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Spherical alterations of handles:
embedding the manifold plus construction

CRAIG R GUILBAULT

FREDERICK C TINSLEY

Quillen’s famous plus construction plays an important role in many aspects of
manifold topology. In our own work [4] on ends of open manifolds, an ability
to embed cobordisms provided by the plus construction into the manifolds being
studied was a key to completing the main structure theorem. In this paper we develop
a “spherical modification” trick that allows for a constructive approach to obtaining
those embeddings. More importantly, this approach can be used to obtain more
general embedding results. In this paper we develop generalizations of the plus
construction (together with the corresponding group-theoretic notions) and show how
those cobordisms can be embedded in manifolds satisfying appropriate fundamental
group properties. Results obtained here are motivated by, and play an important role
in, our ongoing study of noncompact manifolds [2].

57N15, 57Q12; 57Q10, 57R65

1 Introduction

In this paper we develop a procedure, called “spherical alteration”, for modifying handle
decompositions of manifolds in ways that permit useful applications. The strategy is
geometrically quite simple, but at the same time more drastic than the traditional tech-
niques of handle slides, introductions and cancellations of complementary handle pairs,
and the carving out and inserting of existing handles. In order to obtain the intended
applications, each alteration of a handle is accompanied by associated alterations of
related submanifolds. Taken together, these moves constitute the process of spherical
alteration. Since there are several variables involved, a full description of the procedure
is a bit technical; we save that for Section 3. In some sense, our main result is more a
technique than a specific theorem; nevertheless, several concrete applications of that
technique are provided. The prototypical application is a constructive proof of the
following theorem, which was a key ingredient in the main result in our work [4].
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Theorem 1.1 (Embedded manifold plus construction) Let R be a connected manifold
of dimension � 6, B be a closed component of @R, and

K � ker.�1.B/! �1.R//

a perfect group that is the normal closure in �1.B/ of a finite set of elements. Then
there exists an embedding of a plus cobordism .W;A;B/ into R which is the identity
on B and for which ker.�1.B/! �1.W //DK .

Remark 1 (a) Recall that compact cobordism .W;A;B/ is a plus cobordism if
A ,!W is a simple homotopy equivalence. A detailed discussion of plus cobordisms
and the manifold plus construction can be found in Section 4.

(b) As an added bonus, our proof of Theorem 1.1 provides a new twist on the existence
proof for plus cobordisms; an argument that requires very little discussion of bundles
and framings.

We will further exhibit the usefulness of the spherical alteration technique by proving
a generalization of Theorem 1.1. That generalization is motivated by ongoing work
on ends of noncompact manifolds. It and a similar application of spherical alteration,
also presented here, play key roles in our forthcoming paper [2]. To the best of our
knowledge, these latter two applications are not obtainable by the nonconstructive
approach to Theorem 1.1 used in [4].

Acknowledgement This project was aided by a Simons Foundation Collaboration
Grant awarded to the first author.

2 Preliminaries

In this section we provide brief reviews of several topics and introduce a good deal of
notation to be used later in this paper. Those topics are:

� Intersection numbers between submanifolds

� Surgering surfaces to disks and 2–spheres

� Perfect groups and “near perfect” subgroups

� Basics of handle theory

� Unbased spheres as elements of homotopy groups

Throughout this paper we work in the category of piecewise-linear manifolds; analogous
results in the smooth and topological categories may be obtained in the usual ways.
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2.1 Intersection numbers

One of the simplest types of intersection number is defined when Pp and Qq are closed,
connected, oriented submanifolds of the interior of an oriented .p C q/–manifold
N . First arrange that Pp and Qq intersect transversely at a finite set of points
p1;p2; : : : ;pk . At each pi , the local orientation of Pp together with the local orienta-
tion of Qq (in that order) determine a local orientation for N . If that orientation agrees
with the global orientation of N , we write sgn.pi/D 1; otherwise sgn.pi/D�1. The
Z–intersection number is defined by "Z.P

p;Qq/D
Pk

iD1 sgn.pi/. This definition
depends upon order; by linear algebra "Z.Q

q;Pp/D .�1/pq"Z.P
p;Qq/.

