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Equivalence classes of augmentations and
Morse complex sequences of Legendrian knots

MICHAEL B HENRY

DAN RUTHERFORD

Let L be a Legendrian knot in R3 with the standard contact structure. In earlier
work of Henry, a map was constructed from equivalence classes of Morse complex
sequences for L , which are combinatorial objects motivated by generating families, to
homotopy classes of augmentations of the Legendrian contact homology algebra of L .
Moreover, this map was shown to be a surjection. We show that this correspondence
is, in fact, a bijection. As a corollary, homotopic augmentations determine the same
graded normal ruling of L and have isomorphic linearized contact homology groups.
A second corollary states that the count of equivalence classes of Morse complex
sequences of a Legendrian knot is a Legendrian isotopy invariant.

57R17; 57M25, 53D40

1 Introduction

The symplectic techniques of holomorphic curves and generating families provide
two effective classes of invariants of Legendrian knots in standard contact R3 . The
holomorphic curve approach, which in this low-dimensional setting takes on a combi-
natorial flavor, can be used to define a differential graded algebra (DGA). The DGA
is known alternatively as the Legendrian contact homology DGA or the Chekanov–
Eliashberg DGA and was originally defined by Chekanov [1] and Eliashberg, Givental
and Hofer [5]. Generating families of Legendrian submanifolds in 1–jet spaces, includ-
ing R3 , have also been used to produce homological Legendrian invariants; see, for
instance, Jordan and Traynor [13], Sabloff and Traynor [18] and Traynor [19; 20]. In
addition to distinguishing Legendrian isotopy classes of knots, both the holomorphic
and generating family invariants carry useful information about Lagrangian cobordisms,
see Ekholm, Honda and Kálmán [4] and Sabloff and Traynor [18].

For Legendrian knots in R3 , several close connections have been discovered between
holomorphic curve and generating family invariants, although many questions remain.
For example, the existence of a linear at infinity generating family for a Legendrian
knot is known to be equivalent to the existence of a certain DGA morphism, called an
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augmentation, from the Chekanov–Eliashberg DGA to its ground ring; see Pushkar’
and Chekanov [3], Fuchs [7], Fuchs and Ishkhanov [8], Fuchs and Rutherford [9]
and Sabloff [17]. However, it is unknown if this statement can be strengthened to
a bijective correspondence between appropriate equivalence classes of generating
families and augmentations. In this article, we approach this question using a discrete
analog of a generating family called a Morse complex sequence, abbreviated MCS.
MCSs have proven to be more tractable for explicit construction and computation; see,
for example, Henry [10] and Henry and Rutherford [11; 12]. Section 2.2 sketches
the connection between generating families and Morse complex sequences; a more
complete description can be found in [11].

The concept of a Morse complex sequence originally appeared in unpublished work of
Petya Pushkar, and first appears in print in the work of the first author [10] where MCSs
are studied in connection with augmentations. In [10], a surjective map is defined
from MCSs of L to augmentations of the Chekanov–Eliashberg DGA of L. Moreover,
equivalent MCSs are mapped to homotopic augmentations. In the present article, we
complement the results of [10] by showing in Lemma 3.1 that two MCSs mapped to
homotopic augmentations must, in fact, be equivalent as MCSs. Combined with [10]
this gives the following.

Theorem 1.1 For any Legendrian knot L � R3 with generic front diagram, there
is a bijection between equivalence classes of Morse complex sequences for L and
homotopy classes of augmentations of the Chekanov–Eliashberg DGA of L.

As a consequence, the number of MCS equivalence classes is a Legendrian isotopy
invariant; see Corollary 4.1. The less immediate Corollary 4.2 combines Theorem 1.1
with previous work of the authors from [11] to deduce that homotopic augmentations
must have isomorphic linearized homology groups. The set of linearized homology
groups is a Legendrian isotopy invariant. Corollary 4.2 allows for a refinement of this
invariant by considering multiplicities.

The remainder of the article is organized as follows. Section 2 recalls background
concerning augmentations and Morse complex sequences. Section 3 contains the proof
of Theorem 1.1 and Section 4 includes three corollaries.
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2 Background

A Legendrian knot in the standard contact structure on R3 is a smooth knot LW S1!R3

satisfying L0.t/ 2 ker.dz�y dx/ for all t 2 S1. A smooth one-parameter family Lt ,
0 � t � 1, of Legendrian knots is a Legendrian isotopy between L0 and L1 . The
front diagram of L is the projection of L to the xz–plane. Every Legendrian knot
is Legendrian isotopic, by an arbitrarily small Legendrian isotopy, to a Legendrian
knot whose front diagram is embedded except at transverse self-intersections, called
crossings, and semi-cubical cusps such that, in addition, all of these exceptional points
have distinct x–coordinates. A Legendrian knot with such a front diagram is said
to have a � –generic front diagram; see, for example, the front diagram in Figure 1.
In a neighborhood of an x value that is not the x–coordinate of a crossing or cusp,
the front diagram looks like a collection of non-intersecting line segments commonly
called the strands of D at x . Orient L. The rotation number r.L/ is .d � u/=2,
where d (resp. u) is the number of cusps at which the orientation travels downward
(resp. upward) with respect to the z–axis.

Figure 1: A � –generic front diagram of a Legendrian knot with rotation
number 0

2.1 Chekanov–Eliashberg algebra

Fix a Legendrian knot L with � –generic front diagram D and rotation number 0. A
Maslov potential is a map �W L!Z that is constant except at cusp points of L where
the Maslov potential of the lower strand of the cusp is one less than the upper strand. Let
A.D/ be the Z=2Z vector space generated by the labels QDfq1; : : : ; qng assigned to
the crossings and right cusps of D . A generator q 2Q is assigned a grading jqj, also
called a degree, so that jqj is 1 if q is a right cusp and, otherwise, jqj is �.T /��.B/
where T and B are the strands of D crossing at q and T has smaller slope. The
graded algebra A.D/ is the unital tensor algebra TA.D/. The Chekanov–Eliashberg
algebra, written .A.D/; @/, is the algebra A.D/ along with a degree �1 differential
@W A.D/ ! A.D/ that, in the case of the front diagram description from [15], is
defined by counting certain admissible maps of the two-disk D2 into the xz–plane.
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Definition 2.1 below defines only those admissible maps needed in this article; we refer
the reader to [15] for a complete definition of @.

An augmentation is an algebra homomorphism �W A.D/!Z=2Z satisfying � ı@D 0,
�.1/D 1, and �.q/D 1 only if jqj D 0. The set Aug.D/ is the set of all augmentations
of .A.D/; @/. We say a crossing q is augmented by � if �.q/D 1. An augmentation
can be thought of as a morphism between the differential graded algebra .A.D/; @/ and
the differential graded algebra .Z=2Z; @0/ whose only non-zero element is in degree 0

and where @0 D 0. From this perspective, there is a natural algebraic equivalence
relation on Aug.D/. Given � and �0 in Aug.D/, a chain homotopy from � to �0 is a
degree 1 linear map H W .A.D/; @/! .Z=2Z; @0/ satisfying ���0D @0ıHCH ı@ and
H.ab/DH.a/�0.b/C .�1/jaj�.a/H.b/ for all a; b 2 A.D/. Since we are working
over Z=2Z and @0 D 0, these conditions simplify to

(1) �� �0 DH ı @ and H.ab/DH.a/�0.b/C �.a/H.b/:

By [14, Lemma 2.18], a chain homotopy H is determined by the values it takes on the
degree �1 crossings of D .

We say augmentations � and �0 are homotopic and write � ' �0 if there exists a
chain homotopy from � to �0 . As the notation implies and as is proven in [6], chain
homotopy provides an equivalence relation on the set Aug.D/. We let Augch.D/ be
Aug.D/='. By [10, Proposition 4.5], the count of homotopy classes of augmentations
is a Legendrian isotopy invariant.

