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On growth of systole along congruence coverings
of Hilbert modular varieties

PLINIO G P MURILLO

We study how the systole of principal congruence coverings of a Hilbert modular
variety grows when the degree of the covering goes to infinity. We prove that, given a
Hilbert modular variety Mk of real dimension 2n defined over a number field k , the
sequence of principal congruence coverings MI eventually satisfies

sys1.MI /�
4

3
p

n
log.vol.MI //� c;

where c is a constant independent of MI .

22E40, 11R80; 53C22

1 Introduction

The systole of a riemannian manifold is the least length of a noncontractible closed
geodesic in M and it is denoted by sys1.M /. In 1994, P Buser and P Sarnak [2]
constructed the first explicit examples of surfaces with systole growing logarithmically
with the genus using a sequence of principal congruence coverings of an arithmetic
compact Riemann surface. These sequences of surfaces fSpg satisfy the inequality

sys1.Sp/�
4
3

log.genus.Sp//� c;

where c is a constant independent of p . This result was generalized in 2007 by M
Katz, M Schaps and U Vishne [6] to principal congruence coverings of any compact
arithmetic Riemann surface and arithmetic hyperbolic 3–manifolds. It is known that a
sequence of principal congruence coverings of a compact arithmetic hyperbolic manifold
asymptotically attains the logarithmic growth of the systole (see Gromov [4, 3.C.6])
but the examples above are the only cases where the explicit constant in the systole
growth is known so far. In particular, it would be interesting to understand how the
asymptotic constant depends on the dimension.

The purpose of this paper is to generalize the construction of Buser and Sarnak to
Hilbert modular varieties which are noncompact riemannian manifolds of dimension 2n.
We will show that the sequence of principal congruence coverings MI !Mk of a
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Hilbert modular variety eventually satisfies

(1) sys1.MI /�
4

3
p

n
log.vol.MI //� c;

where c is a constant independent of I . We also prove that inequality (1) is asymp-
totically sharp. We refer to Theorem 4.2 and Theorem 4.3 for the precise statement
of the results.

Since Mk is noncompact, it is a priori not clear if the systole of MI is bounded above
by a logarithmic function of its volume. In fact, an interesting more general question is
to understand if the systole of a sequence of congruence coverings of a noncompact
finite-volume arithmetic manifold of nonpositive curvature and which is not flat grows
logarithmically in its volume. An affirmative answer seems very plausible but, to our
knowledge, it has not been established in the literature. In this regard we will prove
that the sequence of principal congruence coverings MI !Mk of a Hilbert modular
variety eventually satisfies

(2) sys1.MI /�
4
p

n

3
log.vol.MI //� d

for some constant d independent of MI . These results give us the first examples of
explicit constants for the growth of systole of a sequences of congruence coverings of
arithmetic manifolds in dimensions greater than three.

We will begin in Section 2 recalling basic aspects of the action of .PSL2.R//
n on .H2/n .

We then define the congruence coverings MI of a Hilbert modular variety Mk , and
we prove inequality (2). In Section 3 we estimate the length of closed geodesics of MI

in terms on the norm of the ideal I . In Section 4 we relate the norm of the ideal I to
vol.MI /, and we prove inequality (1) and the sharpness of the constant 4=.3

p
n/.
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2 Preliminaries

2.1 The action of .PSL2.R//
n on .H2/n

The group PSL2.R/ acts on the upper half plane model of the hyperbolic plane H2 by
fractional linear transformations via

Bz D
azC b

czC d
if B D

�
a b

c d

�
and z 2H2:
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An element B 2 PSL2.R/ is called elliptic if it has a fixed point in H2 , parabolic if it
has no fixed points in H2 and has only one fixed point in @H2 , and hyperbolic if it
has no fixed points in H2 and has two fixed points in @H2 . An equivalent description
is the following:

� B is elliptic if and only if jtr.B/j< 2;
� B is parabolic if and only if jtr.B/j D 2;
� B is hyperbolic if and only if jtr.B/j> 2.

Here tr.B/ denotes the trace of the matrix B .

