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The universality of the Rezk nerve

AARON MAZEL-GEE

We functorially associate to each relative 1–category .R;W / a simplicial space
NR
1.R;W / , called its Rezk nerve (a straightforward generalization of Rezk’s “classi-

fication diagram” construction for relative categories). We prove the following local
and global universal properties of this construction: (i) that the complete Segal space
generated by the Rezk nerve NR

1.R;W / is precisely the one corresponding to the
localization RŒŒW �1��; and (ii) that the Rezk nerve functor defines an equivalence
RelCat1ŒŒW �1

BK ��
�
�! Cat1 from a localization of the 1–category of relative 1–

categories to the 1–category of 1–categories.
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0 Introduction

0.1 The Rezk nerve

A relative1–category is a pair .R;W / of an1–category R and a subcategory W �R

containing all the equivalences, called the subcategory of weak equivalences. Freely
inverting the weak equivalences, we obtain the localization of this relative 1–category,
namely the initial functor

R! RŒŒW �1��
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from R which sends all maps in W to equivalences. In general, it is extremely difficult
to access the localization.1 To ameliorate this state of affairs, in this paper we provide a
novel method of accessing this localization via Rezk’s theory of complete Segal spaces.

To describe this, let us first recall that the 1–category CSS of complete Segal spaces
participates in a diagram

sS CSS Cat1:
LCSS

?
UCSS

N�1
1

�

N1

That is, it sits as a reflective subcategory of the 1–category sS of simplicial spaces,
and it is equivalent to the 1–category Cat1 of 1–categories. In particular, one can
contemplate the complete Segal space (or equivalently, the 1–category) generated by
an arbitrary simplicial space Y , much as one can contemplate the 1–category generated
by an arbitrary simplicial set: this is encoded by the unit

Y
�
�! LCSS.Y /

of the adjunction (where we omit the inclusion functor UCSS for brevity).

Now, given a relative 1–category .R;W /, its Rezk nerve is a certain simplicial space

NR
1.R;W / 2 sS

which “wants to be” the complete Segal space

N1.RŒŒW �1��/ 2 CSS

corresponding to its localization:

� it admits canonical maps

N1.R/! NR
1.R;W /! N1.RŒŒW �1��/;

and moreover

� its construction manifestly dictates that for any 1–category C, the restriction
map

homsS.NR
1.R;W /;N1.C//! homsS.N1.R/;N1.C//' homCat1.R;C/

1For instance, even in the case that R is a one-object 1–category and we are only interested in its
1–categorical localization, ie the composite R! RŒŒW �1��! ho.RŒŒW �1��/' RŒW �1� — that is, in
the case that we are interested in freely inverting certain elements of a monoid — obtaining a concrete
description is nevertheless an intractable (in fact, computationally undecidable) task, closely related to the
so-called “word problem” for generators and relations in abstract algebra.
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factors through the subspace (ie collection of path components) of those functors
R! C sending all maps in W � R to equivalences in C.

Unfortunately, life is not quite so simple: the Rezk nerve is not generally a complete
Segal space (or even a Segal space).2 Nevertheless, the second-best possible thing is
true.

Theorem (3.8) The above maps extend to a commutative diagram

N1.R/ NR
1.R;W / N1.RŒŒW �1��/

LCSS.N1.R// LCSS.NR
1.R;W // LCSS.N1.RŒŒW �1��//

�

�

� �

�

�

In other words, the complete Segal space generated by the Rezk nerve of .R;W / is
precisely the one corresponding to its localization.

This theorem provides a local universal property of the Rezk nerve: it asserts that the
composite

RelCat1
NR
1
��! sS

LCSS
��! CSS

N�1
1

�
��! Cat1

takes each relative 1–category .R;W / to its localization RŒŒW �1��. However, it says
nothing about the effect of this composite on morphisms of relative 1–categories. To
this end, we also prove the following:

Theorem (Propositions 3.9 and 3.11) The above composite is canonically equivalent
to the localization functor

RelCat1! Cat1:

In particular, denoting by WBK � RelCat1 the subcategory of maps which it takes to
equivalences, the above composite induces an equivalence

RelCat1ŒŒW �1
BK ��

��! Cat1:

In other words, the Rezk nerve functor does indeed functorially compute localizations
of relative 1–categories, and, moreover, the induced “homotopy theory” on the
1–category RelCat1 of relative 1–categories — that is, the relative 1–category

2We provide sufficient conditions on .R;W / for its Rezk nerve NR
1.R;W / to be a (complete) Segal

space in [15].
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structure .RelCat1;WBK/ that results therefrom — gives a presentation of the 1–
category Cat1 of 1–categories. We therefore deem this result as capturing the global
universal property of the Rezk nerve.

Remark 0.1 The Rezk nerve functor is a close cousin of Rezk’s “classification diagram”
functor of [17, Section 3.3]; to emphasize the similarity, we denote the latter functor by

RelCat NR
�! ssSet

and refer to it as the 1–categorical Rezk nerve. In fact, as we explain in Remark 3.2,
this is essentially just the restriction of the 1–categorical Rezk nerve functor, in the
sense that there is a canonical commutative diagram

RelCat s.sSet/ sS

RelCat1

NR s.j�j/

NR
1

in Cat1 . In Remark 3.10, we use this observation to show that our global universal
property of the 1–categorical Rezk nerve can be seen as a generalization of work of
Barwick and Kan.

0.2 Conventions

Though it stands alone, this paper belongs to a series on model 1–categories. These
papers share many key ideas; thus, rather than have the same results appear repeatedly
in multiple places, we have chosen to liberally cross-reference between them. To this
end, we introduce the following “code names”:

title reference code

Model1–categories, I: [11] S
Some pleasant properties of the1–category of simplicial spaces

The universality of the Rezk nerve n/a N

On the Grothendieck construction for1–categories [16] G

Hammocks and fractions in relative1–categories [15] H

Model1–categories, II: Quillen adjunctions [12] Q

Model1–categories, III: The fundamental theorem [13] M

Thus, for instance, to refer to [13, Theorem 1.9], we will simply write Theorem M.1.9.
(The letters are meant to be mnemonical: they stand for “simplicial space”, “nerve”,
“Grothendieck”, “hammock”, “Quillen” and “model”, respectively.)
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We take quasicategories as our preferred model for 1–categories, and in general we
adhere to the notation and terminology of Lurie [7; 9].3 In fact, our references to these
two works will be frequent enough that it will be convenient for us to adopt Lurie’s
convention and use the code names T and A for them, respectively.

However, we work invariantly to the greatest possible extent: that is, we primarily work
within the 1–category of 1–categories. Thus, for instance, we will omit all technical
uses of the word “essential”, eg we will use the term unique in situations where one
might otherwise say “essentially unique” (ie parametrized by a contractible space). For
a full treatment of this philosophy as well as a complete elaboration of our conventions,
we refer the interested reader to Appendix S.A. The casual reader should feel free to
skip this on a first reading; on the other hand, the careful reader may find it useful to
peruse that section before reading the present paper. For the reader’s convenience, we
also provide a complete index of the notation that is used throughout this sequence of
papers in Appendix S.B.

Outline

We now provide a more detailed outline of the contents of this paper.

� In Section 1, we undertake a study of relative 1–categories and their localiza-
tions.

� In Section 2, we briefly review the theory of complete Segal spaces.

� In Section 3, we introduce the Rezk nerve and state its local and global universal
properties. We give a proof of the global universal property which relies on the
local one, but we defer the proof of the local one to Section 4.

� In Section 4, we prove the local universal property of the Rezk nerve. Though
much of the proof is purely formal, at its heart it ultimately relies on some rather
delicate model-categorical arguments.
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1 Relative 1–categories and their localizations

Given an 1–category and some chosen subset of its morphisms, we are interested in
freely inverting those morphisms. In order to codify these initial data, we introduce the
following:

Definition 1.1 A relative 1–category is a pair .R;W / of an 1–category R and
a subcategory W � R, called the subcategory of weak equivalences, such that W

contains all the equivalences (and in particular, all the objects) in R. These form the
evident1–category RelCat1 .5 Weak equivalences will be denoted by the symbol ��!.
Though we will of course write R for the 1–category obtained by forgetting W , to
ease notation we will also sometimes simply write R for the pair .R;W /. We write
RelCat � RelCat1 for the full subcategory on those relative 1–categories .R;W /

such that R 2 Cat� Cat1 .

Remark 1.2 As we are working invariantly, our Definition 1.1 is not quite a general-
ization of the 1–category RelCat as given eg in [1, Section 3.1] or [6, Definition 3.1],
an object of which is a strict category R 2 Cat (ie a simplicial set satisfying the Segal
condition; see subitem S.A(4)(c)) equipped with a wide subcategory W � R (ie one
containing all the objects). For emphasis, we will therefore sometimes refer to objects
of RelCat as strict relative categories.

In addition to being the only meaningful variant in the invariant world, Definition 1.1
allows for a clean and aesthetically appealing definition of localization, namely as a
left adjoint (see Definition 1.8). In any case, as we are ultimately only interested in
relative 1–categories because we are interested in their localizations, this requirement
is no real loss.

