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Surgery along star-shaped plumbings and
exotic smooth structures on 4—manifolds

CAGRI KARAKURT
LAURA STARKSTON

We define a new 4—dimensional symplectic cut and paste operation which is analo-
gous to Fintushel and Stern’s rational blow-down. We use this operation to produce
multiple constructions of symplectic smoothly exotic complex projective spaces
blown up eight, seven, and six times. We also show how this operation can be used
in conjunction with knot surgery to construct an infinite family of minimal exotic
smooth structures on the complex projective space blown-up seven times.

53Dxx; 57R57

1 Introduction

Fintushel and Stern [14] introduced a cut and paste operation for 4—manifolds called
rational blow-down. They used it to compute the Donaldson polynomial of the logarith-
mic transforms of the elliptic surfaces. Since then, the rational blow-down operation has
proven to be very useful in 4—dimensional topology. It was a useful constructional tool
in the exotic copies of blown-up complex projective plane; see Park [36], Park, Stipsicz
and Szabd [37], Stipsicz and Szabé [42], Fintushel and Stern [16], and Michalogiorgaki
[30]. It can be used to construct symplectic manifolds, as shown by Symington [44;
45] and Gay and Stipsicz [22], and in the presence of a certain Lefschetz fibration
structure one can reinterpret it as a monodromy substitution; see Endo and Gurtas [10]
and Endo, Mark and Van Horn-Morris [11].

The purpose of the present paper is to define a new cut and paste operation, called star
surgery, which is a strong generalization of Fintushel and Stern’s rational blow-down.
Just like rational blow-down, our operation reduces b, of the manifold to which it is
applied. Moreover it can be performed symplectically and can be seen as a monodromy
substitution.

The original rational blow-down operation, and its generalizations — Park [35], Stipsicz,
Szab6 and Wahl [43], Bhupal and Stipsicz [7] — amount to removing the neighborhood
of a union of spheres which intersect according to a particular plumbing tree and
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regluing a rational ball which has the same boundary as the neighborhood. Our star
surgery operation is similarly defined. Firstidentify (symplectic) spheres which intersect
according to a star-shaped graph with a negativity condition on the central vertex. The
star surgery operation cuts out a neighborhood of these spheres and replaces it by
an alternate symplectic filling of the induced contact boundary. It is shown by the
second author [40] that these alternate fillings always have smaller Euler characteristic
than the neighborhood of spheres, and are negative-definite. Unlike the rational blow-
down we do not require the alternate filling to be a rational homology ball. This
greatly generalizes the set of configurations of spheres which we can consider for these
operations.

By reinterpreting this operation as a monodromy substitution, one can show that some
star surgeries are obtained by a sequence of rational blow-downs. The spheres to
rationally blow down after the first step in the sequence are not all visible in the original
configuration, and would be difficult to find. The star surgery bypasses the need to find
these spheres by performing a single symplectic cut and paste operation that performs
the entire sequence of rational blow-downs simultaneously.

However, there are other star surgeries which are inequivalent to any sequence of
symplectic rational blow-downs as proven by a family of examples in [40]. It is expected
that many of these star surgery operations cannot be obtained from sequences of rational
blow-downs. This contrasts with the operations one would obtain by replacing linear
plumbings of spheres by alternate fillings, which were shown by Bhupal and Ozbagci
[6] to all be equivalent to sequences of rational blow-downs.

Using star surgery, we construct many examples of exotic 4—-manifolds. These construc-
tions involve two steps. First we must find a configuration of symplectic spheres inside
a well understood 4—-manifold. In our examples we do this by looking at blow-ups of
elliptic fibrations £(1) using varying types of singular fibers to find symplectic spheres
with the required intersection data. We explicitly construct many elliptic fibrations
by blowing up various Lefschetz pencils on CP?. Then we apply the star surgery
operation which replaces this neighborhood of spheres with the smallest symplectic
filling of the induced contact boundary Seifert fibered space. By keeping track of the
homology classes of all of the spheres in the elliptic fibration, we are able to compute
the small perturbation Seiberg—Witten invariants of the resulting manifold.

Using this technique, we construct a minimal symplectic 4-manifold which is an exotic
copy of CP?>#8 CP2.

Theorem 1.1 There is a minimal symplectic 4-manifold X which is homeomorphic
but not diffeomorphic to CP?>#8 CP2 and which is obtained by a star surgery. The
symplectic Kodaira dimension of X is 2.
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We push our techniques further with different examples of star surgery operations. These
examples yield exotic (potentially nonminimal) symplectic copies of CP? #k CP2, for
k=6,7.

Theorem 1.2 There are constructions of symplectic exotic copies of CP2#7 CP? and
CP? #6 CP? obtained by performing star surgery operations on blow-ups of E(1).

Other star surgery operations, including the star surgery which is known to be inequiv-
alent to any sequence of rational blow-downs, can be used for similar constructions. In
particular, we show that this star surgery can be used to construct an exotic CP? #8 CP2,
and related star surgeries can be used to improve these constructions to manifolds with
by =6,7.

While the star surgery operations are inspired by symplectic topology, they can also be
used smoothly in the absence of a symplectic structure. By first performing Fintushel
and Stern’s knot surgery in a double node neighborhood [16] (which destroys the
symplectic structure), and then performing the star surgery as in Theorem 1.1, we prove
the following result.

Theorem 1.3 For every n > 2 there exist smooth minimal mutually nondiffeomorphic
4—manifolds Y, which are all homeomorphic to CP?#7 CP2. These manifolds are
obtained by a star surgery.

The same technique of first performing knot surgery in a double node neighborhood
can be used with the star surgery constructions in the proof of Theorem 1.2 to pro-
duce infinitely many smooth but not symplectic nondiffeomorphic manifolds in the
homeomorphism classes of CP? #6 CP? and CP?*#5CP2.

Examples of (minimal) exotic copies of CP? #k (C_PZ, for k = 6,7, 8 have previously
been constructed using the rational blow-down technique. The exotic structure was
detected by calculating the effect of the rational blow-down on the Seiberg—Witten
invariants; see Park [36], Stipsicz and Szabd [42], Fintushel and Stern [16], and
Michalogiorgaki [30]. The effect of star surgery on Seiberg—Witten invariants is similar
to the effect of rational blow-down [30]. The main reason is that the boundary of the
star shaped configuration is an L—space. In other words the monopole Floer homology
of the boundary of the neighborhood of these configurations of spheres is the simplest
group it could be.

Finding exotic copies of CP? #k CP?2 for small & is a problem which has been studied
for many years. In the 1980s, gauge theoretic techniques were used to distinguish
Dolgachev surfaces from CP2#9 C_Pz as in Donaldson [9] and Friedman and Morgan
[20], and the Barlow surface from CP?#8 C_Pz; see Kotschick [25]. Significant
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progress was made using the rational blow-down to construct an exotic CP? #k CPp2
for k > 5; see Park [36], Stipsicz and Szabé [42], Park, Stipsicz and Szabé [37],
Fintushel and Stern [16], and Michalogiorgaki [30]. Later this was improved to k > 2
using different techniques; see Akhmedov and Park [4; 3], Akhmedov [1], Akhmedov,
Baykur and Park [2], Baldridge and Kirk [5], Fintushel and Stern [18] and Fintushel,
Park and Stern [13]. Because these star surgery operations greatly increase the possible
configurations of surfaces which can be cut out and replaced, we hope that more star
surgery constructions will be found and can be used to improve this bound or exhibit
other new phenomena in smooth 4-manifold topology.

The organization is as follows: in Section 2 we define our star surgery operation, and
describe the explicit examples which we will use in constructions of exotic 4—manifolds.
In Section 3, we determine properties of these star surgery operations by computing
algebraic topological invariants of the fillings. In Section 4, we construct three explicit
elliptic fibrations which we will use to embed configurations of symplectic spheres on
which to perform star surgery. Theorems 1.1 and 1.2 are proven in Section 5, where we
use star surgery to construct manifolds and compute their homeomorphism invariants,
Kodaira dimension, and Seiberg—Witten invariants. Finally, Theorem 1.3 is proven in
Section 6, by using knot surgery and star surgery together.

Acknowledgments We would like to thank Kouichi Yasui and Tian-Jun Li for helpful
correspondences. In the course of this work, the first author was supported by the
National Science Foundation FRG Grant DMS-1065178 and a TUBITAK grant BIDEB
2232. The second author was supported by a National Science Foundation Graduate
Research Fellowship under Grant No. DGE-1110007.

2 Star surgery

2A Description

Rational blow-downs of plumbings of spheres were shown to be symplectic operations
by Symington [44; 45] proving that both the plumbing of spheres and the rational
homology ball support symplectic structures with convex boundary inducing the same
contact structures. One may ask more generally what can replace a neighborhood
of spheres in this symplectic cut and paste manner. This question is reduced to
understanding symplectic fillings of certain contact structures by the following result
of Gay and Stipsicz.
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Theorem 2.1 [23, Theorem 1.2] IfC =C{U---UC, C (X,w) is a collection of
symplectic surfaces in a symplectic 4—manifold (X, w) intersecting each other w—
orthogonally according to the negative-definite plumbing graph I' and vC C X is an
open set containing C , then C admits an w—convex neighborhood Uc CvC C (X, w).

Note that the w—orthogonal condition can be achieved by any configuration of spheres
which intersect positively and transversely by an isotopy through symplectic spheres.

The contact structures induced on the boundaries can be understood through an open
book decomposition by results of Gay and Mark (under the additional assumption that
the plumbing graph contains no bad vertices, ie w; +e; <0, where w; is the weight
of a vertex vj, and ¢; is the number of edges emanating from v; ). Let C be the union
of symplectic surfaces intersecting w—orthogonally according to such a graph. Form a
surface X from the plumbing graph as follows. Start with the surfaces corresponding
to each vertex v; and take the connected sum with |w; + e;| disks. Then take the
connected sum of the resulting surfaces according to the edges of the graph. Take
one simple closed curve around each connected sum neck, and denote these curves by
Clyeeey Ck

Theorem 2.2 [21, Theorem 1.1] Any neighborhood of C contains a neighborhood
of C with strongly convex boundary that admits a symplectic Lefschetz fibration having
regular fibers ¥ and exactly one singular fiber. The vanishing cycles are c1,...,c
and C is the union of the closed components of the singular fiber. The induced contact
structure on the boundary is supported by the induced open book (X, t), where t is a
composition of positive Dehn twists around the curves ¢y, ..., k.

Note that since the curves ¢y, ..., c; are disjoint from each other, the order of the
Dehn twists does not matter in defining t.

Remark 2.3 It was shown by Park and Stipsicz [34] that this contact structure is in
fact the canonical contact structure on the boundary Seifert fibered space (given by
the complex tangencies on the link of the corresponding normal surface singularity).
Their result holds more generally for the boundary contact structure of any convex
negative-definite plumbing of surfaces.

In the case that the symplectic spheres intersect according to a star-shaped graph,
additional tools are available to search for alternate convex fillings of the same convex
boundary. Classifications of such fillings were studied in [41]. While most plumbings
do not share the same convex boundary with a rational homology ball, many share
convex boundary with a symplectic filling of significantly smaller Euler characteristic.

Algebraic & Geometric Topology, Volume 16 (2016)



1590 Cagri Karakurt and Laura Starkston

We will call star surgery the operation of cutting out the neighborhood of spheres
which intersect according to a star-shaped graph, and replacing it with an alternative
convex symplectic filling of strictly smaller Euler characteristic.

It is not clear that any contactomorphism of the boundary extends over the alternate
convex filling, so the star surgery will depend on an identification of the convex contact
boundary of the filling with the concave contact boundary of the complement of the
star-shaped plumbing. In our cases, this identification will be made using the open book
decomposition defined by Theorem 2.2 and an equivalent open book decomposition on
the boundary of the alternate convex filling.