Suppose � and �0 are augmentations in Aug.D/ and there exists a chain homotopy
H from � to �0 . Suppose q is a degree 0 crossing and h@q;

Qm
iD1 qki

i is 1, where
h@q;

Qm
iD1 qki

i is the coefficient of
Qm

iD1 qki
in @q . Then, by Equation (1),

.�� �0/.q/DH ı @.q/ DH

� mY
iD1

qki
C � � �

�
DH

� mY
iD1

qki

�
CH.� � � /

D

mX
jD1

�� j�1Y
iD1

�.qki
/

�
H.qkj

/

� mY
iDjC1

�0.qki
/

��
CH.� � � /:

At most one term in the sum

mX
jD1

�� j�1Y
iD1

�.qki
/

�
H.qkj

/

� mY
iDjC1

�0.qki
/

��
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may be non-zero, since � and �0 are non-zero only on generators of degree 0 and H is
non-zero only on generators of degree �1. Note that, for a fixed j 2 f1; : : : ;mg, the
term � j�1Y

iD1

�.qki
/

�
H.qkj

/

� mY
iDjC1

�0.qki
/

�
is non-zero if and only if H.qkj

/D 1 holds and for 1� i � j �1 (resp. jC1� i �m),
the crossing qki

is augmented by � (resp. �0 ).

The monomials
Qm

iD1 qki
appearing in @.q/ correspond to certain mappings of the

two-disk D2 into the xz–plane that are immersions except for allowable exceptions
along @D2 . Only monomials containing generators of degree 0 or �1 are relevant for
our purposes. Therefore, we present only the description of such disks in the following
definitions. Note that this restriction allows us to rule out some additional behaviors of
@D2 near right cusps that appear in [15] and lead to monomials that contain generators
of degree 1.

Let D2 be the disk of radius 1 centered at the origin in R2 . Choose m points from
@D2 n f.1; 0/g. Label the chosen points fb1; : : : ; bmg counter-clockwise with b1 the
first point counter-clockwise from .1; 0/.

Definition 2.1 In terms of the notation above, a .0;�1/–admissible disk is a contin-
uous map from D2 into the xz–plane that maps @D2 to the front diagram D and
is a smooth orientation preserving immersion when restricted to the interior of D2

satisfying the following conditions:

(1) The mapping takes .1; 0/ to a degree 0 crossing q and the image of f in a
neighborhood of .1; 0/ looks as in Figure 2(a). We say the .0;�1/–admissible
disk originates at q .

(2) For exactly one 1� j �m, f .bj / is a degree �1 crossing qkj
and the image

of f in a neighborhood of bj looks as in Figure 2(d) or (e).

(3) For all i ¤ j , f .bi/ is a degree 0 crossing qki
and the image of f in a

neighborhood of bi looks as in Figure 2(d) or (e).

(4) Along @D2 the mapping is smooth except at fb1; : : : ; bmg[f.1; 0/g as described
in (1)–(3) and at points in @D2 n .fb1; : : : ; bmg[ f.1; 0/g/ where the image of
f looks like either Figure 2(b) or (c).

We say the .0;�1/–admissible disk has convex corners at qk1
; : : : ; qkm

. The .0;�1/–
admissible disk is assigned the monomial

Qm
iD1 qki

. We say a .0;�1/–admissible
disk is an .�; �0;H /–admissible disk if, for some 1� j �m, H.qkj

/D 1 holds and

Algebraic & Geometric Topology, Volume 15 (2015)



3328 Michael B Henry and Dan Rutherford

(a) (b)

(c)

(d) (e) (f)

i

j

fx0g � Œi; j �

Figure 2: The possible singularities of the disk in Definition 2.1 and the
half-disks in Definitions 3.3 and 3.2. The crossings in (d) and (e) are called
convex corners. Near a boundary point that maps to a right cusp the image of
a disk overlaps itself as indicated in (c) by the darkly shaded region.

for 1 � i � j � 1 (resp. j C 1 � i � m), the crossing qki
is augmented by � (resp.

�0 ); see Figure 3.

Henceforth, we consider admissible disks up to orientation preserving reparametrization
of the domain (fixing fb1; : : : ; bmg [ f.1; 0/g), and all counts of disks are up to this
equivalence relation.

q

�

��

H

�0

�0

�0 �0

�0

Figure 3: The domain of an .�; �0;H /–admissible disk with labels indicating
marked points mapped to crossings augmented by � and �0 and the marked
point mapped to the crossing satisfying H.qkj

/D 1

The restrictions on the types of non-smooth points of an .0;�1/–admissible disk imply
that q is the right-most point of the disk. From [15, Section 2], when a single qkj

has
degree �1 while q and all of the remaining qki

have degree 0, h@q;
Qm

iD1 qki
i D 1

holds if and only if there are an odd number of .0;�1/–admissible disks originating
at q and with monomial

Qm
iD1 qki

. Proposition 2.2 follows directly from the discussion
above.
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Proposition 2.2 Suppose D is a � –generic front diagram of a Legendrian knot and
� and �0 are augmentations in Aug.D/. If q is a degree 0 crossing and H is a chain
homotopy from � to �0 , then � and �0 differ at q if and only if there are an odd number
of .�; �0;H /–admissible disks originating at q .

2.2 Morse complex sequences

We briefly sketch the connection between generating families and Morse complex
sequences and refer the reader to [11] for more details. A one-parameter family of
smooth functions fx W RN !R, parametrized by x 2R, is a generating family for a
Legendrian knot L with front diagram D if

D D
n
.x; z/ W z D fx.e/ for some e 2RN satisfying @fx

@e
.e/D 0

o
:

With an appropriately chosen metric, a generic x 2 R determines a Morse chain
complex .Cx; dx/ on RN and, as x varies, the evolution of the Morse complexes
of fx are well-understood; a cusp of D corresponds to the creation or elimination
of a canceling pair of critical points and a crossing corresponds to two critical points
exchanging critical values. As x varies, it is also possible for a fiberwise gradient
flowline to momentarily flow between two critical points of the same index. Such an
occurrence is called a handleslide and it determines an explicit chain isomorphism
between successive Morse complexes. In summary, a generating family and choice of
metric determine a one-parameter family of Morse chain complexes and the relationship
between successive chain complexes is determined by the crossings and cusps of D

and the handleslides. A Morse complex sequence on D is a finite sequence of chain
complexes .Cm; dm/ and vertical marks on D that are meant to correspond to the
Morse chain complexes and handleslides of a generating family and choice of metric.
In addition, varying the choice of metric motivates an equivalence relation on MCSs.

Fix a Legendrian knot L with � –generic front diagram D , rotation number 0, and
Maslov potential �. Theorem 1.1 proves that a certain surjective map in [10] from
equivalence classes of Morse complex sequences to Augch.D/ is, in fact, a bijection.
We will use the definition of a Morse complex sequence given in [11]. This definition
differs slightly from the definition in [10], but both definitions determine the same set
of objects on L.

A handleslide on D is a vertical line segment disjoint from all crossings and cusps and
with endpoints on strands of D that have the same Maslov potential.

Definition 2.3 A Morse complex sequence on a � –generic front diagram D is the
triple C D .f.Cm; dm/g; fxmg;H / satisfying:
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(1) H is a set of handleslides on D .
(2) The real values x1 < x2 < � � � < xM are x–coordinates distinct from the x–

coordinates of crossings and cusps of D and handleslides of H . For each
1�m<M , the set f.x; z/ W xm � x � xmC1g contains a single crossing, cusp
or handleslide. The set f.x; z/ W �1< x � x1g contains the left-most left cusp
and the set f.x; z/ W xM � x <1g contains the right-most right cusp.

(3) For each 1�m�M , the points of intersection of the vertical line fxmg�R and
D are labeled e1; e2; : : : ; esm

from top to bottom. The vector space Cm is the
Z–graded Z=2Z vector space generated by e1; e2; : : : ; esm

, where the degree of
each generator is the value of the Maslov potential on the corresponding strand
of D , jei j D �.ei/. The map dmW Cm! Cm is a degree �1 differential that is
triangular in the sense that

dmei D

X
i<j

cij ej ; cij 2 Z=2Z:

(4) The coefficients hd1e1; e2i and hdM e1; e2i are both 1. Suppose 1 �m <M

and let T be the tangle D \ f.x; z/ W xm � x � xmC1g. If T contains a left
(resp. right) cusp between strands k and kC1, then hdmC1ek ; ekC1i is 1 (resp.
hdmek ; ekC1i is 1). If T contains a crossing between strands k and kC1, then
hdmek ; ekC1i is 0.