4This script is readily available upon request.
5To be precise, one can view RelCat1 ' Funsurj mono.Œ1�;Cat1/� Fun.Œ1�;Cat1/ as the full subcat-

egory on those functors selecting the inclusion of a surjective monomorphism.
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Despite these differences, there is an evident functor

RelCat! RelCat;

to which we will refer on occasion.

Notation 1.3 In order to disambiguate our notation associated to various relative
1–categories, we introduce the following conventions:

� When multiple relative 1–categories are under discussion, we will sometimes
decorate them for clarity. For instance, we may write .R1;W1/ and .R2;W2/

to denote two arbitrary relative 1–categories, or we may instead write .I;WI/

and .J;WJ/.

� Moreover, we will eventually study certain “named” relative 1–categories;
for example, there is a Barwick–Kan relative structure on RelCat1 itself (see
Definition 1.16). We will always subscript the subcategory of weak equivalences
of such a relative 1–category with (an abbreviation of) its name; for example,
we will write WBK � RelCat1 . We may also merely similarly subscript the
ambient 1–category to denote the relative 1–category; for example, we will
write .RelCat1/BK D .RelCat1;WBK/.

� Finally, there will occasionally be two different 1–categories with relative
structures of the same name. In such cases, if disambiguation is necessary, we
will additionally superscript the subcategory of weak equivalences with the name
of the ambient1–category. For instance, we would write W

RelCat1
BK �RelCat1

to distinguish it from the subcategory W RelCat
BK � RelCat.

We have the following fundamental source of examples of relative 1–categories:

Example 1.4 If R! C is any functor of 1–categories, we can define a relative 1–
category .R;W / by declaring W �R to be the subcategory on those maps that are sent
to equivalences in C. Note that W � R will automatically have the two-out-of-three
property.

Definition 1.5 In the situation of Example 1.4, we will say that the functor R! C

creates the subcategory W � R.

We will make heavy use of the following construction:
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Notation 1.6 Given any .R1;W1/; .R2;W2/ 2 RelCat1 , we define

.Fun.R1;R2/Rel;Fun.R1;R2/W / 2 RelCat1

by setting
Fun.R1;R2/Rel

� Fun.R1;R2/

to be the full subcategory on those functors which send W1 � R1 into W2 � R2 , and
setting

Fun.R1;R2/W � Fun.R1;R2/Rel

to be the (generally nonfull) subcategory on the natural weak equivalences.6 It is not
hard to see that this defines an internal hom bifunctor for .RelCat1;�/.

It will be useful to have the following terminology:

Definition 1.7 If C is any 1–category, we call .C;C'/ the associated minimal
relative 1–category and we call .C;C/ the associated maximal relative 1–category.
These define fully faithful inclusions

Cat1 RelCat1

min

max
?

?

which are respectively left and right adjoint to the forgetful functor RelCat1
URel
��!Cat1

sending .R;W / to R. For Œn� 2 � � Cat1 , we will use the abbreviation Œn�W D
max.Œn�/, since these relative categories will appear quite often; correspondingly, we
will also make the implicit identification Œn�Dmin.Œn�/.

We now come to our central object of interest.

Definition 1.8 The functor minW Cat1! RelCat1 also admits a left adjoint

RelCat1
L
�! Cat1;

which we refer to as the localization functor on relative 1–categories. For a relative
1–category .R;W / 2 RelCat1 , we will often write RŒŒW �1��DL .R;W /; we only

6If we consider RelCat1 � Fun.Œ1�;Cat1/ , then Fun.R1;R2/Rel is simply the 1–category of
natural transformations.
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write L since the notation .�/ŒŒ.�/�1�� is a bit unwieldy. Explicitly, its value on
.R;W / 2 RelCat1 can be obtained as the pushout

RŒŒW �1��' colim

0BB@
W R

W gpd

1CCA
in Cat1 (and the functor itself can be obtained by applying this construction in families).

Remark 1.9 Using model categories, one can of course compute the pushout in Cat1
of Definition 1.8 by working in sSetJoyal (which is left proper), for instance after
presenting the map W ! W gpd using the derived unit of the Quillen adjunction
idW sSetJoyal � sSetKQ Wid, ie after taking a fibrant replacement via a cofibration in
sSetKQ of a quasicategory presenting W . However, note that this derived unit can be
quite difficult to describe in practice, and, moreover, the resulting pushout will generally
still be very far from being a quasicategory. Equally inexplicitly, one can also obtain a
quasicategory presenting RŒŒW �1�� by computing a fibrant replacement in the marked
model structure of Proposition T.3.1.3.7 (ie in the specialization of the model structure
given there to the case where the base is the terminal object ptsSet ).

Remark 1.10 We will also use the term “localization” to refer to the canonical map
R! RŒŒW �1�� in Cat1 satisfying the universal property that for any C 2 Cat1 , the
restriction

homCat1.RŒŒW
�1��;C/! homCat1.R;C/

defines an equivalence onto the subspace

homRelCat1..R;W /;min.C//� homCat1.R;C/

of those functors which take W into C' .7 Thus, by definition, the map R!RŒŒW �1��

is an epimorphism in Cat1 .

Example 1.11 The localization of a minimal relative 1–category min.C/D .C;C'/
is simply the identity functor C ��! C.

7This map can be obtained either by applying RelCat1
L
�! Cat1 to the counit min.R/! .R;W / of

the adjunction min a URel , or by applying RelCat1
URel
��! Cat1 to the unit .R;W /!min.RŒŒW �1��/

of the adjunction L amin.
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Example 1.12 The localization of a maximal relative 1–category max.C/D .C;C/
is the groupoid completion functor C! Cgpd (ie the component at C of the unit of the
adjunction .�/gpdW Cat1� S WUS ).

Example 1.13 Given a left localization adjunction LW C� LC WU (ie an adjunction
with fully faithful right adjoint), if we define W � C to be created by C L

�! LC,
then the localization of .C;W / is precisely C L

�! LC: that is, the functor C L
�! LC

induces an equivalence CŒŒW �1�� ��! LC, which is in fact inverse to the composite
LC U
�! C! CŒŒW �1��. This follows from Proposition T.5.2.7.12, or alternatively from

Lemma 1.24 (see Remark 1.25). Of course, a dual statement holds for right localization
adjunctions.

For an arbitrary relative 1–category .R;W /, note that the localization map R!

RŒŒW �1�� might not create the subcategory W �R: there might be strictly more maps
in R which are sent to equivalences in RŒŒW �1��. This leads us to the following notion:

Definition 1.14 A relative 1–category .R;W / is called saturated if the localization
map R! RŒŒW �1�� creates the subcategory W � R.

Remark 1.15 If a relative1–category .R;W /2RelCat1 has its subcategory of weak
equivalences W � R created by any functor R! C, then .R;W / will automatically
be saturated. To see this, consider the induced factorization

R C

RŒŒW �1��

in Cat1 . This implies that any morphism in R which is sent to an equivalence
in RŒŒW �1�� must also be sent to an equivalence in C (by the functoriality of inverse
morphisms), so that by definition it lies in the subcategory W � R.

Now, we will be using relative 1–categories as “presentations of 1–categories”,
namely of their localizations. However, a map of relative 1–categories may induce
an equivalence on localizations without itself being an equivalence in RelCat1 . This
leads us to the following notion:

Definition 1.16 We define the subcategory WBK � RelCat1 of Barwick–Kan weak
equivalences to be created by the localization functor RelCat1

L
�! Cat1 . We denote

the resulting relative 1–category by .RelCat1/BK D .RelCat1;WBK/ 2 RelCat1 .
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The following result then justifies our usage of relative 1–categories as “presentations
of 1–categories”:

Proposition 1.17 The functors in the left localization adjunction L W RelCat1 �
Cat1 Wmin induce inverse equivalences

RelCat1ŒŒW �1
BK ��' Cat1

in Cat1 .

Proof This is a special case of Example 1.13.

We have the following strengthening of Remark 1.10:

Proposition 1.18 For any .R;W / 2 RelCat1 and any C 2 Cat1 , the restriction

Fun.RŒŒW �1��;C/! Fun.R;C/

along the localization functor R ! RŒŒW �1�� defines an equivalence onto the full
subcategory of Fun.R;C/ spanned by those functors which take W into C' .

Proof We begin by observing that this functor is a monomorphism in Cat1 : this is
because we have a pullback diagram

Fun.RŒŒW �1��;C/ Fun.W gpd;C/

Fun.R;C/ Fun.W ;C/

in Cat1 in which the right arrow is clearly a monomorphism, and monomorphisms are
closed under pullback. So, in particular, this functor is the inclusion of a subcategory.
Then, to see that it is full, suppose we are given two functors RŒŒW �1���C, considered
as objects of Fun.RŒŒW �1��;C/. A natural transformation between their images in
Fun.R;C/ is given by a functor Œ1��R! C which restricts to the two composites
R ! RŒŒW �1�� � C on the two objects 0; 1 2 Œ1�. Since we already know that
Fun.RŒŒW �1��;C/� Fun.R;C/ is the inclusion of a subcategory, it suffices to obtain
an extension

Œ1��R C

Œ1��RŒŒW �1��
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in Cat1 . For this, consider the diagram

f0; 1g �W f0; 1g �W gpd

f0; 1g �R f0; 1g �RŒŒW �1�� C

Œ1��W Œ1��W gpd

Œ1��R Œ1��RŒŒW �1��

in Cat1 containing and extending the above data. The bottom square is a pushout since
the functor Œ1���W Cat1! Cat1 is a left adjoint, and the back square is a pushout
by Lemma 1.20. Together, these observations guarantee the desired extension.

