the number n.Œxi ; wi �; Œxj ; wj �/ is defined by counting admissible Fs –trajectories
connecting Œxi ; wi � and Œxj ; wj �. Due to the index condition, n.Œxi ; wi �; Œxj ; wj �/ is a
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finite number. Moreover, since there are only finitely many Hamiltonian 1–periodic
orbits, the sum in the expression (19) is a finite sum. Finally, by the standard Floer
gluing argument (see Sections 3.3 and 3.4 in [21]), ˆ is a chain map. Similarly, we
can define ‰W CF�.M;J;H; !0/! CF�.M;J;H; !/ and it is also a chain map.

Now let us study the change of filtrations. By Proposition 4.3, any admissible Fs –
trajectory u connecting Œxi ; wi � and Œxj ; wj � gives rise to an inequality

(20) A!0.Œxj ; wj �/�A!.Œxi ; wi �/� �.1�C j˛j/E.u/�

Z
D2

w�i ˛ � �

Z
D2

w�i ˛

since we always assume !0 is sufficiently close to ! (so 1 � C j˛j > 0). By the
definition of filtration function (6), for any chain c2CF�.M;J;H; !/ there exists some
j0 2 f1; : : : ; ng depending on ˛ such that `!0.ˆ.c//D A!0.Œxj0

; wj0
�/. Meanwhile,

there exists some i0 2 f1; : : : ; ng such that Œxi0
; wi0

� from the chain c connects to
Œxj0

; wj0
� by an admissible Fs –trajectory u. Therefore,

(21) A!0.Œxj0
; wj0

�/�A!.Œxi0
; wi0

�/� �

Z
D2

w�i0
˛:

Since `!.c/�A!.Œxi0
; wi0

�/, we have `!0.ˆ.c//� `!.c/� �
R

D2 w
�
i0
˛ . Denote

S.˛/Dmax
i

ˇ̌̌̌Z
D2

w�i ˛

ˇ̌̌̌
;

and it is nonnegative. Then `!0.ˆ.c//� `!.c/CS.˛/ for any c 2 CF�.M;J;H; !/.
A similar argument for ‰ results in the same constant S.˛/ and a similar filtration
inequality.

Next, we construct a homotopy between 1! and ‰ ıˆ, where 1! is the identity map
on the complex .CF�.M;J;H; !/; @!/. So far, we have two different homotopies of
symplectic structure ! : one is the constant homotopy of ! that corresponds to 1! , and
the other is a symmetric homotopy of ! which passes through !0. This homotopy is
induced by the composition ‰ ıˆ. Let us denote this symmetric homotopy as s 7! !s .
Take a homotopy f!s;�g�2Œ0;1� between these two homotopies s 7! !s and ! such
that !s;0D ! and !s;1D !s . Moreover, we require !s;� to be a symmetric homotopy
for each � 2 Œ0; 1�. Recall that the operator Fs;�

sym and the admissible Fs;�
sym –trajectory

with respect to !s;� are defined in Definition 4.5. Define KW CF�.M;J;H; !/!

CF�C1.M;J;H; !/ as

(22) K.Œxi ; wi �/D
X

j2f1;:::;ng
�CZ.Œxi ;wi �/C1D�CZ.Œxj ;wj �/

n.Œxi ; wi �; Œxj ; wj �/Œxj ; wj �;
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where the number n.Œxi ; wi �; Œxj ; wj �/ is defined by counting pairs .u; �/ where u is an
admissible Fs;�

sym –trajectory connecting Œxi ; wi � and Œxj ; wj �. Again n.Œxi ; wi �; Œxj ; wj �/

is finite and (22) is a finite sum. Moreover, by a standard argument considering the
corresponding moduli space, one can show that K provides a homotopy between 1!
and ‰ ıˆ. Similarly, we obtain a homotopy K0 between 1!0 and ˆ ı‰ , where 1!0

is the identity map on the complex .CF�.M;J;H; !0/; @!0/.

Again, let us study the changes of filtrations. For any chain c 2 CF�.M;J;H; !/,
suppose `!.K.c// D A!.Œxq0

; wq0
�/ for some q0 2 f1; : : : ; ng. There exists some

Œxp0
; wp0

� from the chain c connected to Œxq0
; wq0

� by an admissible Fs;�–trajectory
for some �2 Œ0; 1�. By Proposition 4.6, A!.Œxq0

; wq0
�/�A!.Œxp0

; wp0
�/. This implies

`!.K.c//� `!.c/�A!.Œxq0
; wq0

�/�A!.Œxp0
; wp0

�/� 0:

Since S.˛/�0, in particular `!.K.c//� `!.c/C2S.˛/ for any c 2CF�.M;J;H; !/.
A similar inequality holds for the other homotopy K0. Thus we get the conclusion.

Remark 5.2 Under the hypothesis of Lemma 5.1, the same argument can prove
the following more general result if one uses Proposition 4.4: for any s � t in
Œ0; 1�, there exists some constant Ss;t .˛/ such that .CF�.M;J;H; !s/; @!s

; `!s
/

and .CF�.M;J;H; !t /; @!t
; `!t

/ are Ss;t .˛/–quasiequivalent. Moreover, Ss;t .˛/�

js� t j �C j˛j for some constant C.

Proof of Theorem 1.1 From Proposition 3.2, if !0 is a perturbation of ! , then
there exists a � 2 Diff.M / such that ��!0 is a reduced perturbation of ! . As
elaborated in Section 3, if we replace !0 with ��! in our discussion, then changes from
the perturbation of Hamiltonian functions (from H to ��H ) need to be considered.
Theorem 2.12 implies that the resulting changes on both spectral invariants and boundary
depth are no greater than j��H�H jH . Since M is compact, j��H�H jH �C 0j!0�!j

for some constant C 0 that involves a C 0 –norm of H. In what follows, we will focus
on the case when !0 is a reduced perturbation of ! .

The desired conclusion for boundary depth directly comes from Lemma 5.1 and
Theorem 2.9. For spectral invariants, by the same idea as the proof of Theorem 3.1(iii)
in [18], we have the commutative diagram

H�.M IK/
PSS!
�

uu

PSS!0

�

))

HF�.M;J;H; !/
ˆ�

// HF�.M;J;H; !0/
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where ˆ� is the chain map constructed from Lemma 5.1. By Theorem 2.6, there exists
some element c 2CF�.M;J;H; !/ such that �.a;H I!/D `!.c/ and Œc�D PSS!� .a/.
Then

Œˆ.c/�Dˆ�.Œc�/Dˆ�.PSS!� .a//D PSS!
0

� .a/:

Therefore,

�.a;H I!0/� �.a;H I!/� `!0.ˆ.c//� `!.c/� S.!0�!/:

Switch the role of ! and !0 ; then we get the other inequality. Therefore,

j�.a;H I!/� �.a;H I!0/j � S.!0�!/:

Finally, it is easy to see that there exists a constant C such that S.!0�!/�C j!0�!j.
Thus we get the conclusion.

To end this section, we will give the proof of Corollary 1.2.

Proof of Corollary 1.2 Similarly to the argument in the proof of Theorem 1.1, we
will only focus on the case when !0 is a reduced perturbation of ! . By the hypothesis
on the dimension of H 2.M IK/, there exists a number � (sufficiently) close to 1 such
that Œ!0�D �Œ!�. A key observation is that if we rescale �H and �! , then

ˇ.�H I�!/D �ˇ.H I!/ and �.ŒM �; �H I�!/D ��.ŒM �;H I!/:

Hence, by Theorems 2.12(b) and 1.1,

jˇ.H I!/�ˇ.H I!0/j

� jˇ.H I!/�ˇ.�H I�!/jC jˇ.�H I�!/�ˇ.H I�!/jC jˇ.H I�!/�ˇ.H I!0/j

� j1��jˇ.H I!/Cj1��jkHkH CC j�! �!0j

� j1��jˇ.H I!/Cj1��jkHkH CC.j1��jj!jC j! �!0j/

D j1��j �ACC j! �!0j;

where A WD ˇ.H I!/C kHkH C C j!j and C is the constant from Theorem 1.1.
Moreover, Œ! �!0�D .1��/Œ!� implies

(23) j1��jjŒ!�jh D jŒ! �!
0�jh � j! �!