(5) For 1 � m < M , the crossing, cusp, or handleslide mark in the tangle T D

D\f.x; z/ W xm � x � xmC1g determines an algebraic relationship between the
chain complexes .Cm; dm/ and .CmC1; dmC1/ as follows:
(a) Crossing If the crossing is between strands k and k C 1, then the map

�W .Cm; dm/! .CmC1; dmC1/ defined by

�.ei/D

8<:
ei if i 62 fk; kC 1g;

ekC1 if i D k;

ek if i D kC 1

is an isomorphism of chain complexes.

(b) Right cusp If the right cusp is between strands k and k C 1, then the
linear map

�.ei/D

�
Œei � if i < k;

ŒeiC2� if i � k

is an isomorphism of chain complexes from .CmC1; dmC1/ to the quotient
of .Cm; dm/ by the acyclic subcomplex generated by fek ; dmekg.

(c) Left cusp The case of a left cusp is the same as the case of a right cusp,
though the roles of .Cm; dm/ and .CmC1; dmC1/ are reversed.
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(d) Handleslide If the handleslide mark has endpoints on strands k and l

with k < l , then the map hk;l W .Cm; dm/! .CmC1; dmC1/ defined by

hk;l.ei/D

�
ei if i ¤ k;

ek C el if i D k

is an isomorphism of chain complexes.

The set MCS.D/ is the set of all Morse complex sequences on D .

Remark 2.4 Morse complex sequences may be defined over more general coefficient
rings than Z=2Z; see [12]. We restrict attention to Z=2Z coefficients as this is also
done in [10].

Definition 2.5 An MCS C D .f.Cm; dm/g; fxmg;H / in MCS.D/ has simple left
cusps if, for each tangle T D f.x; z/ W xm � x � xmC1g containing a left cusp between
strands k and k C 1, the chain complex .CmC1; dmC1/ satisfies hdmC1ek ; eii D

hdmC1ekC1; eii D 0 for all k C 1 < i and hdmC1ej ; ekC1i D hdmC1ej ; eki D 0 for
all j < k .

The subset MCSb.D/ � MCS.D/ denotes the set of MCSs with simple left cusps.
We use the letter b to be consistent with the notation of [10], where a left cusp is
also called a “birth”. This language is meant to draw a connection to the creation of
a canceling pair of critical points, often called a birth, in a one-parameter family of
Morse functions on a manifold.

Given an MCS CD .f.Cm; dm/g; fxmg;H / with simple left cusps, the chain complexes
f.Cm; dm/g are uniquely determined by the crossings and cusps of D , the handleslides
H , and requirements (5) (a)–(d) of Definition 2.3. Consequently, C may be represented
visually by placing the handleslide marks H on the front diagram D ; see Figure 4.

In [10] an equivalence relation on the set MCS.D/ is defined that is motivated by a
corresponding equivalence for generating families; see also [11]. Here we denote the
set of equivalence classes of this relation by 1MCS.D/ DMCS.D/='. We recall a
version of this equivalence relation that applies to the more restricted set of MCSs
with simple left cusps, MCSb.D/. We denote equivalence classes with respect to
this relation by 1MCSb.D/. By [10, Proposition 3.17], the map from 1MCSb.D/ to
1MCS.D/ induced by the inclusion MCSb.D/ �MCS.D/ is a bijection. Therefore,
to prove Theorem 1.1, we need only consider MCSs in MCSb.D/ and MCS classes in
1MCSb.D/.
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Figure 4: An MCS with simple left cusps. This MCS is also in A–form.

The equivalence relation on MCSb.D/ is generated by the MCS moves pictured in
Figures 5 and 6. The numbering indicated will be used throughout this article. Ad-
ditional moves result from reflecting each of the two figures in (3), (7), (9), (10) and
(12) of Figure 5 about a horizontal axis and reflecting each of the two figures in (4),
(9), (11) and (12) of Figure 5 about a vertical axis. The handleslide modification
that results from reflecting Figure 5 (10) about a vertical axis is not an MCS move
for MCSs with simple left cusps. (The absence of this reflected move is the only
difference between the definitions of the equivalence relations on MCSb.D/ and
MCS.D/ discussed in the previous paragraph.) MCS move (13) requires explanation.
Suppose CD .f.Cm; dm/g; fxmg;H / is an MCS on D and suppose there exist xm and
1 � k < l � sm such that �.ek/D �.el/� 1. Then MCS move (13) introduces the
collection of handleslides K defined as follows. The handleslides in K are of two
types. First, if i < k and hdmei ; eki D 1 holds, then K contains a handleslide with
endpoints on i and l . Second, if l < j and hdmel ; ej i D 1 holds, then K contains a
handleslide with endpoints on k and j .

By [10, Proposition 3.8], modifying the handleslide set of an MCS in MCSb.D/ as in
one of the cases in Figures 5 and 6 results in another MCS in MCSb.D/. Therefore,
the notion of equivalence in the following definition is well-defined. In addition, if an
MCS move is applied to an MCS, then only those chain complexes near the location
of the MCS move are affected. In other words, the MCS moves are local in the sense
that they change both the handleslides and chain complexes of an MCS only in a local
neighborhood.

Definition 2.6 Two MCSs C and C0 in MCSb.D/ are equivalent, written C ' C0 , if
there exists a sequence C1; C2; : : : ; Cs in MCSb.D/ so that C D C1 , C0 D Cs , and, for
all 1� i < s , the set of handleslide marks of Ci and CiC1 differ by exactly one MCS
move. The set 1MCSb.D/ is the set MCSb.D/='.

MCSs of the following type have a standard form that makes their relationship with
augmentations particularly simple to describe.
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(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12)

Figure 5: Handleslide modifications, called MCS moves, that result in an
equivalent MCS

Definition 2.7 An MCS C in MCSb.D/ is in A–form if there exists a set R of degree
0 crossings so that just to the left of each q in R there is a handleslide with endpoints
on the strands crossing at q and C has no other handleslides. A crossing q in R is
said to be marked.

Figure 4 shows an MCS in A–form where R is the four left-most crossings. The subset
MCSA.D/�MCSb.D/ consists of all A–form MCSs on D .
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i

k

l

j

Figure 6: MCS move (13). On the left, a dotted arrow from strand ˛ to strand
ˇ indicates that hdme˛; eˇi is 1 .

3 The main result

Suppose L is a Legendrian knot with � –generic front diagram D , rotation number
0, and Maslov potential �. The proof of Theorem 1.1 depends upon the following
technical lemma, whose proof comprises most of this section.

Lemma 3.1 Suppose D is a � –generic front diagram and C and C0 are in MCSA.D/

with corresponding augmentations �C and �C0 , respectively. If �C and �C0 are homotopic,
then C and C0 are equivalent as MCSs.

We now prove Theorem 1.1, assuming Lemma 3.1. Section 4 includes three corollaries
of Theorem 1.1.

Proof of Theorem 1.1 By [10, Proposition 3.17], the natural inclusion of MCSb.D/

into MCS.D/ induces a bijection from 1MCSb.D/ to 1MCS.D/. Therefore, it suffices to
construct a bijection from 1MCSb.D/ to Augch.D/. In [10, Section 6], a surjective mapb‰ is constructed from 1MCSb.D/ to Augch.D/. We will prove this map is injective.
By [10, Theorem 1.6], every MCS is equivalent to an A–form MCS. Therefore, every
MCS equivalence class contains an A–form representative. We give the definition of b‰
in terms of A–form representatives and, in so doing, avoid most of the technical details
of [10]. By [10, Corollary 6.21], given an MCS class ŒC� with A–form representative
C , b‰.ŒC�/ is the augmentation homotopy class Œ�C �, where a degree 0 crossing q is
augmented by �C if and only if q is marked by C . Lemma 3.1 shows that if �C1

is
homotopic to �C2

, then C1 is equivalent to C2 . It follows that b‰ is injective.

