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Homotopy representations of the unitary groups

WOJCIECH LUBAWSKI

KRZYSZTOF ZIEMIAŃSKI

Let G be a compact connected Lie group and let �; � be complex vector bundles over
the classifying space BG . The problem we consider is whether � contains a sub-
bundle which is isomorphic to � . The necessary condition is that for every prime p ,
the restriction �jBN G

p
, where N G

p is a maximal p–toral subgroup of G , contains
a subbundle isomorphic to �jBN G

p
. We provide a criterion when this condition is

sufficient, expressed in terms of ƒ�–functors of Jackowski, McClure & Oliver, and
we prove that this criterion applies for bundles � which are induced by unstable
Adams operations, in particular for the universal bundle over BU.n/ . Our result
makes it possible to construct new examples of maps between classifying spaces of
unitary groups. While proving the main result, we develop the obstruction theory for
lifting maps from homotopy colimits along fibrations, which generalizes the result of
Wojtkowiak.

55R37; 55S35

1 Introduction

Let G be a compact connected Lie group. For every prime p , there exists a maximal
p–toral subgroup N G

p �G which is unique up to conjugation. Its identity component
is a maximal torus of G , and the group of its components is a p–Sylow subgroup of
the Weyl group of G . The following property is the main subject of this paper.

Definition 1.1 A vector bundle � over a space X has the splitting property with
respect to a map f W A!X if the following holds for an arbitrary bundle � over X .
If there exists a bundle � 0

A
such that f �� ' f ��˚ � 0

A
, then there exists a bundle � 0

such that � ' �˚ � 0. A complex vector bundle over the classifying space BG of G

has the splitting property if it has the splitting property with respect to the mapa
p prime

BN G
p ! BG

induced by the inclusions N G
p �G .
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The splitting property is especially useful due to a theorem of Notbohm [10], which
generalizes a result of Dwyer and Zabrodsky [4]. It implies that isomorphism classes of
complex vector bundles over BN G

p are in one-to-one correspondence with isomorphism
classes of unitary representations of N G

p . Jackowski and Oliver [12] proved that the
trivial bundle over BG has the splitting property. In the present paper we extend their
result to a wider class of bundles over BU.n/. For an arbitrary integer k prime to n!,
Sullivan [13] constructed a map ‰k W BU.n/! BU.n/ known as the unstable Adams
operation, which when restricted to the diagonal matrices is induced by the k –power
homomorphism. As was shown later by Jackowski, McClure and Oliver [5; 6], this
condition determines such maps up to homotopy. Let  n denote the universal bundle
over BU.n/. The main result of this paper is the following theorem.

Theorem 1.2 For all n and all k prime to n!, the bundle .‰k/� n over BU.n/ has
the splitting property.

In particular, for k D 1 this implies that the universal bundle has the splitting property.

Vector bundles over the classifying space of the group G can be interpreted as maps
BG ! BU.d/ which will be called homotopy representations of G . The natural
source of homotopy representations are linear representations of G , ie homomorphisms
G!U.n/. The vector bundles corresponding to maps induced by linear representations
are the bundles associated with the universal G –bundle EG!BG . Thus the splitting
property of vector bundles can be easily formulated in terms of homotopy theory.

To every homotopy representation f W BG!BU.d/ we associate a virtual character
�f 2R.G/. Let T �G be a maximal torus of G . By the Dwyer–Zabrodsky–Notbohm
theorem [10], the restriction f jBT W BT !BU.d/ is defined by a linear representation
�f W T ! U.d/ which is unique up to isomorphism, and its character ��f is invariant
under the Weyl group action on the representation ring R.T /. Thus via the classical
isomorphism R.G/'R.T /W we can consider it as a virtual character �f 2R.G/.
The virtual characters coming from homotopy representations we will call homotopy
characters. A natural question arises: when a virtual character ˛ 2R.G/ is a homotopy
character? The Dwyer–Zabrodsky–Notbohm theorem provides the following constraint:
for every prime p and every p–toral subgroup P � G , the restriction of ˛ to P is
the character of a linear representation. Such characters of the group G will be called
P –characters of G . Since Np is a maximal p–toral subgroup of G , a virtual character
�2R.G/ is a P –character if for every prime the restriction of � to Np is the character
of a linear representation. Now we can formulate the splitting property for homotopy
representations of compact connected Lie groups.
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Definition 1.3 A homotopy character �2R.G/ of a compact connected Lie group G

has the splitting property if every P –character � of G such that �C � is a homotopy
character is also a homotopy character.

Hence, Theorem 1.2 can be reformulated as follows.

Theorem 1.4 For all n and all k prime to n!, the character  k of the unstable Adams
representation ‰k W BU.n/! BU.n/ has the splitting property.

The description of homotopy classes of maps between classifying spaces of compact
Lie groups is a classical topic of homotopy theory. It attracted attention of many re-
searchers through decades, but still remains open. Our Theorem 1.2 and [8, Proposition
1.13], which implies that the character of the trivial representation has the splitting
property, lead to construction of maps BU.n/!BU.d/ which cannot be produced by
compositions of sums and tensor products of the unstable Adams operations and maps
induced by homomorphisms [9]. The crucial observation is that characters of some
irreducible representations of U.n/ can be written as a nontrivial sum of P –characters
�C � , where � is the character of either the trivial or the identity representation.
Then � is a homotopy character. This construction allows us to classify homotopy
representations of U.n/ with dimension bounded by some constant depending on n [9].

Every P–character can be written as the difference of characters of representations.
Thus, if characters of all representations had the splitting property, then all P –characters
would be homotopy characters.

Criterion for splitting P–characters

Theorem 1.4 is a consequence of a more general criterion for splitting of P –characters.
Before formulating it we need to introduce some definitions. Recall from Jackowski,
McClure and Oliver [5; 6] that a p–toral group P �G is p–stubborn if NG.P /=P is
a finite group and contains no nontrivial normal p–subgroups. Let Z^p be the ring of
p–adic integers, and, for a finite group � and a Z^p Œ��–module M , let ƒi.�IM / be
the ƒ�–functors introduced by Jackowski, McClure and Oliver [6, Definition 5.3]; see
also (2.12).

For a compact Lie group P , let IrrRep.P / be the set of isomorphisms classes of ir-
reducible complex representations of P . For a representation ˛ of P and �2 IrrRep.P /,
let c

�
˛ be the multiplicity of � in ˛ , ie the number of summands isomorphic to � in an

arbitrary decomposition of ˛ into a sum of irreducible subrepresentations. Furthermore,
let IrrRep.P; ˛/ D f� 2 IrrRep.P / W c�˛ > 0g. Any (left) action N ! Out.P / of a
finite group N on P by outer automorphisms induces a right action on IrrRep.P /;
furthermore, if ˛ is N –invariant, then IrrRep.P; ˛/ is an N –subset of IrrRep.P /.
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For a P–character � of G and a p–stubborn subgroup P � G , let �P denote a
representation with character resG

P
� .

Theorem 1.5 Let G be a compact connected Lie group and let �, � be P –characters
of G such that �C � is a homotopy character. Assume that

ƒi.NG.P /=P IZ
^
p ŒX �/D 0

for every prime p , every p–stubborn subgroup P �G , every NG.P /=P –orbit X �

IrrRep.P; �P /\ IrrRep.P; �P / and every i � 3. Then both � and � are homotopy
characters.

The reason this criterion applies when � D  k is the character of the unstable Adams
operation is the following: for every p–stubborn subgroup P � U.n/, there exists a
presentation

P ' P
b1

1
� � � � �P

bj
j � U.n1/

b1 � � � � �U.nj /
bj � U.n/

such that Pi � U.ni/ are pairwise nonisomorphic irreducible p–stubborn subgroups.
The irreducibility of Pi means that the representation �Pi

is irreducible, where � denotes
the character of the identity. It turns out that also the representations  k

Pi
are irreducible.

As a consequence, the representation  k
P

admits a decomposition

V D .V1;1˚ � � �˚V1;b1
/˚ � � �˚ .Vj ;1˚ � � �˚Vj ;bj /;

where each Vi;r is an irreducible representation of the r th factor of type Pi , on which
the other factors act trivially. The summands in parentheses correspond to the orbits
of the NU.n/.P /=P –action on IrrRep.P;  k

P
/. This presentation makes it possible to

calculate the groups ƒ� of Theorem 1.5.

Lifting maps from homotopy colimits

An important tool used in the proof of Theorem 1.5 is the obstruction theory for lifting
maps from homotopy colimits. Let C be a small category, F W C! Sp a diagram of
spaces and X a space. Consider a collection of maps ffc W F.c/!X gc2Ob.C/ that is
homotopy compatible, ie for every morphism c

˛
�! c0, the maps fc0 ıF.˛/ and fc are

homotopic. By Wojtkowiak [14], the existence of an extension of
`
fc W

`
F.c/!X

to a map f W hocolimC F !X depends on the vanishing of certain obstructions lying
in the groups

H iC1.CI�i.map.F.�/;X /f.�///:

In this paper we consider a more general problem. Let pW Y ! Z be a fibration.
Fix a map f W hocolimC F !Z and its partial lifting

`
gc W

`
F.c/! Y (see (3.1))
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such that the collection fgcgc2Ob.C/ is homotopy compatible. We prove in Theorem 3.4
that under certain assumptions, this lifting can be extended to hocolimC F if the groups

H iC1.CI�i.Fib.�///

vanish for i > 0, where FibW Cop!HSp is a certain functor such that Fib.c/ is a fiber
of the fibration

map.F.c/;Y /gc
!map.F.c/;Z/f jF.c/ :

Organization of the paper In Section 2 we provide definitions and recall theorems
used throughout the rest of the paper. In Section 3 we develop the obstruction theory
for lifting maps from homotopy colimits. Section 4 contains the proofs of Theorem 1.4
and Theorem 1.5, although the proofs of some propositions are postponed to later
sections. We prove Proposition 4.12 in Section 5, Proposition 4.13 in Section 6, and
Sections 7 and 8 contain the proof of Theorem 4.9.