0
j:

Therefore, j1��j � .1=jŒ!�jh/j! �!0j. So

j1��j �ACC j! �!0j �

�
A

jŒ!�jh
CC

�
� j! �!0j:

Therefore, set zC2 DA=jŒ!�jhCC and we get the conclusion.
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Similarly, for spectral invariants, by Theorems 2.12(a) and 1.1,

j�.ŒM �;H I!/� �.ŒM �;H I!0/j

� j�.ŒM �;H I!/� �.ŒM �; �H I�!/jC j�.ŒM �; �H I�!/� �.ŒM �;H I�!/j

C j�.ŒM �;H I�!/� �.ŒM �;H I!0/j

� j1��j�.ŒM �;H I!/Cj1��jkHkH CC j�! �!0j

� j1��j �BCC j! �!0j;

where B WD �.ŒM �;H I!/CkHkH CC j!j and C is the constant from Theorem 1.1.
The same estimation as in (23) implies the desired conclusion when we set zC1 D

B=jŒ!�jhCC.

Remark 5.3 From the perspective of persistent homology theory in [28], we can
associate barcodes, denoted by B! and B!0 , to both C! WD .CF�.M;J;H; !/; @! ; `!/

and C!0 WD .CF�.M;J;H; !0/; @!0 ; `!0/, respectively. Lemma 5.1 implies that their
quasiequivalence distance [28, Definition 8.1] satisfies

dQ.C! ; C!0/� 1
2
S.! �!0/:

Recall that dB denotes the bottleneck distance [28, Definition 8.14]. Then the stability
theorem in [28] implies the inequality

dB.B! ;B!0/� 2dQ.C! ; C!0/� S.! �!0/� C j! �!0j:

This can be regarded as a generalization of Theorem 1.1.

6 Proofs of Theorems 1.4 and 1.7

Proof of Theorem 1.4 Let U � † be a disjoint union of simply connected open
subsets and H 2 C1.R=Z � U /. Pick an open ball V � † n U and fix a closed
2–form ˛ positively supported in V and that vanishes elsewhere. By our choice of H,
˛ 2�!;H . Fix �� 1. Consider the isotopy of the reduced perturbations,

!s D !C s.�˛/;

where s 2 Œ0; 1�. Take � sufficient large such that, on .†; !1/, U can be viewed as a
disjoint union of topological balls with total area sufficiently smaller than the total area
of †. Then it is displaceable. By an energy–capacity inequality, say [24, Corollary 3.3],

(24) �.a;H; !1/� e!1.U / <C1;
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where e!1.U / denotes the displacement energy of U under the symplectic structure !1 .
Moreover, since !s coincides with ! inside U and H vanishes outside U,

�.a;H I!s/ 2 Spec.H; !/; where s 2 Œ0; 1�;

for any a 2H�.†;K/. Note that in our situation Spec.H; !0/ is just a finite set of R.
Then Theorem 1.1 implies that f�.a;H I!s/g0�t�1 is a continuous path over a finite
set. So �.a;H I!s/ is constant for all s 2 Œ0; 1� and then �.a;H I!/ � e!1.U /. We
get the desired conclusion by setting K D e!1.U / in Definition 1.3.

Remark 6.1 (i) Corollary 3.3 in [24] only claims an energy–capacity inequality (24)
for aD Œ†�. However, since Œ†� is a unit under the quantum product � (here it is just
intersection of homology classes), the triangle equality of spectral invariants says

�.a;H I!1/D �.a� Œ†�; 0CH I!1/� �.a; 0I!1/C �.Œ†�;H I!1/� e!1.U /:

(ii) Theorem 1.1 only applies locally, so in order to claim that f�.a;H I!s/g0�t�1

is a continuous path, we need to apply Theorem 1.1 inductively. To this end, we can
choose a uniform size of the neighborhoods of symplectic structures such that the
energy estimation, Proposition 4.3, applies. Then our claim directly follows from the
compactness of the interval Œ0; 1�.

(iii) For †D S2 , the argument in the proof of Theorem 1.4 does not apply. Indeed,
s! �.ŒM �;H; !s/ does not provide a function from Œ0; 1� to Spec.H; !/ since the
corresponding fundamental classes actually lie in different quantum homologies when
!s changes.

Before giving the proof of Corollary 1.5, we need to recall equivalent definitions of a
heavy subset and a superheavy subset. This is stated as Proposition 4.1 in [6].

Definition 6.2 Given a closed subset X �M and a 2 QH�.M; !/, if �a.H I!/D 0

for any H 2 C1.M / such that H � 0 and H jX D 0, then X is called a–heavy; if
�a.H I!/D 0 for any H 2 C1.M / such that H � 0 and H jX D 0, then X is called
a–superheavy.

Proof of Corollary 1.5 For (a), this is immediate from Definition 6.2. In fact, for
any H � 0 with H jX D 0, it is supported in †g nX, which is a disjoint union of
simply connected regions. By Theorem 1.4, �.a;H; !/�K for some finite K � 0, so
�.a; kH; !/ <K for any k 2N. By the definition of (partial) symplectic quasistates
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in Definition 2.10, we know �a.H I!/D 0. Therefore, X is a–superheavy. For (b),
let U be the simply connected region that X lie in. By Theorem 1.4 and the argument
above, for any H supported in U, �a.H I!/D 0. Meanwhile, we can always choose
H such that H.x/� ı > 0 for every x 2X. Then Definition 2.11 says that X is not
a–heavy.

Finally, we will study the continuity of some symplectic capacities. Let A�M. Recall
the definitions of c!HZ.A/ and c!� .A/:

Definition 6.3 The Hofer–Zehnder capacity c!HZ.A/ is defined as

c!HZ.A/D supfmax H jH 2H.A/ is HZ–admissibleg:

Here H.A/ contains all the autonomous functions on M with compact support in A and
H�1.0/ and H�1.max.H // contain nonempty open sets. Moreover, HZ–admissible
means that the Hamiltonian flow of H under ! contains no nonconstant periodic orbit
of period at most 1. Roughly speaking, it excludes those “fast” Hamiltonian orbits.

Definition 6.4 The spectral capacity c!� .A/ is defined as

c!� .A/D supf�.ŒM �;H I!/ jH 2 C1c .R=Z�A/g:

Now, let us give the proof of Theorem 1.7.

Proof of Theorem 1.7 Fix � >0. By definition, there exists some H 2C1c .R=Z�A/

such that c!� .A/ < �.ŒM �;H I!/ C 1
2
� . Under our hypothesis, Theorem 1.1 and

Corollary 1.2 state that, near ! , the function !0! �.ŒM �;H I!0/ is continuous when
M satisfies the topological hypothesis in our assumption. In particular, it is lower
semicontinuous. Then, for this fixed � , there exists a neighborhood of ! in �!;H (so
in �2

closed.M /), denoted by U!.�/, such that �.ŒM �;H I!0/� �.ŒM �;H I!/ � �1
2
�

for any !0 2 U!.�/. Hence,

c!
0

� .A/� c!� .A/� �.ŒM �;H I!0/� �.ŒM �;H I!/� 1
2
� � ��:

Therefore, by (2),

e!
0

.A/� c!
0

� .A/� c!� .A/� � � c!HZ.A/� �:

Thus we get the conclusion.
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Remark 6.5 We can also use another capacity c!
ˇ
.A/ from [27]. It is defined as

c!ˇ .A/D supfˇ.H I!/ jH 2 C1c .R=Z�A/g:

Corollary 5.12 in [27] says that e!.A/ � 1
2
c!
ˇ
.A/. By the lower semicontinuity of

boundary depth from Theorem 1.1 and Corollary 1.2, we can prove that e!
0

.A/ is
bounded from below by 1

2
c!
ˇ
.A/� � for any !0 2 U!.�/.

