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On a question of Etnyre and Van Horn-Morris

TETSUYA ITO

KEIKO KAWAMURO

The purpose of this note is to answer Question 6.12 of Etnyre and Van Horn-Morris
[Monoids in the mapping class group, Geom. Topol. Monographs 19 (2015) 319–
365], asking when the set of mapping classes whose fractional Dehn twist coefficient
is greater than a given constant forms a monoid.

57M07; 20F65

1 Introduction

Let S be a compact oriented surface with nonempty boundary. Let Mod.S/ denote the
mapping class group of S , the group of isotopy classes of homeomorphisms of S that
fix the boundary @S pointwise. Let c.�;C /W Mod.S/!Q denote the fractional Dehn
twist coefficient (FDTC) of � 2Mod.S/ with respect to the connected component C

of @S . The FDTC plays a fundamental role in the study of (contact) 3–manifolds. See
Honda, Kazez and Matić [4] and Ito and Kawamuro [7] for the definition and basic
properties of the FDTC which are used in this paper. For r 2R we define the following
sets (see Etnyre and Van Horn-Morris [2, page 344]):

FDTCr;C .S/ WD f� 2Mod.S/ j c.�;C /� rg[ fidSg;

FDTCr .S/ WD f� 2Mod.S/ j c.�;C /� r for all C � @Sg[ fidSg:

Etnyre and Van Horn-Morris ask [2, Question 6.12]: For which r 2 R does the set
FDTCr .S/ form a monoid? The following theorem answers this question:

Theorem 1.1 Let S be a surface that is not a pair of pants and has negative Euler
characteristic. Let C be a boundary component of S . The set FDTCr;C .S/ — and
hence FDTCr .S/ — is a monoid if and only if r > 0.

Remark 1.2 In [2, page 344] it is shown that FDTCr .S/ is a monoid for r > 1.

Remark 1.3 If S is a pair of pants then FDTCr;C .S/ is a monoid if and only if r � 0.

Theorem 1.1 states that FDTC0.S/ is not a monoid. But FDTC0.S/ contains the
monoid VeerC.S/ of right-veering mapping classes (see [4] for the definition of
right-veering mapping classes).
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Corollary 1.4 We have[
r>0

FDTCr .S/¨ VeerC.S/¨ FDTC0.S/:

Corollary 1.4 shows that the statement VeerC.S/D FDTC0.S/ in [2, page 345] does
not hold.

As discussed in [2], given a surface S , the set of mapping classes in Mod.S/ compatible
with the contact 3–manifolds with a certain property, such as tight and fillable, often
forms a monoid. Conversely, a contact 3–manifold has a certain property when
the monodromy lies in a submonoid of Mod.S/ which is not directly related to 3–
dimensional topology such as VeerC.S/.

The monoid VeerC.S/ contains the tight monoid Tight.S/, as shown in [4]. Corollary
1.4 shows a submonoid structure of VeerC.S/. It is announced in Wand [8] thatS

r>1 FDTCr .S/� Tight.S/; see also [6] for the planar surface case. In [5] we show
that FDTC1.S/ 6� Tight.S/. Classification and detection of tight contact structures
are central problems in contact topology, and the monoids FDTCr .S/ are expected to
play important roles.

2 Basic study of quasimorphisms

As shown in [7, Corollary 4.17], the FDTC map c.�;C /W Mod.S/ ! Q is not a
homomorphism but a homogeneous quasimorphism if the surface S has negative Euler
characteristic. In order to prove Theorem 1.1 we first study general homogeneous
quasimorphisms and obtain a monoid criterion (Theorem 2.2).

Let G be a group. A map qW G!R is called a homogeneous quasimorphism if

D.q/ WD sup
g;h2G

jq.gh/� q.g/� q.h/j<1;

q.gn/D nq.g/ for all g 2G and n 2 Z:

The value D.q/ is called the defect of q . A typical example of homogeneous quasi-
morphism is the translation number � W BHomeoC.S1/!R defined by

�.g/D lim
n!1

gn.0/

n
D lim

n!1

gn.x/�x

n
:

Here BHomeoC.S1/ is the group of orientation-preserving homeomorphisms of R that
are lifts of orientation-preserving homeomorphisms of S1 . The limit �.g/ does not
depend on the choice of x 2R. The following is an important property of � we will use:

(�) If 0< �.g/ then x < g.x/ for all x 2R.
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Given a quasimorphism qW G!R and r 2R let

Gr DGq
r WD fg 2G j g D idG or q.g/� rg:

It is easy to see that:

Proposition 2.1 The set Gr forms a monoid if r �D.q/.

Remark 1.2 is an immediate consequence of Proposition 2.1.

The following theorem gives another a monoid criterion for Gr :

Theorem 2.2 Let qW G ! R be a homogeneous quasimorphism which is a pull-
back of the translation number quasimorphism � ; namely, there is a homomorphism
f W G ! BHomeoC.S1/ such that q D � ı f . Then maxfq.g/; q.h/g � q.gh/ if
q.g/, q.h/ > 0. Consequently, for r , s > 0 and t Dmaxfr; s; r C s�D.q/g we have

Gr �Gs WD fgh j g 2Gr ; h 2Gsg �Gt :

In particular, Gr forms a monoid for r > 0.

Proof Assume to the contrary that there exist g , h 2G such that 0< q.h/, q.g/ but
q.gh/ <maxfq.g/; q.h/g. We treat the case q.h/� q.g/. A similar argument applies
for the case q.g/ < q.h/.

Since q.gh/ < q.g/ there exists an integer n> 0 such that

(1) q.gn/� q..gh/n/D n.q.g/� q.gh// >D.q/:

By the definition of the defect we have

(2) jq.g�n.gh/n/C q.gn/� q..gh/n/j �D.q/:

By (1) and (2) we get

q.g�n.gh/n/� �q.gn/C q..gh/n/CD.q/ < �D.q/CD.q/D 0:

Letting GD f .g/ and HD f .h/, by the property (�) we have .G�n.GH/n/.0/ < 0.