Acknowledgements The authors would like to thank the referee for putting in so much
work reading this paper and for many valuable suggestions and comments, especially
for pointing out a simplification of the proof of Proposition 4.13 and a gap in the proof
of Theorem 4.9 in the first version of this paper. We would also like thank Stefan
Jackowski for his advice during the writing of this paper.

2 Preliminaries

For compact Lie groups H and L, let R.H / be the unitary representation ring of H ,
RC.H /�R.H / the semiring of isomorphism classes of unitary representations of H

and let Rep.H;L/ WD Hom.H;L/= Inn.L/ be the set of conjugacy classes of homo-
morphisms from H to L. If H �L, then CL.H / denotes the centralizer of H in L.
For a space X , we denote by X^p the Fp –completion in the sense of Bousfield and
Kan [3].

Dwyer–Zabrodsky–Notbohm theorem

An important tool we use in this paper is the following theorem due to Dwyer, Zabrodsky
and Notbohm.

Theorem 2.1 (Dwyer–Zabrodsky–Notbohm theorem [10]) Let P be a p–toral group
and H a compact Lie group.
� The map

Rep.P;H /! ŒBP;BH �; ˛ 7! ŒB˛�

is a bijection.
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� For every homomorphism ˛W P !H the map

ad˛W BCH .˛.P //!map.BP;BH /B˛;

which is adjoint to the map induced by the multiplication homomorphism

CH .˛.P //�P !H; .a; b/ 7! ˛.a/b;

is a mod p–equivalence, ie it induces an isomorphism in homology with Z=p as
coefficients. In particular, the map

.ad˛/^p W BCH .˛.P //
^
p ! .map.BP;BH /B˛/

^
p Šmap.BP;BH^p /B˛

is a homotopy equivalence.

If H D U.d/ is a unitary group, then CH .�.P // can be described using Schur’s
lemma. Namely, there is an isomorphism

(2.2) CU.d/.˛.P //'
Y

�2IrrRep.P/

U.c�˛/:

P–characters and homotopy characters

Fix a compact connected Lie group G . Let T � G be its maximal torus, and
W � Aut.T / its Weyl group.

Definition 2.3 A homotopy representation of G is a map f W BG!BU.d/. We say
that two homotopy representations are isomorphic if they are homotopic as maps. The
character �.f / 2R.G/ŠR.T /W of a homotopy representation f is the character
of the representation �W T ! U.d/ such that B� � f jBT . By Theorem 2.1, such a
character is well-defined.

Definition 2.4 A virtual character � 2R.G/ is a P –character if for every prime p

and every p–toral subgroup P �G , its restriction to P is the character of a linear repre-
sentation, ie �jP 2RC.P /. The set of P –characters of G will be denoted by RP.G/.
We will denote by �P W P ! U.d/ a homomorphism with the character �jP .

Proposition 2.5 The character of a homotopy representation is a P –character.

Proof If f W BG!BU.d/ is a homotopy representation and P �G a p–subgroup,
then the Dwyer–Zabrodsky–Notbohm theorem implies that the restriction f jBP is
induced by a unitary representation of P .
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Definition 2.6 A virtual character that is the character of a homotopy representation
will be called a homotopy character; the semiring of homotopy characters of G will
be denoted by Rh.G/.

Notice that there is a sequence of inclusions

(2.7) RC.G/�Rh.G/�RP.G/�R.G/ŠR.T /W �R.T /:

p–homotopy characters

Definition 2.8 Let p be a prime integer. A p–homotopy representation of G is a
map fpW BG ! BU.d/^p . We say that a P–character � 2 RP.G/ is the character
of fp if the diagram

BT BU.d/

BG BU.d/^p

-B�T

?
B.T�G/

?
.�/^p

-
fp

commutes up to homotopy. A P–character that is the character of a p–homotopy
representation is called a p–homotopy character.

Proposition 2.9 A P–character � is a homotopy character if and only if it is a p–
homotopy character for all primes p .

Proof This is an immediate consequence of [7, Proposition 1.2].

The subgroup homotopy decomposition

Let p be a prime integer.

Definition 2.10 A p–toral subgroup P �G is p–stubborn if NG.P /=P is a discrete
group containing no nontrivial normal p–subgroups. Let Rp.G/ be the category of
G –orbits with the form G=P , for a p–stubborn P �G , and G –maps.

Theorem 2.11 [5, Theorem 1.4] The map

"
p
G
W hocolimG=P2Rp.G/EG �G G=P !EG �G � Š BG

induced by projections G=P ! � induces an equivalence on homology with Fp –
coefficients. In particular, the map

."
p
G
/^p W .hocolimG=P2Rp.G/EG �G G=P /^p ! BG^p

is a homotopy equivalence.
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Remark If � is a P –character of G of dimension d , then the family

EG �G G=P ' BP
B�P
�! BU.d/

is a homotopy compatible family of maps from the decomposition functor EG �G .�/

to BU.d/.

Functors ƒ*

Let p be a prime. Here we recall methods of calculating higher limits of functors
on the category Rp.G/ developed in [5; 6]. For a commutative ring R and a small
category C , we define RŒC�–modules as contravariant functors from C into the category
of R–modules. If F is an RŒC�–module, then H i.CIF / denotes the i th right derived
functor of the inverse limit of F , and will be referred to as the i th cohomology group
of C with coefficients M ; this notion coincides with group cohomology if C is a
one-object category with invertible morphisms.

For a finite group � , let Op.�/ be the category of �–orbits whose isotropy groups
are p–groups and � –maps. For a Z^p Œ��–module M and i � 0, define groups

(2.12) ƒi.�IM / WDH i.Op.�/IF
�
M /;

where F�
M

is a Z^p ŒOp.�/�–module defined by

(2.13) F�M .�=P /D

�
M for P D 1,
0 otherwise.

These groups play an important role in calculating cohomology of Z^p ŒRp.G/�–modules.
Their crucial property is the following.

Proposition 2.14 Let G be a compact Lie group, F a Z^p ŒRp.G/�–module and r an
integer. Assume that ƒi.NG.P /=P IF.G=P //D 0 for all i � r and all G=P 2Rp.G/.
Then H i.Rp.G/IF /D 0 for i � r .

Proof This follows from [5, Corollary 1.8] and [7, Theorem 1.10(ii)].

Let us recall several properties of functors ƒ� proven in [5; 6].

Proposition 2.15 Let � be a finite group and let M be a Z^p Œ��–module.

(1) If p divides the order of �, then ƒ0.�IM /D 0. Otherwise ƒ0.�IM /DM � .

(2) Let K D ker.�! Aut.M //. If p divides the order of K , then ƒ�.�IM /D 0;
otherwise ƒ�.�IM /Dƒ�.�=KIM /.

Proof This follows from [6, Proposition 6.1].
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In the following proposition all tensor products are taken with respect to the ring Z^p .

Proposition 2.16 Let � be a finite group, M a finitely generated Z^p –module, N a
Z^p Œ��–module that is free and finitely generated as Z^p –module, and r � 0 an integer.
Assume that ƒi.�IN /D 0 for every i � r . Then ƒi.�IM ˝N /D 0 for i � r .

Proof By [6, Proposition 6.1(v)] there is an exact sequence

0!
M

kClDiC1

Tor.ƒk.1IM /;ƒl.�IN //!ƒi.�IM ˝N /

!

M
kClDi

ƒl.1IM /˝ƒk.�IN /! 0;

and by [6, Proposition 6.1(i)] it reduces to

0! Tor.M; ƒiC1.�IN //!ƒi.�IM ˝N /!M ˝ƒi.�IN /! 0:

By assumption ƒi.�IN /DƒiC1.�IN /D 0. The conclusion follows.

3 Obstruction theory

In this section we develop the obstruction theory for lifting maps from homotopy
colimits. This is an extension of results obtained by Wojtkowiak [14]. Let C be a
small category, F W C ! Sp a diagram of spaces and pW Y ! Z a fibration. Fix a
map f W hocolimC F ! Z and a family of maps gc W F.c/! Y , c 2 Ob.C/ which
represents a co-cone in the homotopy category, ie an element

fŒgc �gc2Ob.C/ 2 lim
c2C
ŒF.c/;Y �:

Assume that the diagram of solid arrows

(3.1)

a
c2C

F.c/
Y

hocolimC F Z

-
`

gc

?

�

?

p

-f
p p p p p p

p p p p p p�Ng

strictly commutes. For every c 2 Ob.C/ denote fc W D f jF.c/ and

(3.2) Fib.c/ WD .pc/
�1.fc/;

where
pc WDmap.F.c/;p/W map.F.c/;Y /gc

p�
�!map.F.c/;Z/fc

:
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The map pc is a fibration with fiber Fib.c/. We will make two more assumptions: for
every c 2 Ob.C/,

� the connected component of the mapping space map.F.c/;Z/fc
is simply con-

nected, and

� Fib.c/ is a simple space ie its fundamental group acts trivially on all homotopy
groups.

For every morphism ˛W c! c0 in C , let us choose a map

(3.3) Fib.˛/W Fib.c0/D p�1
c0 .fc0/

F.˛/�

�! p�1
c .fc0 ıF.˛//

'
�! p�1

c .fc/D Fib.c/:

The first assumption guarantees that the homotopy class of Fib.˛/ does not depend on
the choice of a homotopy equivalence between fibers of pc . Thus, Fib is a contravariant
functor from C to the homotopy category HSp. By the second assumption, for every
c 2 Ob.C/, the homotopy groups of Fib.c/ for different choices of basepoints are
naturally isomorphic. Therefore, the composition �n ıFib is a contravariant functor
from C into the category of abelian groups Ab. The following theorem will be proven
at the end of the section.