7 Variant Floer chain complexes

7.1 Novikov ring with multifiniteness condition

In this subsection, we will study the Novikov ring with multifiniteness condition defined
in Definition 1.8. As explained in the introduction, this is the starting point of comparing
Floer chain complexes with different symplectic structures in a general setup. First of
all, let us recall the extended version of the Novikov ring considered in [23],

ƒ! D

� X
A2H S

2
.M /

aAT A
ˇ̌̌
aA 2 K and .8C 2R/.#faA ¤ 0 j Œ!�.A/� C g<1/

�
;

where H S
2
.M / is the image of �2.M / in H2.M IZ/=Tor under the Hurewicz map

�W �2.M /!H2.M IZ/. By the exact sequence

(25) 0! kerŒ!�!H S
2 .M /

Œ!�
�! �!! 0;

where �! D ImŒ!�, we can write any element x D
P

A2H S
2
.M / aAT A 2ƒ! as

(26) x D
X
g2�

agT g; where ag 2 KŒkerŒ!��:

In other words, ƒ! can be rewritten as

(27) ƒ! D
� X

g2�!

agT g
ˇ̌̌
ag 2KŒkerŒ!�� and .8C 2R/.#fag ¤ 0 j g �C g<1/

�
:

Note that, in general, KŒkerŒ!�� is not necessarily a PID; therefore, by Theorem 4.2
in [9], ƒ! is not necessarily a PID. However, since K is Noetherian, KŒkerŒ!�� is
Noetherian. Compared with the very often used Novikov field ƒK;� defined in (1),
there is a natural homomorphism R! W ƒ!!ƒK;�! defined by

(28)
X

g2�!

agT g R!
�!

X
g2�!

Œag�T
g;
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where Œag� 2 K is defined as follows: if ag D
P

h ag;hSh , where h 2 kerŒ!� and S is
the formal variable, then Œag�D

P
h ag;h . In other words, we uniformly weight any

h 2 kerŒ!� by the value zero. Then ƒK;�! can be regarded as a ƒ! –module. The
following property of ƒ! will be useful later:

Lemma 7.1 ƒ! is an integral domain.

Proof First, because kerŒ!� is a subgroup of H S
2
.M / which is torsion-free and

abelian, kerŒ!� is also torsion-free and abelian. By [2, Proposition 1.3 and Lemma
0.1], KŒkerŒ!�� is an integral domain. Take two nonzero elements �1 and �2 in ƒ!
and write them as

�i D

X
gij2�!

agij
T gij ; where agij

2 KŒkerŒ!�� and i D 1; 2:

Since �i ¤ 0, the finiteness condition implies that there exist smallest powers for both
i D 1; 2. Denote these smallest powers by g1j1

for �1 (for some j1 ) and g2j2
for �2

(by some j2 ). Their corresponding coefficients in KŒkerŒ!��, ag1j1
and ag2j2

, are in
particular nonzero. Then ag1j1

� ag2j2
¤ 0 implies �1 � �2 ¤ 0. Therefore, ƒ! is an

integral domain.

Recall the construction in Section 1.2. There exist homology classes Œ!1�; : : : ; Œ!m�

in H 2.M IK/ forming a polygon �.!/ containing Œ!� inside such that any reduced
perturbation !0 (sufficiently close to ! ) has Œ!0� written as a convex linear combination
as (3). Set !0D! . Observe that any such convex linear combination can be inductively
constructed from the two-term case

Œ!0�D .1� t/Œ!0�C t Œ!1�:

Here, we require Œ!0� and Œ!1� to be linearly independent over K in H 2.M IK/.
Otherwise, it will be reduced to the rescaling case as studied in Corollary 1.2. This
automatically requires that dimK H 2.M IK/ � 2. For simplicity, we will mainly
consider this two-term case in the rest of the paper. Moreover, note that !0 and
.1 � t/!0 C t!1 are not necessarily the same. Instead, they differ by an exact 2–
form. By Moser’s trick, it is easy to deal with the perturbations from exact 2–forms.
Therefore, without loss of generality, we will also assume !0 D .1� t/!0C t!1 for
some t 2 Œ0; 1�.
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Definition 7.2 Fix !0 and its reduced perturbation !1 such that Œ!0� and Œ!1� are
linearly independent over K in H 2.M IK/. We call the following ƒŒ0;1� a Novikov
ring with multifiniteness condition:

ƒŒ0;1�D

� X
A2H S

2
.M /

aAT A
ˇ̌̌
aA2K and

.8C 2R/.8t 2 Œ0; 1�/.#faA¤0 j Œ!t �.A/�C g<1/

�
:

By this definition, ƒŒ0;1� D
T

t2Œ0;1�ƒ!t
. Two immediate properties of ƒŒ0;1� follow:

(a) ƒŒ0;1� is nonempty because every finite-length power series, that is polynomial,
lies inside.

(b) ƒŒ0;1� is also an integral domain because ƒŒ0;1� is a subring of ƒ!t
for any

t 2 Œ0; 1� and any subring of an integral domain is also an integral domain (see
Lemma 7.1).

In fact, instead of considering uncountably many !t for the finiteness condition in
Definition 7.2, the following result shows that ƒŒ0;1� has a much easier structure:

Lemma 7.3 ƒŒ0;1� Dƒ!0
\ƒ!1

:

Proof The inclusion ƒŒ0;1� �ƒ!0
\ƒ!1

is trivial since the finiteness condition in
Definition 7.2 is in particular valid for t D 0 and t D 1. Now we prove the other
inclusion. Take any x 2 ƒ!0

\ƒ!1
, say x D

P
A2H S

2
.M / aAT A , that satisfies the

finiteness conditions for both !0 and !1 ; then, for any C 2R and for any t 2 .0; 1/,
Œ!t �.A/D .1� t/Œ!0�.A/C t Œ!1�.A/� C implies that either .1� t/Œ!0�.A/�

1
2
C or

t Œ!1�.A/�
1
2
C . Therefore,

Œ!0�.A/�
C

2.1�t/
or Œ!1�.A/�

C

2t
:

The defining property of the element x implies that, in either case, there are only finitely
many A’s. Therefore, x also satisfies the finiteness condition in Definition 7.2.

Example 7.4 Take xD
P1

nD0 T nA, where A2kerŒ!1�nkerŒ!0�. This is an element in
ƒ!0

but not in ƒŒ0;1� . In general, ƒŒ0;1� is strictly contained in ƒ!t
for any t 2 Œ0; 1�.

Moreover, the following computation shows that ƒŒ0;1� does not act on ƒ!0
nƒŒ0;1� .

Taking x as above,

.1�T A/x D .1�T A/

� 1X
nD0

T nA

�
D 1 2ƒŒ0;1�:
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This is different from the observation in the proof of Theorem 2.5 in [23] that for any
proper subgroup G � �! , ƒK;G acts on ƒK;�!nG .

Remark 7.5 Definition 7.2 can be easily generalized to higher-dimensional situations.
Assume that �.!/ is a polygon in H 2.M IK/ that contains Œ!� and has vertices
Œ!1�; : : : ; Œ!m�. Define

ƒ�.!/D

� X
A2H S

2
.M /

aAT A
ˇ̌̌
aA2K and

.8C 2R/.8Œ!0�2�.!//.#faA¤0 j Œ!0�.A/�C g<1/

�
:

In particular, ƒ�.!/ is an integral domain. Moreover, ƒ�.!/Dƒ!\ƒ!1
\� � �\ƒ!m

.