Remark 1.19 Proposition 1.18 implies that Definition 1.8 agrees with Definition
A.1.3.4.1.

We now make an easy observation regarding the localization functor, which is necessary
for the argument of Proposition 1.18 but will also be useful in its own right.

Lemma 1.20 The localization functor L W RelCat1! Cat1 commutes with finite
products.

For the proof of Lemma 1.20, it will be convenient to have the following notion:

Definition 1.21 Let .C;˝/ be a closed symmetric monoidal1–category with internal
hom bifunctor

Cop
�C

homC.�;�/
�������! C:

A collection of objects I of C is called an exponential ideal if we have homC.Y;Z/2 I

for any Y 2 C and any Z 2 I. We will use this same terminology to refer to a full
subcategory D� C whose objects form an exponential ideal.

The following straightforward result explains why we are interested in exponential
ideals:
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Lemma 1.22 Suppose that .C;˝/ is a closed symmetric monoidal 1–category , and
let LW C� LC WU be a left localization with unit map idC

�
�! L in Fun.C;C/ (where

we implicitly consider LC� C). Then , the full subcategory LC� C is an exponential
ideal if and only if the natural map L.�˝ �/ is an equivalence in Fun.C�C;C/ (ie we
have

L.Y ˝Z/ ��! L.L.Y /˝L.Z//

in LC for all Y;Z 2 C). In particular, if LC is closed under the monoidal structure,
then LC� C is an exponential ideal if and only if

L.Y ˝Z/' L.Y /˝L.Z/

in LC for all Y;Z 2 C.

Proof Suppose that LC� C is an exponential ideal. Then, for any Y;Z 2 C and any
test object W 2 LC, we have the string of natural equivalences

homC.L.Y ˝Z/;W /' homC.Y ˝Z;W /' homC.Y; homC.Z;W //

' homC.L.Y /; homC.Z;W //' homC.L.Y /˝Z;W /

' homC.Z˝L.Y /;W /' homC.Z; homC.L.Y /;W //

' homC.L.Z/; homC.L.Y /;W //' homC.L.Z/˝L.Y /;W /

' homC.L.Y /˝L.Z/;W /' homC.L.L.Y /˝L.Z//;W /:

Hence, we have an equivalence L.Y ˝Z/' L.L.Y /˝L.Z// by the Yoneda lemma
applied to the 1–category LC (and it is straightforward to check that this equivalence
is indeed induced by the specified map). So L.�˝�/ is an equivalence in Fun.C�C;C/,
as desired.

On the other hand, suppose that L.Y ˝Z/ ��! L.L.Y /˝ L.Z// for all Y;Z 2 C.
Then, we have the string of natural equivalences

homC.Y; homC.Z;W //

' homC.Y ˝Z;W /' homC.L.Y ˝Z/;W /

' homC.L.L.Y /˝L.Z//;W /' homC.L.Y /˝L.Z/;W /

' homC.L.L.Y //˝L.Z/;W /' homC.L.L.L.Y //˝L.Z//;W /

' homC.L.L.Y /˝Z/;W /' homC.L.Y /˝Z;W /' homC.L.Y /; homC.Z;W //:

Hence, for any map Y !Y 0 in C which localizes to an equivalence L.Y / ��!L.Y 0/ in
LC�C, we obtain an equivalence homC.Y; homC.Z;W //

� �homC.Y
0; homC.Z;W //.
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It follows that the object homC.Z;W / 2 C is local with respect to the left localization,
ie that in fact homC.Z;W / 2 LC� C. So LC� C is an exponential ideal.

With Lemma 1.22 in hand, we now proceed to prove Lemma 1.20.

Proof of Lemma 1.20 The right adjoint minW Cat1 ! RelCat1 induces an equiv-
alence onto the full subcategory of minimal relative 1–categories. It is easy to
see that this is an exponential ideal in .RelCat1;�/, and so the result follows from
Lemma 1.22.

The following useful construction relies on Lemma 1.20:

Remark 1.23 Let .R1;W1/; .R2;W2/ 2 RelCat1 . Then the identity map

.Fun.R1;R2/Rel;Fun.R1;R2/W /! .Fun.R1;R2/Rel;Fun.R1;R2/W /

is adjoint to an evaluation map

.R1;W1/� .Fun.R1;R2/Rel;Fun.R1;R2/W /! .R2;W2/:

By Lemma 1.20, applying the localization functor RelCat1
L
�! Cat1 yields a map

R1ŒŒW
�1
1 ���Fun.R1;R2/RelŒŒ.Fun.R1;R2/W /�1��! R2ŒŒW

�1
2 ��;

which is itself adjoint to a canonical map

Fun.R1;R2/RelŒŒ.Fun.R1;R2/W /�1��! Fun.R1ŒŒW �1
1 ��;R2ŒŒW

�1
2 ��/:

In particular, precomposing with the localization map for the internal hom object yields
a canonical map

Fun.R1;R2/Rel
! Fun.R1ŒŒW �1

1 ��;R2ŒŒW
�1
2 ��/:

Lemma 1.20 also allows us to prove the following result, which will be useful later
and which gives a sense of the interplay between relative 1–categories and their
localizations:

Lemma 1.24 Given any .R1W1/; .R2;W2/2RelCat1 and any pair of maps R1�R2

in RelCat1 , a natural weak equivalence between them induces an equivalence between
their induced functors R1ŒŒW

�1
1 ��� R2ŒŒW

�1
2 �� in Cat1 .
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Proof A natural weak equivalence corresponds to a map Œ1�W �R1!R2 in RelCat1 .
By Lemma 1.20 (and Example 1.12), this gives rise to a map Œ1�gpd �R1ŒŒW

�1
1 ��!

R2ŒŒW
�1
2 �� in Cat1 , which precisely selects the desired equivalence.

Remark 1.25 Lemma 1.24 allows for a simple proof of Proposition T.5.2.7.12, that
a left localization is in particular a free localization. Indeed, given a left localization
adjunction LW C� LC WU, write W � C for the subcategory created by the functor
LW C! LC. Then, this adjunction gives rise to a pair of maps .C;W / L

�! min.LC/
and min.LC/ U

�! .C;W / in RelCat1 . Moreover, the composite

min.LC/ U
�! .C;W / L

�!min.LC/

is an equivalence, while the composite

.C;W / L
�!min.LC/ U

�! .C;W /

is connected to id.C;W / by the unit of the adjunction, which is a componentwise weak
equivalence (since, for any Y 2 C, applying C L

�! LC to the map Y ! L.Y / gives an
equivalence L.Y / ��! L.L.Y //). Hence, it follows that these functors induce inverse
equivalences CŒŒW �1�� ' LC. (From here, one can obtain the actual statement of
Proposition T.5.2.7.12 by appealing to Proposition 1.18.)

Lemma 1.24 also has the following special case, which will be useful to us:

Lemma 1.26 Given any C;D 2 Cat1 and any pair of maps C�D, a natural transfor-
mation between them induces an equivalence between the induced maps Cgpd�Dgpd

in S.

Proof In light of Example 1.12, this follows from applying Lemma 1.24 in the special
case that .R1;W1/Dmax.C/ and .R2;W2/Dmax.D/.

Remark 1.27 Lemma 1.26 can also be seen as following from applying Lemma 1.22
to the left localization .�/gpdW Cat1 � S WUS . Namely, since the full subcategory
S � Cat1 is an exponential ideal for .Cat1;�/, the left adjoint .�/gpdW Cat1 ! S

commutes with finite products, and hence a natural transformation Œ1��C!D gives
rise to a map .Œ1��C/gpd' Œ1�gpd�Cgpd!Dgpd which selects the desired equivalence
in homS.C

gpd;Dgpd/.

In turn, Lemma 1.26 has the following useful further special case:
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Corollary 1.28 An adjunction F W C�D WG induces inverse equivalences

F gpd
W Cgpd ��!Dgpd and Cgpd � �Dgpd

WGgpd

in S.

Proof The adjunction F aG has unit and counit natural transformations idC!G ıF

and F ıG! idD , and so the claim follows from Lemma 1.26.

We note the following interaction between taking localizations and taking homotopy
categories:

Remark 1.29 The composite left adjoint

RelCat1
.ho.�/;ho.�//
���������! RelCat

.�/Œ.�/�1�
�������! Cat

coincides with the composite left adjoint

RelCat1
.�/ŒŒ.�/�1��
��������! Cat1

ho
�! Cat;

since they share a right adjoint

RelCat1 - RelCat min
 �� Cat:

Hence, for any .R;W / 2 RelCat1 we have a natural equivalence

ho.RŒŒW �1��/ ��! ho.R/Œho.W /�1�

in Cat� Cat1 .