In each case, the neighborhood of spheres will be replaced by an alternate symplectic
filling supported by a Lefschetz fibration. The fibers of this Lefschetz fibration will
agree with the fibers of the Lefschetz fibration constructed by Gay and Mark on the
plumbing neighborhood of spheres. However, the vanishing cycles will differ. We will
show that the induced contact structures on the boundary agree by showing that the
open book decompositions have equal monodromy. In order to do this, we will require
knowledge of relations in the mapping class group of planar surfaces.

2B Conventions on mapping class elements and handle diagrams
for Lefschetz fibrations

A Lefschetz fibration naturally induces an open book decomposition on the boundary
where the fibers of the open book are the same as the fibers of the Lefschetz fibration,
and the monodromy is given by a product of positive (right-handed) Dehn twists about
the vanishing cycles. Since mapping class groups of surfaces are nonabelian, the order
of the vanishing cycles generally matters. Conventions in the literature vary, but we
will use a fixed set of conventions throughout this paper which are consistent with each
other, which we describe here.

Suppose ¢y, ..., ¢, are simple closed curves on the fiber. Denote by D, a positive
Dehn twist around ¢;. The product D¢, D, -+ D¢, means first Dehn twist along ¢y,
then ¢,, and so on until finally along ¢,, meaning we are using group notation as
opposed to functional notation. When the fiber is a disk with holes, we can place
the holes along a circle concentric with the boundary of the disk. Labeling the holes
{1,...,m} counterclockwise, we use the notation D;, ;. foriy,...,ix €{l,...,m}
to indicate a positive Dehn twist about a curve which convexly contains the holes

[yeeesif.

Any factorization of the monodromy of an open book decomposition into a product
of positive Dehn twists corresponds to a Lefschetz fibration. When the fibers are
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Figure 1: The Lefschetz fibration corresponding to the monodromy factor-
ization D13D; 5D4,7 = D¢y D¢, Dey . The tops and bottoms of the dotted
segments are identified to form a closed trivial braid.

disks with holes, we have the natural handlebody decomposition for this Lefschetz
fibration where the holes are represented by dotted circles forming a trivial braid
corresponding to 1-handles and the vanishing cycles correspond to 2—handles. We
view the holed disk fibers as orthogonal to the dotted circles, oriented so that the
outward normal points downward (ie turn the holed disk upside-down). Then the
monodromy factorization D¢, --- D, corresponds to the Lefschetz fibration where the
vanishing cycles appear as curves, each lying in a disk transverse to the trivial braid of
dotted circles such that ¢q is at the top of the diagram and ¢, at the bottom.

To draw the handlebody, we will isotope the holes on the disk so that they all lie on
the bottom half of the disk along a circle concentric to the boundary. Then using the
upside-down disk convention, the holes, ordered counterclockwise on the downward
pointing disk, correspond to dotted trivial braid components labeled left to right. A

curve which convexly encloses holes iy, ..., i; will appear in this diagram as a circle,
half of which passes in front of all of the dotted circles, and the other half passes behind
the dotted circles corresponding to i1, ..., 17, but in front of all the other circles. An

example, using the top to bottom convention where the outward normal to the disk
points downward, is in Figure 1.

The mapping class group on a disk with holes is generated by Dehn twists. Dehn twists
about disjoint curves commute. If we place the holes on a circle concentric with the
boundary, we can order them counter-clockwise. Suppose 4, B, and C are collections
of holes such that all the holes of A precede all the holes of B which precede all the
holes of C' going around the circle counterclockwise. Then the lantern relation states

(2-1) DyupucD4aDpDc = DgupDguc Dpuc-
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The Dehn twists on the right-hand side can be cyclically permuted.

By combining a sequence of lantern relations one obtains the daisy relation, which is
given as follows. Suppose By, Bj,..., By, are disjoint subsets of the & holes on the
disk labeled counter-clockwise (# > 2). Then

~1
(2-2) Dpyus,u-uB,Dg, Dp, D, = Dpyus,DByuB, " DByuUB, DB U--UB,,

The daisy relations were shown to correspond to Fintushel and Stern’s rational blow-
down operations in [11].

We will use one more combination of lantern moves, corresponding to one of Park’s
generalized rational blow-downs which starts with a linear plumbing with weights
(—2,—5,—-3). It was first worked out in [11] that the relation is given by

(2-3) DausucupueDausDaDpDEDpDE
= Dyuc DpucDauBupPauBUEDCcUDUE

for a disk whose holes are grouped into sets A, B, C, D, E, labeled counter-clockwise.
This equality can be shown by performing one daisy relation (2-2) where By = AU B
introducing some negative Dehn twists, followed by a lantern relation (2-1).

2C The family of star surgeries (S;, 7;)

A particularly nice family of star-shaped surgeries is given by symplectically replacing
a neighborhood of a configurations of spheres, S; by its smallest filling 7; (a specific
filling of minimal Euler characteristic). The configurations S; are made up of symplectic
spheres which intersect according to star-shaped graphs with i 4+ 2 arms. Each arm
contains i —1 spheres of square —2, and the central vertex is a sphere of square —i —3;
see Figure 2(a). Note that S; is just a —4—sphere, and the replacement 7; is the
rational blow-down of this —4—sphere. However for i > 1, the graphs are star-shaped
but not linear, and the replacement fillings 7; are not obtained by a rational blow-down
of a subgraph of the spheres shown in the original configuration. Handlebody diagrams
for the fillings 7; for i = 1,2, 3 are shown in Figure 3. In general, a handlebody
diagram for 7; (see Figure 9(a)) has i 4+ 2 1-handles represented by dotted circles,
and %(i + 1)( +2) 2-handles, one passing through each distinct pair of 1-handles.
The corresponding monodromy factorization is

(D12D13D1,4---D1,i+2)(D23D3 4+ D3 jy2) -+ (Diit1Diit2)(Dit1,i+2)-

We can replace S; by 7; symplectically due to the following proposition.

Algebraic & Geometric Topology, Volume 16 (2016)
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Figure 2: (a) Plumbing graph for §; and (b) fibers and vanishing cycles for S;.

Proposition 2.4 The contact structure induced on the convex boundary of the plumbing
of spheres S; is the same as the contact structure induced on the convex boundary
of T; (whose symplectic structure is determined by the supporting Lefschetz fibration
described above).

Proof For the plumbing of spheres S;, Gay and Mark’s construction implies that the
fibers of the supporting Lefschetz fibration are (i +2)—holed disks, and the vanishing
cycles consist of a single curve parallel to the outer boundary component, and i
boundary parallel curves around each of the holes; see Figure 2(b).

In order to show that the contact structures induced on the boundaries of S; and 7;
agree, we will show that the open book decompositions induced on the boundary of
the corresponding Lefschetz fibrations are the same. Since the pages are the same, it
suffices to show the monodromies are equal, which amounts to the following relation:
(2-4) Dia,.i+1i+2D] Diyy
= (D1,2D13D1,4+- D1,i4+2)(D2,3D2,4 -+ D3 jy2) -

+(Dii+1Dii+2)(Dit1,i+2)-

This relation is sometimes referred to in the literature as the generalized lantern relation.

To see these are equal in the mapping class group, proceed by induction on i. When
i =1 this is the standard lantern relation. By a relabeled version of the i — 1 case, we
can use the inductive hypothesis to say that the right-hand side is equal to

i—1 ni—1 i—1 ni—1
(D12D13D1,4++- D1,i+2) D23 iv1,i+2Dy D3 -+ Di1 1 Dy

Applying a daisy relation to this then gives the left-hand side. a

Algebraic & Geometric Topology, Volume 16 (2016)



1594 Cagri Karakurt and Laura Starkston

2 K e —

- ’W’Q L
S B =

- P |
ﬁ - _1&—.) o S
—1@ _1¢ —|>

1d—I5 ‘

Figure 3: The first three configurations of spheres and their replacement
symplectic fillings in the family (S;, 7;). Top left: Sy, 77 . Top right: S», 7>.
Bottom: S3,73.

Remark 2.5 For the negative-definite star plumbings we consider, the induced contact
structure is supported by a planar open book. By work of Wendl [47], any other
convex filling is supported by a planar Lefschetz fibration inducing the same open book
decomposition on the boundary. Therefore the two Lefschetz fibrations correspond
to positive factorizations of the same monodromy. Equivalent elements in a planar
mapping class group are always related by some sequence of lantern relations and
commutation, but this sequence may pass through factorizations involving negative
Dehn twists. If one can obtain one positive factorization from another through a
sequence of relations so that at each stage we remain in a positive factorization then
the overall symplectic operation is broken down into a sequence of other symplectic
operations.
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Figure 4: A star-shaped plumbing graph for Q, and an alternate symplectic
filling R.

For example, this proof of the generalized lantern relation shows that it can be obtained
by performing a sequence of daisy and lantern relations, so that after each relation, we
still have a positive factorization. Endo, Mark, and Van Horn-Morris [11] showed that
daisy relations correspond to Fintushel-Stern rational blow-downs. Therefore these
particular star surgeries are equivalent to sequences of rational blow-downs. However,
it is not easy to see the existence of all the configurations which are rationally blown-
down at each stage, so in applications it would be difficult to find all of these rational
blow-downs to perform. Instead, we can just perform the sequence all at once with a
single star surgery.

A question one can ask is whether all such star surgery operations arise as sequences of
rational blow-downs. Surprisingly, this was shown in the linear case in [6], but it was
suspected that star surgery was more general. After the appearance of the first draft of
this paper, the second author proved that certain examples of a star surgery cannot be
realized as any sequence of symplectic rational blow-downs [40, Theorem 1.2].

2D The star surgery (Q,R)

The following star surgery is related to the S,, 75 star surgery but improves it in the
sense that it reduces the Euler characteristic by a larger amount. Let Q denote the
configuration of spheres indicated on the left-hand side of Figure 4. Let &, be the
canonical contact structure 0Q.

Algebraic & Geometric Topology, Volume 16 (2016)
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Proposition 2.6 There exists a symplectic manifold R of Euler characteristic 3 with
convex boundary, such that the induced contact manifold on the boundary is contacto-
morphic to (09, &can).

Proof Let R be the 4—manifold given by the handlebody diagram on the right of
Figure 4. This particular diagram makes apparent a Lefschetz fibration structure on R.
The fibers of the Lefschetz fibration are 6—holed disks, and the base is a disk. The
fibers near the boundary are disks perpendicular to the dotted circles which give the
holes. The vanishing cycles are given by the —1—framed 2-handles. We can verify
that the induced open book decomposition on the boundary agrees with the one that is
induced on the boundary of the symplectic plumbing given by [21].

We choose a standard 6—holed disk, such that the holes are centered at the vertices of
a regular hexagon on the disk. Label the holes with numbers 1,..., 6 going around
counter-clockwise. The construction of Gay and Mark [21] indicates that the open
book induced on the boundary of the plumbing Q has pages which are 6-holed disks,
with monodromy given by positive Dehn twists about disjoint curves enclosing holes
as follows:

Di23456 D12 D1 D, D3 DF5 Dy Ds D

The monodromy induced by the Lefschetz fibration on R (reading the vanishing cycles
from top to bottom) is

D4sDseD145D245D345D123D126D3s.

Commuting when needed and then performing a Park relation (2-3) on the plumbing
monodromy, where 4 = {4}, B = {5}, C = {6}, D ={1,2} and E = {3}, we get an
intermediate factorization:

D46 DseD1245D345D1236D45D6 D1 Dy D3.