Since we have inclusions i0W ƒŒ0;1�!ƒ!0
and i1W ƒŒ0;1�!ƒ!1

, both ƒ!0
and ƒ!1

are ƒŒ0;1�–modules. Together with (28), we have the coefficient extensions

ƒ!0

R!0
// ƒK;�!0

ƒ!0
\ƒ!1

DƒŒ0;1�

i0 55

i1
))
ƒ!1 R!1

// ƒK;�!1

Accordingly, we have variant versions of quantum homologies

eQH0

N
ƒ!0

ƒ
K;�!0

// QH0

QHŒ0;1�

N
ƒŒ0;1�

ƒ!0 66

N
ƒŒ0;1�

ƒ!1

((eQH1

N
ƒ!1

ƒ
K;�!1

// QH1

Here the notation is defined as follows:

� QHŒ0;1� DH�.M IK/˝KƒŒ0;1� .

� eQHi D QHŒ0;1�˝ƒŒ0;1�
ƒ!i

for i D 0; 1.

� QHi D
eQHi ˝ƒ!i

ƒK;�!i for i D 0; 1.

To end this subsection, we consider a similar short exact sequence as (25) but with
multivaluation from !0 and !1 . Explicitly, consider the short exact sequence

0! kerŒ!0�\ kerŒ!1�!H S
2 .M /

Œ!0��Œ!1�
������! �!0

��!1
! 0:
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This allows us to identify any x D
P

A2H S
2
.M / aAT A 2ƒŒ0;1� with

(29) xD
X

.g0;g1/2�!0
��!1

a.g0;g1/T
.g0;g1/; where a.g0;g1/ 2KŒkerŒ!0�\kerŒ!1��:

In other words, each x2ƒŒ0;1� can be identified with a set of points of R2 in coordinates
g0 , g1 . Moreover, by the multifiniteness condition, this set is discrete in R2 .

7.2 Floer chain complex with multifiniteness condition

Given a Hamiltonian system .M; !;H /, set !0 D ! and its reduced perturbation !1 .
Similarly to the construction of a Floer chain complex, in this subsection we will
construct a variant Floer chain complex over ƒŒ0;1� . Define a graded finitely generated
free ƒŒ0;1�–module .CFŒ0;1�/� as

(30) .CFŒ0;1�/k WD
nM

iD1

ƒŒ0;1�hŒxi ; wi �i '

nM
iD1

ƒŒ0;1�;

where n is the number of contractible Hamiltonian 1–periodic orbits xi 2 Per.!0;H /

with CZ–index equal to k and wi is a disk spanning xi . Note that (30) is well defined
due to Proposition 3.4. Moreover, Lemma 7.3 implies

(31) .CFŒ0;1�/k D .fCF0/k \ .fCF1/k D
\

t2Œ0;1�

.fCFt /k

for each degree k 2 Z. Here fCF t is a free ƒ!t
–module for any t 2 Œ0; 1�.

In order to form a chain complex, we need to choose a boundary operator on .CFŒ0;1�/� .
For any s 2 Œ0; 1�, let !s D .1� s/!0C s!1 , and simply denote by @s the standard
Floer boundary operator of .CF�.M;J;H; !s/; @J ;H ;!s

/. The following proposition
shows that we have a family of boundary operators for .CFŒ0;1�/� .

Proposition 7.6 For any s 2 Œ0; 1�, @s is well defined on .CFŒ0;1�/� and satisfies
@2

s D 0.

Proof Since @s is already a well-defined boundary operator for the Floer chain complex
.CF�.M;J;H; !s/; @s/, the algebraic relation @2

s holds. In order to show that @s is
well defined on .CFŒ0;1�/� , we need to show that for any t 2 Œ0; 1�, the output of @s

satisfies the finiteness condition in terms of !t . Suppose that for a basis element Œx; w�,

(32) @s.Œx; w�/D
X

Œy;v�2basis

X
A2H S

2
.M /

nAT AŒy; v�:
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By definition, there exists a Floer trajectory u with respect to the symplectic structure !s

connecting Œx; w� and Œy; v # A�. We claim that there exists some constant C 0s;t < 1

such that

(33) A!t
.T AŒy; v�/�A!t

.Œx; w�/� �.1�C 0s;t /E.u/:

In fact, first we have A!s
.T AŒy; v�/�A!s

.Œx; w�/D�E.u/. Here E.u/ is the energy
of Floer trajectory under symplectic structure !s . By the definition of the symplectic
action functional with respect to !t ,

A!t
.Œx; w�/D�

Z
D2

w�!t C

Z 1

0

H.x.t/; t/ dt

D�

Z
D2

w�!sC

Z 1

0

H.x.t/; t/ dt C

Z
D2

w�.!s �!t /

DA!s
.Œx; w�/C .s� t/

Z
D2

w�˛;

where ˛ D !1�!0 . Similarly,

A!t
.T AŒy; v�/DA!s

.T AŒy; v�/C .s� t/

Z
D2

.v # A/�˛:

Therefore, one gets

A!t
.T AŒy; v�/�A!t

.Œx; w�/D�E.u/C .s� t/

�Z
D2

.v # A/�˛�

Z
D2

w�˛

�
:

By our equivalence relation,
R

D2.v # A/�˛ D
R

D2.w # u/�˛ . Hence, by (17), there
exists a constant C such thatZ

D2

.v # A/�˛�

Z
D2

w�˛ D

Z
D2

.w # u/�˛�

Z
D2

w�˛ D

Z
R�S1

u�˛ � C j˛jE.u/:

Meanwhile, as long as !1 is a priori chosen sufficiently close to !0 , one gets C j˛j< 1.
Therefore, by setting C 0s;t D js� t jC j˛j, we get the claim (33).

Next, (33) can be rewritten as

�

Z
S2

A�!t �N2 � �.1�C 0s;t /E.u/;

where N2 D A!t
.Œx; w�/�A!t

.Œy; v�/. This is a constant that is independent of the
sphere class A. Since 1�C 0s;t > 0,

E.u/�
1

1�C 0s;t

�Z
S2

A�!t CN2

�
:
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If
R

S2 A�!t < � for � 2R, then

E.u/�
�CN2

1�C 0s;t
<1:

By the finiteness condition of !s , there are only finitely many such sphere classes A.
Hence, (32) also satisfies the finiteness condition of !t .

For each ..CFŒ0;1�/�; @s/, we can associate a filtration function `!s
using the sym-

plectic action functional A!s
together with the valuation on ƒŒ0;1� with respect to !s .

Explicitly, for any chain c D
P

i �i Œ
i ; wi � 2 .CFŒ0;1�/� with �i 2ƒŒ0;1� ,

(34) `!s
.c/Dmax

i
fAH ;!s

.Œxi ; wi �/� �!s
.�i/g;

where �!s
.�i/ denotes the minimal exponent from �i after they are evaluated by the

symplectic structure !s . For brevity, denote `!s
as `s . Proposition 7.6 says that there

exists a family of variant version of Floer chain complexes f..CFŒ0;1�/�; @s; `s/gs2Œ0;1�

which is parametrized by Œ0; 1�. It is important to use the filtration function `s and
the boundary operator @s together so that this boundary operator strictly decreases the
filtrations. In general, we get a family of Floer chain complexes

f.CF�.!/; @!0 ; `!0/g!02�.!/:

A recent paper [13, Theorem 3.12] provides a similar construction of a family of
Floer-style chain complexes.

Next, we show that there exists an algebraic relation between any two slices of these
variant Floer chain complexes.

Proposition 7.7 For any s; t 2 Œ0; 1�, the two complexes ..CFŒ0;1�/�; @s; `s/ and
..CFŒ0;1�/�; @t ; `t / are chain homotopy equivalent.