Theorem 3.4 If H iC1.CI�i.Fib//D 0 for all i > 0, then there exists a lifting exten-
sion NgW hocolimC F ! Y which makes the diagram (3.1) commutative.

This theorem reduces to the result of [14] if Z is a one-point space.

Elementary lifting extension problem

To establish notation, we recall some elementary results of classical obstruction theory.
Fix a fibration qW E! B such that its fiber F D q�1.b0/ is simple, and assume that
B is simply connected. Consider the following lifting extension problem:

(3.5)

@�nC1 E

�nC1 B:

-s

?

�

?

q

-r
p p p p p p

p p p�t

Let

(3.6) L.s; r/ WD ft 2map.�nC1;E/ W t j@�nC1 D s and q ı t D rg

be the space of lifting extensions.
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The map s factors through the total space r�E of the pull-back fibration over �nC1.
Let

(3.7) on.s; r/ 2 Œ@�
nC1; r�E�Š �n.r

�E/' �n.F /

be the homotopy class corresponding to this factorization; we will call it the obstruction
class. This definition depends neither on the choice of basepoints of the homotopy
groups (since F is simple), nor on the choice of homotopy equivalence r�E ' F

(since B is simply connected). For t; t 0 2 L.s; r/, define the difference class

(3.8) dnC1.t; t
0/ 2 Œ�nC1

[@�nC1 �nC1; r�E�' �nC1.F /

as the obstruction class of the lifting extension problem

(3.9)

�nC1
[@�nC1 �nC1 E

�nC1 B:

-t[t 0

?
pr

?
q

-r
p p p p p p p p p p p

p*

Let di W �
k !�kC1 be the inclusion onto the i th face of the simplex, and let �k

.l/
be

the l th skeleton of �k. Let us state some elementary properties of the concepts defined
above.

Proposition 3.10 Fix a map r W �nC1! B .

(1) If sW @�n ! E is a lifting of r j@�n along q , then L.s; r/ ¤ ∅ if and only if
on.s; r/D 0.

(2) Let s; s0W @�nC1!E be liftings of r j@�nC1 along q . Assume that sj
�

nC1
.n�1/

D

s0j
�

nC1
.n�1/

. Then

on.s
0; r/D on.s; r/C

nC1X
iD0

.�1/idn.s
0
ı di ; s ı di/:

(3) We have
PnC2

iD0 .�1/ion.s ı di ; r ı di/D 0 for any commutative diagram

�nC2
.n/ E

�nC2
.nC1/ B:

-s

?
�

?

q

-r

(4) If sW @�n ! E is a lifting of r j@�n along q , then, for every t 2 L.s; r/ and
every u 2 �nC1.F /, there exists t 0 2 L.s; r/ such that dn�1.t

0; t/D u.
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Proposition 3.11 (functoriality of obstruction and difference classes) Consider a
commutative diagram

F F 0

@�nC1 E E0

�nC1 B B0

-aF

? ?

?

�

-s -aE

?

q

?

q0

-r -aB

where q0W E0! B0 is a fibration with a fiber F 0. Assume that B0 is simply connected
and F 0 is simple. Then

(1) on.aE ı s; aB ı r/D .aF /�.on.s; r//,

(2) for t; t 0 2 L.s; r/,

dnC1.aE ı t; aE ı t 0/D .aF /�dnC1.t; t
0/:

Cochain complex

We return to considering the lifting extension problem (3.1). Here we define a cochain
complex which can be used to calculating cohomology groups H j .CI�i.Fib//. Also
the obstruction classes and the difference classes, which are analogues of (3.7) and
(3.8), will be defined as its cochains.

Let N.C/ denote the nerve of C and let N.C/i be the set of i –simplices of N.C/. For
i; j > 0 define groups

(3.12) C
j
i D

Y
�2N.C/j

�i

�
Fib.�.0//

�
and differentials ıj

i W C
j
i ! C

jC1
i by

(3.13) ı
j
i .u/.�/D Fib.�.0! 1//�.u.d0�//C

jC1X
kD1

.�1/ku.dk.�//

for u 2 C
j
i , � 2 N.C/jC1 . Let Z

j
i ;B

j
i ;H

j
i denote respectively the cocycles, the

coboundaries and the cohomology of the cochain complex .C �i ; ı
�
i /. According to [11,

Lemma 2], H j .CI�i.Fib//DH
j
i for all i ,j .
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Adjoint maps

Denote for short X D hocolimC F , and let Xk D hocolim.k/C F be the k –skeleton of
the homotopy colimit of F , ie the inverse image of the k –skeleton of the nerve of C .
For a space W , a map aW Xk !W and a simplex � 2N.C/n , let

(3.14) Ada
� W �

n
.k/!map.F.�.0/;W //

be the adjoint map to the composition

�n
.k/ �F.�.0//

�
�! hocolim.k/C F DXk

a
�!W:

Note that

(3.15) Ada
� ı di D

�
Ada

di�
for i > 0,

F.�.0! 1// ıAda
d0�

for i D 0,

and that maps aW Xk !W are in one-to-one correspondence with families of maps
fAda

�g�2N.C/ satisfying these relations.

Lifting extension spaces

For n� 0, let En
0

be the space of maps gW Xn! Y such that the diagram

(3.16)

X0 D

a
c2C

F.c/
Y

Xn Z

-
`

gc

?

�

?

p

-
f jXn

�
�
�
�
���

g

commutes. Denote by E1
0

the inverse limit limn En
0

; note that this is the set of solutions
of the lifting extension problem (3.1). For g 2 En

0
and k � n�m, let Em

k
.g/ be the

space of maps hW Xm! Y such that the diagram

(3.17)

Xk Y

Xm Z

-
gjXk

?
�

?

p

-
f jXm
�
�
��h

commutes.
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Obstruction cochains and difference cochains

For g 2 En
0
, define the obstruction cochain On.g/ 2 C nC1

n by

(3.18) On.g/.�/ WD on.Adg
� ;Adf� / 2 �n.Fib.�.0///;

where on.Adg
� ;Adf� / is the obstruction of the lifting problem

(3.19)

@�nC1 map.F.�.0//;Y /g�.0/

�nC1 map.F.�.0//;Z/f�.0/ :

-Adg
�

?

�

?
map.F.�.0//;p/

-Adf�
p p p p p p p p p p p

p p p p*

For h; h0 2 EnC1
n .g/, define the difference cochain DnC1.h

0; h/ 2 C nC1
nC1

by

(3.20) DnC1.h
0; h/.�/D dnC1.Adh0

� ;Adh
� / 2 �nC1.Fib.�.0///:

Proposition 3.21 Fix g 2 En
0

, n> 0.

(1) EnC1
n .g/¤∅ if and only if On.g/D 0.

(2) On.g/ 2ZnC1
n .

(3) On.g
0/DOn.g/C ı

n
n.Dn.g

0;g// for any g0 2 En
n�1

.g/.

(4) For every u 2 C nC1
nC1

and every h 2 EnC1
n .g/, there exists a map h0 2 EnC1

n .g/

such that DnC1.h
0; h/D u.

Proof The existence of h2 EnC1
n .g/ is equivalent to the existence of a family of maps

fAdh
�g 2 L.Adg

� ;Adf� / for � 2N.C/nC1 . Then (1) is a straightforward consequence
of Proposition 3.10(1). For similar reasons, (4) is a consequence of Proposition 3.10(4).
To prove (2), we check that for � 2N.C/nC2 we have

ınC1
n .On.g//.�/D Fib.�.0! 1//�.On.g/.d0�//C

nC2X
iD1

.�1/iOn.g/.di�/

D Fib.�.0! 1//�on.Adg

d0�
;Adf

d0�
/C

nC2X
iD1

.�1/ion.Adg

di�
;Adf

di�
/

D on.Adg

d0�
ıF�.�.0! 1//;Adf

d0�
ıF�.�.0! 1///

C

nC2X
iD1

.�1/ion.Adg

di�
;Adf

di�
/

D

nC2X
iD0

.�1/ion.Adg
� ı di ;Adf� ı di/D 0;
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where the third equality follows from Proposition 3.10(2), the fourth from (3.15), and
the last from Proposition 3.10(3).

To prove (3), let � 2N.C/nC1 . As a consequence of (3.15), for i > 0 we have

dn.Adg0

� ı di ;Ad�g ı di/D dn.Adg0

di�
;Adg

di�
/DDn.g

0;g/.di�/

and

dn.Adg0

� ı d0;Adg
� ı d0/D dn.F.�.0! 1// ıAdg0

d0�
;F.�.0! 1// ıAdg

d0�
/

D Fib.�.0; 1//�.dn.Adg0

d0�
;Adg

d0�
//

D Fib.�.0; 1//�.Dn.g
0;g/.d0�//;

where the second equality follows from Proposition 3.11(2). Finally, with the second
equality following from Proposition 3.10(2),

On.g
0/.�/D on.Adg0

� ;Adf� /D on.Adg
� ;Adf� /C

nC1X
iD0

.�1/idn.Adg0

� ıdi ;Adg
� ıdi/

DOn.g/.�/CFib.�.0! 1//�.Dn.g
0;g/.d0�//C

nC1X
iD1

.�1/iDn.g
0;g/.di�/

DOn.g/.�/Cı
n
n.Dn.g

0;g//:

This proves (3).

Lemma 3.22 Fix n> 0, and assume that H nC1.CI�n.Fib//D 0. For every g 2 En
0

,
we have EnC1

n�1
.g/¤∅.

Proof By Proposition 3.21(2), On.g/ 2ZnC1
n . Since H nC1

n D 0, there exists u 2C n
n

such that ın
n.u/ D On.g/. Let g0 2 En

n�1
.g/ be a map such that Dn.g

0;g/ D �u,
which exists by Proposition 3.21(4). By Proposition 3.21(3) we have

On.g
0/DOn.g/C ı

n
n.Dn.g

0;g//DOn.g/C ı
n
n.�u/D 0:

The conclusion follows from Proposition 3.21(1).