Before proving Lemma 3.1, we require two definitions and a lemma. Let D2 be the
disk of radius 1 centered at the origin in R2 . Choose mC 2 points on @D2 . Label
the chosen points fb0; : : : ; bmC1g counter-clockwise. Let 
 be the arc of @D2 with
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endpoints bmC1 and b0 and so that b1; : : : ; bm are not in 
 . Given x0 2R that is not
the x–coordinate of any crossing or cusp of D , we let fx0g� Œi; j � denote the vertical
line segment with x–coordinate x0 and endpoints on strands i and j of D , where the
strands of D above x D x0 are numbered 1; 2; : : : from top to bottom and i < j .

Definition 3.2 Let � and �0 be homotopic augmentations in Aug.D/ and let H be a
chain homotopy from � to �0 . An .�; �0;H /–half-disk is a mapping of the two-disk D2

into the xz–plane as in Definition 2.1, except for the following variations along the
boundary:

(1) The arc 
 maps to a vertical line fx0g � Œi; j �; see Figure 2(f). We say the
.�; �0;H /–half-disk originates at fx0g � Œi; j �.

(2) For exactly one 1 � j �m, f .bj / is a degree �1 crossing qkj
, H.qkj

/D 1

holds, and f has a convex corner at f .bj /; see Figure 2(d) or (e).

(3) If 1� i < j (resp. j < i �m), f .bi/ is a degree 0 crossing augmented by �
(resp. �0 ) and f has a convex corner at f .bi/.

(4) The restriction of f to @D2 is smooth except at fb0; : : : ; bmC1g as described
in (1) and (2) and at points in @D2 n .fb0; : : : ; bmC1g/ where the image of f
looks like Figure 2(b) or (c).

The set H.x0; Œi; j �/ consists of all .�; �0;H /–half-disks originating at fx0g� Œi; j � up
to reparametrization, and #H.x0; Œi; j �/ is the mod 2 count of elements in H.x0; Œi; j �/.

Definition 3.3 Let � be an augmentation in Aug.D/. An �–half-disk is a mapping
f of the two-disk D2 into the xz–plane as in Definition 3.2 except that conditions (2)
and (3) are replaced with the requirement that all convex corners are at crossings that
are augmented by � .

The set G�.x0; Œi; j �/ consists of all �–half-disks originating at fx0g � Œi; j � up to
reparametrization, and #G�.x0; Œi; j �/ is the mod 2 count of elements in G�.x0; Œi; j �/.

As in Definition 2.1, the points in the vertical line fx0g� Œi; j � are the right-most points
of either an .�; �0;H /–half-disk or an �–half-disk. It follows from the definitions that
�.i/D �.j / in the case of an .�; �0;H /–half-disk and �.i/D �.j /C 1 in the case
of an �–half-disk

By [10, Corollary 6.21], the map ˆW MCSA.D/! Aug.D/ defined as follows is a
bijection. Given C 2MCSA.D/ and a generator q of A.D/, ˆ.C/.q/D 1 holds if and
only if q is a marked crossing of C . We let �C be the augmentation ˆ.C/.
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Lemma 3.4 below generalizes [11, Lemma 7.10] and [12, Lemma 5.4] by removing
the assumption that the front diagram D is nearly plat. Note that “gradient paths”
from [11, Lemma 7.10] correspond to �C –half-disks in our terminology, and that [12,
Lemma 5.4] allows more general coefficients.

Lemma 3.4 Suppose D is a � –generic front diagram and C D .fCm; dmg; fxmg;H /

is in MCSA.D/. Suppose C has M 2N chain complexes, p 2 f1; : : : ;M g, and xp is
to the immediate right of a crossing or cusp. Then, for all i < j ,

(2) hdpei ; ej i D #G�C .xp; Œi; j �/:

Proof We induct on p . The base case, p D 1, follows since there is a unique
disk in G�C .x1; Œ1; 2�/, as in Figure 2(b), while hd1e1; e2i D 1 holds according to
Definition 2.3(4) .

Assume now that xp sits to the immediate right of a crossing or cusp and that the result
is known for smaller values of p . We complete the inductive step by considering cases.

Left cusp Suppose xp is to the right of a left cusp with the two strands that meet at
the cusp labeled k and kC 1 at xp . Define � W f1; : : : ; sp�1g ! f1; : : : ; spg by

�.i/D

�
i if i < k;

i C 2 if i � k.

(Note that sp�1 D sp � 2.) For any 1 � i 0 < j 0 � sp�1 there is a bijection between
G�C .xp�1; Œi

0; j 0�/ and G�C .xp; Œ�.i
0/; �.j 0/�/; see, for example, Figure 7. Moreover,

Definition 2.3(5)(c) together with the requirement that C has simple left cusps give

hdp�1ei0 ; ej 0i D hdpe�.i0/; e�.j 0/i;

so (2) follows when i D �.i 0/ and j D �.j 0/.

(a) (b)

Figure 7: Possible extensions of an �–half-disk or .�; �0;H /–half-disk past
a left cusp

It remains to consider those cases where fi; j g\fk; kC1g¤∅. Suppose that precisely
one of i or j belongs to fk; kC1g. As C has simple left cusps, we have hdpei ; ej iD 0.
In addition, the restriction on the behavior of an �–half disk near a left cusp from
Figure 2(b) gives that G�C .xp; Œi; j �/ D ∅, so (2) holds. Finally, when i D k and
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j D k C 1, there is a unique �–half disk in G�C .xp; Œk; k C 1�/. (This disk has no
convex corners, so Definition 3.3(2) is vacuously satisfied.) Therefore, (2) follows in
view of Definition 2.3(4).

Crossing When xp sits immediately to the right of a crossing, the inductive step is
achieved precisely as in [11, Lemma 7.10] or [12, Lemma 5.4] (the signs in the latter
reference may be ignored). The arguments in these references apply regardless of
whether or not the crossing is marked.

Right cusp Suppose a right cusp sits between xp and xp�1 with the strands that meet
at the cusp labeled k and kC 1 at xp�1 . Let ai;j be hdp�1ei ; ej i. In the quotient of
.Cp�1; dp�1/ by the subcomplex spanned by ek and dp�1ek , we have

0D Œdp�1ek �D ŒekC1�C
X

kC1<j

ak;j Œej �;

so

dp�1Œei �D
X
i<j

ai;j Œej �D
X

i<j<k

ai;j Œej �C
X

kC1<j

.ai;j C ai;kC1 � ak;j /Œej �:

By Definition 2.3 (5) (b), this gives the computation of the differential in .Cp; dp/ as

(3) hdpei ; ej i D hdp�1e�.i/; e�.j/iC hdp�1e�.i/; ekC1i � hdp�1ek ; e�.j/i;

where � W f1; : : : ; spg ! f1; : : : ; sp�1g is defined by

�.i/D

�
i if i < k;

i C 2 if i � k.

We note that the second term on the right can be non-zero only if i < k � j ; see
Figure 8.

xp�1 xp

ai;j C ai;k � ai;kC1

ai;kC1ai;j

ak;j

i

j

Figure 8: (Left) The relation between differentials at a right cusp. A dotted
arrow at xl pointing from strand i to strand j indicates the matrix coefficient
hdlei ; ej i . (Right) The appearance of disks in G�C .xp; Œi; j �/ with a boundary
point at the right cusp between xp�1 and xp .
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To complete the proof, we combine Equation (3) with the observation that �–half-disks
satisfy a bijection

G�C .xp; Œi; j �/Š G�C .xp�1; Œ�.i/; �.j /�/

[
�
G�C .xp�1; Œ�.i/; kC 1�/�G�C .xp�1; Œk; �.j /�/

�
explained as follows. Those disks in G�C .xp; Œi; j �/ whose boundaries do not intersect
the cusp point are in bijection with G�C .xp�1; Œ�.i/; �.j /�/; see Figure 9. Disks in
G�C .xp; Œi; j �/ whose boundaries do intersect the cusp point appear between xp�1

and xp as pictured in Figure 8. Removing the portion of the disk between xp�1

and xp leaves a pair of initially overlapping disks from G�C .xp�1; Œ�.i/; k C 1�/ �

G�C .xp�1; Œk; �.j /�/, and this correspondence is bijective.