Remark 7.8 Different from Lemma 5.1, we can not get any quantitative comparison
conclusion in Proposition 7.7. From the proof given below, one can see that this comes
from the “non-uniform” estimation from Proposition 4.4, ie the bound depends on the
symplectic area of the disk spanning the Hamiltonian 1–periodic orbit at the asymptotic
end s D�1. On the other hand, one can view the family f..CFŒ0;1�/�; @s; `s/gs2Œ0;1�

from a different perspective. Since each s–slice ..CFŒ0;1�/�; @s; `s/ provides a persis-
tence module [1], this family provides a 2–dimensional persistence module. Continuity
questions studied in this paper might be transferred into a stability problem of the
invariants constructed from a higher-dimensional persistence module.

Algebraic & Geometric Topology, Volume 19 (2019)



Symplectic structure perturbations and continuity of symplectic invariants 3299

Proof of Proposition 7.7 We need to find a quadruple .ˆs;t ; ˆt;s;Ks;Kt / such that
ˆs;t and ˆt;s are chain maps between .CFŒ0;1�/�; @s; `s/ and .CFŒ0;1�/�; @t ; `t / and
Ks and Kt are homotopies. First, choose a homotopy from !s to !t as in (12)
parametrized by � , and consider the Floer operator F� defined in Definition 4.1. For
any basis element Œx; w�, define

(35) ˆs;t .Œx; w�/D
X

Œy;v�2basis
�CZ.Œx;w�/D�CZ.Œy;v#A�/

X
A2H S

2
.M /

nAT AŒy; v�;

where nA counts the number of admissible F� –trajectories connecting Œx; w� and
Œy; v # A�. We know that ˆs;t is a chain map by the standard gluing argument. In order
to show ˆs;t acts on .CFŒ0;1�/� , we need to check that the output of ˆs;t satisfies the
finiteness condition of !r for any r 2 Œ0; 1�. Without loss of generality, assume s < t .
By Proposition 4.4, there exists a constant Cs;t such that

A!t
.T AŒy; v�/�A!s

.Œx; w�/� �.1�Cs;t j˛j/E.u/C .s� t/

Z
D2

w�˛:

Meanwhile, evaluate T AŒy; v� by A!r
and one gets the relation

A!t
.T AŒy; v�/DA!r

.T AŒy; v�/C .r � t/

Z
S1�R

u�˛C .r � t/

Z
D2

w�˛;

where ˛ D !1�!0 . By (17) there exists some constant C such that

A!r
.T AŒy; v�/�A!s

.Œx; w�/

� �.1�Cs;t j˛j/E.u/C .t � r/

Z
S1�R

u�˛C .s� r/

Z
D2

w�˛

� �.1�Cs;t j˛j/E.u/CC j˛j � .t � r/E.u/C .s� r/

Z
D2

w�˛

� �.1�C 0r;s;t /E.u/C .s� r/

Z
D2

w�˛

for some constant C 0r;s;t D .Cs;t CC � .t � r//j˛j< 1. Also

A!r
.T AŒy; v�/�A!s

.Œx; w�/D�

Z
S2

A�!r �N3;

where N3 DA!s
.Œx; w�/�A!r

.Œy; v�/, independent of the sphere class A. Therefore,

E.u/�
1

1�C 0r;s;t

�Z
S2

A�!r CN3C .s� r/

Z
D2

w�˛

�
:
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If
R

S2 A�!r � � for any given � 2R, then, since 1�C 0r;s;t > 0 for any r 2 Œ0; 1�,

E.u/�
�CN3C .s� r/

R
D2 w

�˛

1�C 0r;s;t
<1:

By the Gromov compactness theorem, there are only finitely many sphere classes A.
Hence, the output of (35) also satisfies the finiteness condition of !r for any r 2 Œ0; 1�.
Symmetrically, we can define ˆt;s and prove it is a well-defined chain map.

Second, ˆt;sıˆs;t is (Floer) homotopic to 1s on ..CFŒ0;1�/�; @s/, by the standard Floer
theory. Choose a homotopy between a symmetric homotopy of !s passing through !t

and the identity homotopy !s . We can construct a map Ks as in Lemma 5.1 as

(36) Ks.Œx; w�/D
X

Œy;v�2basis
�CZ.Œx;w�/C1D�CZ.Œy;v#A�/

X
A2H S

2
.M /

nAT AŒy; v�;

where nA counts the number of pairs .u; �/ where u is an admissible F�;�sym –trajectory
connecting Œx; w� and Œy; v # A�. Again, in order to show Ks acts on .CFŒ0;1�/� , we
need to check that the output of Ks satisfies the finiteness condition of !r for any
r 2 Œ0; 1�. By Proposition 4.6 (applied to !0 D !s and !1 D !t ),

A!s
.T AŒy; v�/�A!s

.Œx; w�/� �.1�Cs;t j˛j/E.u/:

Evaluate T AŒy; v� by A!r
, and one gets the relation

A!s
.T AŒy; v�/DA!r

.T AŒy; v�/C .r � s/

Z
S1�R

u�˛C .r � s/

Z
D2

w�˛:

Hence, by a similar computation as above,

(37) A!r
.T AŒy; v�/�A!s

.Œx; w�/� �.1�Cs;r j˛j/E.u/C .s� r/

Z
D2

w�˛:

Then the same argument as above implies the finiteness condition of !r . Thus we get
the conclusion.

7.3 Revised Floer homology

Denote by CMŒ0;1� the coefficient extension of Morse chain complex CM�.M IZ/
over the ring ƒŒ0;1� . In the following diagram, let us summarize the relations between
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the various chain complexes that we have encountered so far:

.CFŒ0;1�; @0/
�0
//

ˆ0;t

��

.fCF0; @0/
R0
//

no well-defined chain map
��

.CF�.M;H;J; !0/; @0/

.CMŒ0;1�; @Morse/
PSSt

//

PSS0

66

((

.CFŒ0;1�; @t /

��

�t
// .fCFt ; @t /

��

.CFŒ0;1�; @1/
�1
//

��

.fCF1; @1/
R1
// .CF�.M;H;J; !1/; @1/

ƒŒ0;1�–module

where fCF t D CFŒ0;1�˝ƒŒ0;1�
ƒ!t

is a free ƒ!t
–module for any t 2 Œ0; 1�. Take the

homology of each chain complex, and one gets the picture

(38)

HFŒ0;1�;0
.�0/�

//

.ˆ0;t /�

��

fHF0

.R0/�
//

no well-defined map
��

HF!0

QHŒ0;1�
.PSSt /�

//

.PSS0/�
88

&&

HFŒ0;1�;t

��

.�t /�
// fHFt

��

HFŒ0;1�;1
.�1/�

//

��

fHF1

.R1/�
// HF!1

ƒŒ0;1�–module

where QHŒ0;1� D H�.M IK/˝ƒŒ0;1� . Moreover, HFŒ0;1�;t is the homology of the
Floer chain complex ..CFŒ0;1�/�; @t /, eHF t is the homology of the Floer chain complex
..fCF t /�; @t / for any t 2 Œ0; 1� and HF!i

is the homology of the Floer chain complex
.CF�.M;H;J; !i/; @i/ for i D 0; 1.