On the other hand, since 0< q.h/D �.H/ by the property (�) we have H.x/ > x for all
x 2R. Thus, G.H.x// > G.x/. By induction on n, we have .GH/n.x/ > Gn.x/. Setting
x D 0 we get .G�n.GH/n/.0/ > .G�nGn/.0/D 0, which is a contradiction.

3 Proof of Theorem 1.1

Proof of Theorem 1.1 According to [7, Theorem 4.16], if �.S/ < 0 then the FDTC
has c.�;C /D .� ı‚C /.�/ for some homomorphism ‚C W Mod.S/!BHomeoC.S1/.
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This fact along with Theorem 2.2 shows that FDTCr;C .S/ is a monoid if �.S/ < 0

and r > 0.

Since FDTCr .S/ is the intersection of FDTCr;C .S/ for all the boundary components
of S the set FDTCr .S/ is also a monoid if �.S/ < 0 and r > 0.

Next we show that FDTCr;C .S/ is not a monoid for r � 0. For any nonseparating
simple closed curve 
 and any boundary component C 0 of S we have c.T˙1


 ;C 0/D 0.
Therefore, for every boundary component C we have

(3) T˙1

 2 FDTC0;C .S/� FDTCr;C .S/:

Case 1 Recall that for any surface S of genus g � 2 the group Mod.S/ is generated
by Dehn twists about nonseparating simple closed curves (see [3, page 114]). If
FDTCr;C .S/ were a monoid then this fact and (3) would imply that FDTC0;C .S/D

FDTCr;C .S/DMod.S/, which is clearly absurd. Thus FDTCr;C .S/ is not a monoid
if g � 2 and r � 0.

Case 2 If gD0 and j@S jD4, let a, b , c , d be the boundary components and x , y , z

be the simple closed curves as shown in Figure 1 (left). Let r � 0 and C 2 fa; b; c; dg.
Since x , y , z are nonseparating,

T˙1
x ; T˙1

y ; T˙1
z 2 FDTC0;C .S/� FDTCr;C .S/:

By the lantern relation, for any positive integer n with �n< r we have

c..TxTyTz/
�n;C /D c.T �n

a T �n
b T �n

c T �n
d ;C /D�nI

thus, .TxTyTz/
�n 62 FDTCr;C .S/. This shows that FDTCr;C .S/ is not a monoid for

all r � 0 and C 2 fa; b; c; dg.

Case 3 If g D 0 and n D j@S j > 4, add n � 3 additional boundary components
a1; : : : ; an�3 in the place of a, as shown in Figure 1 (center). By a similar argument
using the lantern relation, we can show that FDTCr;C .S/ is not a monoid for all r � 0
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and any C D b , c , d . By the symmetry of the surface we can further show that
FDTCr;C .S/ is not a monoid for all r � 0 and C D a1; : : : ; an�3 .

Case 4 If gD 1 and j@S j D 1, the group Mod.S/ is generated by Dehn twists about
nonseparating simple closed curves. Thus this case is subsumed into Case 1.

Case 5 If g D 1 and j@S j � 2, applying the 3–chain relation [3, Proposition 4.12] to
the simple closed curves in Figure 1 (right) we get

c..TaTbTc/
�4n; d1/D c..Td1

/�n.Td2
/�n; d1/D�n:

By the same argument as in Case 2 we can show that FDTCr;d1
.S/ is not a monoid

for all r � 0.

Parallel arguments show that FDTCr .S/ does not form a monoid for r � 0.

Proof of Corollary 1.4 Let 
 � S be a nonseparating simple closed curve. By (3)
we observe that

T
 2 VeerC.S/ n
�[

r>0

FDTCr .S/

�
and T �1


 2 FDTC0.S/ nVeerC.S/:

Corollary 3.1 If �.S/ < 0 then for r; s > 0 and x Dmaxfr; s; r C s� 1g we have:

(1) FDTCr .S/ �FDTCs.S/� FDTCx.S/.

(2) FDTCr .S/ �Tight.S/� FDTCr .S/ �VeerC.S/� FDTCr .S/.

Proof (1) follows from Theorem 2.2 and the fact that the defect of the FDTC is 1.

The first inclusion of (2) follows from Tight.S/� VeerC.S/ [4]. To see the second
inclusion of (2), we note that a right-veering � 2Mod.S/ has the property (�0 ), which
is similar to (�), where < is replaced with � [4; 7]:

(�0 ) With ˆ WD‚C .�/2BHomeoC.S1/, if �2VeerC.S/ then x�ˆ.x/ for all x2R.

The same argument as in the proof of Theorem 2.2 gives the second inclusion.

Remark 3.2 Although VeerC.S/� FDTC0.S/, it is not true that

FDTCr .S/ �FDTC0.S/� FDTCr .S/:

Let A and B be simple closed curves on a torus S with one hole which form a basis
of H1.S/. We have c.T˙1

A
; @S/D c.T˙1

B ; @S/D 0 and c.TATB; @S/D
1
6

. On the
other hand, c..TATB/ �T

�1
B
; @S/D 0 6> 1

6
.

We do not know, at the time of this writing, the contact and symplectic properties
that are related to the monoid FDTCr .S/ for 0< r � 1. Moreover, in general, given
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a quasimorphism qW Mod.S/! R and r 2 R, as the mapping class group admits a
huge number of quasimorphisms [1], it would be interesting to know when the subset
Mod.S/qr forms a monoid and how Mod.S/qr is related to the topology and geometry
of the corresponding (contact) 3–manifolds.
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