(a) (b)

(c)

Figure 9: Possible extensions of an �–half-disk or .�; �0;H /–half-disk past
a right cusp

We outline the central idea of Lemma 3.1 before proceeding to the proof. Recall that
an augmentation � has an associated A–form MCS C where a degree 0 crossing q is
marked by C if and only if �.q/ is 1. The proof of Theorem 1.1 reduced to showing
that if augmentations � and �0 are homotopic, then their associated A–form MCSs
C and C0 are equivalent. This is accomplished in Lemma 3.1 where an algorithm is
given to translate a chain homotopy H from � to �0 into a sequence of MCS moves
from C to C0 . In particular, for each degree �1 crossing p sent to 1 by H , we employ
MCS move (13) just to the left of p to introduce new handleslides. We prove that
these handleslides give the mod 2 count of certain .�; �0;H /–half disks. Moving these
handleslides to the right in the front diagram D , we find that a degree 0 crossing
q is changed from marked to unmarked or from unmarked to marked if and only if
there exists an odd number of .�; �0;H /–half disks originating at q . Therefore, by
Proposition 2.2 and the definition of C and C0 , q is changed from marked to unmarked

Algebraic & Geometric Topology, Volume 15 (2015)



Equivalence classes of augmentations and MCSs 3339

or from unmarked to marked if and only if C and C0 differ at q . We may therefore
conclude that C and C0 are equivalent.

Proof of Lemma 3.1 Suppose C and C0 are A–form MCSs and �C is homotopic
to �C0 . We simplify notation by letting � be �C and �0 be �C0 . Since � and �0 are
homotopic, there exists a chain homotopy H W A.D/! Z=2Z. Label the degree �1

crossings sent to 1 by H , from left to right, p1; : : : ;pm .

To prove the lemma, we will construct a sequence of MCSs C0; : : : ; Cs so that C0 is C
and Cs is C0 , and, for all 0 � r < s , Cr ' CrC1 holds. The construction of the Cr is
inductive, and each of the Cr will contain a (possibly empty) collection of handleslides
Vr that are grouped together immediately to the right of a particular crossing or cusp.

Figure 10: An ordered collection of handleslides

For our purposes it will be convenient to require that the handleslides in each of the Vr

are ordered in the following sense. We say a collection of handleslides is ordered if,
given two handleslides h and h0 in the collection with endpoints on strands i < j and
i 0 < j 0 respectively, h is right of h0 if and only if i > i 0 holds, or i D i 0 and j < j 0

hold; see Figure 10. We let vi;j
r be 1 if there exists a handleslide in Vr with endpoints

on strands i and j , where i < j . Otherwise, vi;j
r is defined to be 0. In a slight abuse

of notation, we also let vi;j
r refer to the handleslide in Vr with endpoints on i and j ,

if such a handleslide exists.

We will verify that Property 1 below holds for all 0� r � s as we inductively construct
MCSs Cr with ordered handleslide collections Vr .

Property 1 (a) The MCS Cr agrees with C0 to the left of Vr and C to the right
of Vr .

(b) For all i < j ,
vi;j

r D #H.xr ; Œi; j �/;

where xr is the x–coordinate of the left-most handleslide in Vr .

Each time r increases, the collection of handleslides Vr is pushed to the right past one
cusp or crossing. We continue this inductive process until we arrive at an MCS Cs with
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Vs located just to the left of the right-most right cusp of D . Since the two strands of
this cusp do not have the same Maslov potential, Vs must be empty. Then, Property 1
(a) shows that Cs is C0 . As C D C0 , and for 0 � i < s , Ci ' CiC1 it will then follow
that C ' C0 holds, as desired.

In the remainder of the proof we construct the sequence of MCSs C0; : : : ; Cs . Since
a crossing q is augmented by � (resp. �0 ) if and only if q is marked by C (resp. C0 ),
Proposition 2.2 implies C and C0 differ at q if and only if there exists an odd number
of .�; �0;H /–admissible disks originating at q . Since q is the right-most point of an
.�; �0;H /–admissible disk originating at q , it follows that there are no admissible disks
originating to the left of p1 (which is the first crossing sent to 1 by H ). Therefore,
C and C0 are identical to the left of p1 . We can then set C0 D C and define V0 to be
empty, but located just to the left of p1 . It follows that Property 1 holds for C0 .

Given Cr and Vr , we will construct CrC1 and VrC1 by applying MCS moves to Cr .
We will prove that if Property 1 holds for Cr , then it holds for CrC1 as well. We
consider five cases depending on the type of crossing or cusp just to the right of Vr . Let
q be the crossing or cusp point to the immediate right of Vr . Let xr (resp. xrC1 ) be an
x–coordinate to the immediate left (resp. right) of q . In each of the five cases, we first
analyze the .�; �0;H /–half-disks in H.xrC1; Œi; j �/ before describing the sequence of
MCS moves used to construct CrC1 from Cr and proving Property 1 holds for CrC1

and VrC1 .

In the first three cases considered, q is a crossing between strands k and kC 1 where
the strands of D have been numbered 1; : : : ; sr , from top to bottom, just to the left
of q . Let �W f1; : : : ; sr g! f1; : : : ; sr g be the permutation that transposes k and kC1.

Crossing q such that jqj¤0 and H.q/¤1 Since jqj is non-zero, H.xr ; Œk; kC1�/

and H.xrC1; Œk; kC1�/ are both empty. Given 1 � i < j � sr such that .i; j / ¤
.k; kC1/, one has that .�; �0;H /–half-disks in H.xrC1; Œi; j �/ cannot have a con-
vex corner at q , since jqj ¤ 0 and H.q/ ¤ 1 hold. In fact, #H.xrC1; Œi; j �/ D

#H.xr ; Œ�.i/; �.j /�/ holds, since there is a natural bijection between H.xrC1; Œi; j �/

and H.xr ; Œ�.i/; �.j /�/; see, for example, Figure 11.

We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . Move all handleslides of Vr to the right of q using MCS
moves (7)–(9). Since jqj is non-zero, vk;kC1

r is 0, and therefore all handleslides of Vr

can be moved past q and no new handleslides are created by doing so. The resulting
collection can be ordered, using MCS moves, without creating new handleslides. The
reordering requires rearranging handleslides with one endpoint on either strand k

or k C 1. Since jqj is non-zero, there is no handleslide between k and k C 1, and
therefore the rearrangement can be done without using MCS move (4). The resulting
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(a) (b)

(c) (d)

(e) (f)

Figure 11: Possible extensions of an .�; �0;H /–half-disk past a crossing

ordered collection is VrC1 and the MCS is CrC1 , and vi;j
rC1
D v�.i/;�.j/r holds for

all 1 � i < j � sr . By Property 1(b), v�.i/;�.j/r D #H.xr ; Œ�.i/; �.j /�/ holds and as
shown above, #H.xrC1; Œi; j �/D #H.xr ; Œ�.i/; �.j /�/ holds. Therefore, Property 1(b)
holds for CrC1 . Property 1(a) holds for Cr and since jqj is non-zero, q is not marked
by either CrC1 or C0 . Therefore, Property 1(a) holds for CrC1 .

Crossing q such that jqj D 0 Let vq be 1 if q is marked by C and 0 otherwise.
Since Property 1(a) holds for Cr , if q is marked by C , then q is marked by Cr as well.
We slightly abuse notation and also let vq be the handleslide at q in Cr in the case
such exists.

Suppose i¤kC1 and j ¤k . Half-disks in H.xrC1; Œi; j �/ cannot have a convex corner
at q , and therefore there is a bijection from H.xr ; Œi; j �/ to H.xrC1; Œ�.i/; �.j /�/; see,
for example, Figure 11(c)–(f). Since Property 1(b) holds for Cr , #H.xrC1; Œi; j �/D

v�.i/;�.j/r holds.