Note that this corresponds to a symplectic filling obtained from the original plumbing by
rationally blowing down the configuration that comes from u4 1, ¢ and the symplectic
resolution of the union of u3; with u3 ;. Continuing, by commuting terms and
performing a lantern relation (2-1), where A = {45}, B = {1} and C = {2}, we obtain
the factorization

D4e¢Dse¢D145D245D12D345D1236 D6 D3.

Note this corresponds to rationally blowing down a —4—sphere which was not visible
until after the first rational blow-down. We commute terms and perform one more
lantern relation (2-1) (corresponding to blowing down another —4—sphere), where

Algebraic & Geometric Topology, Volume 16 (2016)
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Figure 5: A star-shaped plumbing graph for ¢/, and an alternate symplectic

filling V.
A = {12}, B = {3} and C = {6}, to obtain the factorization corresponding to the
Lefschetz fibration on 7':
(2-5) D46 Dse D145 D245 D345 D123 D126 D36- o
Remark 2.7 The proof makes it clear that R is obtained from Q through a sequence

of rational blow-downs: one Park rational blow-down of a (—2, —5, —3) configuration,
followed by two consecutive rational blow-downs of —4—spheres.

2E The star surgery (U, V)

Let U denote the plumbing according to the graph in Figure 5. Let £ denote the
(canonical) contact structure induced on the convex boundary of the plumbing.

Proposition 2.8 There exists a symplectic manifold V of Euler characteristic 3 with
convex boundary, such that the induced contact manifold on the boundary is contacto-
morphic to (0U, Ecan) -

Proof Gay and Mark’s construction gives an open book on the boundary of the
Lefschetz fibration for the plumbing ¢/ whose pages are 8—holed disks and whose
monodromy is given as follows:

Di2345678 D3, D1 D2 D3, D3 Dy D3¢ Ds Dg D73 D7 Ds.
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2-6 d—//

Figure 6: The I plumbing and alternate filling £, providing a star surgery
operation which is inequivalent to a sequence of rational blow-downs [40].

Using the monodromy equivalence corresponding to the Park (—2, —5, —3) rational
blow-down, where A = {1}, B ={2}, C ={3,4}, D = {5,6}, E = {7,8}, we get
the following monodromy:

D134D234D1256 D1278 D345678 D7y D3 D4 Dsg Ds D D7 Dy.

After commuting Dehn twists about disjoint curves, we can perform two lantern
relations, one where 4 ={1,2}, B ={5}, and C = {6} and the other where 4 = {1, 2},
B = {7}, and C = {8}, which results in the following factorization:

D134D234D 125D 126 D56 D127D128 D78 D345678 D3 D4 Dsss.

After commuting Ds¢ and D7g towards the end, we can use a daisy relation with
By = {5,6}, By = {7,8}, B, = {3}, and B3 = {4}. The resulting monodromy
corresponds to that of the Lefschetz fibration for V:

(2-6) D134D334D125D126D127D128 Ds5678 D356 Dase D3ars- O

Remark 2.9 Note that this proof shows that this operation is also obtained as a
sequence of rational blow-downs.

2F The star surgeries (KC, £), (M, N) and (O, P)

In [40], it was shown that a configuration of symplectic spheres intersecting according
to a graph as in Figure 6 can be replaced by a symplectic filling of Euler characteristic
two, whose Lefschetz fibration handlebody is shown in Figure 6.

The corresponding monodromy substitution for this I, £ star surgery is

2-7) DiD3D3D; D3 D345 = D123 D14 D15D24 DasDiys.
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Figure 7: The M, N star surgery. The dotted circles are labeled left to right
as 1,24,25,3,44.4p. 5.

The equivalence of these elements was shown directly in [40] and it was also shown
that this substitution is not equivalent to any sequence of symplectic rational blow-
downs/ups. From this star surgery, we can generate two other useful star surgeries,
such that the alternate fillings also have Euler characteristic two. The plumbing and
filling diagrams are shown in Figures 7 and 8.

These monodromy substitutions are obtained from the 1, £ substitution (2-7) together
with an additional lantern relation applied according to [11, Lemma 2.1], where some
of the original holes split into two holes (eg hole 2 splits into holes 2, and 2;). When
applying the C, £ monodromy substitution, treat the split holes as a single joined hole,
but when applying the lantern relations, treat them as separate holes. Performing two
splittings and applying [11, Lemma 2.1] each time, we get a monodromy substitution

212 3
DiDj 5, D>,D3,D3D4,4,Ds4,Ds,D5D12,2,34,4,5
= D12,2,3D14,4,D15D2,2,4,D2,2,4, D2,5D2,5D34,4,5

corresponding to the M, A star surgery of Figure 7. Here, the holes are labeled 1, 2,
2p, 3, 44, 4p, 5 counter-clockwise around the disk. Performing two more splits, we
get the monodromy substitution

D2

2 2 2
1215 P1a D1, D3 5, D2, D2, D3 Dy 4, D4, D4, D5 5 Ds,Ds,Di,1,2,2,34,45545

= D1,1,2,2,3D1,4404, D1p4,4,P1,155, 141,55 D242 40 D242 4,

D255, D2,5,5, D34,45,5,
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. SASERRRE

Figure 8: The O, P star surgery. The dotted circles are labeled left to right
as g, 15,24,2p,3,44,4p, 54, 5p -

corresponding to the O, P star surgery, as shown in Figure 8 on the disk with holes
labeled 1,4, 1p,24,2p, 3,44, 4, 54, 5p counter-clockwise. Note that the proof that these
factorizations are equivalent involves applying the substitution from Equation (2-7)
and then lantern relations, but the first step will introduce negative Dehn twists into
the factorization, so there is not a simple way to understand these operations as a
sequence of known operations (though it would be more difficult to prove that they are
not equivalent to sequences of known operations; see [41; 40] for an idea of how this
might be proven).

3 Algebraic topology of the star surgery fillings

In this section we will compute the fundamental group of the fillings 7;, R, V, L,
and various other algebraic topology invariants which will be needed to understand
the homeomorphism type, Kodaira dimension, and Seiberg—Witten invariants of the
manifolds constructed by star surgeries using these fillings. The computations are
reasonably straightforward given the handlebody descriptions of these manifolds and
the Lefschetz fibration structure. The most thorough computations will be given for 75,
as this will be our model example used to show how star surgery can be applied to
create exotic manifolds whose Kodaira dimension and Seiberg—Witten invariants can
be fully computed.
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3A Properties of the fillings 7;

We will compute basic algebraic topological properties of 7;, and specifically 75 since
we will use the S,, 7> star surgery to construct an exotic copy of CP?#8 CP2.

Proposition 3.1 The fillings T; satisfy 1(7;) = Z /27 . The generator can be repre-
sented by the meridian of any of the —2—framed surgery curves on the ends of the arms
in d8S;.

Proof A handlebody diagram for 7; is given as in Figure 9(a) by (i +2) 1-handles
corresponding to generators {y1, ..., Vi+2} of 71(7;), and %(i +1)(i +2) 2-handles
corresponding to the relations {y; yx = 1}j4keq1,...,i4+2)- We can easily compute the
fundamental group:

.....

T (T) = (V1o Vi 1y = v W Ak = (i = 1)

Now we will track a curve representing the generator y; of 71 (7;) through a sequence
of equivalent surgery diagrams, to show that it restricts to a nontrivial element in
d7; = 0 S; represented by the meridian of a —2—framed surgery curve on the end of
the first arm in the standard handlebody diagram for S;. Note that 7 is equivalently
generated by any of the y; with the relation yj2 = 1, and that y; restricts in the
same way to the meridian of the last curve in the j® arm.

Start with the handlebody diagram in Figure 9(a). The generator of the fundamental
group, )1, is represented by the dashed red curve. By rotating the plane of projection
about a vertical axis, observe this handlebody diagram is isotopic to that given by
Figure 9(b) (the direction into the page in Figure 9(a) corresponds to the right side
of the page in Figure 9(b)). Now, exchange the dotted circles for 0—framed circles
and treat the handlebody diagram as a surgery diagram for its boundary 3-manifold.
After blowing down all the —1—framed 2-handles, we obtain a surgery diagram as in
Figure 9(c) containing i + 2 unknotted (i +1)—framed circles, twisted together with
a full positive twist. Blowing up negatively once at a common intersection point of
their Seifert surfaces, and then i times along each individual curve, the curves become
untwisted and O—framed again, so we switch the 0—framings to dotted circles as in
Figure 9(d). Perform handle slides by first sliding the dashed red curve over the top
—1—framed 2-handle on that dotted circle, then sliding that 2—handle over the one
below it, and so on until there is a chain of —2 curves linked to a single —1 curve.
Do this for each arm (without the red reference curve on the other arms), and then
finally slide the —1—framed handle that links all of the dotted circles over each of
the remaining —1—framed 2-handles. Then we see that after canceling 1, 2—handle
pairs, the dashed red curve appears as the meridian of the last —2—framed curve as in
Figure 9(e). O
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Figure 9: Relating diagrams for 87%- zmd dS;. We display (a) 7;, (b) an
isotopic diagram in a different projection, (c) the surgery diagram for the
common boundary, (d) S; Lefschetz fibration, and (e) an S; equivalent
diagram showing the plumbing.
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Proposition 3.2 The second homology of the fillings is given by H,(T5;72) = 7. ® 7.
The generators can be represented by tori. Moreover, x(T2) = 3 and o(7,) = —2.

Proof Using the handlebody diagram as in Figure 9(a) but ignoring the reference
curve, we can compute the CW chain complex. Let y; denote the j® 1-handle and
let x4 denote the 2-handle whose attaching circle passes through the j™ and k™
1-handles. Then the relevant chain groups are C»(7;) = (X : j £k €{1,...,i +2}),
Ci(Ti)=(yj:j€ll,...,i+2}). The boundary map is determined by dx;x = y; + y .

In particular, the Euler characteristic is
X(TH)=3G+ D +2)—( +2)+1.

When i = 2, x(72) = 6 —4 + 1 = 3 and the 2—cycles are generated freely by
X12 + X34 —X13 —X24 and x4 + X23 —X12 —X34. Note that each x;; has square —1
so the intersection form with respect to the above basis is given by the matrix

=)

Therefore 7, is negative-definite.

We can see that the homology class x13 + X34 —X13 —X24 can be represented by tori by
examining the handlebody diagram. Take the cores of the 2—handles x;, and x34, and
the cores with opposite orientation for x;3 and x;4. We connect these up to a closed
torus by adding in the twice punctured disks whose outer boundary coincides with the
attaching circle for x;; which does not intersect any of the dotted circles, and tubing
together the holes with a tube encircling the dotted circle so the orientations match up as
in Figure 10. One can see this surface is indeed a torus directly or check by calculating
its Euler characteristic: 4x(D?) 4+ 4x(2-holed D?) +4x(tube) =4—-4+0=0. A
similar surface represents the other generator x4 + X33 —X12 — X34. m|

Proposition 3.3 The canonical class of the filling vanishes: K|1, = 0.

Proof We will use the obstruction theoretic interpretation of the first Chern class.
See [24, Proposition 2.3] and [12, Section 3.1] for related discussions. Figure 9(a)
suggests that each 7; admits a positive allowable Lefschetz fibration whose fibers
are disks with i + 2 punctures, which are indicated by the circles with dots, and
%(i +2)(i + 1) vanishing cycles which are indicated by —1—framed 2-handles. This
Lefschetz fibration defines an almost complex structure which is compatible with the
symplectic structure of 7;. We will show that ¢; (7' 7;, J) =0 for i = 2.