By Proposition 7.7, HFŒ0;1�;t are all isomorphic to each other. Moreover, one can show
that for any t 2 Œ0; 1�,

.ˆ0;t /� ı .PSS0/� D .PSSt /�:

A natural question is how these Floer homologies change when we extend the coeffi-
cients in each step. First, the universal coefficient theorem [20, Corollary 7.56(ii) and
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Theorem 7.15] says that, for each degree k 2 Z, we have the splitting

(39) Hk.fCFi Iƒ!i
/'Hk.CFŒ0;1�IƒŒ0;1�/˝ƒŒ0;1�

ƒ!i
˚TorƒŒ0;1�.Hk�1.CFŒ0;1�/;ƒ!i

/;

where TorƒŒ0;1�.Hk�1.CFŒ0;1�/;ƒ!i
/ is a torsion module over ƒŒ0;1� . It is not easy

to see the algebraic relation between ƒŒ0;1� and ƒ!i
if we try to apply some well-

known fact, such as that a module over a PID is flat if and only if it is torsion-free (by
Lemma 7.1, we only know ƒŒ0;1� is a domain). Fortunately, we still have the following
property claiming that the torsion part vanishes, due to the existence of PSS–maps who
transfer our discussion back to the Morse homology.

Proposition 7.9 For any k 2 Z,

Hk.fCFi Iƒ!i
/'Hk.CFŒ0;1�IƒŒ0;1�/˝ƒŒ0;1�

ƒ!i

for i D 0; 1, or simply eHFi ' HFŒ0;1�˝ƒŒ0;1�
ƒ!i

. In particular,

rankƒ!0
Hk.fCF0Iƒ!0

/D rankƒ!1
Hk.fCF1Iƒ!1

/:

Proof Recall that CMŒ0;1� D CM.M IZ/˝Z ƒŒ0;1� . By the universal coefficient
theorem,

Hk.CMŒ0;1�IƒŒ0;1�/'Hk.CM/˝ZƒŒ0;1�˚TorZ.Hk�1.CMŒ0;1�/;ƒŒ0;1�/;

where H�.CM/ WDH�.CMIZ/. By Lemma 7.1, ƒŒ0;1� is an integral domain, so it is
torsion-free as a Z–module, which implies the flatness since Z is a PID. Therefore,
the Tor functor vanishes, that is,

(40) H�.CM/˝ZƒŒ0;1� 'H�.CMŒ0;1�IƒŒ0;1�/:

By the same argument,

(41) H�.CM/˝Zƒ!i
'H�.CM˝Zƒ!i

Iƒ!i
/:

Together, we get the relations

H�.CM/˝Zƒ!i
D .H�.CM/˝ZƒŒ0;1�/˝ƒŒ0;1�

ƒ!i

'H�.CMŒ0;1�IƒŒ0;1�/˝ƒŒ0;1�
ƒ!i

:

On the other hand, similarly to (39), we have

H�.CMi Iƒ!i
/'H�.CMŒ0;1�IƒŒ0;1�/˝ƒŒ0;1�

ƒ!i
˚TorƒŒ0;1�.H��1.CMŒ0;1�/;ƒ!i

/;
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where CMi D CMŒ0;1�˝ƒŒ0;1�
ƒ!i

. Consider the commutative diagram

.H�.CM/˝ZƒŒ0;1�/˝ƒŒ0;1�
ƒ!i

j

��

t

))

H�.CM/˝Zƒ!i

q
//

s

��

H�.CM˝Zƒ!i
Iƒ!i

/

f

��

H�.CMŒ0;1�IƒŒ0;1�/˝ƒŒ0;1�
ƒ!i

i
//

g

��

H�.CMi Iƒ!i
/ //

h

��

TorƒŒ0;1�.H��1.CMŒ0;1�/;ƒ!i
/

��

H�.CFŒ0;1�IƒŒ0;1�/˝ƒŒ0;1�
ƒ!i

p
//H�.CFi Iƒ!i

/ //TorƒŒ0;1�.H��1.CFŒ0;1�/;ƒ!i
/

In this diagram,

� f is an identity map because CMi D CM˝Zƒ!i
;

� q is an isomorphism because of (41);

� g and h are PSS–maps (see [18]), so isomorphisms;

� j is an identity map due to the extension of coefficients;

� t is an isomorphism because of (40).

Therefore, t is an isomorphism, which implies that s is an isomorphism. This implies
i is an isomorphism, and then p is an isomorphism.

Finally, since ƒK;�!i is a field, any torsion over ƒK;�!i always vanishes. Hence, one
gets the following result:

Corollary 7.10 For any k 2 Z,

Hk.CF.M;J;H; !i/Iƒ
K;�!i /'Hk.fCFi Iƒ!i

/˝ƒ!i
ƒK;�!i

for i D 0; 1, or simply HF!i
DeHF Œ0;1�˝ƒŒ0;1�

ƒ!i
. In particular,

rank
ƒ

K;�!0
.HF!0

/k D rank
ƒ

K;�!1
.HF!1

/k :

8 Variant spectral invariants; proof of Theorem 1.9

Fix any class a 2 QHŒ0;1� . Using .PSSt /� , one gets a class .PSSt /�.a/ in HFŒ0;1�;t .
Recall that for each t 2 Œ0; 1�, .CFŒ0;1�; @t ; `t / is a filtered complex with respect to the
symplectic structure !t .
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Definition 8.1 Given a Hamiltonian system .M; !;H /, set !0 D ! , and !1 is a
reduced perturbation of !0 . For a2QHŒ0;1� , we call the following value the t –spectral
invariant associated to a:

�t .a;H /D inff`t .˛t / j Œ˛t �D .PSSt /�.a/g;

where ˛t 2 .CFŒ0;1�; @t /.

Recall that for each t 2 Œ0; 1�, there is a well-defined spectral invariant z�t .a;H / over
the coefficient ring ƒ!t

for any a 2 QHŒ0;1� . This is the abstract spectral invariant
defined in [23]. Meanwhile, �.a;H I!t / denotes the standard spectral invariant over
the Novikov field ƒK;�! . It is readily to see that z�t .a;H / D �.H; aI!t / for any
t 2 Œ0; 1� and any a 2 QHŒ0;1� . On the other hand, we have the following important
property:

Lemma 8.2 Let t 2 Œ0; 1� and a nondegenerate Hamiltonian H 2 C1.R=Z�M /.

(1) Finiteness For any nonzero a 2 QHŒ0;1� , �t .a;H / > �1.

(2) Realization For any nonzero a 2 QHŒ0;1� , there exists an ˛t 2 CFŒ0;1� such
that

�t .a;H /D `t .˛t /:

(3) Extension For any a 2 QHŒ0;1� , �t .a;H /D z�t .a;H /.

Note that Lemma 8.2 reduces the comparison between �.a;H I!0/ and �.a;H I!1/

to the comparison between �0.a;H / and �1.a;H /, which has the advantage that they
are over the same coefficient ring ƒŒ0;1� .

Proof (1) Regard aD a˝ 1 as an element in eQH t over the coefficient ring ƒ!t
,

still nonzero. By Theorem 1.3 in [23], we know z�t .a;H / > �1. On the other
hand, by definition, for any � > 0 there exists some ˛t 2 .CFŒ0;1�; @t / representing
Œ˛t �D .PSSt /�.a/ such that

`t .˛t /� �t .a;H /C �:

Then, in fCF t over the coefficient ring ƒ!t
, ˛t D ˛t ˝ 1 also represents .PSSt /�.a/.

By definition, z�t .a;H /� `t .˛t /� �t .a;H /C � . So �t .a;H / >�1. Therefore, we
get the conclusion .1/.