Given a hyperbolic transformation B , the translation length of B , denoted by `B , is
defined by

`B D inffdH2.z;Bz/ j z 2H2
g:

This infimum is attained at points on the unique geodesic x̨B in H2 joining the fixed
points of B in @H2 . The transformation B leaves x̨B invariant and acts on it as a
translation. In particular, if a subgroup ƒ� PSL2.R/ acts properly discontinuously
and freely on H2 , every hyperbolic element B 2ƒ determines a noncontractible closed
geodesic ˛ on the Riemann surface H2=ƒ, whose length is equal to the translation
length `B of B . Reciprocally, any closed geodesic ˛ in H2=ƒ lifts to a geodesic x̨B
in H2 fixed by a hyperbolic matrix B 2ƒ.

On the other hand, since B is hyperbolic, B is conjugate to a matrix of the form�
� 0

0 ��1

�
;

where j�j D e`B=2 . Hence 2 cosh.`B=2/D jtr.B/j and for any z 2H2 we have

(3) dH2.z;Bz/� 2 log.jtr.B/j � 1/ > 0:

We refer to [1, Chapter 7] for further details about the geometry of the isometries of
the hyperbolic plane H2 .

The action of PSL2.R/ on H2 extends to an action of the n–fold product .PSL2.R//
n

on the n–fold product .H2/n in a natural way: if z D .z1; : : : ; zn/ 2 .H2/n and
B D .B1; : : : ;Bn/ 2 .PSL2.R//

n , then

Bz WD .B1z1; : : : ;Bnzn/;

where the action in every factor is the action by fractional linear transformations.

Let us recall the definition of a Hilbert modular variety (see [3]). Let k be a totally
real number field of degree n, Ok the ring of integers of k and �1; : : : ; �n the
n embeddings of k into the real numbers R. The group PSL2.Ok/ becomes an
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arithmetic noncocompact irreducible lattice of the semisimple Lie group .PSL2.R//
n

via the map �.B/D .�1.B/; : : : ; �n.B//, where �i.B/ denotes the matrix obtained
by applying �i to the entries of B (see [7, Proposition 5.5.8]). Via this embedding,
PSL2.Ok/ acts on the n–fold product of hyperbolic planes .H2/n with finite covolume.
The quotient Mk D .H

2/n=PSL2.Ok/ is called a Hilbert modular variety and the
group � D PSL2.Ok/ is called a Hilbert modular group.

2.2 Congruence coverings of Mk

Let I � Ok be an ideal, the principal congruence subgroup �.I/ � � at level I is
defined by

�.I/D fA 2 SL2.Ok/ jA� Id mod Ig=f1;�1g;

where Id denotes the identity 2�2 matrix. Since Ok=I is finite, �.I/ is a finite-index
subgroup of � for any ideal I of Ok . We associate to �.I/ a congruence cover
MI D .H

2/n=�.I/!Mk . Note that � is an irreducible lattice in .PSL2.R//
n and so

the varieties Mk and MI do not split into products. We remark that Mk has quotient
singularities, so the covering MI !Mk should be interpreted in the orbifold sense.
For large enough I the varieties MI are manifolds by Selberg’s lemma (see also
Corollary 3.3).

This construction is a particular case of a more general situation: if G is a semisimple
Lie group, a discrete subgroup ƒ � G is called arithmetic if there exists a num-
ber field K , a algebraic K–group H, and a surjective continuous homomorphism
'W H.K ˝Q R/! G with compact kernel such that '.H.OK // is commensurable
to ƒ, where H.OK / denotes the OK –points of H with respect to some fixed embedding
of H into GLm . For any ideal I �OK the principal congruence subgroup of H.OK /

at level I is defined by

H.I/ WD ker
�
H.OK /

�I
�! H.OK=I/

�
;

where �I is the reduction map modulo I . Any discrete subgroup of G containing
some of these subgroups H.I/ is called a congruence subgroup of G.

By Margulis’ arithmeticity theorem (see [7, Chapter 5]), for n � 2 any irreducible
lattice in .PSL2.R//

n is arithmetic. A conjecture of Serre, proved to be true in the
nonuniform case, shows that any nonuniform lattice of .PSL2.R//

n is a congruence
subgroup.