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 3.4 We need to prove that the space E1
0
D lim En

0
is nonempty.

Since fgcgc2Ob.C/ 2 limC ŒF;Y �, the map g0 D
`

gc W X0 ! Y extends to a map
X1 ! Y , which can be adjusted (since p is a fibration) to a map g1 2 E1

0
. Using

Lemma 3.22, we inductively construct a sequence of maps gn , n � 2, such that
gn 2 En

n�2
.gn�1/. Put g0n WD gnC1jXn

. Since g0njXn�1
D g0

n�1
, the sequence fg0ng

represents an element in E1
0

.
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4 Guide to the argument

In this section we prove Theorem 1.5 and then deduce Theorem 1.4. Let G be a
compact connected Lie group and T � G its maximal torus. Let � and � be P–
characters of G with dimensions d and d 0, respectively, and assume that �C � is
a homotopy character. To prove Theorem 1.5 we need to show that under certain
assumptions, both � and � are homotopy characters. By Proposition 2.9 it is sufficient
to prove that they are p–homotopy characters for all primes p . Fix a prime p and a
p–homotopy representation f W BG! BU.d C d 0/^p with character �C � . We will
prove a sequence of criteria (Proposition 4.1, Proposition 4.4, Theorem 4.10) which
imply that � and � are p–homotopy characters.

A lifting extension problem

The first step in the proof of Theorem 1.5 is the following observation.

Proposition 4.1 If there exists a map gW BG! .BU.d/�BU.d 0//^p such that the
diagram

BT .BU.d/�BU.d 0//^p

BG BU.d C d 0/^p

-
.B�T�B�T /

^
p

?
B.T�G/

?
˚

-f��
�
��

��*g

commutes up to homotopy, then � and � are p–homotopy characters.

Proof The restriction of the composition

f1W BG
g
�! .BU.d/�BU.d 0//^p

proj
�! BU.d/^p

to BT is homotopic to .B�T /
^
p . Therefore, f1 is a p–homotopy representation with

character �. A similar argument applies to � .

A homotopy decomposition

We will use the homotopy decomposition Theorem 2.11 to find criteria for the existence
of a lifting extension in the diagram of Proposition 4.1. Consider the following diagram,
where q is induced by the identity map on EU.dCd 0/, and "p

G
is a mod p homology

equivalence from Theorem 2.11:
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(4.2)

a
G=P2Rp.G/

EG �G G=P
.BU.d/�BU.d 0//^p

.EU.d C d 0/=U.d/�U.d 0//^p

hocolimG=P2Rp.G/EG �G G=P BG BU.d C d 0/^p

-

`
B.�P��P /

^
p

?

�

p p p p p p p p p p p p p p p p p p p p pz
`

gP

?
Š

?
q

-
"

p

G

p p p p p p p p p p p p p p p p p p p p p p
p p p:g

-f

The diagram of solid arrows commutes up to homotopy. Since q is a fibration, we can
choose maps

gP W EG �G G=P !
�
EU.d C d 0/=.U.d/�U.d 0//

�^
p

such that the upper triangle commutes up to homotopy, and the remaining part of the
diagram, ie

(4.3)

a
G=P2Rp.G/

EG �G G=P
.EU.d C d 0/=U.d/�U.d 0//^p

hocolimG=P2Rp.G/EG �G G=P BU.d C d 0/^p

-
`

gP

?

�

?

q

-
f ı"

p

G

p p p p p p p p p p p
p p p p p p p p p p p

p p p p p p p*
g

commutes strictly.

Proposition 4.4 If the lifting extension problem (4.3) has a solution, then � and �
are p–homotopy characters.

Proof Let g be a lifting extension. Since "p
G

is a p–equivalence, there exists a
map f 0 unique up to homotopy such that the composition

hocolimG=P2Rp.G/EG �G G=P
"

p

G
�! BG

f 0

�! .EU.d C d 0/=U.d/�U.d 0//^p

is homotopic to g . The composition

zf W BG
f 0

�! .EU.d C d 0/=U.d/�U.d 0//^p
'
�! .BU.d/�BU.d 0//^p

fits into the diagram of Proposition 4.1, since T is contained in some p–stubborn
subgroup. Thus the conclusion follows from Proposition 4.1.
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Obstruction theory

Now our goal is to construct a lifting extension of the diagram (4.3). Let us sketch
the argument we use here; the formal proof is given in Sections 7 and 8. In Section 3
we develop the obstruction theory for lifting maps from homotopy colimits; let
Fibp

�;� W Rp.G/! Sp be the functor defined in (3.2) which is associated to the diagram
(4.3). We need to check that the assumptions which allow to construct this functor are
satisfied but it will become clear when we calculate the homotopy type of the spaces
Fibp

�;�.G=P /. By Theorem 3.4, the problem (4.3) has a solution if

H iC1.Rp.G/I�i Fibp
�;� /D 0

for all i � 1. By Proposition 2.14 it is sufficient to prove that

ƒiC1.NG.P /=P I�i Fibp
�;�.G=P //D 0

for G=P 2Rp.G/, i � 1. This makes it important to describe the spaces Fibp
�;�.G=P /

and the action of the groups NG.P /=P on them. For a p–stubborn subgroup P �G

the space Fibp
�;�.G=P / is, by definition (3.2), the homotopy fiber of the map

(4.5) map.EG=P; .BU.d/�BU.d 0//^p /B�P�B�P

!map.EG=P;BU.d C d 0/^p /B.�P˚�P /

induced by the inclusion U.d/ � U.d 0/ � U.d C d 0/. By the Dwyer–Zabrodsky–
Notbohm theorem, this map is homotopy equivalent to

BCU.d/�U.d 0/.�P .P //
^
p �BCU.d/�U.d 0/.�P .P //

^
p !BCU.dCd 0/..�P ��P /.P //

^
p ;

which is, by Schur’s lemma, equivalent to the mapY
�2IrrRep.P/

B.U.c��P
/�U.c��P

//^p !
Y

�2IrrRep.P/

BU.c��P
C c��P

/^p ;

induced again by the inclusions U.c
�
�P
/�U.c

�
�P
/ � U.c

�
�P
C c

�
�P
/. Thus there is a

homotopy equivalence

(4.6) Fibp
�;�.G=P /'

Y
�2IrrRep.P/

�
U.c��P

C c��P
/=.U.c��P

/�U.c��P
//
�^
p
:

To proceed with calculations we need to describe also the homotopy action of the group
AutRp.G=P/.G=P / D NG.P /=P on Fibp

�;�.G=P /. There is an NG.P /=P –action on
the right-hand side of the equivalence (4.6) induced by the action on IrrRep.P /. We
must show that these actions coincide.
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We will need some definitions and they will be given in somewhat greater generality.
Let P be an arbitrary p–toral group, N a finite group acting on P by outer automor-
phisms (ie there is a given homomorphism N ! Out.P /), and ˛; ˇW P ! U.d/ be
homomorphisms which are N –invariant up to conjugacy. Define a left N –space

(4.7) G˛;ˇ WD
Y

�2IrrRep.P/

�
U.c�˛C c

�

ˇ
/=.U.c�˛ /�U.c

�

ˇ
//
�^
p
;

where N acts by permuting factors, ie �..x�/�2IrrRep.P//D .x���/�2IrrRep.P/ for �2N .
A homotopy N –space is a space X equipped with a homomorphism from N into
the group of the homotopy classes of self-homotopy equivalences of X ; in particular,
every N –space may be regarded as a homotopy N –space. We say that homotopy
N –spaces X and Y are homotopy N –equivalent, see Definition 7.1, if there exists a
map f W X ! Y such that the diagram

(4.8)

X Y

X Y

-f

?
�

?
�

-f

commutes up to homotopy for every � 2N .

Theorem 4.9 Let �; � be P –characters of a compact connected Lie group G such that
�C � is a homotopy character. For every p–stubborn subgroup P �G , the homotopy
NG.P /=P –spaces G�P ;�P

and Fibp
�;�.G=P / are homotopy NG.P /=P –equivalent.

The proof of this theorem is given at the end of Section 8. This result allows us to
prove the following.

Theorem 4.10 Let �; � be P–characters of a compact connected Lie group G such
that �C � is a homotopy character. If for every p–stubborn subgroup P � G and
every i � 2 holds

ƒiC1.NG.P /=P I�i.G�P ;�P
//D 0;

then � and � are p–homotopy characters.

Proof We will apply Theorem 3.4 to prove the existence of the lifting extension of
the diagram (4.3). First, we need to check that the assumptions of Theorem 3.4 are
satisfied. For every p–stubborn subgroup P �G , the group CU.dCd 0/..�P ��P /.P //

is connected (by Schur’s lemma), and there is a homotopy equivalence

map.EG �G G=P;BU.d C d 0/^p /B.�P��P / ' BCU.dCd 0/..�P � �P /.P //
^
p ;

by the Dwyer–Zabrodsky–Notbohm theorem (Theorem 2.1).
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Thus the space
map.EG �G G=P;BU.d C d 0/^p /B.�P��P /

is simply connected. Also Fibp
�;�.G=P / is simply connected since it is homotopy

equivalent to G�P ;�P
by Theorem 4.9. Again by Theorem 4.9 and the assumption

ƒiC1.NG.P /=P IFibp
�;�.G=P //Dƒ

iC1.NG.P /=P I�i.G�P ;�P
//D 0

for i � 2 and G=P 2Rp.G/. The space G�P ;�P
is simply connected; therefore this

equation is valid also for i D 1. Thus, by Proposition 2.14,

H iC1.Rp.G/IFibp
�;�/D 0

for i � 1. Theorem 3.4 implies that there exists a lifting extension in the diagram (4.3).
The conclusion follows from Proposition 4.4.