We end this section with the following observation (which partly echoes Example S.2.11).

Remark 1.30 Suppose .R;W / is a relative 1–category. Then .ho.R/; ho.W // is a
relative category (so is in particular a relative 1–category). However, its localization
ho.R/ŒŒho.W /�1�� need not recover RŒŒW �1��. This is for the same reason as always
for such facts, namely that we lose coherence data when we pass from R to ho.R/.
(Commutative diagrams in ho.R/ need not come from commutative diagrams in R,
and when they do they might do so in multiple, inequivalent ways.) An explicit
counterexample is provided by the minimal relative 1–category .R;W /D .R;R'/:
then

ho.W /' ho.R'/' ho.R/' � ho.R/
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since the equivalences in R are created by R! ho.R/, and hence ho.R/ŒŒho.W /�1��'

ho.R/ (while of course RŒŒW �1��' R). One might therefore refer to the 1–category
ho.R/ŒŒho.W /�1�� as an “exotic enrichment” of the homotopy category ho.RŒŒW �1��/.

2 Complete Segal spaces

We now give an extremely brief review of the theory of complete Segal spaces. This
section exists more or less solely to fix notation; we refer the reader seeking a more
thorough discussion either to the original paper [17] (which uses model categories) or
to [8, Section 1] (which uses 1–categories).

Let us write �
Œ��
�! Cat for the standard cosimplicial (strict) category. Then, recall that

the nerve of C 2 Cat is by definition the simplicial set N.C/� D homlw
Cat.Œ��;C/. This

defines a fully faithful embedding NW Cat! sSet, with image those simplicial sets
which admit unique lifts for the inner horn inclusions fƒni ! �ng0<i<n�0 . In fact,
this functor is a right adjoint.

The situation with 1–categories is completely analogous.

Definition 2.1 The (1–categorical) nerve of an1–category C is the simplicial space

N1.C/� D homlw
Cat1.Œ

��;C/;

ie the composite
�op Œ��op
�! .Cat1/op homCat1 .�;C/

���������! S:

This defines a fully faithful embedding N1W Cat1 ,! sS, with image the full subcate-
gory CSS� sS of complete Segal spaces, ie those simplicial spaces satisfying the Segal
condition and the completeness condition. This inclusion fits into a left localization
adjunction LCSSW sS� CSS WUCSS . Hence, we obtain an equivalence

Cat1
N1
�
��! CSS;

whose inverse
CSS

N�1
1

�
��! Cat1

takes an object Y� 2 CSS to the coendZ Œn�2�

Yn � Œn�

in Cat1 . (These claims respectively follow from Proposition A.A.7.10, [5, Theorem
4.12], [17, Theorem 7.2] and [5, Theorem 4.12] again.) This equivalence identifies the
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subcategory S� Cat1 with the subcategory of constant simplicial spaces (which are
automatically complete Segal spaces).

Remark 2.2 Complete Segal spaces provide an extremely efficient way of computing
the hom spaces in an 1–category: if x; y 2 C, then there is a natural equivalence

homC.x; y/' lim

0BBB@
N1.C/1

ptS N1.C/0 �N1.C/0

.s;t/

.x;y/

1CCCA
in S, where we use the notation sD ı1 and t D ı0 to emphasize the roles that these two
face maps play in this theory. (Note that N1.C/0 D homCat1.Œ0�;C/' C' is simply
the maximal subgroupoid of C, while N1.C/1 D homCat1.Œ1�;C/' Fun.Œ1�;C/' is
the space of morphisms in C.)

Remark 2.3 There is a canonical involution � ��!� in Cat, which is the identity
on objects but acts on morphisms by “reversing the coordinates”: a map Œm� '

�! Œn� is
taken to the map

Œm�
i 7!.n�'.m�i//
�����������! Œn�:

Taking opposites, this induces an involution �op ��!�op , which in turn induces an
involution of sSD Fun.�op; S/ by precomposition. Unwinding the definitions, we see
that this involution sS ��! sS restricts to an involution CSS ��!CSS which corresponds
to the involution .�/opW Cat1 ��! Cat1 .

For future use, we record the following observation:

Proposition 2.4 The diagram

sS CSS Cat1

S

LCSS

?
UCSS

j�
j

N�1
1

�

N1

.�
/
gpd

commutes: that is ,

� geometric realization of complete Segal spaces models groupoid completion of
1–categories , and

� for any Y 2 sS, the localization map Y ! LCSS.Y / becomes an equivalence
upon geometric realization.
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Proof For the first claim, note that the functor .�/gpdW Cat1! S is a left localization,
and the composite

S
US
,�! Cat1

N1
�
��! CSS

UCSS
,��! sS

agrees with the functor constW S! sS. Hence, the equivalence

j�j ıUCSS ıN1 ' .�/gpd

in Fun.Cat1; S/ follows from the uniqueness of left adjoints.

For the second claim, note that the reflective inclusion constW S ,! sS factors through
the reflective inclusion UCSSW CSS ,! sS. Hence, the factorization S ,! CSS is also a
reflective inclusion. The equivalence

j�j ' j�j ıUCSS ıLCSS

in Fun.sS; S/ now also follows from the uniqueness of left adjoints.

Remark 2.5 We may interpret Proposition 2.4 as saying that, while a simplicial space
Y 2 sS can be thought of as generating an 1–category (namely the one corresponding
to LCSS.Y / 2 CSS), we can already directly extract its groupoid completion from Y

itself. This is analogous to the fact that an arbitrary simplicial set can be thought of as
generating a quasicategory via fibrant replacement in sSetJoyal , and the replacement
map lies in WJoyal �WKQ (ie it induces an equivalence on geometric realizations).

Remark 2.6 Given a strict category C 2 Cat, the maps

homCat.Œn�;C/! homCat1.Œn�;C/

from hom sets to hom spaces collect into a map

N.C/! N1.C/

in sS; in turn, these maps assemble into a natural transformation N ! N1 in
Fun.Cat; sS/. This map will be an equivalence in sS if and only if C is gaunt: while
the nerve N.C/ 2 sSet� sS is always a Segal space, it only satisfies the completeness
condition when every isomorphism in C is actually an identity map.8 However, by
[17, Remark 7.8], the above map induces an equivalence

LCSS.N.C// ��! LCSS.N1.C//' N1.C/

8The Segal condition in sSet can be equivalently checked in sS since the inclusion sSet � sS is a
right adjoint.
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in CSS� sS. In particular, it therefore follows from Proposition 2.4 that it also induces
an equivalence

jN.C/j ��! jN1.C/j

in S.

3 The Rezk nerve

Recall that the localization of a relative 1–category .R;W / is the initial 1–category
RŒŒW �1�� equipped with a functor from R which sends the subcategory W � R of
weak equivalences to equivalences. Meanwhile, given an arbitrary 1–category C,
observe that the nth space of its nerve can be considered as

N1.C/n D homCat1.Œn�;C/' Fun.Œn�;C/' � Fun.Œn�;C/;

the subcategory of Fun.Œn�;C/ whose morphisms are the natural equivalences. Combin-
ing these two facts, one is led to suspect that the nth space of the nerve N1.RŒŒW �1��/�

should somehow contain the subcategory

Fun.Œn�;R/W � Fun.Œn�;R/

of Fun.Œn�;R/ whose morphisms are the natural weak equivalences. Of course, this
will not generally form a space, but will instead be an 1–category. On the other hand,
there is a universal choice for a space admitting a map from this 1–category, namely
its groupoid completion. We are thus naturally led to make the following construction, a
direct generalization of the “classification diagram” construction for relative categories
defined in [17, Section 3.3]:

Definition 3.1 Given a relative 1–category .R;W /, its (1–categorical) Rezk pren-
erve is the simplicial 1–category

preNR
1.R;W /� D Funlw.Œ��;R/W ;

ie the composite

�op Œ��op
��! .Cat1/op minop

��! .RelCat1/op Fun.�;R/W
�������! Cat1:

This defines a functor

RelCat1
preNR
1

���! sCat1:
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Then, the (1–categorical) Rezk nerve functor

RelCat1
NR
1
��! sS

is given by the composite

RelCat1
preNR
1

���! sCat1
s.�/gpd
���! sS:

Remark 3.2 Recall that Rezk’s “classification diagram” construction [17, Section 3.3],
which we will denote by

RelCat NR
�! s.sSet/

and refer to as the 1–categorical Rezk nerve functor, is given by the formula

NR.R;W /� D N.Funlw.Œ��;R/W /:

Of course, we would like to think of this as a simplicial space using the model category
s.sSetKQ/Reedy . Indeed, combining Proposition 2.4 and Remark 2.6, we obtain a
canonical commutative diagram

RelCat s.sSet/ sS

RelCat1

NR s.j�j/

NR
1

in Cat1 ; in fact, this even refines to a canonical commutative diagram

RelCat s.sSet/ sCat1 sS

RelCat1

NR s.�/gpd

preNR
1

NR
1

in Cat1 (in which the functor s.sSet/ ! sCat1 is obtained by applying s.�/ D

Fun.�op;�/ to the localization sSet! sSetŒŒW �1
Joyal�� ' Cat1 ). Thus, at least as far

as homotopical content is concerned, the 1–categorical Rezk nerve functor strictly
generalizes its 1–categorical counterpart.