Let xj; be a 2—cell which is a generator of the chain complex C,(7;) as indicated
in the proof of Proposition 3.2. The attaching curve X;j of each 2—cell x;; can be
put on a fiber Fjj of the Lefschetz fibration. Drawing the regular fibers on planes
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Figure 10: A torus representing a generator of the homology of 7.

induces trivializations of their tangent bundles which in turn induce a trivialization of
(T'Ti, J) over 1-skeleton. Now ¢{(T"T;, J)(x;) is the obstruction to extending this
trivialization over the 2—cell x; . This obstruction is precisely the winding number
of X;; measured with respect to the trivialization of Fj; . Each X;j is an embedded
planar curve, so its winding number is one. For i = 2 the proof of Proposition 3.2 tells
us that the generators of H,(7,,7Z) are X152 +X34—X13—X24 andX14+X23—X12—X34.
Hence c¢;(T'7T;, J) evaluates as zero on both of these generators. a

We will need to understand H?(73) and H?(d73), as well as the restriction map
between them. By Poincaré duality, H%(d73) = H,(37>). We can compute the first
homology of the boundary of the filling explicitly from the surgery diagram obtained
from the handlebody diagram of 7, by switching the dotted circles to O—framed circles
as in Figure 11.

Proposition 3.4 Let A1, A, A3, A4 denote the meridians of the four O—framed curves
(from left to right) in the surgery diagram in Figure 11. Then

H{(0T2;Z) = (A1, Ao — A1, A3 —Ap [ 2(Aa — A1) = 2(A3 —Ay) = 12 = 0)
~7/1267/267)2.

Proof Let u;; denote the meridian of the —I—framed curve which links the i th and
j® 0—framed curves (i # j € {1,2,3,4}).
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Figure 11: A surgery diagram for 97, .

A presentation for H;(37,) has generators (A1, Ay, A3, g, (12, 13> 14, K235
W24, [L34) With relations given by the linking matrix:

—Wij +Ai +Aj =0,
M12 + @13+ s =0,
12 + 23 + 2ga =0,
M3 + 123 + p3s =0,
Hi14a+ pog4 + 34 =0.

Eliminate the p;; using the first relations and then solve for A4. The resulting presen-
tation for H;(d7,;7Z) is

(A A2, A3 [2(A2 —A1) =2(A3 —A1) = —8A1 =24, — 243 =0).
Equivalently (k],kz—)xl,k3 —)\1 | 2()\3 —)\.1) = 2()\.2—)\1) = 12)\1 = 0) O

Proposition 3.5 H* ()27 ®LSZL)2

Proof The d—cells of T2 are generators for the d™ CW homology chain complex.
Their duals freely generate C 4(T3). Let 1. y2. v3. va denote the 1-handles in the
diagram for 7, (from left to right), and let x;; denote the 2—handle whose attaching
circle passes over y; and y;. Let ¢’ denote the dual of y;, and Y%/ denote the dual
of xi; s0 C!(T2) = (¢!, 9%, ¢°,¢%) and C*(To) = (Y2, ¢/ y'4 ¢ 24, ¢4
and C*(72) =0 for k > 2. Then

(61 (510 = 6 (D) = 6 (v + 330) = 1 + 81, = (Z w”) (0).
(£
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Therefore 8¢’ = ZZ# wit. (Note we identify ¢/ = /i)

We conclude

H2(T>) :le Y13 14 23 24 34 12 13 e 12 23 ) 2
— w13+,¢.23+w34 — w14+w24+w34 — 0)

By eliminating variables we obtain

HX(T)= (2. 9y Py By 20 P4y P4y ) = 0) = ZeZeZ/2. O

Proposition 3.6 The image of the restriction map i: H*(T>) — H?*(dT,) has index 2
(therefore order 24 ).

Proof The restriction map i: H*(7T3) — H?*(d73) composed with Poincaré duality
yields a map p = PDoi: H*(T3) — H,(373). On generators ¥/ we have p(y'/) =
Wij, where p;j is the meridian of the surgery curve corresponding to the attaching
circle for x;;. In H;(07;) we had the relation p;; = A; +A; so

P! =(Ga=2)+2h. p(¥1?) = (3= A1) + 244,
P2+ 9 +y?) =20 = 1) +2(ks — A1) + 641 = 641 € Hi(3T>).
Therefore the image of p (which equals the image of i) is generated by (A, —A1, A3 —
A1,2A1), which has index 2 in H{(373). |

3B Properties of R
Lemma 3.7 The filling R is simply connected.
Proof Using the handlebody decomposition, a presentation for 7 (R) is

(V1:--- Y6 | ¥3Y6 = YaY6 = V5Y6 = V1V4Y5 = V245
= Y3Yays = Y1Y2y3 = V1Y2Ve = 1).

We can eliminate y1, y7, ¥3, Va4, ¥5 with the first five relations, resulting in the presen-
tation

(el yvg =ve=ps=1).

Since 3 and 5 are relatively prime, this is a presentation for the trivial group. a

Lemma 3.8 The intersection form on H,(R;Z) is negative-definite. In fact, there
exist homology classes a and 8 which freely generate H,(R;Z) = 7%, such that the
intersection form with respect to the basis (o, B) for H,(R;Z) is given by

—-10 =23
—23 =79|°
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Proof Labeling the 2—handles from top to bottom as x1, ..., Xg, the cycles generating
homology from the CW complex given by the handlebody decomposition are o =
X1+ X2—X3—x4+X5+x¢—2xg and B = x; + x5 —3x3 —3x4 + Sx5+3x7—5x5.
Since xl.2 = —1 and the x; are orthogonal with respect to the intersection pairing, the
intersection form can be computed directly. a

3C Properties of V

Lemma 3.9 The filling V is simply connected.

Proof Using the handlebody decomposition, a presentation for (V) is
V1o Y81 V1V3Va = y2y3pa = Y1)2Vs = V1V2Ve = V1V2V7 = V1)2)8
= V5Y6)7Y8 = V3V5V6 = VaV5V6 = V3Vay1ys = 1).

Using the first six relations to eliminate yq, y», Vs, V¢, V7, Vs, this simplifies to

(73,92 | (1322)® = y3(1332)* = ya(r3y0)* = (y334)° = 1).

Since 5 and 8 are relatively prime, y3y4 = 1. Thus y3 = y4 = 1 so the group is
trivial. .

Lemma 3.10 The intersection form on H,(V;Z) is negative-definite. Moreover,
H,(V;7Z) = 7? and the intersection form with respect to a basis is

=30 5
5 —49]°

Proof Labeling the 2—handles from top to bottom as xy, ..., X1g, tWo cycles gener-
ating homology from the CW complex given by the handlebody decomposition are
—2X1 —2X2 + X3+ X4 —3X7 + XxXg + X9 + 3X10 and —3X3 —3X4 + 3X5 + 3x6 —X7+
2xg + 2x9 — 2Xx19. Since xi2 = —1 and the x; are orthogonal with respect to the
intersection pairing, the intersection form can be computed directly. |

3D Properties of £

We compute the fundamental group and second homology of the filling £ of Figure 6.

Proposition 3.11 (L) = Z/4, and the generator restricts to the boundary Seifert
fibered space as a meridian of any of the —2—surgery curves in the plumbing diagram.

Algebraic & Geometric Topology, Volume 16 (2016)



1608 Cagri Karakurt and Laura Starkston

Proof Using the handlebody decomposition of Figure 6, we obtain a presentation
for 1 (L) generated by the five 1-handles with relations given by the 2—handles as
follows:

(V1.2 Y3, V4, Y5 | V1V2y3 = Y1Y4a = Y1YV5 = V2Ya = Y25 = y3Vays = 1),

which simplifies to

(1,12 13 | viy2ys = vy =yt = 1),

which again simplifies to
i1y =1),

Note that the relations set yq, ¥, y4_1 and ys_1 all equal. Each of these curves can
be isotoped into the boundary of £. By performing blow-downs, handle-slides, and
handle cancellations, in a similar manner to Proposition 3.1, we see that these curves
in 0L are meridians of the —2—surgery curves in the diagram for J/C. a

Proposition 3.12 H,(L£) =~ 7Z. It is generated by an element X14 — X15— X24 + X35 of
square —4, represented by a torus obtained by gluing tubes to the cores of the specified
2—-handles x;j which link the i th and j™ dotted circles in Figure 6.

The proof is a direct computation from the handlebody decomposition of Figure 6.

Proposition 3.13 Using the symplectic structure induced by the Lefschetz fibration
on L, we have ¢{ (L) = 0, therefore the canonical class is trivial.

Proof This follows from the winding number interpretation of ¢;(£) for Lefschetz
fibrations, and the fact that the generator of H, (L) passes over two Lefschetz 2—handles
with +1 multiplicity and two 2—-handles with —1 multiplicity. a

4 Elliptic fibrations

In order to find symplectic embeddings of the plumbings into well-understood sym-
plectic 4—-manifolds, we will use many different elliptic fibrations exhibiting various
types of singular fibers. These fibrations were classified by Persson in [38], providing a
full list of possible configurations of singular fibers. However, in order to keep track of
homology classes of symplectic spheres, we need to explicitly construct these elliptic
fibrations by blowing up a special Lefschetz pencil in CP>.
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Lemma 4.1 There is an elliptic fibration on E(1) = CP?#9 CP2 with one 15 fiber,
one I fiber, three fishtail fibers, and a section. Labeling the components of the I
fiber as Sy, ...,Ss where S5 intersects the Eqg section, and S4 intersects S1, S>3, S3
and S5, and labeling the components of the I3 fiber as Vi, V,, V3 where V7 intersects
the Egy section, the homology classes are as follows:

[Si]=h—e; —ey—e3, [Vil=h—e —eg—eg,
Sol=h—ey—e4—es, [Va]=h—es—e4—es,

]
[S2]
[Ss]=h—e1—es—e7,  [V3]=h—e3—es—eq,
[S4]
[Ss]

Proof Let C; be a reducible degree-three algebraic curve in CP? defined by a
homogeneous polynomial p; and made up of three complex projective lines L,
L, and L3, which share a single common intersection point p € CP>. Let C, be
a reducible degree-three algebraic curve defined by a homogeneous polynomial p,
and made up of three lines L4, Ls and Lg, such that L4 passes through p, and Ls
and L each intersect all other L; generically in double points; see Figure 12(a). Note
that the homology class of L; for i = 1,...,6 is the generator of H,(CP?;Z), h.
Define a Lefschetz pencil on CP? by setting Clty:1,] = {1 p1 + 12 p2 = 0}. Note the
base locus is the set of points where Cy intersects C,.

Blow up at p, and let the exceptional sphere represent the homology class e;. Then
the proper transforms of Ly, L,, L3 and L4 represent i —e; in homology, and L5
and L¢ are unchanged; see Figure 12(b). Therefore the proper transform Ci represents
3h—3e; in homology and the proper transform C, represents 341 —e;. We redefine C;
to be the curve given by i together with the exceptional class £ with multiplicity
two, and let C, = C~2; see Figure 12(c). Then the curves C; and C, represent the
same class in homology so they define a new Lefschetz pencil as before.

Now blow up at the six intersection points of Ly, Ly, L3 with Ls, Lg, so that the
exceptional classes are labeled e, ..., e7; see Figure 12(d). Redefine C; and C, as
the proper transforms, and note that these curves both represent the homology class
3h—ey —ey —---—e7 and thus define a Lefschetz pencil.

There is still a nonempty base locus since the exceptional sphere E; is now part of C;
which intersects the proper transform of L,. We blow up at this point to obtain a
new exceptional sphere Eg; see Figure 12(e). The proper transform of E; represents
e1 —eg, so the proper transform of C; represents 34 —e; —e, —---—e7 —2eg whereas
the proper transform of C, represents 34 —e; —e; —--- — eg. Redefining Cy as its
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St <G

(a) Starting configuration. (b) Blow up e;. (c) Reset Cq, C;. (d) Blowupes,...e7.
(e) Blow up eg. (f) Reset Cq, Cs. (g) Blow up eg. (h) Singular fibers

and section.