Note that H.xrC1; Œk; k C 1�/ is empty. Suppose one of i D k C 1 or j D k holds.
Half-disks in H.xr ; Œ�.i/; �.j /�/ may be smoothly extended past q as in Figure 11(a)
and (b). Therefore, there exists an injection from H.xr ; Œ�.i/; �.j /�/ to H.xrC1; Œi; j �/.
However, there may be half-disks in H.xrC1; Œi; j �/ that have a convex corner at q .
If j D k (resp. i D k C 1) and q is marked by C0 (resp. C ), then a half-disk in
H.xrC1; Œi; j �/ can have a convex corner at q ; see Figure 12(a) and (b) respectively.
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(a) (b)

vq

v
k;kC1
r C vq

Figure 12: Extending an .�; �0;H /–half-disk past a degree 0 crossing so as
to have a convex corner at the crossing

Such half-disks are in bijection with half-disks in H.xr ; Œi; j �/, as can be seen in
Figure 12(a) and (b), and by Property 1(b), are counted by vi;j

r . Since vk;kC1
r is

1 if and only if C0 and C differ at q , q is marked by C0 (resp. C ) if and only if
v

k;kC1
r Cvq is 1 (resp. vq is 1). Therefore, if j D k (resp. i D kC1), then the mod 2

count of half-disks in H.xrC1; Œi; j �/ with a convex corner at q is .vk;kC1
r C vq/ � v

i;k
r

(resp. vq � v
kC1;j
r ). In summary,

(4) #H.xrC1; Œi; j �/D

8̂̂̂<̂
ˆ̂:
v

i;kC1
r C .v

k;kC1
r C vq/ � v

i;k
r if j D k;

v
k;j
r C vq � v

kC1;j
r if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.

We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . We move each handleslide vi;j

r of Vr past q beginning with
the right-most handleslide in Vr . If i � k and j ¤ kC1 hold, use MCS moves (2)–(9)
to move vi;j

r past vq , if vq is 1, and then past the crossing q . If vq is 1 and i D kC1,
a new handleslide with endpoints on strands k and j is created when MCS move (4)
is used to move vi;j

r past vq . Move this handleslide to the right of q as well. It is not
possible to move vk;kC1

r past q and so, for now, we simply leave vk;kC1
r to the left of

q . If i < k holds, use MCS moves (2)–(9) to move vi;j
r past vk;kC1

r , if vk;kC1
r is 1,

then past vq , if vq is 1, and then past the crossing q . If vq is 1 or vk;kC1
r is 1, and

j D k , a new handleslide with endpoints on strands i and kC1 is created when MCS
move (4) is used to move vi;j

r past vq or vk;kC1
r . Move this handleslide to the right of

q as well. Once all vi;j
r , except vk;kC1

r , have been moved past q , use MCS moves (5)
and (1) to order the collection of handleslides just to the right of q and remove pairs of
handleslides that have the same endpoints. The resulting collection is VrC1 . From our
work above, we have:

(5) v
i;j
rC1
D

8̂̂̂<̂
ˆ̂:
v

i;kC1
r C .v

k;kC1
r C vq/ � v

i;k
r if j D k;

v
k;j
r C vq � v

kC1;j
r if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.
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Use MCS move (1) to remove both vk;kC1
r and vq , in the case that they both exist.

The resulting MCS is CrC1 . By Property 1, vk;kC1
r is 1 if and only if there is an odd

number of .�; �0;H /–half-disks originating at fxr g � Œk; kC 1�. There is a bijection
between such disks and the .�; �0;H /–admissible disks originating at q ; see Figure 13.
Therefore, by Proposition 2.2, vk;kC1

r is 1 if and only if C and C0 differ at q . Therefore,
Property 1(a) holds for CrC1 . Finally, Equations (5) and (4) imply Property 1(b) holds
for CrC1 .

Figure 13: The bijection between .�; �0;H /–half-disks originating at fxr g �

Œk; k C 1� and .�; �0;H /–half-disks originating at a crossing q between
strands k and kC 1

Crossing pi where 1 < i �m Suppose pi is a degree �1 crossing between strands
k and k C 1 and H.pi/ D 1 holds. Suppose i ¤ k C 1 and j ¤ k . Half-disks in
H.xrC1; Œi; j �/ cannot have a convex corner at pi and, therefore, there is a bijection
from H.xr ; Œi; j �/ to H.xrC1; Œ�.i/; �.j /�/; see, for example, Figure 11(c)–(f). Since
Property 1(b) holds for Cr , #H.xrC1; Œi; j �/D v

�.i/;�.j/
r holds.

(a)

(b) (c)

(d) (e)

Figure 14: The correspondence between .�; �0;H /–half-disks with a convex
corner at the degree �1 crossing in the figure and handleslides introduced
by MCS move (13) to the left of the crossing. In step (d), two handleslides
are created by MCS move (13). These handleslides correspond to the two
.�; �0;H /–half-disks in the top right figure, each of which has a convex corner
at the crossing.
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(a) (b)

(c)

(d)(e)

V

V 0

pi

Figure 15: The sequence of MCS moves at a crossing pi where jpi j D �1

and H.pi/D 1 both hold.

Note that H.xrC1; Œk; k C 1�/ is empty. Suppose one of i D k C 1 or j D k holds.
Half-disks in H.xr ; Œ�.i/; �.j /�/ may be smoothly extended past pi as in Figure 11(a)
and (b). Therefore, there exists an injection from H.xr ; Œ�.i/; �.j /�/ to H.xrC1; Œi; j �/.
However, there may be half-disks in H.xrC1; Œi; j �/ that have a convex corner at q .
In the case that j D k (resp. i D kC 1), such disks correspond to �–half-disks (resp.
�0–half-disks) that have been extended past pi so as to have a convex corner at pi ; see
Figure 14(a)–(e). Let .C; d/ (resp. .C 0; d 0/) be the chain complex of C (resp. C0 ) just
to the left of pi . Property 1(a) implies that, in Cr , .C; d/ (resp. .C 0; d 0/) is the chain
complex to the immediate right (resp. left) of Vr . By Lemma 3.4, the mod 2 count of
such half-disks is hdei ; ej i and hd 0ei ; ej i respectively. Since Property 1(b) holds for
Cr , we may summarize the work of the previous two paragraphs as follows:

(6) #H.xrC1; Œi; j �/D

8̂̂̂<̂
ˆ̂:
v
�.i/;�.j/
r Chdei ; ej i if j D k;

v
�.i/;�.j/
r Chd 0ei ; ej i if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.

We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . Let V � Vr (resp. V 0 � Vr ) be the handleslides vi;j

r in Vr
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satisfying i � k (resp. i < k ). Since Vr is ordered, V is right of V 0 ; see Figure 15.
Let . xC ; xd/ be the chain complex of Cr between V 0 and V . Use MCS moves (7) and
(9) to move the handleslides in V past pi ; see Figure 15(a). Since pi has degree �1,
vk;kC1

r is 0 and �.k/D �.kC 1/� 1 holds. Therefore, strands k and kC 1 satisfy
the conditions of MCS move (13). Use MCS move (13) to introduce new handleslides
between V 0 and pi ; see Figure 15(b). MCS move (13) introduces a handleslide with
endpoints i and j if and only if either j D kC 1 and h xdei ; eki is 1, or i D k and
h xdekC1; ej i is 1. Recall that .C; d/ (resp. .C 0; d 0/) is the chain complex of Cr to
the immediate right (resp. left) of Vr . Since Vr is ordered, the handleslides between
.C; d/ and . xC ; xd/ have upper endpoints on k; : : : ; sr and the handleslides between
.C 0; d 0/ and . xC ; xd/ have upper endpoints on 1; : : : ; k � 1. Because of the ordering
of handleslides in Vr , the coefficient h xdei ; eki (resp. h xdekC1; ej i) is unaffected by
handleslides in V (resp. V 0 ). As a consequence h xdei ; eki D hdei ; eki holds for all
i < k and h xdekC1; ej i D hd

0ekC1; ej i holds for all k C 1 < j . Therefore, MCS
move (13) introduces a handleslide with endpoints i and j if and only if either
j D kC 1 and hdei ; eki is 1, or i D k and hd 0ekC1; ej i is 1. Move the handleslides
created by MCS move (13) and the handleslides in V 0 past pi using MCS moves
(7)–(9); see Figure 15(c). Use MCS moves (1), (3), (5) and (6) to order the collection
of handleslides to the right of pi and remove pairs of handleslides with identical
endpoints; see Figure 15 (d) and (e). In particular, this can be done without creating
any new handleslides. The resulting ordered collection of handleslides is VrC1 and
the MCS is CrC1 . Since the only new handleslides created were those created by the
single application of MCS move (13),

(7) v
i;j
rC1
D

8̂̂̂<̂
ˆ̂:
v
�.i/;�.j/
r Chdei ; ej i if j D k;

v
�.i/;�.j/
r Chd 0ei ; ej i if i D kC 1;

0 if i D k and j D kC 1;

v
�.i/;�.j/
r otherwise.