Remark 3.3 In turn, the 1–categorical Rezk nerve functor of Remark 3.2 suggests a
similar model-dependent definition of a Rezk nerve functor for “marked quasicategories”
(once again landing in ssSet). In fact, as the first step in the proof of Lemma 4.3, we
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will show that this construction is a model-categorical presentation

� of the 1–categorical Rezk nerve when considered in s.sSetKQ/Reedy , and in
fact

� of the 1–categorical Rezk prenerve when considered in s.sSetJoyal/Reedy .

Remark 3.4 We have the following slight reformulation of Definition 3.1: in view of
Proposition 2.4, the Rezk nerve functor can also be described as a composite

RelCat1
preNR
1

���! sCat1 ' sCSS
s.UCSS/
,����! s.sS/

s.j�j/
���! sS:

Note that the composite functor RelCat1! s.sS/ is a right adjoint, whose left adjoint
is the left Kan extension

��� RelCat1

s.sS/

m�mD..Œm�;Œn�/7!Œm��Œn�W /

ょ

ょŠ.m�
m/

along the Yoneda embedding, where we write m�m for the upper “min�max” functor
for brevity. On the other hand, the functor s.j�j/W s.sS/! sS is a left adjoint. Hence,
as the Rezk nerve functor is the composite of a right adjoint followed by a left adjoint,
understanding its behavior in general is a rather difficult task. (In fact, it follows that
preNR

1W RelCat1! sCat1 is also a right adjoint, while s.�/gpdW sCat1! sS is of
course also a left adjoint.)

We have the following identifications of the Rezk nerves of minimal and maximal
relative 1–categories: in both of these extremal cases, the Rezk nerve does indeed
compute the localization.

Proposition 3.5 The Rezk nerve functor acts on the full subcategories of RelCat1
spanned by the minimal and maximal relative 1–categories (both of which can be
identified with Cat1 ) according to the canonical commutative diagram

Cat1 RelCat1 Cat1

CSS sS S

min

N1

�

max

NR
1 .�/gpd

UCSS const

in Cat1 .
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Proof To see that the left square commutes, given any C 2 Cat1 we compute that

preNR
1.min.C//nDFun.Œn�;min.C//W 'Fun.Œn�;C/''homCat1.Œn�;C/DN1.C/n

(in a way compatible with the evident simplicial structure maps on both sides), ie we
even have a canonical equivalence

preNR
1.min.C//� ' N1.C/�

in sCat1 . As s.�/gpdW sCat1� sS Ws.US/ is a left localization adjunction, it follows
that we also have a canonical equivalence

NR
1.min.C//� ' N1.C/�

in sS.

To see that the right square commutes, given any C 2 Cat1 we first compute that

preNR
1.max.C//n D Fun.Œn�;max.C//W ' Fun.Œn�;C/:

Moreover, note that every face-then-degeneracy composite

Fun.Œn�;C/
ıi
�! Fun.Œn� 1�;C/

�j
�! Fun.Œn�;C/

admits a natural transformation either to or from idFun.Œn�;C/ (depending on i and j ).9

By Lemma 1.26, it follows that all the structure maps of NR
1.max.C// 2 sS are

equivalences, and hence (since �op is sifted so in particular .�op/gpd ' ptS ) it follows
that this simplicial space is constant. The commutativity of the right square now follows
from the computation

NR
1.max.C//0 D .Fun.Œ0�;max.C//W /gpd

' Cgpd;

which gives rise to a canonical equivalence NR
1.max.C//�' const.Cgpd/'N1.Cgpd/�

in sS.

Now, recall that any relative 1–category .R;W / admits a natural map min.R/ D
.R;R'/ ! .R;W / (namely the unit of the adjunction min a URel ). Hence, by
Proposition 3.5 we obtain a natural map

N1.R/! NR
1.R;W /

9We refer the reader to Lemma H.4.5 for a more general statement (whose proof of course does not
rely on the present discussion in any way).
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in sS.10 This immediately suggests the following two questions:

Question 3.6 When does this map in sS (or equivalently, its target) actually lie in the
full subcategory CSS� sS?

Question 3.7 In light of the composite adjunction

sS CSS Cat1;
LCSS

?
UCSS

N�1
1

�

N1

what is the 1–categorical significance of this map?

We give a partial answer to Question 3.6 in [15] (see the calculus theorem (Theorem
H.6.1)). Meanwhile, the essence of the present paper consists in the following complete
answer to Question 3.7, the local universal property of the Rezk nerve:

Theorem 3.8 For any .R;W / 2RelCat1 and any C 2 Cat1 , we have a commutative
square

homRelCat1..R;W /;min.C// homCat1.R;C/

homsS.NR
1.R;W /;N1.C// homCSS.N1.R/;N1.C//:

� �

In other words, the natural map

N1.R/' LCSS.N1.R//! LCSS.NR
1.R;W //

in CSS corresponds to the localization map R! RŒŒW �1�� in Cat1 .

We will give a proof of Theorem 3.8 in Section 4.

Using Theorem 3.8 as input, we now prove the first half of the global universal property
of the Rezk nerve.

Proposition 3.9 The composite functor

RelCat1
NR
1
��! sS

LCSS
��! CSS

N�1
1

�
��! Cat1

is canonically equivalent in Fun.RelCat1;Cat1/ to the localization functor

RelCat1
L
�! Cat1:

10This can also be obtained from the levelwise inclusion homlw
Cat1

.Œ� �;R/' .Funlw.Œ� �;R/W /' ,!

Funlw.Œ� �;R/W of maximal subgroupoids.
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Proof Consider the commutative triangle

min ıURel

idRelCat1 min ıN�11 ıLCSS ıNR
1

in Fun.RelCat1;RelCat1/. Postcomposing with the functor L yields a commutative
triangle

URel

L N�11 ıLCSS ıNR
1

in Fun.RelCat1;Cat1/. By Theorem 3.8, the horizontal morphism in this commutative
triangle is an equivalence.

Remark 3.10 Proposition 3.9 can be seen as a generalization of work of Barwick and
Kan. To see this, consider the composite pair of Quillen adjunctions

s.sSetKQ/Reedy� ssSetRezk� RelCatBK;

where

� the first is the left Bousfield localization which defines the Rezk model structure
(see [17, Theorem 7.2]) and presents the adjunction LCSSW sS� CSS WUCSS , and

� the second is the Quillen equivalence which defines the Barwick–Kan model
structure (see [1, Theorem 6.1]).

As the latter is constructed using the lifting theorem for cofibrantly generated model
categories, its right adjoint preserves all weak equivalences by definition. Moreover,
Barwick and Kan provide a natural weak equivalence in s.sSetKQ/Reedy (and hence
also in ssSetRezk ) from the Rezk nerve functor to the right adjoint of their Quillen
equivalence (see [1, Lemma 5.4]).

Now, consider the commutative triangle

s.sSetKQ/Reedy RelCattriv

ssSetRezk

idssSet

NR
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in RelCat (in which we take RelCat with the trivial model structure since we are
interested in relative categories themselves here). Applying the localization functor

RelCat ,! RelCat1
L
�! Cat1;

this yields a commutative triangle

sS RelCat

CSS

LCSS

s.j�j/ıNR

N1ıL

in Cat1 , in which

� the upper map coincides with the composite

RelCat! RelCat ,! RelCat1
NR
1
��! sS

by Remark 3.2, and

� the map RelCat! CSS can be identified as indicated since, by what we have
just seen, it is equivalent to the projection

RelCat! RelCatŒŒW �1
BK ��' Cat1

to the underlying 1–category (which is indeed given by localization).

It follows that we obtain a commutative diagram

RelCat RelCat1 sS

Cat1 CSS

L

NR
1

LCSS

�

N1

in Cat1 , which is precisely the restriction of the assertion of Proposition 3.9 to the
category RelCat, as claimed.

We now prove the second half of the global universal property of the Rezk nerve.

Proposition 3.11 The composite functor

RelCat1
NR
1
��! sS

LCSS
��! CSS' Cat1

induces an equivalence
RelCat1ŒŒW �1

BK ��
��! Cat1:
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In the proof of Proposition 3.11, it will be convenient to have the following terminology:

Definition 3.12 We define the subcategory WRezk � ssS of Rezk weak equivalences
to be created by the composite

s.sS/
s.j�j/
���! sS

LCSS
��! CSS' Cat1:

(This name is meant to be suggestive of Rezk’s “complete Segal space” model structure
on the category ssSet of bisimplicial sets.) We denote the resulting relative1–category
by ssSRezk D .ssS;WRezk/ 2 RelCat1 . Since left localizations are in particular free
localizations (recall Example 1.13), this composite left adjoint induces an equivalence

ssSŒŒW �1
Rezk��

��! Cat1
in Cat1 .