Calculation of groups ƒ*

Proposition 4.11 Let P � G be a p–stubborn subgroup. Assume that for every
NG.P /=P –orbit X � IrrRep.P; �P /\ IrrRep.P; �P / and every i � 2,

ƒiC1.NG.P /=P IZ
^
p ŒX �/D 0:

Then ƒiC1.NG.P /=P I�i.G�P ;�P
//D 0 for i � 2.

Proof Denote N DNG.P /=P , I WD IrrRep.P; �P /\ IrrRep.P; �P /, and

Y� WD
�
U.c��P

C c��P
/=.U.c��P

/�U.c��P
//
�^
p

for � 2 IrrRep.P /. Note that for � 2 IrrRep.P / n I either c
�
�P
D 0 or c

�
�P
D 0; thus

G�P ;�P
D

Y
�2I

Y�:

Let IDX1[ � � � [Xk be a presentation as the sum of disjoint orbits, and let �j 2Xj

be representatives. Obviously Y� D Y�0 if � and �0 lie in the same orbit. We have a
sequence of isomorphisms of Z^p ŒNG.P /=P �–modules:

�i.G�p;�p /D �i

�Y
�2I

Y�

�
D

kY
jD1

�i

� Y
�2Xj

Y�

�

D

kY
jD1

�i.Y
Xj
�j /D

kY
jD1

�i.Y�j /˝Z^p ŒXj �:
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Since �i.Y�j / is a finitely generated Z^p –module, from Proposition 2.16 follows that

ƒi.N I�i.G�P ;�P
//Dƒi

�
N I

kY
jD1

Z^p ŒXj �˝�i.Y�j /

�

D

kM
jD1

ƒi.N IZ^p ŒXj �˝�i.Y�j //

D 0:

Proof of Theorem 1.5 The result now follows immediately from Theorem 4.10 and
Proposition 4.11.

Splitting of Adams operations

Finally, we will prove that Theorem 1.5 applies in the case that G is the rank n unitary
group, and � D  k is the character of the unstable Adams operation of degree k ,
.k; n!/D 1. The special case is the character of the identity representation �D 1. The
proof of Theorem 1.5 depends on the following two propositions. For a finite set X

let †X denote the group of permutations of X .

Proposition 4.12 Let P be a p–stubborn subgroup of U.n/, and let k be an integer
prime to n!. For every NU.n/.P /=P –orbit X � IrrRep.P; k

P
/, the map NU.n/.P /=P!

†X induced by this action is an epimorphism.

Proposition 4.13 If X is a finite set, then ƒi.†X IZ
^
p ŒX �/D 0 for i � 2.

These propositions are proven at the end of Section 5 and Section 6, respectively.

Finally, we prove that the character  k of the unstable Adams operation ‰k W BU.n/!

BU.n/ has the splitting property.

Proof of Theorem 1.4 Let � be a P–character of U.n/ such that � C  k is a
homotopy character. Fix a prime p , a p–stubborn subgroup P � U.n/ and an
NU.n/.P /=P –orbit X � IrrRep.P;  k/. By Proposition 2.15(2), if p divides the order
of ker.NU.n/.P /=P !†X /, then ƒi.NU.n/.P /=P IZ

^
p ŒX �/D 0; otherwise

ƒi.NG.P /=P IZ
^
p ŒX �/Dƒ

i.†X IZ
^
p ŒX �/D 0

for i � 2 by Propositions 4.12 and 4.13. The conclusion follows from Theorem 1.5.
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5 Representations of p–stubborn subgroups of U.n/

Let n be a positive integer and let Tn�U.n/ be a maximal torus. Recall [13; 5; 6] that
for every m 2 Z such that .m; n!/D 1, there exists a unique homotopy representation
‰mW BU.n/! BU.n/ such that ‰mjBTn

is a map induced by the composition

Tn! Tn � U.n/; x 7! xm:

Let  m 2 R.U.n// be the character of ‰m, and let p be a fixed prime integer.
In this section we prove Proposition 4.12, which states that for every p–stubborn
subgroup P � U.n/ and every NU.n/.P /=P –orbit X � IrrRep.P;  m

P
/, the map

NU.n/.P /=P !†X is surjective.

Let us recall the classification of p–stubborn subgroups of unitary groups obtained by
Oliver [12]. Define p�p–matrices

(5.1) AD

0BBBBB@
1 0 0 � � � 0

0 � 0 � � � 0

0 0 �2 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � �p�1

1CCCCCA ; B D

0BBBBB@
0 1 0 � � � 0

0 0 1 � � � 0
:::
:::
:::
: : :

:::

0 0 0 � � � 1

1 0 0 � � � 0

1CCCCCA
where � D e2�i=p. Let Ik denote the k �k identity matrix. Define matrices Ak

i ;B
k
i 2

U.pk/, for i D 0; : : : ; k � 1, by

(5.2) Ak
i D Ipi ˝A˝ Ipk�i�1 ; Bk

i D Ipi ˝B˝ Ipk�i�1 :

Finally, let

(5.3) �.k/ WD hS1;Ak
0 ; : : : ;A

k
k�1;B

k
0 ; : : : ;B

k
k�1i � U.pk/;

where S1 D he2� it � Ipk i. Note that .Ak
i /

p D .Bk
i /

p D Ipk and

(5.4) Ak
i Ak

j DAk
j Ak

i ; Bk
i Bk

j D Bk
j Bk

i ; Bk
i Ak

j D

�
� �Ak

j Bk
i for i D j ,

Ak
j Bk

i for i ¤ j .

Furthermore, every element of x 2 �.k/ can be written uniquely in the form

(5.5) x D t �Ak
i1
� � �Ak

ir
Bk

j1
� � �Bk

js
;

where t 2 S1, 0� i1 < � � �< ir < k , and 0� j1 < � � �< js < k .

Let Cp denote the cyclic group of order p . We say that a subgroup of a unitary group
is elementary p–stubborn if it has the form

�.kI a1; : : : ; ar / WD �.k/ oC
a1

p o � � � oC
ar

p � U.pk/ oC a1
p o � � � oC

ar
p � U.pkC

P
ai /:
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If P D �.kI a1; : : : ; ar / is an elementary p–stubborn subgroup, then by [12, Theo-
rem 6]

NU.n/.P /=P ' Sp2k.Fp/�GLa1
.Fp/� � � � �GLar

.Fp/:

Proposition 5.6 [12, Theorem 8] Every p–stubborn subgroup of U.n/ is conjugate
to

P D P
b1

1
� � � � �P

bj
j � U.pn1/b1 � � � � �U.pnj /bj � U.n/;

where fPi � U.pni /g is a family of pairwise nonisomorphic elementary p–stubborn
subgroups. Furthermore,

(5.7) NU.n/.P /=P '

jY
iD1

.NU.pni /.Pi/=Pi/ o†bi
:

Recall that  m denotes the character of the unstable Adams operation of degree m.
For an arbitrary subgroup P � U.n/, the homomorphism  m

P
is determined by the

condition that for all x 2 P ,

(5.8) tr. m
P .x//D tr.xm/

uniquely up to conjugacy. This follows from the definition of ‰m, since every x 2 P

is conjugate to an element of Tn .

Proposition 5.9 If nD pk, then the representation  m
�.k/

is irreducible.

Proof If kD 0, then  m
�.k/

has dimension 1. Otherwise, p does not divide m. Define
an endomorphism ˛W �.k/! �.k/ by formulas

� ˛.x/D xm for x 2 S1 ŠZ.U.pk//

� ˛.Ak
i /D .A

k
i /

m

� ˛.Bk
i /D Bk

i .

By checking conditions (5.4) we prove that ˛ is well-defined, and it is surjective since
.p;m/D 1. Let

x D t �Ak
i1
� � �Ak

ir
Bk

j1
� � �Bk

js
2 �.k/

be the presentation (5.5) of an arbitrary element of �.k/. If s D 0, then ˛.x/D xm ;
for s > 0 both xm and ˛m.x/ have no nonzero elements on the diagonal, and then
tr.xm/D tr.˛.x//D 0. Therefore, for every x 2�.k/ we have tr. m

�.k/
.x//D tr.xm/,

and then the composition ��.k/ı˛ is conjugate to  m
�.k/

since they have equal characters.
Now the conclusion follows from irreducibility of ��.k/ , which is proven in the proof
of [12, Theorem 6], and surjectivity of ˛ .
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Proposition 5.10 For every elementary p–stubborn subgroup P of U.n/, the repre-
sentation  m

P
is irreducible.

Proof We induct with respect to j , where P D �.kI a1; : : : ; aj /. The case j D 0 is
proven in Proposition 5.9. Assume that j > 0. We denote n0 WD n=paj ,

Q WD �.kI a1; : : : ; aj�1/� U.n0/

and E D C
aj

p ; obviously P DQ oE DQE Ì E . For .xr /r2E 2QE, we have

(�) tr. m
P ..xr /r2E/D tr..xm

r /r2E/D
X
r2E

tr.xm
r /D

X
r2E

tr. m
Q.xr //

D

X
r2E

tr.. m
Q ı prr /..xs/s2E//

D tr
��M

r2E

 m
Q ı prr

�
..xs/s2E/

�
;

where prr denotes the projection on the r th factor. Thus, we have

(��) resP
QE  

m
P Š

M
r2E

 m
Q ı prr

as representations of QE. By the induction hypothesis  m
Q

is irreducible, and then also
 m

Q
ıprr is irreducible. The conjugation action of the quotient P=QE ŠE on QE is

by shifting coordinates. For t 2E , we have

.t�. m
Q ı prr //..xs/s2E/D . 

m
Q ı prr /..xsCt /s2E/D  

m
Q.xrCt /

D . m
Q ı prrCt /..xs/s2E/:

Then t�. m
Q
ı prr / D  m

Q
ı prrCt , and this implies that E acts transitively on the

summands at the right-hand side of equation (��). Hence the representation induced
from any single summand is irreducible, and by Frobenius reciprocity it is isomorphic
to  m

P
.