Figure 12: Blowing up the Lefschetz pencil to a fibration. The orange curves
represent C; and the purple curves represent C,.

proper transform together with the exceptional sphere Eg with multiplicity one, and C,
as its proper transform, the two curves again define a Lefschetz pencil, but still intersect
where Eg meets L4; see Figure 12(f). We blow up one more time at this point, and
the resulting proper transforms of C; and C, are homologous and do not intersect:
Figure 12(g).

The resulting elliptic fibration has singular fibers C; and C, which are of type /]
and /3 respectively, as well as other singular fibers, which we can perturb to generic
fishtail fibers. An Euler characteristic computation implies that there are three fishtail
fibers. A schematic for the singular fibers in this elliptic fibration together with the
section Eg is given by Figure 12(h). a

Next, we will produce an elliptic fibration on E(1) with two I, fibers and two I4
fibers, and specify the homology classes of the spheres in the singular fibers.

Lemma 4.2 There exists an elliptic fibration on E(1) =~ CP?#9 CP2, with two I,
fibers and two 14 fibers such that the spheres in these singular fibers represent homology
classes as follows:

e The first I, fiber is made up of two —2—spheres 51 and Zl such that

[61]=2h—€1—62—63—64—67—68, [Z1]=/’l—€5—€6—€9.
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e The second I, fiber is made up of two —2—spheres 52 and Zz such that
[52]22}1—61—62—83—64—6‘5—66, [Zz]zh—€7—€g—€9.

e The first 14 fiber is made up of four —2—spheres, j(}, )73, 23, E3 with homology
classes

[X~3] = h—€3—€6—€8, [?3] = h—€3—€5—€7, [23] = h—el —€3—€9, [Eg,] =e€3—¢€4.
e The second 14 fiber is made up of four —2—spheres, f4, )74, 24, E4 with ho-
mology classes

[Xyl=h—ei—ec—e7, [Va]=h—ei—es—eg, [Z4]l=h—e3—eq—eq, [E4]l=e1—e.

Moreover, this fibration admits a section whose homology class is e, . See Figure 13
for an illustration.

Proof Consider the degree—three homogeneous polynomials in three complex vari-
ables pi(x,y,z) = (yz—x2)(y —z) and po(x,y,z) = (yz + x?)(y + z). Now
define p(, 1,)(x,y,z) =t1 p1(x,y,2) + 12 p2(x, y, z). Then the degree-three curves
Tty 40 = APty 12) = 0} C CP? are the fibers of a Lefschetz pencil on CP?. Observe
that 77;.0) = {p1 = 0} and Tjp.1] = {p2 = 0} are reducible curves each made up of
a linear part and an irreducible quadratic part. Let C; = {yz — x? = 0} denote the
quadratic part of T[;.g) and L{ = {y —z = 0} denote the linear part. Similarly, let
Cr, ={yz+x2=0}and L, = {y 4+ z = 0} denote the quadratic and linear parts
of Tyo:1] respectively.

We will keep track of two more fibers in this Lefschetz fibration:
T ={(x+iz)(x—iz)y =0}, Ty ={(+ix)(y—ix)z =0}

These are reducible curves, each made up of three linear parts which we will label
as X3 ={x+iz=0}, Y3 ={x—-iz=0}, Z3 ={y =0}, X4y ={x+1iy =0},
Yy={x—iy=0},and Z, = {z = 0}.

(0 -
Ey
u‘ 51 u‘ 52 5(3 ?4
Ly Lo

23 E‘g E4 24

Figure 13: An elliptic fibration with two I, fibers and two 14 fibers.

Algebraic & Geometric Topology, Volume 16 (2016)



1612 Cagri Karakurt and Laura Starkston

(&) L, X3 Y; Z3 X4 Yy Zy
Cy|[0:0:1]5 | [i:—1:1] [0:1:0] [0:1:0] |[0:0:1]p | [0:0:1] [0:0:1] |[0:1:0],
[0:1:0]p [[—i: = 1:1]|[—i: = 1:0]|[i: = 1:1] [(:=1:1]|[=i:=1:1]
Ly [i:1:1] [1:0:0] [—i:1:1] | [i:1:1] | [1:0:0] | [—d:1:1] | [i:1:1] [1:0:0]
[—i:1:1]
C [0:1:0] [0:1:0] |[0:0:1]p | [0:0:1] [0:0:1] |[0:1:0],
[—i:1:1] | [i:1:1] [i:1:1] | [i:1:1]
L, [i:—1:0]|[i: —1:1]| [1:0:0] |[i:—1:1]|[—i:—1:1]| [1:0:0]
X3 [0:1:0] [[—i:0:1]| [—i:1:1] |[—i:—=1:1]| [0:1:0]
Y3 [[:0:1] |[i:—1:1]| [i:1:1] | [0:1:0]
Z [0:0:1] [0:0:1] [1:0:0]
Xy [0:0:1] |[—i:1:0]
Y, [:1:0]

Table 1: The intersection data of the curves we track through the pencil.
Multiplicities greater than one are indicated by subscripts.

Now we will blow up at the intersection points of 7.9} and T[o.1], and we would like
to know how all of these curves intersect at those points and with what multiplicities, in
order to determine their homology classes after blowing up the pencil. We summarize
the relevant intersection data in Table 1.

To obtain an elliptic fibration, we blow up at the intersection points of C; U L; with
C, U L,. By Table 1, the relevant points are

[020:1]:C10C2023HX40Y4,
[iil:l]ZLlﬂC2ﬂY3ﬂY4,
[i:—1:1]=ClﬂL2ﬂY3ﬂX4,

[OZIZO]ZClﬂC20X3ﬁY3ﬂZ4,
[—i:l:l]:LlﬂC20X3ﬂX4,
[—i3—1§1]=C1mLsz3ﬂY4

[1:0:0]=L10LzﬂZ3ﬂZ4.

Observe that [0: 0: 1] and [0: 1: 0] appear as intersection points of multiplicity two in
C1,C,, Z5 and Cq, Cy, Z,4 respectively, but all other intersections are transverse. We
will need to blow up twice at the multiplicity two points, and once at each other point,
to eliminate the base locus of the pencil.

We will denote the generator of H,(CP?;Z) by h. Note that the homology class
represented by one of the listed curves is / if the curve is linear, and 2/ if the curve is
quadratic.
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Blow up, introducing the exceptional sphere E; (with homology class e1), at [0:0: 1].
Then the proper transforms f4 and )74 intersect E; at distinct points, and 51 , 52,
and Z 3 all intersect at a common third point on E;. Note that while X,UY,U Z4 was
a fiber of the Lefschetz pencil, the homology class e; appears with multiplicity two in
its proper transform, while it appears with multiplicity one in the proper transforms of
the other fibers. Therefore the Lefschetz pencil on the blown-up manifold now has a
fiber X. 4 U )74 U 24 U £ which includes the exceptional sphere with multiplicity one
so that the fibers all represent the same homology class.

Next, we blow up at C1 N C2 NnZ 3N Eq, 1ntr0ducmg a new exceptional sphere E,
which intersects the proper transforms C 1 C2 ,Z 3, and E 1 - At this point the homology
classes of all proper transforms are as follows:

[Ci]=2h—e; —ey, [Li]=h, [E1] = e —ea,

Note that £ 1 is included with multiplicity one in a fiber with X 4 U )74 uz 4.

A similar situation occurs at [0 : 1 : 0]. We blow up two new exceptional spheres
represented homology classes e3 and ¢4 at this pomt This time we must include £ 3
with multiplicity one in a fiber with X 3 U Y3 4 3.

Finally we blow up once at the points [ : 1 : 1],[—i : 1 :1],[{ : =1:1],[—i : —1:1], and
[1:0:0], introducing exceptional homology classes es, eg, €7, eg, and ey respectively.
The homology classes of the proper transforms of the relevant curves in the four singular
fibers are given as in the statement of the proposition. |

Finally, we construct an elliptic fibration with two /5 fibers and two fishtails.

Lemma 4.3 There is an elliptic fibration on E(1) = CP?#9 CP2 with two I 5 fibers

two fishtails and a section. Both I5 fibers are made up of five —2—spheres Cy, ..., Cs,
Dy, ..., Ds with homology classes given below:
[C1]=€1—€6, [D1]=€4—€9,

[CZ]:h_el_e4_€9, [Dz]Zh—e3—e4—e5,
[C3]=h—ey;—es—eg, [D3]=es—es,
[Ca] = ez —e7, [D4]=h—e; —es5—eg,

[Cs]=h—ej—ey—e3, [Ds]=h—e;—eq4—eq.
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h

Figure 14: Initial configuration of lines.

h— €] — €5

h—e—ey

h—e3—e;—e; h—e3—e;—e;

Figure 15: The pencil after first five blow-ups. Figure 16: Elliptic fibration.

Proof Start with a configuration of six complex projective lines, intersecting as shown
in Figure 14. We can view these lines as two degenerate cubic curves indicated by
distinct colors in Figure 14, which generate a Lefschetz pencil on CP2.

Blowing up this pencil along the five intersection points between the orange and purple
curves yields the configuration in Figure 15. In order to keep the homology classes
of the two curves the same so they continue to define a pencil, two of the exceptional
spheres must be included with multiplicity one in the orange curve, and two must be
included with multiplicity one in the purple curve. The resulting curves defining a
pencil on CP? #5 CP2 intersect in four distinct points, and blowing up at each of these
points yields an elliptic fibration shown in Figure 16.

The proper transforms of the original curves defining the pencil become the /s fibers
representing the specified homology classes. Any other singular fibers can be perturbed
to be generic nodal (fishtail) singular fibers, and an Euler characteristic computation
indicates there are two of these. a
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5 Constructions of symplectic exotic 4-manifolds

In this section we put together the information from the previous sections, to construct
small exotic symplectic manifolds using star surgery. In the first construction, we
will perform a full analysis of the smooth invariants of the resulting manifold. In the
subsequent examples, we provide abridged computations that suffice to prove that the
examples are exotic copies of CP? #k CP2.

5A A symplectic exotic CP?#8 CP2

5A1 The construction Our first construction of an exotic CP?#8 CP? uses the
elliptic fibration given in Lemma 4.1, which has an /3 fiber and I fiber, three fishtail
fibers, and a section, with homology classes specified in the proof of the lemma.

Lemma 5.1 The configuration S, symplectically embeds into CP?#11 CP? such that
its vertices represent the following homology classes, (where f =3h—(e1+---+e€9)):

Proof Consider the elliptic fibration constructed in Lemma 4.1. In this fibration we
see the following symplectic spheres:

* The components Si,...,Ss of the I§ fiber, with homology classes [S;] =
h—@l —e€y—es, [Sz] = h—@l — @4 —€5, [S3] = h—61 —€g—¢€7, [S4] =e€e1—¢e€g
and [SS] = €8 —€9.

e The component V; of the 75 fiber with homology class [Vi] =h—e; —eg —ey.

e The exceptional sphere E¢ which is a section.

Take two fishtail fibers and blow up their double points. The proper transforms £
and F, are now symplectic spheres in CP?#11 CP2. Their cohomology classes are
[F1]= f —2e19 and [F,] = f —2eq1.

Take the union of spheres ug = F; U Fp U E9 U S4 U S5. After symplectically
smoothing its double points, u gives a symplectic sphere whose homology class is
[uo] = 2f+€1 —2e19—2ey1. Let uy =Sy, upy =85, u3 =83, ug = V;. Then the
union U?=0 u; gives the required embedding of S». a
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Figure 17: A blow-up of the elliptic fibration of Lemma 4.1 shown in
Figure 12. The symplectic resolution of the union of the green curves is
the sphere 1, and the four red curves are the spheres u1, ..., Ug.