Proof of Proposition 3.11 Recalling Remark 3.4, we have a composite adjunction

ssS RelCat1 Cat1:
ょŠ.m�m/
?

preNR
1

L

?
min

Moreover, it follows from Proposition 3.5 that the right adjoint of this composite
adjunction is precisely that of the composite adjunction

s.sS/ sS CSS Cat1
s.j�j/

?

s.const/

LCSS

?
UCSS

N�1
1

�

N1

whose left adjoint defines WRezk � ssS, and hence in particular it follows that the right
adjoint of our original composite adjunction defines a weak equivalence

ssSRezk
minıpreNR

1
 �������

�
min.Cat1/

in .RelCat1/BK .

Next, we claim that the right adjoint RelCat1
preNR
1

���! ssS is a relative functor. To see
this, first note that given any .R;W / 2 RelCat1 , we obtain a counit map

.R;W / ��!min.RŒŒW �1��/

in .RelCat1/BK from the adjunction L amin. Theorem 3.8 and Proposition 3.5 then
together imply that applying the functor RelCat1

preNR
1

���! ssS to this map yields a weak
equivalence

preNR
1.R;W / ��! preNR

1.min.RŒŒW �1��//' constlw.N1.RŒŒW �1��//
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in ssSRezk . Hence, any weak equivalence .R1;W1/
�
�! .R2;W2/ in .RelCat1/BK

induces a commutative diagram

preNR
1.R1;W1/ preNR

1.R2;W2/

constlw.N1.R1ŒŒW �1
1 ��// constlw.N1.R2ŒŒW �1

2 ��//

� �

�

in ssSRezk , and then the top arrow in this square is also in WRezk � ssS since it has the
two-out-of-three property. So this does indeed define a relative functor

.RelCat1/BK
preNR
1

���! ssSRezk:

From here, it follows that the right adjoints of our original composite adjunction form
a commutative diagram

ssSRezk min.Cat1/

.RelCat1/BK

�

preNR
1ımin

min�preN R
1

in .RelCat1/BK , and so the entire diagram lies in WBK � RelCat1 since it has the
two-out-of-three property. Hence, we obtain a commutative diagram

ssSRezk sS CSS' Cat1

.RelCat1/BK

s.j�j/

�

LCSS

preNR
1 � N

R
1

in .RelCat1/BK , which proves the claim.

Remark 3.13 It does not appear possible to give a completely hands-off proof of
Proposition 3.11, ie one not relying on Theorem 3.8 (or perhaps even one that would
prove Theorem 3.8 as a formal consequence). More specifically, adjunctions of under-
lying 1–categories do not necessarily play well with relative 1–category structures,
even if one of the adjoints is a relative functor: one must have some control over the
behavior of both adjoints.

For instance, the geometric realization functor sS j�j�!S and its restriction to the subcate-
gory sSet� sS create subcategories of weak equivalences which define the Kan–Quillen
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relative 1–category structures .sS;W sS
KQ/; .sSet;W sSet

KQ / 2 RelCat1 (which underlie
their respective Kan–Quillen model structures (see Section S.4)). Moreover, these
relative 1–categories give rise to a diagram

sS sSet

sSŒŒ.W sS
KQ/
�1�� sSetŒŒ.W sSet

KQ /�1��

S

s.�0/

?

s.disc/

�
�

in which the right adjoint commutes with the respective localization functors: in other
words, it induces a weak equivalence

.sSKQ;W
sS

KQ/
�
 � .sSetKQ;W

sSet
KQ /

in .RelCat1/BK . Nevertheless, the left adjoint is clearly very far from also defining a
weak equivalence in .RelCat1/BK .

Remark 3.14 Taken together, Propositions 3.9 and 3.11 imply that in fact the adjunc-
tion

ssS RelCat1
ょŠ.m�m/
?

preNR
1

has

� that both adjoints are relative functors (with respect to their respective Rezk and
Barwick–Kan relative structures), and

� that the unit and counit are both natural weak equivalences.

This can be seen as follows.

First of all, recall that in the proof of Proposition 3.11, we already saw that the right
adjoint is a relative functor. On the other hand, the left adjoint is a relative functor
because the composite left adjoint

ssS
ょŠ.m�m/
������! RelCat1

L
�! Cat1

agrees with the left adjoint

ssS
s.j�j/
���! sS

LCSS
��! CSS

N�1
1

�
��! Cat1
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(since we have seen in the proof of Proposition 3.11 that they share a right adjoint),
and so in fact the subcategory WRezk � ssS is created by pulling back the subcategory
WBK � RelCat1 .

Next, we can see that the counit map

ょŠ.m�m/.preNR
1.R;W //! .R;W /

is a weak equivalence in .RelCat1/BK as follows. Applying the functor RelCat1
L
�!

Cat1 , we obtain a map

L
�
ょŠ.m�m/.preNR

1.R;W //
�
! RŒŒW �1��

in Cat1 . Then, again appealing to the fact that these composite left adjoints ssS!
Cat1 agree, we can reidentify the source as

L
�
ょŠ.m�m/.preNR

1.R;W //
�
' N�11

�
LCSS

�
s.j�j/.preNR

1.R;W //
��

' N�11
�
LCSS.NR

1.R;W //
�
:

So, we can reidentify this map as

N�11
�
LCSS.NR

1.R;W //
�
! RŒŒW �1��;

which is an equivalence by Theorem 3.8. So the counit map is indeed a weak equivalence
in .RelCat1/BK , ie the counit is a natural weak equivalence.

Finally, we can see that the unit map

preNR
1.ょŠ.m�m/.Y //! Y

is a weak equivalence in ssSRezk as follows. Applying the composite left adjoint

ssS
N�1
1 ıLCSSıs.j�j/
�����������! Cat1

and appealing to Proposition 3.9, we obtain a map

L .ょŠ.m�m/.Y //! N�11
�
LCSS.s.j�j/.Y //

�
in Cat1 , and the same equivalence of composite left adjoints ssS! Cat1 implies
that this is an equivalence. So the unit map is indeed a weak equivalence in ssSRezk , ie
the unit is a natural weak equivalence.
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4 The proof of Theorem 3.8

Let .R;W / be an arbitrary relative 1–category. In this section, we show that as
a simplicial space, its Rezk nerve NR

1.R;W / enjoys the desired universal property
for mapping into complete Segal spaces: for any C 2 Cat1 , we have a commutative
diagram

homRelCat1..R;W /;min.C// homCat1.R;C/

homsS.NR
1.R;W /;N1.C// homCSS.N1.R/;N1.C//

� �

in S, as asserted in Theorem 3.8.

Most of the proof is reasonably straightforward, and we can give it immediately. But
there will be one technical result (Lemma 4.3) that is necessary for the proof which
will occupy us for the remainder of the section.

Proof of Theorem 3.8 By definition, the localization RŒŒW �1�� 2 Cat1 is given as
the pushout

W R

W gpd RŒŒW �1��

in Cat1 ; under the equivalence N1W Cat1 ��! CSS, this corresponds to a pushout
diagram

N1.W / N1.R/

N1.W gpd/ N1.RŒŒW �1��/

in CSS� sS. On the other hand, there is an evident commutative diagram

.W ;W '/ .R;R'/

.W ;W / .R;W /

.RŒŒW �1��;RŒŒW �1��'/
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in RelCat1 . Applying the functor NR
1W RelCat1! sS and taking the pushout of the

upper left span, in light of Proposition 3.5 we obtain a commutative diagram

N1.W / N1.R/

N1.W gpd/ p:o:sS NR
1.R;W /

N1.RŒŒW �1��/

in sS,

� where p:o:sS denotes the pushout in sS of the upper left span, and
� which contains as a subdiagram the above pushout square in CSS� sS (namely

the upper left span along with the object N1.RŒŒW �1��/).

Our goal is to prove that the induced map

LCSS.NR
1.R;W //! LCSS.N1.RŒŒW �1��//' N1.RŒŒW �1��/

is an equivalence in CSS� sS.

For notational convenience, let us simply write

.sS/op Fun.sS; S/ Fun.CSS; S/
ょ.sS/op

ょCSSop

�ıUCSS

for the restricted contravariant Yoneda functor, so that for any Y 2 sS we have

ょCSSop.Y /D homsS.Y;UCSS.�//' homCSS.LCSS.Y /;�/

in Fun.CSS; S/. Then, by Yoneda’s lemma, our aforestated goal is equivalent to proving
that the map

NR
1.R;W /! N1.RŒŒW �1��/

in sS induces an equivalence

ょCSSop.NR
1.R;W // ょCSSop.N1.RŒŒW �1��//

in Fun.CSS; S/. Moreover, as the functor sS LCSS
��!CSS commutes with pushouts (being

a left adjoint), it follows that the map

p:o:sS! N1.RŒŒW �1��/
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in sS induces an equivalence

LCSS.p:o:sS/ ��! LCSS.N1.RŒŒW �1��//' N1.RŒŒW �1��/

in CSS� sS, and so the above diagram in sS gives rise to a retraction diagram

ょCSSop.p:o:sS/ ょCSSop.NR
1.R;W //

ょCSSop.N1.RŒŒW �1��//

�

in Fun.CSS; S/ into which this map which we must show to be an equivalence fits, and
which it therefore suffices to show is in fact a diagram of equivalences.