Equations (6) and (7) imply Property 1(b) holds for CrC1 . Finally, Property 1(a)
holds for Cr and jqj ¤ 0 implies q is not marked by either CrC1 or C0 . Therefore,
Property 1(a) holds for CrC1 .

Left cusp Suppose q is a left cusp. Number the strands of D , from top to bottom,
1; : : : ; sr (resp. 1; : : : ; srC1 ) just to the left (resp. right) of q . Define � W f1; : : : ; sr g!

f1; : : : ; srC1g by

�.i/D

�
i if i < k;

i C 2 if i � k.

(Note that sr D srC1 � 2.) For any 1 � i 0 < j 0 � sr , there is a bijection between
H.xrC1; Œ�.i

0/; �.j 0/�/ and H.xr ; Œi
0; j 0�/; see, for example, Figure 7(a) and (b). If
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fi; j g \ fk; k C 1g is non-empty, then H.xrC1; Œi; j �/ is empty. Therefore, since
Property 1(b) holds for Cr ,

(8) #H.xrC1; Œi; j �/D

�
v�
�1.i/;��1.j/

r if fi; j g\ fk; kC 1g D∅;
0 otherwise.

Use MCS moves (11) and (12) to move each handleslide in Vr past q . The resulting
collection VrC1 is ordered and the resulting MCS is CrC1 . The endpoints of a han-
dleslide remain on the same strands of D as it is moved past q . Therefore, we have

(9) v
i;j
rC1
D

�
v�
�1.i/;��1.j/

r if fi; j g\ fk; kC 1g D∅;
0 otherwise.

Equations (8) and (9) imply Property 1(b) holds for CrC1 . Since q is not a crossing
and Property 1(a) holds for Cr , it must hold for CrC1 as well.

Right cusp Suppose q is a right cusp between strands k and kC1. Let .C; d/ (resp.
.C 0; d 0/) be the chain complex of C (resp. C0 ) just to the left of q . Property 1(a) implies
that, in Cr , .C; d/ (resp. .C 0; d 0/) is the chain complex to the immediate right (resp.
left) of Vr . Number the strands of D , from top to bottom, by 1; : : : ; srC1 (resp. by
1; : : : ; sr ) just to the right (resp. left) of q . Define � W f1; : : : ; srC1g ! f1; : : : ; sr g by

�.i/D

�
i if i < k;

i C 2 if i � k.

(Note that sr D srC1C 2.)

If j < k or i � k , then

(10) #H.xrC1; Œi; j �/D v
�.i/;�.j/
r

holds, since Property 1(b) holds for Cr and there is a bijection from H.xr ; Œ�.i/; �.j /�/

to H.xrC1; Œi; j �/; see Figure 9(a) and (b).

When j � k and i < k , we claim that there is a bijection

(11) H.xrC1; Œi; j �/ŠH.xr ; Œ�.i/; �.j /�/

[ .G�.xr ; Œ�.i/; kC 1�/�H.xr ; Œk; �.j /�//

[ .H.xr ; Œ�.i/; kC 1�/�G�
0

.xr ; Œk; �.j /�//:

Suppose j �k and i <k . Half-disks in H.xr ; Œ�.i/; �.j /�/ may be smoothly extended
past q as in Figure 9(c). Therefore, there exists an injection from H.xr ; Œ�.i/; �.j /�/ to
H.xrC1; Œi; j �/. However, there may be half-disks in H.xrC1; Œi; j �/ whose boundary
intersects the cusp point; see Figure 16(a) and Figure 17(a).
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(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

l

k

kC 1
j

h

Figure 16: (a)–(e): The correspondence between Type 1 .�; �0;H /–half-
disks whose boundary intersects the right cusp in the figure and handleslides
introduced by MCS move (13) to the left of the crossing. (f), (g): A han-
dleslide introduced by MCS move (13) that is removed, along with vk;j

r , by
an MCS (1) move. (h), (i): A handleslide introduced by MCS move (13) that
is removed by an MCS (10) move.

We divide half-disks whose boundary intersects q into two types as follows. Any
such half-disk has one convex corner at a degree �1 crossing, which we denote p .
Trace the boundary of such a half-disk counter-clockwise beginning at the vertical
line fxrC1g � Œi; j �. In a Type 1 (resp. Type 2) half-disk, p appears after (resp.
before) q . A Type 1 (resp. Type 2) half-disk can be uniquely decomposed into an
.�; �0;H /–half-disk and an �–half-disk (resp. �0–half-disk) as in Figure 16(a) and
(b) (resp. Figure 17(a) and (b)). Therefore, the set in the second (resp. third) line of
Equation (11) is in bijection with Type 1 (resp. Type 2) half-disks. Since Property 1(b)
holds for Cr and Lemma 3.4 holds for both .C; d/ and .C 0; d 0/, the mod 2 count of
Type 1 half-disks is hde�.i/; ekC1i � v

k;�.j/
r and the mod 2 count of Type 2 half-disks

is v�.i/;kC1
r � hd 0ek ; e�.j/i. Therefore, for j � k and i < k , we have the formula

(12) #H.xrC1; Œi; j �/D v
�.i/;�.j/
r C v�.i/;kC1

r � hd 0ek ; e�.j/i

Chde�.i/; ekC1i � v
k;�.j/
r :
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We now define the sequence of MCS moves that create CrC1 from Cr and prove
Property 1 holds for CrC1 . We move the handleslides of Vr past q iteratively beginning
with the right-most handleslide. Suppose vi;j

r is the right-most handleslide of Vr that
has yet to be moved past q . If i > kC 1 or j < k , use MCS move (12) to move vi;j

r

past q . If i < k and j > kC1, use MCS move (11) to move vi;j
r past q . If i D kC1

or j D k , use MCS move (10) to remove vi;j
r . Since �.k/ D �.k C 1/C 1 and a

handleslide has endpoints on strands with the same Maslov potential, vk;kC1
r must be

0. It remains to consider the two cases i D k; j > kC 1 and i < k; j D kC 1.

(a)

(b) (c)

(d) (e)

i

k

kC 1

l

h

Figure 17: (a)–(e): The correspondence between Type 2 .�; �0;H /–half-
disks whose boundary intersects the right cusp in the figure and handleslides
introduced by MCS move (13) to the left of the crossing.

Suppose vi;j
r is vk;j

r where j > kC1. Since �.k/D�.j / and �.k/D�.kC1/C1

both hold, �.k C 1/ D �.j / � 1 holds and, thus, strands k C 1 and j satisfy the
conditions of MCS move (13). Use MCS move (13) to create new handleslide marks; see
the arrow directed to the right in Figure 6. Let . xC ; xd/ be the chain complex of Cr just
to the right of vk;j

r . The handleslides created are of three types. By Definition 2.3(4),
h xdek ; ekC1i is 1. Therefore, MCS move (13) introduces a handleslide with endpoints
k and j ; see Figure 16(f). Use MCS move (1) to remove this handleslide and vk;j

r ;
see Figure 16(g). For each l such that h xdej ; eli is 1, MCS move (13) introduces
a handleslide with endpoints k C 1 and l ; see Figure 16(h). Use MCS move (10)
to remove this handleslide; see Figure 16(i). Suppose l < k and h xdel ; ekC1i is 1.
The third type of handleslide introduced by MCS move (13) has endpoints l and j ;
see Figure 16(d). Let h be this handleslide. Use MCS move (11) to move h past
q ; see Figure 16(e). Recall that .C; d/ is the chain complex of Cr to the immediate
right of Vr . Since Vr is ordered, the handleslides between . xC ; xd/ and .C; d/ have
endpoints on strands kC 1; : : : ; sp . The coefficient h xdel ; ekC1i is unaffected by such
handleslides and, thus, h xdel ; ekC1i D hdel ; ekC1i holds. Therefore, h exists if and
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only if hdel ; ekC1i � v
k;j
r is 1. As we noted earlier, hdel ; ekC1i � v

k;j
r is 1 if and only

if the mod 2 count of Type 1 half-disks in H.xrC1; Œl; j C2�/ is 1. Therefore, h exists
if and only if the mod 2 count of Type 1 half-disks in H.xrC1; Œl; j C 2�/ is 1.