4

s

Using this embedding of S, perform star surgery on CP?#11 CP2 by cutting out this
embedded S, and replacing it with 7, resulting in a manifold

X = ((CP*#11 CP2)\ S,) Uy T>.
Lemma 5.2 The manifold X is homeomorphic to CP? #8 CP2.

Proof First we show the manifold X is simply connected. By Proposition 3.1, it
suffices to show that the dual circle of one of the —2—spheres on dS, bounds a disk in
CP2#11 CP2 \ S;. By our construction the sphere u4 is a part of the I3 fiber. Hence
the meridian of u4 bounds a disk D in the complement of S, which is contained in a
sphere component of the I3 fiber transversely intersecting u4.

Next we show that the intersection form of X is isomorphic to the intersection form of
CP?#8 CP2. We calculate the Euler characteristic and signature to get

X(X) = X(CP*#11 CP?) — x(S2) + x(T2) = 11,

o(X) =o(CP2#11 CP2) — 0(S,) + 0(T>) = 7.
These imply that b;r (X) =1 and b,(X) = 9. The intersection form cannot be even,
otherwise it would be written as a direct sum of hyperbolic pieces and Egs, but the

values of b;r (X) and by (X) say that such a decomposition is impossible. Hence X is
homeomorphic to CP?#8 CP2 by Freedman’s theorem [19]. o

SA2 Kodaira dimension In this section we compute the symplectic Kodaira dimen-
sion [27] of X . Along the way, we distinguish X from CP?#8 CP2. Our argument is
similar to Park’s [36].
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Definition 5.3 [27] For a minimal symplectic 4—manifold (M, w) with symplectic
canonical class K, the Kodaira dimension of (M, w) is defined in the following way:

—00 if Ky -
if Ky -
if Ky -

2 ifK,-

w]<0or K, K, <0,

w]=0and K- K, =0,
w]>0and K, - K, =0,
w]>0and K - K, > 0.

k(M,w) =

— — — —

The Kodaira dimension of a nonminimal manifold is defined to be that of any of its
symplectic minimal models.

It is known that the Kodaira dimension is well-defined for every closed symplectic
4-manifold and depends only on the diffeomorphism type of the manifold.

Let K and o denote the canonical class and the symplectic class of CP*#11CP?
respectively. Let Xy = CP>#11 CP2\ S,. Then

K= KlXo + K|s,,

w = w|X() +a)|32-
Hence

K'w:K|X0'w|X0+K|$2'w|82’

Let Ky, and wy denote the canonical class and the symplectic class of X respectively.
Then

KX = KlX() + K'Tz,

wy = o|x, +o|n.
Since K7, = 0 by Proposition 3.3, we have

Kx -ox =Klx, -0lx, = K-0—Kls, - 0ls,.

Lemma 5.4 Forevery k > 0, the manifold CP? #k CP2 admits a symplectic structure
whose cohomology class is given by w = ah — byeq — - -- — byey for some rational
numbers a, by, ...,by witha > by >---> by anda > by +---+ by.

Proof Note that a is the symplectic area of CP' C CP? and b j 1s the symplectic area
of the exceptional sphere ¢; forall j =1,..., k. By [29, Chapter 7], we have b; = 1>
where A is the weight of the corresponding blow-up. In other words A is the radius of
the Darboux ball which will be removed during the blow-up process. Since the weights
of the blow-ups can be chosen to be arbitrarily small, the result follows. a
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Lemma 5.5 Ky -wxy >0

Proof Write
K=-3h+4+e1+---+eq1,

w=ah—biey—---—byeqy,
where a, by, ..., by are rational numbers such that ¢ > b; > --- > b;; and
(5-1) a>by+---+bq;.

Then we have
K-a):—3a+b1 ++b11

Let o, ..., vs be the basis of H?(S,,Q) which is dual to ug,...,us. Then the
adjunction formula implies

Kls, = (K-uo)yo+---+ (K-us)ysa =3yo.
We calculate the restriction of the symplectic class on S, using Lemma 5.1:
wls, = (@ uo)yo+-++ (@-ua)ys
= (6a—by —2by —---—=2b11)yo + (@—b1 —bay —b3)y1
+(a—by —bsy—bs)y, +(@a—by —bs—b7)ys + (@—by —bg —bg)ys.

Let P denote the intersection matrix for S,. Then

42222
27111
1 1
:_E 21711

21171

21117
Hence
K|s,-ols, = —5[4(6a—by —2by —---—2by1) + 2(a— by —by — b3)

+2(a—by —bg—bs)+2(a—by —bs—b7) +2(a—by —bg —by)]
= —1[32a —12b; — 106, — 10b3 — - — 10bg — 8b19 — 8b11].

Therefore

KX'O)X :K|Xo'w|Xo IK'CL)—K|$2'O)|,52

=—3Cl+b1 ++b11 +[8a—3b1 —%bz—-'-—%bg—Zblo—Zbll]
=5a—2b1 —%bz—---—%bg—blo—bll
>0 (by Equation (5-1)). O
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Remark 5.6 The important input which ensures there is a symplectic form on X with
Ky -wy > 0 is the high multiplicity of the homology class / in the classes [u;] of the
spheres in the embedding of S,. Note that if the embedding of S, were completely
disjoint from the CP! representing /, then by McDuff’s theorem, the resulting star
surgered manifold would be a standard blow-up of CP?. This computation provides a
quantitative way of ensuring that when the plumbing spheres intersect CP' enough for
the star surgery to produce an exotic smooth structure.

Proposition 5.7 The manifold X is not diffeomorphic to CP* #8 CP2.

Proof The standard symplectic form on CP? #k CP? satisfies K- <0. According to
[28, Theorem D], there is a unique symplectic structure on CP? #k CP2 for2<k <9 up
to diffeomorphism and deformation. Hence CP? #8 CP2? does not admit a symplectic
structure with K - w > 0. We have just seen that Ky - wy > 0. Hence X is not
diffeomorphic to CP? #8 CP2. i

Proposition 5.8 The manifold X is minimal.

The proof is postponed until the next section. With this in hand, we are ready to
determine the Kodaira dimension of X .

Proposition 5.9 The manifold X has symplectic Kodaira dimension 2.

Proof Recall that the symplectic Kodaira dimension is defined on the minimal model.
Since X is minimal, Ky -wy > 0, and Ki, =30(X)+2x(X)=1> 0, its symplectic
Kodaira dimension is 2. O

This proposition shows that X" can also be distinguished from C P2 #8 CP? using the
symplectic Kodaira dimension, since x (CP?#8 CP2) = x(CP?) = —c0.

5A3 Minimality Throughout this section, we assume that the reader is familiar with
the Seiberg—Witten invariants of manifolds with b;r = 1. See [31; 17; 42] for excellent
expositions.

In order to prove the minimality of X one needs to know the effect of star surgery
on Seiberg—Witten invariants. It suffices to know all the Seiberg—Witten basic classes
of X . The effect of such cut and paste operations on Seiberg—Witten invariants was
studied by Michalogiorgaki in [30] in a more general framework; see also [39] for an
analogous result from the perspective of Heegaard Floer theory.
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Theorem 5.10 [30, Theorem 1] Suppose Y is a rational homology sphere which is
a monopole L —space. Let P and B be negative-definite 4—manifolds with by (P) =
by(B)y=0and 0P =0B =Y. Let X = Z|Jy P and X' = Z|Jy B, for some
4—manifold Z . If s € Spin®(X), s’ € Spin®(X"), dx (s),dx/(s') >0 and 5|z =5'| 7,
then SWx (s) = SWX/(E,).

In the case that b;(X) =1, SWx4,(s) = SWx 4,(8"), where a; € Hy(X,Z),
a, € Hy(X',Z) specity chambers such that a;|p = az|p =0 and a1|z = as|z7.

This result and the wall-crossing formula reduces the problem of determining basic
classes of X to a cohomology computation. In this section, we incorporate a search
method invented by Ozsvith and Szabd to find all the basic classes of X . First we find
a homology class that determines a common chamber for the manifolds before and
after star surgery.

Lemma 5.11 The element V € H,(CP?#11 CP2) defined by
V= 86/’1—3661 —2562 —256’3 —2564 —2565 —2566—2567 — 1968 —3169 —20610—2061 1

satisfies the following conditions:
(1) V-[uj]=0fori=0,...,4 (ie V is orthogonal to each embedded sphere of S ),
2 V-V=>o0,
3) V-h>0,
(4) V-K>0, where K =—3h+e;+---+ey; is the canonical class of CP? #11 CP2.

Proof The proof is a direct computation. O

Lemma 5.12 The small perturbation Seiberg—Witten invariant of X at the canonical
class K € H*(X, Z) is nonzero.

Proof We first compute the Seiberg—Witten invariant of CP?#11 (C_P_2 in the chamber
determined by the element V' in Lemma 5.11. Orient H2Jr (CP?#11 CP?) with /. Note
that the homology class /1 gives the chamber of the positive scalar curvature metric hence
all Seiberg—Witten invariants of CP?#11 CP? are zero in this chamber. In particular
SWcp2411cp3,n(K) = 0 for the canonical class K. By part (2) of Lemma 5.11,
Ve H2Jr (CP?#11 CP2?), and by part (3) V has the correct orientation. Hence V
determines a chamber. Since K -/ < 0, part (4) says that there is a wall between the
chambers of /4 and V' with respect to the canonical class. By the wall-crossing formula
(28], SWep2g11Cp2,p (K) = £1.

Next we relate the Seiberg—Witten invariants of CP? #11 CP2 and X . The canonical
class K of X satisfies Ky\7, = Kcp2#11Cp2\ s, - Part (1) says V' determines a cham-
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berin X . If we can show that d7; is a monopole L—space then by Theorem 5.10, noting
that dx (K) = dcp2g11cp(K) = 0, we have SWcp2y11 ¢,y (K) = SWy,p(K).
Since there is a unique small perturbation chamber for manifolds with b5 <9, the
latter is equal to SWy (K).

It remains to see that 7, = 0S; is a monopole L—space. In fact this holds for 9S;
for all i. The plumbing graph of S; satisfies |m(v)| > d(v) at each vertex v, where
m(v) is the weight of v and d(v) is the number of edges connected to v. In [33,
Theorem 7.1], Ozsvath and Szab6 show that the boundary of such a plumbing is a
Heegaard Floer L—space. Their proof uses only the surgery exact triangle and the
formal properties of Heegaard Floer homology. Hence it can be repeated to show
that boundaries of such plumbings are also monopole L—spaces. Alternatively, one
can refer to the recently established equivalence of the Heegaard Floer homology and
the monopole Floer homology to see that every Heegaard Floer L—space is also a
monopole L —space [26; 8]. a

Remark 5.13 Lemma 5.12 gives an alternative proof of Proposition 5.7. Indeed, the
small perturbation Seiberg—Witten invariant is well defined for manifolds with b5 <9
since there is a unique chamber for such manifolds. For CP? #kCP? with k <9
the unique chamber is the one given by the positive scalar curvature metric. Hence
SWep2ar cp2 (L) = 0 for all characteristic cohnomology class L, for all k£ <9.

Proof of Proposition 5.8 By the blow-up formula for the Seiberg—Witten invariant,
it suffices to show that the only basic classes of X are + K . Therefore, we want to
check which integral characteristic cohomology classes (representing Spin¢ structures)
on X are Seiberg—Witten basic classes. While we will show how to use Theorem 5.10
and the wall-crossing formula to compute the Seiberg—Witten invariant on a given
cohomology class, there are infinitely many classes to check. The strategy of Ozsvath
and Szab6 (which they used to prove minimality of a rationally blown-down manifold)
is to check only the finitely many adjunctive classes and then use the information about
the adjunctive basic classes to rule out the possibility of nonadjunctive basic classes.