Now, observe that CSS is complete and hence in particular is cotensored over S, and
observe moreover that the functor

.sS/op ょCSSop
���! Fun.CSS; S/

factors through the contravariant Yoneda embedding and hence takes values in functors
which commute with cotensors. So, by Lemma 4.1, it suffices to show that after
postcomposition with S

�0
�! Set, the above retraction diagram in Fun.CSS; S/ becomes

a diagram of natural isomorphisms in Fun.CSS; Set/. Hence, it suffices to show that
the induced map �

�0 ıょCSSop.NR
1.R;W //

�
! .�0 ıょCSSop.p:o:sS//

is a natural monomorphism in Fun.CSS; Set/. This follows from the stronger statement
that the composite�

�0 ıょCSSop.NR
1.R;W //

�
! .�0 ıょCSSop.p:o:sS//!

�
�0 ıょCSSop.N1.R//

�
is a natural monomorphism in Fun.CSS; Set/, which in turn follows from Lemma 4.3.

We needed the following easy result in the proof of Theorem 3.8:

Lemma 4.1 Let C be an 1–category admitting a cotensoring

Sop
�C �t�
���! C;

and suppose we are given two space-valued functors F;G 2 Fun.C; S/ that commute
with cotensors. Then, a natural transformation F ! G is a natural equivalence in
Fun.C; S/ if and only if its postcomposition �0F ! �0G with S

�0
�! Set is a natural

isomorphism in Fun.C; Set/.
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Proof The “only if” direction is clear. So, suppose we are given a natural transforma-
tion F !G in Fun.C; S/ such that the induced natural transformation �0F !�0G is
a natural equivalence in Fun.C; Set/. Since equivalences in Fun.C; S/ are determined
componentwise, it suffices to show that for any Y 2 C, the map F.Y /!G.Y / is an
equivalence in S. In turn, since equivalences in S are created in ho.S/, by Yoneda’s
lemma it suffices to show that for any Z2S, the induced map ŒZ; F.Y /�S! ŒZ;G.Y /�S

is an isomorphism in Set. But since C admits cotensors, then we can reidentify this
map via the canonical commutative square

�0.F.Z t Y // �0.G.Z t Y //

ŒZ; F.Y /�S ŒZ;G.Y /�S

Š

Š
Š

in Set, in which the top arrow is an isomorphism by the assumption that �0F ! �0G

is a natural isomorphism and the vertical arrows are isomorphisms by the assumption
that F and G commute with cotensors. This proves the claim.

Before moving on to Lemma 4.3, it will be convenient to have the following bit of
terminology:

Definition 4.2 A morphism in a model category M is called a homotopy epimorphism
if it presents an epimorphism in the underlying 1–category MŒŒW �1��.

We now proceed to the technical heart of the proof of Theorem 3.8. We warn the
reader that our proof of the following result is (perhaps unexpectedly, and certainly
unsatisfyingly) complicated.

Lemma 4.3 The map N1.R/! LCSS.NR
1.R;W // is an epimorphism in CSS.

Proof Our proof will proceed using model categories — primarily ssSetRezk and
sSetJoyal , but also a number of others auxiliarily — and will also use the language of
marked simplicial sets (see eg Section T.3.1).

We begin by recalling the two Quillen equivalences between ssSetRezk and sSetJoyal

given in [5].
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(1) Let us write �op ��op pr2
�!�op for the second projection map and �op i2

�!

�op��op for the functor const.Œ0�ı/� id�op . Pullbacks along these two functors
induce the Quillen equivalence

pr�2 W sSetJoyal� ssSetRezk Wi
�
2

of [5, Theorem 4.11].

(2) Let us write .�i /gpd 2 sSet for the nerve of the strict (ie objects-preserving)
groupoid completion of Œi � 2 Cat, and let us write tŠW ssSet! sSet for the left
Kan extension

��� sSet

ssSet

.Œn�;Œi�/ 7!�n�.�i /gpd

along the (1–categorical) Yoneda embedding. This has a right adjoint t ŠW sSet!
ssSet given by

t Š.Y /D ffhomsSet.�
n
� .�i /gpd; Y /gi�0gn�0;

and together these fit into the Quillen equivalence

tŠW ssSetRezk� sSetJoyal Wt
Š

of [5, Theorem 4.12].

Now, suppose that R 2 sSetfJoyal is a quasicategory presenting R 2 Cat1 , and let
.R; W/ 2 sSetC be the marked simplicial set obtained by marking precisely those edges
of R which present maps in W � R. For any n� 0, the 1–category Fun.Œn�;R/ is
presented by the object

homsSet.�
n; R/D fhomsSet.�

n
��i ; R/gi�0 2 sSetJoyal;

and hence its subcategory

Fun.Œn�;R/W � Fun.Œn�;R/

is presented by the object

fhomsSetC..�
n/[ � .�i /]; .R; W//gi�0 2 sSetJoyal:
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These constructions are contravariantly functorial in Œn� 2�, and hence we obtain that
the Rezk prenerve

preNR
1.R;W /D Funlw.Œ��;R/W 2 sCat1

is presented by the object

ffhomsSetC..�
n/[ � .�i /]; .R; W//gi�0gn�0 2 s.sSetJoyal/Reedy:

From here, we observe that the Quillen adjunction

idssSetW s.sSetJoyal/Reedy� s.sSetKQ/Reedy WidssSet

presents the left localization adjunction s..�/gpd/W sCat1� sS Ws.US/; as all objects
of s.sSetJoyal/Reedy are cofibrant, it follows that when considered as an object of
s.sSetKQ/Reedy , this same bisimplicial set presents NR

1.R;W / 2 sS. Moreover, in
light of the left Bousfield localization

idssSetW s.sSetKQ/Reedy� ssSetRezk WidssSet

presenting the left localization adjunction LCSSW sS� CSS WUCSS , when considered as
an object of ssSetRezk , this same bisimplicial set presents the Rezk nerve

NR
1.R;W /D .Funlw.Œ��;R/W /gpd

2 CSS:

We will denote this bisimplicial set by NR.R; W/ 2 ssSet.11 In particular, note that we
have a natural isomorphism NR.R\/Š t Š.R/ in ssSet, and hence we see that the right
Quillen equivalence

t ŠW sSetJoyal! ssSetRezk

presents the equivalence N1W Cat1 ��! CSS of 1–categories.

Now, the natural map
R\! .R; W/

in sSetC induces a map
NR.R\/! NR.R; W/

in ssSetRezk , which, by what we have seen, presents the map

N1.R/! LCSS.NR
1.R;W //

11When .R; W/ 2 sSetC is the “marked nerve” of a relative 1–category, this recovers the 1–categorical
Rezk nerve of Remark 3.2 (as an object of ssSet), and so there is no ambiguity in the notation.
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in CSS. So, to prove that this latter map is an epimorphism in CSS, it suffices to prove
that the former map is a homotopy epimorphism in ssSetRezk . However, note that
there is a natural isomorphism tŠ.pr�2.R//

Š�! R in sSet, which is in particular a weak
equivalence in sSetJoyal ; via the Quillen equivalence of item (2), this corresponds to a
weak equivalence pr�2.R/

�
�! t Š.R/ in ssSetRezk . So, it also suffices to show that the

composite map
pr�2.R/

�
�! t Š.R/Š NR.R\/! NR.R; W/

is a homotopy epimorphism in ssSetRezk .

For this, let us also recall the “usual” geometric realization functor ssSet! sSet (a
homotopy colimit functor with respect to s.sSetKQ/Reedy ): this is the left Kan extension

��� sSet

ssSet

.Œn�;Œi�/ 7!�n��i

along the (1–categorical) Yoneda embedding, but by [2, Chapter IV, Exercise 1.6]
this is (naturally isomorphic to) the functor diag�W ssSet! sSet, where �op diag

��!

�op ��op denotes the diagonal functor. Now, the evident morphisms �n ��i !
�n � .�i /gpd in sSet induce a natural transformation diag�! tŠ in Fun.ssSet; sSet/.
Moreover, it is not hard to see that upon precomposition with sSet

pr�2
�! ssSet, this

induces the identity natural transformation from idsSet to itself in Fun.sSet; sSet/ (up
to isomorphism). Applying these observations to the above composite map in ssSet,
we obtain a commutative square

diag�.pr�2.R// diag�.NR.R; W//

tŠ.pr�2.R// tŠ.NR.R; W//

˛

Š ˇ



in sSet, where both objects on the left are (compatibly) isomorphic to R itself. Since
tŠW ssSetRezk! sSetJoyal is a left Quillen equivalence and all objects of ssSetRezk are
cofibrant, it suffices to show that the map  is a homotopy epimorphism in sSetJoyal . For
this, it suffices to prove that when considered in sSetJoyal , the map ˛ is a weak equiv-
alence and the map ˇ is a homotopy epimorphism. This, finally, is what we will show.