Suppose vi;j
r is vi;kC1

r where i < k . Note that �.i/ D �.k/ � 1 holds and, thus,
strands i and k satisfy the conditions of MCS move (13). Use MCS move (13) to create
new handleslides to the immediate right of vi;kC1

r . Suppose l > kC1 and h xdek ; eli is
1. MCS move (13) introduces a handleslide with endpoints i and l ; see Figure 17(d).
Let h be this handleslide. Use MCS move (11) to move h past q ; see Figure 17(e).
Following an analogous argument as was used in the case of a Type 1 half-disk, h

exists if and only if the mod 2 count of Type 2 half-disks in H.xrC1; Œi; l C 2�/ is 1.
MCS move (13) also introduces handleslides analogous to those in Figure 16(f) and
(h), which are removed in same manner as was done in Figure 16(g) and (i).

Once we have applied the above algorithm to each handleslide in Vr , we are left with
a collection of handleslides V to the right of q . The ordering of Vr ensures the only
new handleslides were those introduced by applications of MCS move (13). Therefore,
given 1 � i < j � srC1 , there may be up to 3 handleslides in V with endpoints on
i and j ; one counts .�; �0;H /–half-disks extended past q as in Figure 9, one counts
Type 1 half-disks as in Figure 16(a)–(e), and the third counts Type 2 half-disks as in
Figure 17(a)–(e). Use MCS moves (1), (3), (5), and (6) to remove pairs of handleslides
with identical endpoints and order V . In particular, V can be ordered without creating
new handleslides. The resulting ordered collection of handleslides is Vr and the MCS
is CrC1 . If j < k or i � k , then

vi;j
rC1 D v

�.i/;�.j/
r

holds and, if j � k and i < k , then

v
i;j
rC1
D v�.i/;�.j/r C v�.i/;kC1

r � hd 0ek ; e�.j/iC hde�.i/; ekC1i � v
k;�.j/
r

holds. These equations, along with Equations (10) and (12), imply Property 1(b) holds
for CrC1 . Finally, since q is not a crossing and Property 1(a) holds for Cr , it must
hold for CrC1 as well.

This completes the construction of the MCSs C0; : : : ; Cs .

4 Corollaries to Theorem 1.1

In the following corollaries to Theorem 1.1, D is the � –generic front diagram of a
Legendrian knot with rotation number 0. Recall that an augmentation � in Aug.D/
has a corresponding A–form MCS C where, for a degree 0 crossing q , �.q/D 1 holds
if and only if q is marked by C .
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Corollary 4.1 The count of MCS classes of a Legendrian knot is a Legendrian isotopy
invariant.

Corollary 4.1 follows from the fact that the count of homotopy classes of augmentations
is a Legendrian isotopy invariant and every Legendrian knot is Legendrian isotopic to
a Legendrian knot with � –generic front diagram by an arbitrarily small Legendrian
isotopy. Corollary 4.1 is stated and a proof is briefly sketched by Petya Pushkar in
a letter to Dmitry Fuchs from 2000. The proposed proof investigates the effect of
Legendrian Reidemeister moves on the number of MCS classes and is different from
the approach in this article.

Given the Chekanov–Eliashberg algebra .A.D/; @/, the differential @�W A.D/!A.D/
is ��ı@ı.��/�1 , where ��W A.D/!A.D/ is the algebra map defined on generators by
��.q/D qC �.q/. The group LCH.�/, called the linearized contact homology of � , is
the homology of the chain complex .A.D/; @�

1
/, where @�

1
.q/ is the length 1 monomials

of @�.q/. By [2], the set fLCH.�/g�2Aug.D/ is a Legendrian isotopy invariant, which
we will call the LCH invariant.

Corollary 4.2 If � and �0 are homotopic as augmentations, then LCH.�/ and LCH.�0/
are isomorphic as homology groups. Therefore, augmentation homotopy classes have
well-defined linearized contact homology groups.

Proof We will apply two theorems from [10]. In order to do so, the front diagram must
be “nearly plat”. A front diagram is plat if all left cusps have the same x–coordinate,
all right cusps have the same x–coordinate, and no two crossings have the same x–
coordinate. A front diagram is nearly plat if it is the result of perturbing a plat front
diagram slightly so that no two cusps have the same x–coordinate.

We now deduce the corollary in the case that D is nearly plat. Suppose � and �0 are
homotopic. By Lemma 3.1, the A–form MCSs C and C0 corresponding to � and �0

are equivalent as MCSs. In [11], differential graded algebras .AC; d/ and .AC0 ; d
0/

are assigned to C and C0 , respectively. The linear level of each algebra is a chain
complex .AC; d1/ and .AC0 ; d

0
1
/, respectively. By [11, Theorem 5.5], .AC; d1/ and

.AC0 ; d
0
1
/ are isomorphic. By [11, Theorem 7.3], .A.D/; @�

1
/ is isomorphic to .AC; d1/

and .A.D/; @�
0

1
/ is isomorphic to .AC0 ; d

0
1
/. Therefore, LCH.�/ and LCH.�0/ are

isomorphic as homology groups.

For the general case of a Chekanov–Eliashberg algebra .A; @/ assigned to a front (or
Lagrangian) diagram that is not nearly plat, we argue as follows. By [1], the Chekanov–
Eliashberg algebras assigned to Legendrian isotopic Legendrian knots are stable tame
isomorphic. Any Legendrian knot is Legendrian isotopic to a knot with nearly plat
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front diagram, therefore .A; @/ is stable tame isomorphic to a DGA that satisfies the
property stated in Corollary 4.2. We then verify that .A; @/ also satisfies the corollary
in two steps.

Step 1 The corollary holds for a stabilization .S.A/; @0/ of a DGA .A; @/ if and only
if it holds for .A; @/.

Here, S.A/ is obtained from A by adding two generators x and y in successive
degrees, and the differential satisfies @0jAD @ and @0x D y . Restricting augmentations
of S.A/ to A provides a surjection from the set of augmentations of S.A/ to the set of
augmentations of A, and this gives a well-defined bijection between homotopy classes
of augmentations of S.A/ and A. Moreover, for any augmentation �W S.A/! Z=2,
the linearized homology groups associated to � and �jA are isomorphic, so Step 1
follows.

Step 2 If 'W .A1; @1/! .A2; @2/ is an isomorphism of DGAs, then the corollary
holds for .A1; @1/ if and only if it holds for .A2; @2/.

To see this, observe that �2 7! �1 ı' gives a bijection from augmentations of .A2; @2/

to augmentations of .A1; @1/ that preserves homotopy classes and linearized homology
groups.

Corollary 4.2 provides a means for strengthening the LCH invariant. The set

fLCH.�/g�2Aug.D/;

along with a count of the number of augmentation homotopy classes associated with
each group, is a Legendrian isotopy invariant. The authors are currently unaware of
an example where this refinement is able to distinguish knots that are not already
distinguished by the LCH invariant taken without regard to multiplicity.

Corollary 4.3 If � and �0 are homotopic, then � and �0 are mapped to the same graded
normal ruling by the many-to-one map from augmentations to graded normal rulings
defined in [16].

Proof Suppose � and �0 are homotopic. By Lemma 3.1, the A–form MCSs C and C0

corresponding to � and �0 are equivalent. By [10, Lemma 3.14], every MCS determines
a graded normal ruling. By [10, Proposition 3.15], equivalent MCSs determine the same
graded normal ruling. Therefore, C and C0 determine the same graded normal ruling. In
[16], there is an algorithmically defined many-to-one map � from Aug.D/ to the set
of graded normal rulings of D . In the case of an augmentation � and its corresponding
A–form MCS C , �.�/ is the same as the graded normal ruling determined by C in
[10, Lemma 3.14]. Therefore, � maps � and �0 to the same graded normal ruling.
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