The fact that the homology of 7, has nontrivial rank makes the search somewhat
more complicated than the case of rational blow-down. Even so, the computations
can be handled by a simple computer program. First we find a basis for the subspace
H,(CP?#11 C_Pz) which is orthogonal to the homology of the configuration S,. The
following elements form such a basis:

Ay=h—e3—es—e7—eg+ey1, Ar:=-3h+2ei+ez+es+er+eg+2e19+2e11,

As=ey—e3, As=eg—es, As=eg—e7, Ag=ero—e11, A7=egz—eo.
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Note that all of these homology classes can be represented by embedded spheres,
excepting A, which can be represented by an embedded torus. Moreover, all of these
surfaces can be chosen in the complement of S, in CP?#11 CP2. Additionally we let
Ag and Ag be the homology generators of 7, which can be represented by embedded
tori in 75, as indicated in Proposition 3.2. Then Aq,..., A9 represent a basis for
H,(X;Z) so we can represent cohomology classes in H?(X;Z) by a tuple of integers
representing [(L, Ay),..., (L, Ag)].

First we will determine which of these tuples represent integral, characteristic, and
adjunctive cohomology classes. Because the inverse of the intersection matrix has
rational coefficients, some tuples of integers could represent rational, but not integral,
homology classes. We check a mod 2 equivalence to see if the cohomology class is
characteristic, and an adjunctive inequality for each A;. Computationally, we find
that there are exactly 243000 cohomology classes L € H?(X, Q) which satisfy these
conditions foralli =1,...,9:
(L,A;)eZ, (L,A;)=A?

1

mod 2, |(L,A;)| <—A7.

In order to test whether a characteristic class is basic for X', we first check whether
the expected dimension is nonnegative and even (necessary conditions for the Seiberg—
Witten invariant to be nonzero). Let dy (L) := (L*—30(X)—2x(X))/4=(L*—1)/4.
In the second round of our search, we check how many of these cohomology classes
satisfy dy (L) € Z, dx (L) > 0 and dx (L) = 0 mod 2. It turns out that there are
25040 such classes.

We will use Theorem 5.10 and the wall-crossing formula to calculate the Seiberg—Witten
invariant evaluated on each of thfﬂ 25040 classes. To do this, we must relate each
class on X to a class on CP?#11 CP? so that the two classes have equal restrictions to
X\ T, =(CP*#11 C_Pz) \ S». The difficulty is, once we restrict the chosen class to
X \ 72, we must find a class on S, which extends it over CP?#11 CP2. For this, we
compare the classes on dS, which occur as the restriction of a class on S, to the classes
on 07, = d8S; that occur as the restriction of a class on 7,. We showed that the image of
the map H?(7>,7Z) — H?(0T»,Z) is an index—2 subgroup, hence it has order 24. Our
aim is to find a numerical criterion for a characteristic conomology class L € H*(S,,7Z)
to extend to 7> when restricted to S, = d7,. First observe that the set of Spin®
structures on 0S, as a H?(0S5, Z) torsor is isomorphic to 2H?*(S,, 0S5, Z)—orbits
of characteristic elements in H? (82, 7). Hence two characteristic classes L1, L, €
H?*(S,, Z) restrict to the same Spin® structure on the boundary if and only if L = L,+
2PD(Z) for some Z € H>(S>, Z). We will use d —invariants to determine which orbits
in H%(S,, Z) restrict to a Spin® structure on dS, = 97, which appears in the boundary
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of a Spin® structure on 75 and to choose distinguished representatives of these orbits
which maximize the expected dimension of the Seiberg—Witten moduli space. Define
ds,(L) = (L*—30(S2) —2x(S2))/4 = (L* + 3)/4. Observe that the ds, (L) mod 2
is constant in the orbit L + 2H?*(S,,0S5,7). Each orbit has a representative L’
satisfying [u;]? +2 < (L', [u;]) < —[u;])? forall i = 0,...,4, where each u; is a
sphere appearing as a vertex in the star-shaped plumbing graph of S,. Computing ds,
for all of these representatives, we see that the possible mod 2 reductions of ds, for
2 =1 =1 =1 o 1 2 =11

characteristic cohomology classes on S, are {3, 3, 55, 13,0, 7. 5. 55+ 1}

In the proof of Proposition 3.2, we computed the intersection form of 7,. From
this, we see that the possible mod 2 reductions of dr, for characteristic cohomology
classes on T are {51, 0,3, 1}. We observe that exactly 24 of the 2H*(S,0S,.7Z)
orbits have the mod 2 reductlons of their ds, in this set. Hence we conclude that a
characteristic cohomology class L € H*(S;, Z) extends to 7, if and only if ds, (L) €
{_1 0, %, 1} mod 2. We can explicitly write distinguished representatives of these 24
orbits. They are the elements of the following set:

={[1,0,0,0,0], [-3,2,2,2,2], [-1,2,0,0,2], [3,0,2,2,0],
[1,2,0,2,0], [3.0,0,0,0], [-1,2,2,0,0], [-3.2,0,2,0], [-1,0,2,0,2].
(5-2) [~3,0,0,2,2], [1,0,2,2,0], [1,0,0,2,2], [-1,0,2,2,0], [-3,0,2,0,2].
[~3,0,0,0,0], [1,2,0,0,2], [5,0,0,0,0], [-3.2,0,0,2], [-1,0,0,2, 2],
[1,0,2,0,2], [-1,2,0,2,0], [-3,2,2,0,0], [1,2,2,0,0], [-1,0,0,0,0] }.

Here each cohomology class L € H?(S5, Z) is represented by the tuple [(L, [uo]), . ..,
(L, [u4))]. Elements of ® maximize ds, in their respective 2H?(S,, S5, Z) orbits.

We continue our search for basic classes of X . Recall that in round two, we got 25, 040
potential adjunctive basic classes. We restrict each one to X \ 7 (ie we forget the
intersections with Ag and Ag). Each of these characteristic cohomology classes glues
to exactly one element of the set ® to define a characteristic cohomology class on
CP?#11 CP2. There are 600, 960 triples (4, B, C) where A4 is an adjunctive class
on 7>, B is an adjunctive class on X \ 7, = CP>#11 CP2\ S,, C is one of the 24
distinguished cohomology classes on S;, and the pair (B, 4) is one of the 25,040
potential adjunctive basic classes on X'. We now restrict our attention to all triples
where the combination (B, C) represents a cohomology class on CP?#11 CP2 with
d€Z,d>0and d =2 mod 2. This leaves us with 219,064 possible triples.
In only 122,212 of these triples does (B, C) represent an integral and characteristic
cohomology class on C P2 #11 CP2. Finally, we check whether the chamber determined
by V in CP%#11 CP2 is the same as the chamber of the positive scalar curvature metric
with respect to each of the characteristic cohomology classes (B, C) in the remaining
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triples by comparing the signs of (B, C)-V with (B, C)- H. When the chambers agree,
B will not descend to a basic class on X', but when they disagree the wall-crossing
formula and Theorem 5.10 ensure that (A4, B) is a basic class on X . It turns out that
only two of the remaining triples (A4, B, C) have the property that V is in a different
chamber than H with h respect to (B, C). These are necessarily the canonical class and
its negative. Hence K and —K are the only adjunctive basic classes of X .

Lastly we argue that there can be no nonadjunctive basic class. If there was such an L,
then the adjunction relations [32] imply that adding or subtracting twice the Poincaré
dual of any surface with negative self-intersection where the adjunction inequality fails,
we would obtain another basic class L with dy (L") > dx(L).

Since X has only ﬁnitely many basic classes this process eventually stops at an
ad]unctwe basic class, L with dy (L) > dx (L) > 0, but this is a contradiction because
K and —K are the only adjunctive basic classes and dX(K) dy (— K) =0. a

Proof of Theorem 1.1 Our theorem follows from Lemma 5.2, Proposition 5.7,
Proposition 5.8, and Proposition 5.9. a

Remark 5.14 The Seiberg—Witten invariants of X agree up to isomorphism with all
known examples of minimal exotic CP2#8 CP? [36; 42; 16; 30]. Hence we cannot
distinguish X from these manifolds using Seiberg—Witten invariants.

5B An exotic CP2?#7 CP2

Lemma 5.15 There is an embedding of the star-shaped plumbing Q into CP? #12 CP2
such that the spheres represent the following homology classes:
[ug] = 6h —2e1 —ey —2e3—---—2e9 —2e11 —2e12,

[u1,1]=2h—e; —ey—e3—es—es5—ecq,

[uz,1]=h—e1—ex—e,

[z, 2] =h—e3—es—es,

[us)]=h—ey—es—er,

[us, 2] =h—e3—eqs—e9—eqo,

[u4,1] =h—e; —es—eg—ejp.

Proof In Lemma 4.2, we showed that there is an elliptic fibration with two I, fibers,
two I4 fibers, and a section, and we specified the homology classes of the spheres
making up the singular fibers and the section. According to that notation, the spheres
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in the two I, fibers were Cl, L1 and Cz, L2, respectlvely The spheres in the I4
fibers were denoted X3, Y3, Z3, E3, and X4, Y4, Z4, E4, respectively. Cl, Cz,
V4 3 and E4 intersected the section £, .

To construct the embedding of Q, first blow up at the intersection of }74 and 24 to
produce two adjacent —3—spheres. Then we can perturb the fibration near one of
the I, fibers to split it into two fishtail fibers. Blow up each the self-intersection
points of each of these fishtail fibers to create two —4—spheres. To produce the central
—5—sphere, take the symplectic resolution of the section £,, the two blown-up fishtail
fibers, and E4 (the sphere in the blown-up 14 fiber which intersects the section). The
remaining spheres can be taken to be u | = Cz, Uy = Z3, Uy o = Y3, Uz = X4,
Uz = =Z4, Ug = =Y, where C denotes the proper transform under blow-up. Using
the homology computation indicated in Lemma 4.2, the homology classes for the u;_j
follows. O

Lemma 5.16 The element R € H,(CP?#12 CP2) defined by

R = 533h—188¢; — 186¢; — 192¢3 — 126¢4 — 185¢5 — 189¢
—15667 — 1046’8 — 15969 — 566’10 —0611 — 151612

satisfies the following conditions:
(1) R-[uj,j]=0 foralli and j,
2) R-R>0,
(3 R-h>0,
(4) R-K >0, where K=—3h+e;+---+ey, is the canonical class of CP? #12 CP2.

Proof All of the above claims can be verified by a direct computation. a

Proposition 5.17  The result of star surgery on this embedding of Q into CP>#12CP?
is an exotic copy of CP?#7 CP2 which supports a symplectic structure.

Proof Let X’ = ((CP*#12 CP2)\ Q)UR be the result of star surgery. Then x(X”) =
x(CP?#12CP2) — x(Q) + x(R) = 15—-8 + 3 = 10. Since Q and R are both
negative-definite, o (X’) = —6. Since R is simply connected, X" is simply connected.
Therefore X’ is homeomorphic to CP?>#7 CP? by Freedman’s theorem [19]. Recall
that for 4—manifolds with bJr = 1, the Seiberg—Witten invariants depend upon a choice
of a chamber. Let A denote the homology class of C P! ¢ CP?#12 CP2. This class
gives the chamber of positive scalar curvature metric, so SWcp2yg12cp2 s (L) = 0
for every characteristic class L. In particular for the canonical class K, we have
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€9

Figure 18: Elliptic fibration on E(1) with section.

SWcpzg12cp2,4(K) = 0. By Lemma 5.16, the class R determines a chamber and
there is a wall between this chamber and the chamber of /s with respect to K. Hence
by the wall-crossing formula [28], we have SW p2 412 cp2, g (K) = £1. We will show
that X’ also has a nonzero Seiberg—Witten invariant. Indeed the 3—manifold 9S is a
monopole L-space. Let Kx+ denote the canonical class of X”. Clearly we have

Kx/lxnr = K|cp#i2cp\o and dx/(Kx) =dcpyi2cm(K) =0.
Hence by [30], we have
SWx' r(Kxr) = SWcp2g12Cp2,r(K) = £1.