(2)–(3) The same argument works for t –spectral invariants for any t 2 Œ0; 1�, so we
only prove the case for t D 0. Since a is a nonzero element in QHŒ0;1� , there exists
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some chain ˛ 2 CFŒ0;1� such that .PSS0/�.a/D Œ˛�. On the other hand, viewing a as
an element in eQH0 over the coefficient ring ƒ!0

, Theorem 1.4 in [23] says that there
exists an optimal boundary @0 zy in the sense that

z�0.a;H /D `0.˛� @0 zy/;

where zy 2 fCF0 (but not necessarily in CFŒ0;1� ). Decompose y into the two parts

(42) zy D yf Cy�;

where `0.y�/� z�0.a;H /. Then, by the finiteness condition, the subchain yf contains
only finitely many terms. Also,

`0.˛� @0yf /D `0.˛� @0 zyC @0y�/D `0.˛� @0 zy/;

where the final equality comes from the relation `0.@0y�/ < z�0.a;H /D `0.˛� @0 zy/.
In other words, @0yf is also an optimal boundary for the spectral invariant z�0.a;H /.
Since yf has only finitely many terms, certainly yf 2 CFŒ0;1� . Proposition 7.6 implies
@0yf is also in CFŒ0;1� , and then ˛� @0yf is an element in CFŒ0;1� . Therefore,

(43) z�0.a;H /D `0.˛� @0yf /� �0.a;H /:

On the other hand, for any � > 0, there exists some ˛0 2 CFŒ0;1� such that Œ˛0� D
.PSS0/�.a/ and `0.˛

0/� �0.a;H /C � . Viewing ˛0 as an element in fCF0 and a as
an element in eQH0 , ˛0 also represents a and hence z�0.a;H /� `0.˛

0/. Therefore,

(44) z�0.a;H /� `0.˛
0/� �0.a;H /C �:

Since this is true for any � > 0, we get z�0.a;H /� �0.a;H /, which together with (43)
finishes the proof.

Before giving the proof of Theorem 1.9, we will prove the following lemma on the
continuity of filtration functions on a fixed chain in CFŒ0;1� :

Lemma 8.3 For any fixed chain c 2 CFŒ0;1� , the function t 7! `t .c/ is continuous
on Œ0; 1�.

Proof We will only prove the continuity at t D 0. For any other t 2 .0; 1�, the proof
is exactly the same. First, suppose that CFŒ0;1� is a free ƒŒ0;1�–module of rank n; we
can identify c as an n–tuple Ex in ƒn

Œ0;1�
. Moreover, by (29), we can write

(45) Ex D
X
.g0;g1/

Ea.g0;g1/T
.g0;g1/; where Ea.g0;g1/ 2 .KŒkerŒ!0�\ kerŒ!1��/

n:
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Moreover, Ex can be further identified with a set of points .g0;g1/ on the g0g1 –plane.
By the finiteness condition of both !0 and !1 , up to a uniform shift on both indices,
we can assume that all the points are lying in the first quadrant.

Second, by definition, !t D .1� t/!0C t!1 . Let t WD 1
1C�

for some nonnegative �
and define

!� D �!0C!1 D .1C�/!t :

Note that over a set of homological spheres, !t obtains its minimal value if and only
if !� obtains its minimal value. One way of viewing `t is via the perturbation of the
valuation function x�t . Specifically, for any c 2 CFŒ0;1� ,

x�t .c/Dmin
�Z

S2

A�!t

ˇ̌̌
A is an exponent of c

�
;

and then
`t .c/D�x�t .c/Cpt .c/;

where pt .c/ comes from the Hamiltonian actions on Hamiltonian 1–periodic orbits,
as well as the symplectic areas of the (fixed) cappings of basis elements. As pt .c/

eventually goes to p0.c/ when t ! 0, it suffices to focus on x�t .c/ when studying the
continuity of `t .c/. Actually, we will focus on .1C�/x�t .c/, that is,

x��.c/ WD min
�Z

S2

A�!�

ˇ̌̌
A is an exponent of c

�
D minf�g0Cg1 j .g0;g1/ is an exponent of Exg:

Once rephrased in this way, it suggests a geometric way to view the value x��.c/: for any
�� 0 and for any point .g0;g1/, draw a line passing through .g0;g1/ with slope ��,
that is,

(46) y D��.x�g0/Cg1:

Then the minimal y–intercept is just the value x��.c/. The nontrivial part is that the
optimal point .g0;g1/ who attains the minimal y–intercept might change along the
change of � (equivalently the change of t ). However, we claim that when �� 0, there
exists a point .g�

0
;g�

1
/ who serves as the optimal choice for all sufficiently large �.

The key observation is that for any point P D .g0;g1/ attaining the value x��.c/ for
some �, it fails to attain the value x��.c/ for any � > � if there exists another point Q

in the region enclosed by the y–axis, the line (46) passing through .g0;g1/ with
slope �� and the line (46) passing through .g0;g1/ with slope ��. When �!1,
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the width of this closed region goes to zero. Hence, by the discreteness of our points,
the choice of an optimal point will be eventually stable. Hence,

x�t .c/D
�g�

0
Cg�

1

1C�

�!1
���! g�0 D x�0.c/:

The limit �!1 is equivalent to the limit t ! 0. Thus we get the conclusion.

The following proposition is the key step towards the proof of Theorem 1.9. A similar
result of this type, but from a different setup, is Proposition 8.4 in [15]. Recall
that in (35), we have defined a chain map over ƒŒ0;1� , ˆ0;t W ..CFŒ0;1�/�; @0; `0/!

..CFŒ0;1�/�; @t ; `t / for any t 2 Œ0; 1�.

Proposition 8.4 For any chain c 2 .CFŒ0;1�; @0; `0/, the function t ! `t .ˆ0;t .c// is
upper semicontinuous at t D 0.

Proof We will prove it by contrapositive. Suppose that there exists a constant �0 > 0

and a sequence tn! 0 such that

(47) `tn
.ˆ0;tn

.c//� `0.c/� �0:

Since ˆ0;tn
.c/ D c C �n where there exist nontrivial Floer trajectories between c

and �n , by the triangle inequality of `tn
,

`tn
.ˆ0;tn

.c//D `tn
.cC �n/�maxf`tn

.c/; `tn
.�n/g:

Then (47) implies that

(48) maxf`tn
.c/� `0.c/; `tn

.�n/� `0.c/g � �0 > 0:

Lemma 8.3 implies that the first term in (48) will be smaller than �0 when n is
sufficiently large. Therefore, (48) is possible only if `tn

.�n/� `0.c/� �0 .

Since there are only finitely many basis elements, by passing to a subsequence, we can
assume that for each n, `tn

.�n/DA!tn
.T An Œy; v�/, with the same basis element Œy; v�.

By definition, there exists some subchain of c with elements connecting with T An Œy; v�

by Floer trajectories. Again, since there are only finitely many basis generators, by
passing to a subsequence, we can assume that

T An Œy; v� is connected with T Bn Œx; w� by a Floer trajectory
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for a basis element Œx; w� and sphere classes Bn . In particular, the set fT Bn Œx; w�g1
nD1

is a collection of elements from the chain c . Now, we claim thatˇ̌̌̌Z
S2

B�n˛

ˇ̌̌̌
!1; where ˛ D !1�!0:

In fact, since `0.c/�A!0
.T Bn Œx; w�/, Proposition 4.4 with s D 0 and t D tn implies

the inequalities

(49) `tn
.xn/� `0.c/�A!tn

.T An Œy; v�/�A!0
.T Bn Œx; w�/� �tn

Z
D2

.w # Bn/
�˛:

Therefore, if
ˇ̌R

S2 B�n˛
ˇ̌

is bounded, then when tn is close to 0, this violates (48).