We begin with the second assertion, that the map

diag�.NR.R; W// ˇ
�! tŠ.NR.R; W//
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is a homotopy epimorphism in sSetJoyal . In fact, we will show that the natural transfor-
mation diag�! tŠ in Fun.ssSet; sSetJoyal/ is a componentwise homotopy epimorphism.
Just for the duration of this subproof, let us “reverse” our simplicial coordinates, so
that the one we have been denoting by “i ” will be the outer coordinate while the one
we have been denoting by “n” will be the inner coordinate. Now, observe that we can
rewrite these two functors as

diag� Š
Z Œi�2�

.�/i ��
i
W s.sSet/! sSet

and

tŠ Š

Z Œi�2�

.�/i � .�
i /gpd
W s.sSet/! sSet;

under which identifications our natural transformation diag�! tŠ is induced by the
evident map ��! .��/gpd in c.sSet/. Moreover, by Proposition T.A.2.9.26, we obtain
a left Quillen bifunctorZ Œi�2�

.�/i � .�/
i
W s.sSetJoyal/Reedy � c.sSetJoyal/Reedy! sSetJoyal

(since sSetJoyal is cartesian, ie the product bifunctor is left Quillen).12 As every object
of s.sSetJoyal/Reedy is cofibrant, for any object

Y� 2 s.sSetJoyal/Reedy

the above left Quillen bifunctor induces a left Quillen functorZ Œi�2�

Yi � .�/
i
W c.sSetJoyal/Reedy! sSetJoyal:

Moreover, the cofibrant objects of c.sSetJoyal/Reedy are exactly those of c.sSetKQ/Reedy

(since the cofibrations in sSetJoyal are exactly those of sSetKQ ), and so in particular
the objects ��; .��/gpd 2 c.sSetJoyal/Reedy are cofibrant by [3, Corollary 15.9.10].

Now, epimorphisms (being determined by a colimit condition) are preserved by left
adjoint functors of 1–categories. Moreover, by [14, Theorem 2.1], a left Quillen
functor between model categories induces a left adjoint functor between 1–categories,
which is presented (in RelCatBK ) by the restriction of the left Quillen functor to the

12Since we have flipped our simplicial coordinates, this model structure s.sSetJoyal/Reedy is different
from the model structure s.sSetJoyal/Reedy that appeared earlier (with respect to the fixed copy of the
underlying category ssSet in which we have been working).
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subcategory of cofibrant objects. So, it suffices to show that the map ��! .��/gpd

is a homotopy epimorphism in c.sSetJoyal/Reedy .

For this, observe that the model category c.sSetJoyal/Reedy presents the 1–category
cCat1 . Since epimorphisms in cCat1 D Fun.�;Cat1/ are determined component-
wise, it suffices to show that each �i! .�i /gpd is a homotopy epimorphism in sSetJoyal .
But this is clear: this map in sSetJoyal presents the terminal map

Œi �! Œi �gpd
' ptCat1

in Cat1 , which on an arbitrary 1–category C corepresents the inclusion

C' ,! homCat1.Œi �;C/

of the subspace of length-i sequences of composable equivalences (inside of the space
of arbitrary length-i sequences of composable morphisms). Thus, the natural trans-
formation diag�! tŠ in Fun.ssSet; sSetJoyal/ is indeed a componentwise homotopy
epimorphism, and so in particular we obtain that the map ˇ (which is its component
at the object NR.R; W/ 2 ssSet) is a homotopy epimorphism, as claimed.

So, it only remains to show that the map

RŠ diag�.pr�2.R//
˛
�! diag�.NR.R; W//

is a weak equivalence in sSetJoyal . Unwinding the definitions, we see that via the
evident cosimplicial object

�
.��/[�.��/]

��������! sSetC;

we obtain a canonical isomorphism

diag�.NR.R; W//Š homlw
sSetC

..��/[ � .��/]; .R; W//:

Moreover, via the canonical isomorphisms

RŠ homlw
sSet.�

�; R/Š homlw
sSetC

..��/[; R[/Š homlw
sSetC

..��/[; .R; W//;

this map ˛ is corepresented by the collection of first projection maps

.�n/[ � .�n/]! .�n/[;

which assemble to a natural transformation in Fun.�; sSetC/. On the other hand, the
collection of diagonal maps

.�n/[! .�n/[ � .�n/]
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(or, more precisely, the unique maps in sSetC which recover the diagonal maps in sSet
under the forgetful functor sSetC! sSet) also assemble into a natural transformation
in Fun.�; sSetC/, which likewise corepresents a map

diag�.NR.R; W// �
�! R

in sSet. Clearly, the composite

R ˛
�! diag�.NR.R; W// �

�! R

is the identity map, since this is true of the composite

.�n/[! .�n/[ � .�n/]! .�n/[

of the diagonal map followed by the first projection. On the other hand, we will show
that the composite

diag�.NR.R; W// �
�! R ˛

�! diag�.NR.R; W//

is connected to iddiag�.NR.R;W// by the zigzag of simplicial homotopies illustrated in
Figure 1, whose components (ie whose values on the vertices of (the source copies
of) diag�.NR.R; W//) are all degenerate edges of (the target copy of) diag�.NR.R; W//.
Postcomposing with an arbitrary fibrant replacement

diag�.NR.R; W// ��!R
�
diag�.NR.R; W//

�
� ptsSet

in sSetJoyal , we obtain a composite

ƒ22! homsSet
�
diag�.NR.R; W//; diag�.NR.R; W//

�
! homsSet

�
diag�.NR.R; W//;R

�
diag�.NR.R; W//

��
in sSetJoyal , which, by [4, Chapter 5, Theorem C] — and [4, Proposition 4.8] (and
the fact that sSetJoyal is cartesian) — presents a zigzag of natural equivalences in
Cat1 between the functors presented by the maps iddiag�.NR.R;W// and ˛� in sSetJoyal .
In turn, this zigzag (along with the natural equivalence in Cat1 presented by the
identification �˛ D idR ) witnesses the fact that the maps ˛ and � in sSetJoyal present
inverse equivalences in Cat1 , from which we conclude that in particular the map ˛
is indeed a weak equivalence in sSetJoyal .

Now, all three of �, H1 , and H2 will be corepresented by maps between the various
objects .�n/[ � .�n/] 2 sSetC ; in turn, all of these maps will be obtained by applying
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diag�.NR.R; W//

�1 � diag�.NR.R; W//

diag�.NR.R; W// diag�.NR.R; W//

�1 � diag�.NR.R; W//

diag�.NR.R; W//

�f0g�id

iddiag�.NR.R;W//

H1
�f1g�id

�f1g�id

�

H2

�f0g�id

˛�

Figure 1: The zigzag of simplicial homotopies in sSet in the proof of Lemma 4.3.

the evident “marked nerve” functor NCW RelCat! sSetC to maps between the various
objects Œn�� Œn�W 2 RelCat.

We begin by defining the map diag�.NR.R; W// �
�! diag�.NR.R; W//: this is corepre-

sented by the marked nerves of the maps

Œn�� Œn�W
�n

�! Œn�� Œn�W

in RelCat given by

�n.i; j /D

�
.i; i/ if i � j;
.i; j / if i < j:

It is easy to verify that this does indeed define a map in RelCat, and moreover
that assembling these maps for all n � 0 yields an endomorphism of the object
Œ��� Œ��W 2 cRelCat.

In order to define the simplicial homotopies H1 and H2 , we first recall a combinatorial
reformation of the definition of a simplicial homotopy (see eg [10, Definitions 5.1]):
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for any Y;Z 2 sSet and any f; g 2 homsSet.Y;Z/, a simplicial homotopy

Y

�1 �Y Z

Y

�f0g�id g

h

�f1g�id
f

is equivalently given by a family of maps

fhi;n 2 homSet.Yn; ZnC1/g0�i�n�0

which satisfy the identities

ı0h0;n D fn; ınC1hn;n D gn; ıihj;n D

8<:
hj�1;n�1ıi if i < j;
ıihi�1;n if i D j ¤ 0;
hj;n�1ıi�1 if i > j C 1;

and

�ihj;n D

�
hjC1;nC1�i if i � j;
hj;nC1�i�1 if i > j:

So, for " 2 f1; 2g, we will define the simplicial homotopies

�1 � diag�.NR.R; W//
H"
�! diag�.NR.R; W//

to be corepresented by the marked nerves of families of maps

fH i;n
" 2 homRelCat.ŒnC 1�� ŒnC 1�W ; Œn�� Œn�W /g0�i�n�0

satisfying the opposites of the identities given above (with the first two “boundary
condition” identities being dictated by their respective sources and targets). Namely,
we define

H
i;n
1 .j; k/D

8̂̂̂<̂
ˆ̂:
.j; k/ if 0� j; k � i;
.j � 1; j � 1/ if j > i and j � k;
.j; k� 1/ if k > i � j;
.j � 1; k� 1/ if k > j > i;
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and

H
i;n
2 .j; k/D

8<:
.j; j / if j � i;
.j � 1; j � 1/ if j > i and j � k;
.j � 1; k� 1/ if k > j > i:

It is a straightforward (but lengthy) process to verify that

� these satisfy the opposites of the identities given above,

� they restrict along their boundaries to the various maps

iddiag�.NR.R;W//; �; ˛� 2 homsSet
�
diag�.NR.R; W//; diag�.NR.R; W//

�
as indicated in Figure 1, and

� their values on vertices are all degenerate edges,

as claimed. This completes the proof.
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