The coverings MI ! Mk are regular coverings because the subgroups �.I/ are
normal subgroups of � . It is worth noting that in a sequence of nonregular congruence
coverings of an arithmetic manifold the systole could grow slower than logarithmically
with respect to the volume (see [5, Section 4.1]).
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2.3 Upper bound for the systole growth of MI

As was explained above, if ƒ is any discrete group of isometries of H2 acting freely
on H2 , every hyperbolic element 
 2ƒ produces a noncontractible closed geodesic
on H2=ƒ. We can use this idea to see that the quotients MI which we are interested
in have closed geodesics, and subsequently we find a upper bound for sys1.MI /.

We denote by N.I/ the norm of an ideal I � Ok , which is the cardinality of the
quotient ring Ok=I , and similarly N.r/ denotes the field norm of an element r of the
number field k .

Suppose I �Ok is an ideal with N.I/ > 2 and such that MI is a riemannian manifold
(see Corollary 3.3). The norm N.I/ is a rational integer with N.I/ 2 I , so if we take
the matrix

B D

�
1�N.I/2 N.I/
�N.I/ 1

�
;

then B 2 �.I/ and jtr.�i.B//j> 2 for any i D 1; : : : ; n. This means that the matrices
�1.B/D �2.B/D � � � D �n.B/ are hyperbolic and if we take x̨ to be the only geodesic
in H2 fixed by B , the curve x̌ D x̨ � � � � � x̨ is a geodesic in .H2/n that is fixed by
.�1.B/; : : : ; �n.B//, and x̌ projects to a noncontractible closed geodesic ˇ in MI .
Note that this geodesic might not be the shortest one, so sys1.MI /� `.ˇ/D

p
n`B ,

where `B denotes the translation length of B along x̨ .

We know that 2 cosh.`B=2/D jtr.B/j D N.I/2� 2< N.I/2 , and so

sys1.MI /� 4
p

n log N.I/:

Now, as we will see in Section 4, there exists a constant Ck independent of I such
that Œ� W �.I/�� Ck N.I/3 (Lemma 4.1), and then

(4) sys1.MI /�
4
p

n

3
log Œ� W �.I/�� 4

p
n

3
log Ck :

This proves inequality (2) since vol.MI /D Œ� W �.I/� vol.M /.

3 Distance estimate for congruence subgroups

In this section we will prove that the congruence subgroups �.I/ act freely on .H2/n

when the norm of the ideal I is big enough and we will relate the length of closed
geodesics in MI to the norm of the ideal I . The first fact follows from Selberg’s
lemma [7, Section 4.8] but in our case the proof gives an explicit bound in terms of the
norm of I . Some of the ideas are inspired by [6], where the authors studied the systole
of compact arithmetic hyperbolic surfaces and 3–manifolds.
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In this section, sometimes we will use the notation A or .�1.A/; : : : ; �n.A// for the
same element in � or its image in .PSL2.R//

n via the map � defined in Section 2.

For our purpose, it is convenient to express any element AD
�

a
c

b
d

�
of � in the form

AD

�
x0Cx1 x2Cx3

x2�x3 x0�x1

�
;

where
x0 D

aCd

2
; x1 D

a�d

2
; x2 D

bCc

2
; x3 D

b�c

2

are elements of the field K . We have x2
0
�x2

1
�x2

2
Cx2

3
D 1 and we write y0D x0�1.

With this notation, if I �Ok is an ideal and A 2 �.I/ then 2x0� 2 2 I and 2xi 2 I

for i D 1; 2; 3. In terms of fractional ideals it means that y0;x1;x2 and x3 lie in I=2.

Lemma 3.1 If A 2 �.I/, then y0 2 I2=8. In particular, if y0 ¤ 0 then jN.y0/j �

N.I/2=8n .

Proof We know that A 2 �.I/ implies x0� 1;x1;x2;x3 2 I=2. Now, by replacing
x0 D 1Cy0 in the equation x2

0
�x2

1
�x2

2
Cx2

3
D 1 we obtain

2y0 D�y2
0 Cx2

1 Cx2
2 �x2

3 2 I2=4:

Hence y0 2 I2=8.

Lemma 3.2 If A 2 �.I/ with y0 ¤ 0 then jtr.�j .A//j � N.I/2=n=4� 2 for some
j 2 f1; : : : ; ng.