Then, in particular, Bn is not equal to any fixed homotopy class when n is sufficiently
large. The finiteness condition of the chain c under the symplectic structure !0 implies

(50)
Z

S2

B�n!0!1:

Returning to the continuation chain map, we know

ˆ0;tn
.T Bn Œx; w�/D T Bn Œx; w�CT An Œy; v�C � � � :

Meanwhile, by ƒŒ0;1�–linearity of ˆ0;t , for any m 2N,

ˆ0;tn
.T Bm Œx; w�/D T Bm Œx; w�CT AnCBm�Bn Œy; v�C � � � :

Since T Bm Œx; w� is a generator of the chain c , T AnCBm�Bn Œy; v� will be a generator
of the chain �n . However, since T An Œy; v� attains the maximal filtration with respect
to !tn

, for any m,
R

S2.AnCBm�Bn/
�!tn

�
R

S2 A�n!tn
. This implies that

(51)
Z

S2

B�m!tn
�

Z
S2

B�n!tn
:

Rewrite Z
S2

B�m!tn
D

Z
S2

B�m!0C tn

Z
S2

B�m˛ WD amC tnbm;

where am D
R

S2 B�m!0 and bm D
R

S2 B�m˛ . Moreover, denote cn D
R

S2 B�n!tn
D

anC tnbn . Then (51) says that

amC tnbm � cn:

Switch the index m and n, then we get

anC tmbn � cm:
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Since bm D .cm� am/=tm and bn D .cn� an/=tn , the inequalities above are

(52) amC
tn

tm
.cm� am/� cn and anC

tm

tn
.cn� an/� cm:

Solve cm from the first inequality, and then the second inequality implies that

anC
tm

tn
.cn� an/� amC

tm

tn
.cn� am/:

This is equivalent to the relation�
tm

tn
� 1

�
.am� an/� 0:

By (50), we know am > an when m� n, which is strictly positive due to (50). This
implies tm > tn , which is a contradiction since the tn converge to 0 (so tm < tn when
m� n).

Now, we are ready to give the proof of Theorem 1.9.

Proof of Theorem 1.9 For simplicity, we will only prove the case for two symplectic
structures !0 and !1 , that is, for any t 2 Œ0; 1� and a2QHŒ0;1� , the map t 7! �t .a;H /

is upper semicontinuous. It is easy to see how this can be generalized to the general
case.

By the realization property (2) in Lemma 8.2, there exists some c 2 .CFŒ0;1�; @0/ such
that `0.c/D �0.a;H /, where Œc�D .PSS0/�.a/. On the other hand, ˆ0;t .c/ represents

Œˆ0;t .c/�D .ˆ0;t /�Œc�D .ˆ0;t /�..PSS0/�.a//D .PSSt /�.a/:

Then, by definition, we know that �t .a;H /� `t .ˆ0;t .c//. Therefore,

�t .a;H /� �0.a;H /� `t .ˆ0;t .c//� `0.c/:

Upper semicontinuity from Proposition 8.4 implies the desired conclusion.

Remark 8.5 There is an obvious question on the lower semicontinuity of t –spectral
invariants. A trial of imitating the proof of Theorem 8.3 in [15] can be carried out but
some details could not go through deeply due to the non-uniform upper bound from
the energy estimation from Proposition 4.3.
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9 Applications on quasi-isometric embedding and capacity

9.1 Proof of Theorem 1.15

Definition 9.1 Let us give the following two definitions:

(1) [26, Definition 1.3] We say M admits an aperiodic symplectic structure if
there exists a symplectic structure ! such that .M; !/ admits an autonomous
Hamiltonian function H, not everywhere locally constant, such that its Hamil-
tonian flow has no nonconstant periodic orbit. Such H is called an associated
aperiodic Hamiltonian of ! .

(2) For a symplectic structure ! , we call it strongly aperiodic-approximated (the
saa condition) if there exists a sequence of aperiodic structures !n such that (a)
!n!! under the norm j � j in Section 3; (b) there exists a sequence of associated
aperiodic Hamiltonians Hn of !n that C1–converges to a differentiable function
H on M.

It is well known that the computation of spectral invariants is difficult in general. The
following theorem will be helpful in the proof later:

Proposition 9.2 [24, Proposition 4.1] Let .M; !/ be a symplectic manifold. If H

is an autonomous Hamiltonian function on M such that its Hamiltonian flow has no
nonconstant contractible periodic orbit with the period at most 1, then

�.ŒM �;H I!/D�min
M

H:

Notice that the condition in this proposition is weaker than the assumption of [27,
Theorem 1.1]. In [17], for any symplectic manifold .M; !/, it is proved that the
Hofer diameter of eHam.M; !/ is infinite by using, roughly speaking, a sequence of
bump functions on a displaceable subset. Theorem 1.15 shows that under a certain
condition (which covers a variety of symplectic manifolds, especially in 4 dimensions)
the Hofer diameter of eHam.M; !/ goes to infinity in uncountably many linearly
independent directions. The proof of Theorem 1.15 takes its inspiration from the proof
of Theorem 1.1 in [27].

Proof of Theorem 1.15 First, note that if ! is already aperiodic, then in particular
.M; !/ admits an autonomous Hamiltonian H such that its Hamiltonian flow has no
nonconstant contractible periodic orbit. Then, by the compactness of M and Sard’s
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theorem, there exists a nontrivial closed interval Œa; b� (assumed to be Œ0; 1�) such that
every c 2 Œ0; 1� is a regular value of H. Now, take a function gW R! Œ0; 1� such that
its support is in .0; 1/, max g D 1 and its only local minimum has value 0. For each
Ev D .v1; v2; : : : / 2R1 , define fEvW R!R by

fEv.s/D

1X
iD1

vi �g
�
2i.s� .1� 21�i//

�
:

The embedding ˆW R1! eHam.M; !/ is constructed as ˆ.Ev/D Œ�1
fEvıH

�. Then, for
any nonzero Ev 2R1 , XfEvıH D f

0

Ev
.H / �XH , which implies ˆ is a homomorphism.

Therefore,

dH .ˆ.Ev/;ˆ. Ew//D dH .Œ�
1
fEvıH

�; Œ�1
f EwıH

�/

D dH .Œ�
1
fEv� EwıH

�;1M /

� kfEv� Ew ıHkH

Dmax.fEv ıH /�min.f Ew ıH /D osc.Ev� Ew/:

Note that this computation is true for any ! without assuming ! to be aperiodic.

On the other hand, fEv ı H also satisfies the condition that it has no nonconstant
contractible periodic orbit. In particular, it has no nonconstant contractible periodic
orbit with period at most 1. By Proposition 9.2, we know

�.ŒM �; fEv� Ew ıH I!/D�min
M
.fEv� Ew ıH /Dmax

i
.wi � vi/

and

�.ŒM �; f Ew�Ev ıH I!/D�min
M
.f Ew�Ev ıH /Dmax

i
.vi �wi/:

Therefore,

dH .ˆ.Ev/;ˆ. Ew//�maxfmax
i
.wi � vi/;max

i
.vi �wi/g D jEv� Ewj1;

where the first inequality comes from (a) in Theorem 2.12.

Next, if ! satisfies the saa condition, then take a sequence of aperiodic symplectic
structures !n! ! . By Corollary 1.10, for each fixed Ew and Ev in R1 and any given
� > 0, there exists an N 2N such that whenever n�N , we have

max
i
.wi � vi/D �.ŒM �; fEv� Ew ıHnI!n/� �.ŒM �; fEv� Ew ıH I!/C �
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and

max
i
.vi �wi/D �.ŒM �; f Ew�Ev ıHnI!n/� �.ŒM �; f Ew�Ev ıH I!/C �;

where the equalities come from the computation above when the symplectic structure
is aperiodic. Therefore,

dH .ˆ.Ev/;ˆ. Ew//C � �maxfmax
i
.wi � vi/;max

i
.vi �wi/g D jEv� Ewj1:

Since this result is true for any � > 0, we get the conclusion.

Remark 9.3 If the continuity result of boundary depth is affirmative (especially the
lower semicontinuity), a similar argument as in the proof of Theorem 1.15 implies that
if M admits a symplectic structure which satisfies the saa condition, then there is a
quasi-isometric embedding from .R1; j�j1/ into .Ham.M; !/; j�j1/. This can be
regarded as an “approximated” version of Theorem 1.1 in [27], which can probably
cover more symplectic manifolds.
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