Proof of Proposition 4.12 By Proposition 5.6, we can assume that P D
Qj

iD1
P

bi

i ,
where Pi � U.pri / are pairwise nonisomorphic elementary p–stubborn subgroups.
For i D 1; : : : ; j and k D 1; : : : ; bi , define

i;k D  
m
Pi
ı pri;k ;

Algebraic & Geometric Topology, Volume 16 (2016)



Homotopy representations of the unitary groups 1937

where pri;k W P ! Pi is the projection onto the k th summand of type Pi . By a
calculation similar to (�) in the proof of Proposition 5.10, we prove that

 m
P '

jM
iD1

biM
kD1

i;k :

The representations i;k are pairwise nonisomorphic and irreducible by Proposition 5.10,
therefore IrrRep.P;  m

P
/D fi;kg

kD1;:::;bi

iD1;:::;j
. Let

pi W NU.n/.P /=P ! .NU.ni /.Pi/=Pi/ o†bi
!†bi

'†
fi;kg

bi
kD1

be the homomorphism given by the projection on the i th summand of (5.7). For every
� 2NP .P /=P , i 2 f1; : : : ; j g, and k 2 f1; : : : ; big, there exists �.�; i; k/ 2N.Pi/=Pi

such that pri;k ı�D �.�; i; k/ıpri;pi .�/.k/
. Furthermore, for every � 2N.Pi/=Pi , we

have �� m
Pi
D  m

Pi
ı�D  m

Pi
by (5.8). Finally, we obtain

��i;k D i;k ı �D  
m
Pi
ı pri;k ı�D  

m
Pi
ı�.�; i; k/ ı pri;pi .�/.k/

D  m
Pi
ı pri;pi .�/.k/

D i;pi .�/.k/

for arbitrary �; i; k . Thus every NU.n/.P /=P –orbit of IrrRep.P;  m
P
/ has the form

fi;kg
bi

kD1
. The conclusion follows from the surjectivity of the homomorphisms pi .

6 Calculation of functors ƒ*

Fix a prime p . Let X be a finite set and let †X be the group of permutations of X .
In this section we prove Proposition 4.13, which states that ƒi.†X IZ

^
p ŒX �/D 0 for

i � 2. To achieve this, we use results of Aschbacher, Kessar and Oliver [2]. For a
finite group H , let Op.H / denote the maximal normal p–subgroup of H . Note that
a p–subgroup P �H is p–radical if and only if P DOp.NH .P //.

Definition 6.1 Let � be a finite group. A radical p–chain of length k in � is a
sequence

P0 ¨ P1 ¨ P2 ¨ � � �¨ Pk � �

of distinct p–subgroups of � such that

� P0 DOp.�/,

� Pi DOp.N�.P0/\N�.P1/\ � � � \N�.Pi//,

� Pk is a p–Sylow subgroup of N�.P0/\N�.P1/\ � � � \N�.Pk�1/.
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Lemma 6.2 Fix a finite group � , and a finitely generated Z^p Œ��–module M . Assume,
for some k � 1, that ƒk.�IM /¤ 0. Then there is a radical p–chain

1D P0 ¨ P1 ¨ P2 ¨ � � �¨ Pk � �

such that M=pM , regarded as an Fp ŒPk �–module, contains a copy of the free module
Fp ŒPk �.

Proof This is a special case of [2, Lemma 5.27].

Proposition 6.3 Assume that X is a finite set of cardinality n and that P �†X is a
p–radical subgroup. Then

jP j � n� jX P
j D jX nX P

j:

Proof Let S be the set of all finite (possibly empty) sequences of positive integers. For
kD .k1; : : : ; kr /2S, inductively define subgroups A.k/�†pjkj , jkj WDk1C� � �Ckr ,
by A.∅/D 1�†1 and

A.k1; : : : ; kr /DA.k1; : : : ; kr�1/ oC
kr

p �†pk1C���Ckr�1 oC
kr

p �†pjkj :

By [1], every p–radical subgroup of †X has the form

P D
Y
k2S

A.k/m.k/ �
Y
k2S

.†pjkj/
m.k/
�†n '†X ;

where nD
P

m.k/pjkj . Note that jA.k/j � pjkj and A.∅/ is a trivial group. Thus

jP j D
Y

k2Snf∅g

jA.k/jm.k/ �
Y

k2Snf∅g

pjkj�m.k/ �
Y

k2Snf∅g

m.k/ �pjkj D n�m.∅/:

Since jX P j Dm.∅/, the conclusion follows.

Proposition 6.4 Let X be a finite set with n elements. Assume that

1D P0 ¨ P1 ¨ P2 ¨ � � �¨ Pk �†X

is a radical p–chain of length k � 2. Then either jPk j> n, or p D 2, nD 5 and this
chain is conjugate to

1D P0 ¨ P1 D hai¨ P2 D ha; bi �†X ;

where a; b 2†X are disjoint cycles of length 2.
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Proof We can assume that n� p2 ; otherwise all p–subgroups of †X had orders no
more than p . Denote Xi DX Pi, Yi DX nXi ; obviously X0 DX . As a consequence
of the definition of radical p–chain (see, for example, [2]), Pi=Pi�1 is a p–radical
subgroup of the group� i�1[

jD0

N†X
.Pj /

�
=Pi�1 D

� i�1[
jD0

N†Yi�1
.Pj /

�
=Pi�1 �†Xi�1

:

Hence, by [5, Theorem 1.6(ii)] it is a product H �H 0 of p–radical subgroups

H �

� i�1[
jD0

N†Yi�1
.Pj /

�
=Pi�1 and H 0 �†Xi�1

:

Clearly Xi DX H 0

i�1
and by Proposition 6.3 jPi W Pi�1j � jH

0j � jXi�1 nXi j. Thus

jPk j D

kY
iD1

jPi W Pi�1j �

kY
iD1

maxfp; jXi�1 nXi jg:

Since
Pk

iD1 jXi�1 nXi j D jX0 nXk j > n�p , Pk > n unless p D 2 and n 2 f4; 5g.
But the case nD 4 is excluded, since †4 is not 2–reduced, and the only possibility
for nD 5 is stated above.

Proof of Proposition 4.13 Let X Dfx1; : : : ;xng. Assume that ƒi.†X IZ
^
p ŒX �/¤ 0

for some i � 2. By Lemma 6.2, there exists a radical p–chain P0 ¨ � � �¨ Pi in †n

such that Fp ŒX � contains a copy of the free module Fp ŒP2�. By Proposition 6.4 and
dimensional reasons, .i;p; n/D .2; 2; 5/, and P2 � †5 is a subgroup generated by
two disjoint cycles of length 2. But then dim.Fp ŒP2�

P2/D 1 and dim.Fp ŒX �
P2/D 3

which is impossible, since dim.Fp ŒX �/� dim.Fp ŒP2�/D 1.

7 Homotopy actions

Let Rep be the category of compact Lie groups and homomorphisms up to conjugacy, ie

MorRep.G;H / WD Hom.G;H /= Inn.H /:

Fix a finite group N ; it will be regarded as the category with a single object with N

as the group of automorphisms.

Definition 7.1 A left (resp. right) homotopy N –action (or an h-N –action in short) on
a compact Lie group � is a functor N !Rep (resp. N op!Rep) whose value on the
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single object of N is � . Similarly, a left (resp. right) h-N –action on a space X is a func-
tor N!HSp (resp. N op!HSp) with value X . A group � (resp. a space X ) equipped
with a left (resp. right) h-N–action will be called a left h-N–group (resp. right h-N–
group, left h-N–space, right h-N–space). Let N –Rep (resp. N op –Rep, N –HSp,
N op –HSp) denote the category of left h-N–groups (resp. right h-N –groups, left h-N –
spaces, right h-N–spaces), where morphisms are natural transformations of functors.
Either a homomorphism or a map is called h-N–equivariant (resp. h-N–equivalence)
if it represents a morphism (resp. an isomorphism) in the suitable category, ie if it
preserves an h-N–action.

Note that a map between h-N–spaces is an h-N–equivalence if and only if it is both
h-N–equivariant and a homotopy equivalence. The classifying space functor maps
conjugate homomorphisms into homotopic maps. Thus, it defines functors

BW N – Rep!N – HSp and BW N op– Rep!N op– HSp :

Definition 7.2 Let K be a left h-N–group and let H be a compact Lie group. We
say that a homomorphism ˛W K!H is h-N–invariant if for every � 2N the repre-
sentations Œ˛� and Œ˛� ı � are equal (as morphisms in Rep).

Functoriality of centralizers

Let H be a compact Lie group, P a p–toral left h-N–group, and ˛W P !H an h-N –
invariant homomorphism. For an arbitrary homomorphism  W P ! P representing
the image of � 2N in Out.N /, there exists b 2H such that the diagram

(7.3)

P H

P H

-˛

?


?
h 7!b�1

 hb

-˛

is strictly commutative. The formula

(7.4) CH .˛.P //! CH .˛.P //; h 7! bhb�1


defines a homomorphism which does not depend, up to conjugacy, on the choice of a
representative  . To prove the independence (up to conjugacy again) on the choice of
element b , fix another b0 2H such that .b0 /

�1˛.g/b0 D ˛. .g// for all g 2 P . It
is enough to prove that b0b�1

 2 CH .˛.P //, which follows from this calculation:

.b0b�1
 /�1˛.g/.b0b�1

 /D b ..b
0
 /
�1˛.g/b0 /b

�1
 D b ..b /

�1˛.g/b /b
�1
 D ˛.g/:

Thus, (7.4) defines a right h-N–action on CH .˛.P //.
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Proposition 7.5 Let P be a p–toral left h-N–group, H a compact Lie group and
˛W P !H an h-N–invariant homomorphism. The map (see Theorem 2.1)

.ad˛/^p W BCH .˛.P //
^
p ! .map.BP;BH /B˛/

^
p

is an equivalence of right h-N–spaces.

Proof We have to prove that for every � 2N , and every  W P ! P representing the
image of � 2N in Out.N /, the following diagram commutes up to homotopy.