For manifolds with bz_ < 9, the choice of a chamber is unique. Therefore X’ is
not diffeomorphic to CP?#7 CP2 whose Seiberg—Witten invariants are all zero in the
unique chamber of positive scalar curvature. O

5C An exotic CP?#6 CP2

For this construction we use the elliptic fibration with two [5 fibers, two fishtails, and
a section, with homology classes specified in Lemma 4.3

Lemma 5.18 The configuration of spheres U embeds into CP?#13 CP2.

Proof By blowing up at one singular point in each /5 fiber, we obtain four —3—spheres
which will make up the ends of each of the arms in the configuration ¢/. The central
sphere of square —5 is obtained by taking the symplectic resolution of a section with
two blown-up fishtail fibers as well as the —2—spheres in each I5 fiber which intersect
this section.

Algebraic & Geometric Topology, Volume 16 (2016)



Surgery along star-shaped plumbings and exotic smooth structures on 4—manifolds 1627

2F — 2e19 — 2e13+ Cy + Dy + eg

-

04*

>5 — €10

Figure 19: Embedding of ¢/ into CP?#13 CP2.

The configuration is shown in Figure 19, and the homology classes are given below:

[uo] = 2[F] —2e12 —2e13 +[Ca] + [D1] + eo,

[u1,1] = [D2], [uz,1] =[C3], [us,1] =[C1], [ug,1] =[Ds]—e11.
[u1,2] =[D3], [uz2] =[Ca] —eq0. [u3,2] =[Cs]—eio.
[u1,3] =[D4]—eq1, |

Lemma 5.19 The element R € Hy(CP?#13 CP2) defined by

R = 56567 — 1728¢; — 1846¢5 — 1836e3 — 1915¢4 — 1905¢5 — 1728¢4 — 1600e7
—1905¢g — 1890e9 — 246e10 — 295¢1, — 393e12 — 1241e3

satisfies the following conditions:

(1) R-[u;j]=0foralli and j (ie R is orthogonal to each embedded sphere of
U,

2) R-R>0,
(3 R-h>0,
(4) R-K >0, where K =—3h+eq+---+e;3 is the canonical class of CP? #13 CP2.

Proof The proof is a direct check. O

Proposition 5.20 The result of the (U, V) star surgery on this embedding of U into
CP2#12 CP? is an exotic copy of CP? #6 CP2 which supports a symplectic structure.

Proof The proof is similar to the proof of Proposition 5.17. O
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5D Another symplectic exotic CP? #8 CP2

Proposition 5.21 It is possible to symplectically embedded the configuration K into
CP? #12 CP? so that the homology classes of the central sphere C,y and the four spheres
in the arms Cy, Cy, C3, Cy4 are given as follows:

[Col =2/ +e1—2e10—2e11 — €12,
[Ci]=h—e1 —ezy—es,
[C2]=h—e1—eq—es,
[C3]=h—e1—ec—e7,
[C4] =Nh—e1 —eg —ey,

where f =3h—(e; +---+e9).

Proof This proposition follows immediately from blowing up the embedding of S
into CP?>#11 CP? given in Lemma 5.1 along a single point on the section. a

Note the other elliptic fibrations constructed in this paper can be used to find other
embeddings of S, and K into blow-ups of E(1). It is an interesting question to ask
whether the same star surgery operation performed on different embeddings of the
plumbing into the same manifold can result in nondiffeomorphic manifolds.

Theorem 5.22  The manifold resulting from star surgery on this embedding of K into
CP?#12 CP? is an exotic copy of CP? #8 CP2.

Proof The manifold is homeomorphic to CP? #8 CP2 by Freedman’s theorem once
we show that it is simply connected and has Euler characteristic 11 and signature —7.
The Euler characteristic and signature computations follow from the fact that x(£) =2,
o(L)=-1, x(K) =6, and 6(K) = —5. The manifold is simply connected as in the
proof of Lemma 5.2 because the generator of 1 (£) is isotopic to the meridian of Cy4 in
the embedding which is homotopically trivial because Cy4 is one sphere in an /3 —fiber
where the other transversally intersecting spheres are not cut out in the star surgery.

The diffeomorphism type can be distinguished from CP?#8 CP? either by showing
that the resulting symplectic manifold has Kodaira dimension two as in Lemma 5.5,
or by showing that the canonical class and its negation are basic classes in the small
perturbation chamber of the star surgered manifold as in Lemma 5.12. In fact the value
of Ky -wyx to compute the Kodaira dimension comes out to be exactly the same value
as for the star surgery using S, and 7,, and the element V' defining the chamber on
CP2#12 CP2 which descends to the small perturbation chamber in the star surgered
manifold can be defined identically as in Lemma 5.11. a
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Similar constructions could yield applications of the (M, N) and (O, P) star surgeries,
using the embeddings yielding the exotic copies of CP?#7 CP2 and CP?#5 CP? of
sections 5B and 5C.

6 Infinitely many exotic smooth structures on CP?#7 CP2

Using a different embedding of S,, we can produce other examples of exotic 4—
manifolds using star surgery. Here we find an embedding which produces an exotic
CP2#7 CP2 by combining our star surgery operation with a knot surgery in the double
node neighborhood which was introduced by Fintushel and Stern [16]. Thanks to the
knot surgery we will have a better control over the Seiberg—Witten invariants of our
manifold. The price we pay is that our manifold is no longer symplectic.

Proof of Theorem 1.3 We will start with the elliptic fibration with two I, fibers, and
two I4 fibers whose homology classes are specified in Lemma 4.2. The homology
classes of these spheres in CP? #k CP? will be crucial to our computation of the Seiberg—
Witten invariant of the manifold resulting from star surgery along this embedding.

We follow the same steps as in [16]. Let K, denote the n—twist knot. Recall that K,
admits a Seifert surface of genus one and its symmetrized Alexander polynomial is
given by

Ak, ) =nt—Q2n+1)+nt™ "

Consider the elliptic fibration described in Lemma 4.2. We pick one of the I, fibers,
say the one consisting of C 1 and Zl , and perturb the fibration locally so the [, fiber
turns into a double node neighborhood. Then we pick a regular fiber in the double node
neighborhood and do knot surgery on it. The knot surgery operation does not preserve
the fibration structure inside the double node neighborhood. In particular the section
represented by the exceptional sphere £, does not survive after the knot surgery. On
the other hand if we choose the gluing map in the knot surgery carefully, then E; turns
into a pseudosection, an immersed sphere with one transverse self-intersection which
is a section outside of the double node neighborhood.

Before describing our construction further, we would like to make a couple of obser-
vations about the manifold E(1)g, which is the result of the knot surgery described
above. First note that E(1)g, is simply connected: the fundamental group of the
complement of a regular fiber is generated by a normal circle which bounds a disk
in E;. The second observation is that the only Seiberg—Witten basic classes of E(1)g,
are = PD([F]), where [F] is the fiber class, and the small perturbation Seiberg—Witten
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Qi
Es
L, Zy  Es Ey Zs
Figure 20: E(1)g,, .
N |
!
Ey

Figure 21: Configuration S, inside E(1)g,, # CP2.

invariants at these classes are n [46; 15]. Hence E(1)g, is homeomorphic but not
diffeomorphic to E(1) = CP?>#9 CP2.

We continue with the construction. Blow up E(1)g, at the double point of the pseu-
dosection E,. The proper transform of the pseudo-section is an embedded sphere S
whose homology class is represented by e; —2e19. Now we see the configuration S»
embedded in E(1)g, # CP2 using Lemma 4.2:

Let Y, denote the result of star surgery of E(1)g, #CP2 along the configuration S,
described above. We claim that Y}, is homeomorphic to CP? #7 CP2. First we must see
that Y}, is simply connected. By Proposition 3.1, the generator of 7 (73) is represented
by the curve in 07, = dS, given by the boundary of the normal disk to any of the
—2—spheres in S;. We will take the representative curve which bounds the normal disk
to u, . Since u, is one —2—sphere in the /4 fiber, and there are other —2—spheres in that
fiber which intersect u, transversally but are otherwise disjoint from the embedding of
S, (f3 or 53 ), this curve bounds a disk in E(1)g, #CPp2 \ S, =Y, \T>. Therefore Y,
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is simply connected. Next we check that ¥, has the same Euler characteristic, signature,
and parity of CP?#7 CP2. A simple computation shows

x(Yn) = x(E() g, #CP2) — x(S2) + x(T2) = 10

and
o(Yn) = 0(E(1)g, #CP2) —0(S2) +0(T2) = —6.

Since b,(Y,) = 8 and b;r (Y,) = 1, the intersection form cannot be a direct sum of
hyperbolic pieces and Eg’s, so the parity of Y, is odd. Therefore ¥, is homeomorphic
to CP?#7 CP2 by Freedman’s theorem.

Finally we compute the Seiberg—Witten invariants of Y,. By the blow-up formula
E(D)g, # CP? has exactly four Seiberg—Witten basic classes £ PD([F]) £ e1o. The
small perturbation Seiberg—Witten invariant in the chamber of /4 evaluates as +n. We
need to translate this information to a chamber whose representative homology class is
orthogonal &,. Consider the following homology class:

H :=50h— 3261 — 1482 — 1263 — 2184 — 585 — 1566 — 367 — 1283 —489 — 16610.

It can be checked that H-H >0, H-h >0, and H -[u;]=0 forall i =0,...,4.
Let K = —PD([F]) —e1o = -3h+e;+---+e9—e19. Wehave K- H <0 and
K -h < 0. Hence there is no wall between the chambers determined by H and /& with
respect to K. Note that K |32 is the canonical class of S,, so K descends to Y, as
a characteristic class K with K |7, = 0.

Let X, = E(1)g, #CP2, we will check if dy,(K) > 0 and dy, (K) > 0. Clearly

K? —30(X,) —2x(X, —1-3(-9)—2(13
dy. (K) = 0 (Xn) = 2%(Xn) _ (=9 —2( ):0'
4 4
On the other hand
~ K2-30(Yy) —2x(Y,
_ (K)* = (Kls,)* + (K|75)* =30 (Yn) = 2x(Yn)
4
_ =D =(=3) +(0) = 3(=6) —2(10)
4
=0.
Hence by Theorem 5.10, we have
ISWy,, 5t (£K)| = 1SW y)  yop g (EK)| =
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Since the small perturbation Seiberg—Witten invariant is well-defined for those manifolds
with bz_ <9, we conclude that Y, has at least two basic classes. In particular Y, is

not diffeomorphic to CP?#7 CP2, which does not have any basic classes.

It remains to prove the minimality of Y;, for n > 2. By the blow-up formula, it suffices
to show that there are exactly two basic classes whose Seiberg—Witten invariants
are 1. We will show that =K are the only Seiberg—Witten basic classes of Y,
satisfying [SWy, (£ K )| = n. In other words, we will prove that the cohomology class
P := —PD([F]) 4 e10 (the only other basic class up to sign of X}, ), does not descend
to a basic class of Y. Suppose, to the contrary, that there is a basic class P of Y,
such that P lY,—1» = Plx,\s,- Then

P2 —30(Yy) —2x(Yy)

dy,(P) = 1
_ (P)? = (Plsy)> + (Pl73)* = 30 (Ya) — 2x(Yn)
4
_ (D)= (=1/3) + (Pl5)* —3(=6) —2(10)
4

=2+ 4(Pln)? <0
The last inequality follows from the fact that the intersection form of 73 is negative-
definite. This contradicts the assumption that P is a basic class. a
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