Proof By definition we have N.y0/ D
Qn

jD1 �j .y0/, so by Lemma 3.1, for some
j 2 f1; : : : ; ng, we have j�j .y0/j � N.I/2=n=8. Therefore

jtr.�j .A//j D j2�j .x0/j D j2�j .y0/C 2j �
N.I/2=n

4
� 2:

With this we can guarantee the riemannian structure for MI :

Corollary 3.3 For any ideal I �Ok with N.I/� 4n , the subgroup �.I/ acts freely
on .H2/n and so MI D .H

2/n=�.I/ admits a structure of a riemannian manifold with
nonpositive sectional curvature.

Proof The element AD .�1.A/; : : : ; �n.A// 2 �.I/ has a fixed point on .H2/n if
and only if �i.A/ has a fixed point in H2 for any i D 1; : : : ; n, but this happens if and
only if jtr.�i.A//j< 2, which, by Lemma 3.2, is impossible if N.I/� 4n .

Now observe that for i D 1; : : : ; n and A 2 � ,

(5) 2j�i.y0/j � 2� jtr.�i.A//j � 2C 2j�i.y0/j:
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Proposition 3.4 Let I � Ok be an ideal with N.I/ � 40n=2 and A 2 �.I/ with
y0 ¤ 0. Then for any point z D .z1; : : : ; zn/ 2 .H2/n we have

d.H2/n.z;Az/�
4
p

n
log N.I/� 2

p
n log 40:

Proof By Lemma 3.2, jtr.�j .A//j�8 for some j 2f1; : : : ; ng, hence we can subdivide
our analysis into two different cases:

Case 1 jtr.�i .A//j � 8 for any i D 1; : : : ;n In this case all of the matrices �i.A/

are hyperbolic and the right-hand side of (5) implies that j�i.y0/j � 3 for i D 1; : : : ; n.

Using (3), the left-hand side of (5), the fact that j�i.y0/j � 3 for i D 1; : : : ; n, the
convexity of the function x2 and Lemma 3.1 we obtain

d.H2/n.z;Az/D
p

d2
H2.z1; �1.A/z1/C � � �C d2

H2.zn; �n.A/zn//

� 2
p

log2.jtr.�1.A//j � 1/C � � �C log2.jtr.�n.A//j � 1/

� 2
p

log2.2j�1.y0/j � 3/C � � �C log2.2j�n.y0/j � 3/

� 2
p

log2
j�1.y0/jC � � �C log2

j�n.y0/j

�
2
p

n

�
log j�1.y0/jC � � �C log j�n.y0/j

�
D

2
p

n
log jN.y0/j �

4
p

n
log N.I/� 2

p
n log 8:

Case 2 There are exactly k< n of the indices 1; : : : ;n such that jtr.�j .A//j< 8

Without loss of generality we assume that jtr.�j .A//j < 8 for j D 1; : : : ; k . By the
left-hand side of (5), j�j .y0/j< 5 for any such j and by Lemma 3.1 we have

nY
iDkC1

j�i.y0/j D
jN.y0/jQk

iD1 j�i.y0/j
>

1

5n � 8n
N.I/2:

Now, as jtr.�i.A//j � 8 for i D k C 1; : : : ; n, for these indices �i.A/ is hyperbolic
and j�i.y0/j � 3 by the left-hand side of (5). By using (3) and the previous facts we
obtain

d.H2/n.z;Az/D
p

d2
H2.z1; �1.A/z1/C � � �C d2

H2.zn; �n.A/zn//

�

p
d2

H2.zkC1; �kC1.A/zkC1/C � � �C d2
H2.zn; �n.A/zn//

� 2
p

log2.jtr.�kC1.A//j � 1/C � � �C log2.jtr.�n.A//j � 1/

� 2
p

log2.2j�kC1.y0/j � 3/C � � �C log2.2j�n.y0/j � 3/
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� 2
p

log2
j�kC1.y0/jC � � �C log2

j�n.y0/j

�
2

p
n�k

�
log j�kC1.y0/jC � � �C log j�n.y0/j

�
D

2
p

n�k
log

nY
iDkC1

j�i.y0/j �
4
p

n
log N.I/� 2

p
n log 40:

In both cases we get

d.H2/n.z;Az/�
4
p

n
log.N.I//� 2

p
n log.40/:

Corollary 3.5 For any ideal I � Ok with N.I/ � 40n=2 , the length of any noncon-
tractible closed geodesic ˛ in MI satisfies

`.˛/�
4
p

n
log N.I/� 2

p
n log 40:

Proof By Corollary 3.3, MI is a riemannian manifold with the metric induced
from .H2/n . If we lift ˛ to a geodesic z̨ D .z̨1; : : : ; z̨n/ in its universal cover .H2/n

there is an element A 2 �.I/ acting on z̨ as a translation and for any z in the graph of
z̨ we have `.˛/D d.H2/n.z;Az/. Since ˛ is noncontractible, z̨ is not a point, then
for some i 2 f1; : : : ; ng z̨i is a nontrivial geodesic in H2 , and so �i.A/ acts on it as a
translation. This implies that �i.A/ is hyperbolic and, in particular, jtr.A/j ¤ 2. Since
jtr.A/j ¤ 2 implies y0 ¤ 0, the result now follows from Proposition 3.4.

4 Proof of the main results

To finish the proofs of the theorems we need to find uniform bounds for the quotient
Œ� W �.I/�=N.I/3 , for ideals I �Ok with norm sufficiently large.

Lemma 4.1 For almost any ideal I �Ok we have

(6) �k.2/
�1 N.I/3 � Œ� W �.I/� < N.I/3;

where �k denotes the Dedekind zeta function of k .

Proof A well-known corollary of the strong approximation theorem (see Theorem 7.15
of [8]) implies that for almost all ideals I �Ok the reduction map

SL2.Ok/
�I
�! SL2.Ok=I/

Algebraic & Geometric Topology, Volume 17 (2017)
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is surjective. For those ideals the index Œ� W �.I/� is equal to the cardinality of
SL2.Ok=I/, which is given by the formula

N.I/3
Y
pjI

�
1�

1

N.p/2

�
:

From this the right-hand side of inequality (6) follows easily. On the other hand, the
product formula for the Dedekind zeta function of k says that

�k.2/D
Y

p�Ok

1

1�N.p/�2
�

Y
pjI

1

1�N.p/�2
:

This proves the second inequality.

Theorem 4.2 Let k be a totally real number field of degree n and Ok be the ring of
integers of k . Any sequence of ideals in Ok with N.I/!1 eventually satisfies

sys1.MI /�
4

3
p

n
log.vol.MI //� c;

where �.I/ is the principal congruence subgroup of � D PSL2.Ok/ at level I , MI D

.H2/n=�.I/ and c is a constant independent of I .

Proof For any ideal I with N.I/ � 40n=2 , Corollary 3.3 implies that MI is a
riemannian manifold with the metric induced by the product metric on .H2/n . Now,
by Corollary 3.5 and Lemma 4.1, we conclude that

sys1.MI /�
4

3
p

n
log Œ� W �.I/�� 2

p
n log 40

when N.I/!1.

To finish, we prove that among congruence coverings of Hilbert modular varieties the
constant 4=.3

p
n/ in the growth of the systole in general cannot be improved to any


 > 4=.3
p

n/.

Theorem 4.3 Let k be a totally real number field of degree n and Ok be the ring of
integers of k . Then there exists a sequence of ideals in Ok with N.I/!1 such that

sys1.MI /�
4

3
p

n
log.vol.MI //C c1;

where �.I/ is the principal congruence subgroup of � D PSL2.Ok/ at level I , MI D

.H2/n=�.I/ and c1 is a constant independent of MI .
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Proof Let p be a rational integer and consider the ideal Ip D pOk in Ok . Since
N.Ip/D pn , by following the same argument as in Section 2.3 with the matrix

B D

�
1�p2 p

�p 1

�
;

we obtain that sys1.MIp
/�4
p

n log.p/ when p is large enough. Therefore, Lemma 4.1
implies that

sys1.MIp
/�

4

3
p

n
log Œ� W �.Ip/�C

4

3
p

n
log �k.2/

when p!1, and then we obtain the result with

c1 D
4

3
p

n
log

�k.2/

vol.Mk/
;

where Mk D .H
2/n=� .
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