BCH .˛.P // map.BP;BH /B˛

BCH .˛.P // map.BP;BH /B˛

-ad˛

-ad˛

6
�

6
map.B;BH /B˛

After passing to adjoint maps, this reduces to checking that maps

B';B W B.CH .˛.P //�P /! BH

are homotopic, where

'W CH .˛.P //�P !H; .g;g0/ 7! bgb�1
 �˛.g

0/;

 W CH .˛.P //�P !H; .g;g0/ 7! g �˛. .g0//;

and b 2H is an element such that b�1
 �˛.g/b D ˛. .g// for all g 2 P . Since '

and  are conjugate, they induce homotopic maps. Thus ad˛ preserves the h-N –action,
and by Theorem 2.1 .ad˛/^p is a homotopy equivalence; therefore it is an equivalence
of right h-N–spaces.

Centralizers in unitary groups

At this point we restrict to the case H D U.d/. As before, P is a p–toral left
h-N–group and ˛W P ! U.d/ is an h-N–invariant homomorphism.

Recall that IrrRep.P / denotes the set of isomorphism classes of unitary representations
of P and, for � 2 IrrRep.P / and a representation � of P , c

�

�
denotes the multiplicity

of � in � , ie the number of summands isomorphic to � in an arbitrary decomposition
of � into a sum of irreducible representations. Define a group

(7.6) J˛ D
Y

�2IrrRep.P/

U.c�˛ /:

The formula

(7.7) �W J˛! J˛; .f�/�2IrrRep.P/ 7! .f���/�2IrrRep.P/;
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for � 2 N , defines a (strict) right N –action on J˛ . In particular, J˛ is a right
h-N–group.

The homomorphism ˛ defines a linear P –action on Cd. For � 2 IrrRep.P /, let
W� �Cd be the maximal subrepresentation with all irreducible summands isomorphic
to � . By Schur’s lemma, we have a decomposition

(7.8) Cd
'

M
�2IrrRep.P/

W� :

An element ' 2 U.d/ centralizes ˛.P / if and only if for every � 2 IrrRep.P / the
restriction 'jW� is a P –equivariant automorphism of W� . Then the homomorphismY

�2IrrRep.P/

UP .W�/! CU.d/.˛.P //

is an isomorphism, where UP .W�/ is the group of P –equivariant unitary automor-
phisms of W� . For any � 2 IrrRep.P /, let V� be a P –vector space which represents �
and let i�W V�˝Cc

�
˛ !W� be a fixed P –isomorphism. The homomorphism

k�˛ W U.c
�
˛ /! UP .W�/; f 7! i� ı .idV� ˝f / ı i�1

�

is an isomorphism by Schur’s lemma. Finally, define an isomorphism

(7.9) k˛W J˛ D
Y

�2IrrRep.P/

U.c�˛ /

L
k
�
˛

�!

Y
�2IrrRep.P/

UP .W�/
Š
�! CU.d/.˛.P //:

Proposition 7.10 The homomorphism k˛W J˛! CU.d/.˛.P // is an equivalence of
right h-N–groups.

Proof Let  W P ! P be an isomorphism that represents the action of � 2N on P ,
and let b 2U.d/ be an element such that b�1

 ˛.g/b D ˛. .g// for g 2P ; see (7.3).
By Schur’s lemma, b maps W��� isomorphically onto W� for every � 2 IrrRep.P /.
Then there is a presentation

b D
M

�2IrrRep.P/

b� ;

where b
�
 W W���!W� are isomorphisms. The diagram

U.c�˛ / UP .W�/

U.c�
��
˛ / UP .W���/

-k
�
˛

-k
���
˛

6
id

6
h 7!b

�
 h.b

�
 /
�1
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commutes up to conjugacy since both compositions are isomorphisms between unitary
groups that preserve subgroups of homotheties. After taking the product over all
� 2 IrrRep.P / we obtain the diagram

J˛

Y
�2IrrRep.P/

U.c�˛ /
Y

�2IrrRep.P/

UP .W�/ CU.d/.˛.P //

J˛

Y
�2IrrRep.P/

U.c�˛ /
Y

�2IrrRep.P/

UP .W�/ CU.d/.˛.P //

-D -k˛ -Š

-D

6
.f�/ 7! .f��� /

-k˛ -Š

6Q
.h 7!b

�
 h.b

�
 /
�1/

6

h 7!bhb�1


which also commutes up to conjugacy. The conclusion follows.

Corollary 7.11 The composition

.BJ˛/
^
p

B.k˛/
^
p

�! BCU.d/.˛.P //
^
p

.ad˛/^p
�! .map.BP;BU.d//B˛/

^
p

is an equivalence of right h-N–spaces.

Proof This is an immediate corollary to Proposition 7.5 and Proposition 7.10.

Centralizers in products of unitary groups

Let ˛W P ! U.d/, ˇW P ! U.d 0/ be h-N –invariant homomorphisms. The inclusions

(7.12) U.c�˛ /�U.c
�

ˇ
/
˚
�! U.c�˛C c

�

ˇ
/D U.c

�

˛˚ˇ
/;

for � 2 IrrRep.P /, induce an N –equivariant inclusion J˛ �Jˇ � J˛˚ˇ .

Proposition 7.13 The diagram

J˛ �Jˇ CU.d/.˛.P //�CU.d 0/.ˇ.P //

J˛˚ˇ CU.dCd 0/..˛˚ˇ/.P //

-
k˛�kˇ

?

�

?

˚

-
k˛˚ˇ

is a commutative diagram in N op –Rep.
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Proof All homomorphisms in the diagram preserve the right h-N –action. For horizon-
tal ones this follows from Proposition 7.10. Let Cd 0 D

L
� W 0� be the decomposition

such that all irreducible subrepresentations of W 0� are isomorphic to � ; see (7.8).
Let k

�
˛ W U.c

�
˛ /! UP .W�/, k

�

ˇ
W U.c

�

ˇ
/! UP .W

0
�/ be the isomorphisms defining k˛

and kˇ , respectively. One can choose, for every � 2 IrrRep.P /, an isomorphism
k
�

˛˚ˇ
W U.c

�
˛ C c

�

ˇ
/! UP .W� ˚W 0�/ such that k

�

˛˚ˇ
jU.c�˛ /�U.c

�

ˇ
/ D k

�
˛ � k

�

ˇ
. For

such choices, the commutativity of the diagram follows from definitions.

For an h-N–invariant homomorphism �W P ! U.k/, define

J� WD .BJ�/
^
p ;(7.14)

C� WD BCU.k/.�.P //
^
p ;(7.15)

M� WD .map.BP;BU.k//B�/
^
p :(7.16)

Proposition 7.17 The diagram

J˛ � Jˇ C˛ �Cˇ M˛ �Mˇ

J˛˚ˇ C˛˚ˇ M˛˚ˇ

-
B.k˛�kˇ/

^
p

?
B.�/^p

-
.ad˛ � adˇ/^p

?
˚

?
˚

-
.Bk˛˚ˇ/

^
p -

.ad˛˚ˇ/^p

is a commutative diagram in N op –HSp, and the horizontal maps are h-N–equivalences.

Proof This is a consequence of Proposition 7.5, Proposition 7.10, Proposition 7.13,
and the naturality of the ad maps with respect to the target space.

8 Fibers of equivariant fibrations

If pW E!B is a fibration, then every path !W Œ0; 1�!B connecting points b0; b1 2B

induces a weak homotopy equivalence !�W p�1.b0/! p�1.b1/ between the fibers
over its endpoints. If B is simply connected, then this map does not depend (up to
homotopy) on the choice of a path; in such cases we will write tb0;b1

WD !� . For a
commutative diagram

(8.1)

E E0

B B0

-g

?

p

?
p0

-f
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where p;p0 are fibrations and B0 is simply connected, we define the induced map
between the fibersF D p�1.b0/ and F 0 D .p0/�1.b0

0
/ induced by this diagram as the

composition

T
g

f
W F D p�1.b0/

gjF
�! .p0/�1.f .b0//

t
f .b0/;b

0
0

�! .p0/�1.b00/D F 0:

Clearly it is well-defined up to homotopy.

Let N be a group, E and B N –spaces and pW E! B an N –equivariant fibration
over simply connected basis. For every fiber F D p�1.b0/, b0 2 B , the formula

(8.2) N ! ŒF;F �; � 7! T
�WE!E
�WB!B

defines an h-N–action on F . If the spaces in the diagram (8.1) are N –spaces and
the maps are N –equivariant, then the induced map between fibers T

g

f
W F ! F 0 is

h-N–equivariant. We will prove that this generalizes, under certain assumptions, to
transformations of fibrations which are only h-N–equivariant.

Lemma 8.3 Consider a diagram of spaces:

E E0

B B0

--
g1

g2

?

p

?
p0

-f

Assume that

� fp D p0g1 D p0g2 DW q ,

� the maps g1 and g2 are homotopic,

� pW E!B and p0W E0!B0 are simple fibrations with fibers F D p�1.b0/ and
F 0 D .p0/�1.f .b0// respectively, where b0 2 B ,

� the homomorphism

�1.map.E;E0/g1
/

map.E;p0/�
�! �1.map.E;B0/q/

is surjective.

Then the maps gi jF W F ! F 0 are homotopic for i D 1; 2.

Proof The map map.E;E0/g1
!map.E;B0/q is a fibration with the fiber

M D fg 2map.E;E0/g1
W p0g D qg:
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By the last assumption M is path-connected. Furthermore, the image of the restriction
M !map.F;E0/ is contained in map.F;F 0/. Hence, g1;g2 2M restrict to homo-
topic maps g1jF ;g2jF 2map.F;F 0/.

Proposition 8.4 Consider a diagram of simply connected N –spaces

E E0

B B0

-g

?

p

?
p0

-f

that is commutative as a diagram of spaces. Assume that the maps p and p0 are N –
equivariant fibrations, and the maps f and g are h-N–equivariant. Let F D p�1.b0/

and F 0 D .p0/�1.b0
0
/ be the fibers of p and p0 respectively; assume that they are also

simply connected. If the homomorphism

p0�W �1 map.E;E0/g! �1 map.E;B0/p0g

is surjective, then the induced map T
g

f
W F ! F 0 between the fibers is h-N –equivariant.

Proof Fix � 2N . Denote

f1 D B
�
�! B

f
�! B0; g1 DE

�
�!E

g
�!E0;

f2 D B
f
�! B0

�
�! B0; g2 DE

g
�!E0

�
�!E0:

We have to prove that the commutative diagrams

E E0

B B0

-g1

?

p

?
p0

-f1

and

E E0

B B0

-g2

?

p

?
p0

-f2

induce homotopic maps between the fibers, ie that the maps T
g1

f1
and T

g2

f2
are homo-

topic. Let F W B�I!B0 be a homotopy between f2DF jB�0 and f1DF jB�1 , and
let LW E � I !E0 be a lifting extension fitting into the diagram:

E � 0 E0

E � I B0

-g2

? ?

p0

-Fıp0p p p p p p
p p p�L
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Denote g0
2
DLjE�1W E!E0. The maps T

g2

f2
and T

g0
2

f1
are homotopic since .F;L/

is a homotopy between the transformations .f2;g2/ and .f1;g
0
2
/. Finally, the diagram

E E0

B B0

--
g1

g0
2

?

p

?
p0

-f1

satisfies the assumptions of Lemma 8.3 since the homomorphism

�1.map.E;E0/g1
/D �1.map.E;E0/g�/

map.��1;E0/�

'
�! �1.map.E;E0/g/

map.E;p0/�
�! �1.map.E;B0/p0g/

map.�;B0/�
'
�! �1.map.E;B0/p0g�/

D �1.map.E;B0/p0g1
/

is an epimorphism. Thus the maps g1jF ;g
0
2
jF W F ! .p0/�1.f1.b0// and are homo-

topic. Finally we obtain the sequence of homotopic maps F ! F 0

T
g1

f1
D tf1.b0/;b

0
0
ıg1jF � tf1.b0/;b

0
0
ıg02jF D T

g0
2

f1
� T

g2

f2
;

which ends the proof.

Equivalence of homotopy centralizers

Proposition 8.5 Let G and H �H 0 be compact Lie groups, and let ˛W G!H be a
homomorphism. Assume that for every p–stubborn subgroup P �G , the centralizers
CH .˛.P // and CH 0.˛.P // are equal. Then the map

map.BG^p ;BH^p /B˛!map.BG^p ; .BH 0/^p /B˛

is a homotopy equivalence.

Proof Let i W H !H 0 be the inclusion. Denote

map.BG^p ;BH^p /.˛/WDff WBG^p !BH^p W for all G=P 2Rp.G/;f jBP^p
�.B˛jP /

^
p g:
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There is a commutative diagram

map.BG;BH^p /.˛/ map.BG; .BH 0/^p /.iı˛/

map
�

hocolim
G=P2Rp.G/

EG=P;BH^p
�
.˛/

map
�

hocolim
G=P2Rp.G/

EG=P; .BH 0/^p
�
.iı˛/

holim
G=P2Rp.G/

map.EG=P;BH^p /˛jP holim
G=P2Rp.G/

map.EG=P; .BH 0/^p /iı˛jP

-i�

?
' Theorem 2.11

?
' Theorem 2.11

-i�

?
'

?
'

-i�

with horizontal arrows induced by i W H ! H 0, and vertical ones being homotopy
equivalences. Since the bottom horizontal map is an equivalence by assumptions, so
is the upper one. By restricting to the component of .B˛/^p on the left-hand side and
that of .Bi ı˛/^p on the right-hand side, we obtain the conclusion.

Proposition 8.6 Let k; l be positive integers. If P �U.k/, Q�U.l/ are p–stubborn
subgroups, then

CU.kCl/.P �Q/D CU.k/�U.l/.P �Q/D CU.k/.P /�CU.l/.Q/:

Proof Let �P W P �U.k/, �QW Q�U.l/ denote the inclusions and �P W P �Q!P ,
�QW P �Q! Q the projections. The representation �P does not contain a trivial
summand; otherwise the normalizer of P in U.k/ would have a greater dimension
than P which contradicts p–stubbornness. Every irreducible representation of P �Q

has the form �˝� WD .�ı�P /˝.�ı�Q/, where � and � are irreducible representations
of P and Q respectively. If �P ı�P contains a subrepresentation isomorphic to �˝� ,
then � is trivial and � is nontrivial; if it is contained in �Qı�Q then � is nontrivial. As
a consequence, there exists no irreducible representation of P �Q which is contained
as a summand in both �P ı�P and �Q ı�Q . By Schur’s lemma, we obtain

CU.kCl/.P �Q/Š CU.kCl/..�P ı�P /˚ .�Q ı�Q//

Š CU.k/.�P /�CU.l/.�Q/Š CU.k/.P /�CU.l/.Q/:

Proposition 8.7 Let N be a finite group and P a p–toral h-N–group. Assume that
˛W P ! U.d/ and ˇW P ! U.d 0/ are h-N–invariant homomorphisms. Then the map

map.J˛ � Jˇ; J˛ � Jˇ/id!map.J˛ � Jˇ; J˛˚ˇ/B.�/^p ;

induced by the inclusion J˛ �Jˇ � J˛˚ˇ , is a homotopy equivalence.
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Proof Let Q be a p–stubborn subgroup of J˛ � Jˇ . By [5, Theorem 1.6], every
p–stubborn subgroup of J˛ �Jˇ has the formY

Q� �

Y
Q0� �

Y
U.c�˛ /�

Y
U.c

�

ˇ
/;

where the products are indexed over � 2 IrrRep.P /, and Q� � U.c
�
˛ /, Q0� � U.c

�

ˇ
/

are p–stubborn subgroups. Then

CJ˛.P/�Jˇ.P/.Q/D
Y

CU.c
�
˛ /
.Q�/�

Y
CU.c

�

ˇ
/.Q
0
�/

Š

Y
CU.c

�
˛ /�U.c

�

ˇ
/.Q��Q0�/

Š

Y
CU.c

�
˛Cc

�

ˇ
/.Q��Q0� /D CJ˛Cˇ.P/.Q/;

where again the products are indexed over � 2 IrrRep.P /, and the last isomorphism
follows from Proposition 8.6. The conclusion follows from Proposition 8.5.

Equivariant equivalence of fibers

Finally, we return to the situation of Theorem 4.9. Let G be a compact connected
Lie group, P � G a p–stubborn subgroup, and �; � P–characters of G with di-
mensions d , d 0, respectively. Denote N D NG.P /=P , ˛ WD �P W P ! U.d/, ˇ WD
�P W P ! U.d 0/. As before, ˛ and ˇ are h-N–invariant. Let

MG
˛ Q�M

G
ˇ WDmap

�
EG �G G=P; .EU.d C d 0/=.U.d/�U.d 0///^p

�
B.˛˚ˇ/^p

and, for an arbitrary h-N–invariant homomorphism �W P ! U.k/, let

MG
� WDmap.EG �G G=P;BU.k/^p /B� :

The inclusion U.d/�U.d 0/� U.d C d 0/ induces an N –equivariant fibration

mG
˛;ˇW M

G
˛ Q�M

G
ˇ !MG

˛˚ˇ;

where the right action of N comes from the left action on EG �G G=P .

Proposition 8.8 The homotopy fiber of mG
˛;ˇ

is h-N–equivalent to Fibp
�;�.G=P /.

Proof Homotopy equivalence of these spaces comes from the definition of the space
Fibp

�;�.G=P /; see (3.2), (4.3). Also the definitions of the homotopy N –action on
Fibp

�;�.G=P / (3.3) and on the homotopy fiber of mG
˛;ˇ

(8.2) coincide.

Recall (7.12) that the inclusion J˛�Jˇ � J˛˚ˇ is N –equivariant. Define an N –space

(8.9) J˛ Q� Jˇ WD .EJ˛˚ˇ=.J˛ �Jˇ//
^
p
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and an N –equivariant fibration

(8.10) j˛;ˇW J˛ Q� Jˇ D .EJ˛˚ˇ=.J˛ �Jˇ//
^
p ! .EJ˛˚ˇ=J˛˚ˇ/

^
p D J˛˚ˇ:

Clearly the space G˛;ˇ (4.7) is homotopy N –equivalent to the fiber of j˛;ˇ .

Proof of Theorem 4.9 There is a commutative diagram in N op –HSp

J˛ Q� Jˇ J˛ � Jˇ M˛ �Mˇ MG
˛ Q�M

G
ˇ

J˛˚ˇ M˛˚ˇ MG
˛˚ˇ

Q
Q
Q
Q
QQs

j˛;ˇ

� ' -'

?

B.�/^p

?

˚

?

mG
˛;ˇ

�'

-' � '

where the middle square is the diagram Proposition 7.17, and the remaining equivalences
are induced by h-N–equivalences EG �G G=P ' BP and EJ˛˚ˇ ' EJ˛ �EJˇ .
Since mG

˛;ˇ
is a fibration, there exists a strictly commutative diagram

J˛ Q� Jˇ MG
˛ Q�M

G
ˇ

J˛˚ˇ MG
˛˚ˇ

-g

?

j˛;ˇ

?
m˛;ˇ

-f

such that the horizontal maps f and g are h-N–equivalences. Let T
g

f
W G˛;ˇ !

Fibp
�;�.G=P / be the induced map between the homotopy fibers of vertical fibrations.

By Proposition 8.7, this diagram satisfies the assumptions of Proposition 8.4. Then the
map T

g

f
is an h-N–equivariant map and a homotopy equivalence (since f and g are

homotopy equivalences).
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