A more delicate intersection “number” lies in ZŒ�1.N;�/�. Instead of assuming N is
oriented (or even orientable), choose a local orientation of N at �. Assume that Pp

and Qq are both oriented and simply connected, and fix base paths �P and �Q in N

from � to base points �P 2 Pp and �Q 2Qq . For each pi , choose paths �i in Pp

and �i in Qq from the respective base points to pi . Let sgn.pi/D˙1, depending
on whether the local orientation at � translated along the path �P � �i agrees with
orientation at pi induced by the orientations of Pp then Qq ; then let gi 2 �1.N;�/

correspond to �P � �i � �
�1
i ��

�1
Q

. At pi define "Z�1.N;�/.pi/D sgn.pi/gi . Finally,
the Z�1 –intersection number is defined by

"Z�1.N;�/.P
p;Qq/D

kX
iD1

"Z�1.N;�/.pi/ 2 ZŒ�1.N;�/�:

Note that simple connectivity of Pp and Qq ensures that "Z�1.N;�/.P
p;Qq/ does

not depend on the choice of �i and �i , however there is some dependence on �P and
�Q . The ordering of Pp and Qq now plays a larger role than it did for Z–intersection
numbers: a change in order first alters sgn.pi/ by a factor of .�1/pq!1.gi/, where
!1.gi/D1 if gi is an orientation preserving loop and !1.gi/D�1 otherwise; secondly,
the loop �P � �i � �

�1
i ��

�1
Q

is now traversed in the opposite direction, so gi becomes
g�1

i . For us, the key facts related to order are:

� "Z�1.N;�/.P
p;Qq/D 0 if and only if "Z�1.N;�/.Q

q;Pp/D 0.
� If "Z�1.N;�/.P

p;Qq/D 1 then "Z�1.N;�/.Q
q;Pp/D˙1.

Sometimes the simple connectivity conditions on Pp and Qq can be relaxed. An
important such case occurs when one of the submanifolds, say Qq , is a 1–sphere;
there we salvage “well-definedness” by requiring that �i be the unique arc of Qq

running from �Q to pi in the orientation preserving direction. Another useful variation
occurs when the fundamental group of Pp or Qq includes trivially into the that of
N , in which case that submanifold need not be simply connected. Similarly, if the
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images of �1.P
p/ and �1.Q

q/ (translated appropriately along �P and �Q ) lie in an
L E �1.N;�/ then the above procedure produces a well-defined intersection number
in ZŒ�1.N;�/=L�.

We will call collections fPp
i g

r
iD1

and fQq
i g

r
iD1

of closed submanifolds of a .pC q/–
manifold N n geometrically dual if P

p
i intersects Q

q
i transversely in a single point

for all i and P
p
i \Q

q
j D ¿ for all i ¤ j . If N n and all of these submanifolds are

oriented, then the collections are algebraically dual over Z if "Z.P
p
i ;Q

q
j /D˙ıij for

all 1� i; j � r . So (given the necessary orientability requirements), collections which
are geometrically dual are necessarily algebraically dual over Z, but not conversely.

More generally, given the necessary hypotheses and all required choices to make
ZŒ�1.N;�/�–intersection numbers well-defined, collections fPp

i g
r
iD1

and fQq
i g

r
iD1

are algebraically dual over ZŒ�1.N;�/� if "ZŒ�1.N;�/�.P
p
i ;Q

q
j / D ˙ıij for all 1 �

i; j � r . In reality, we are usually satisfied if each "ZŒ�1.N;�/�.P
p
i ;Q

q
i / D ˙gi for

some gi 2 �1.N;�/ and "ZŒ�1.N;�/�.P
p
i ;Q

q
j / D 0 when i ¤ j . In those cases, we

can always arrange the more rigid requirement by rechoosing some of the base paths.
Under appropriate conditions, the notion of collections being algebraically dual over
ZŒ�1.N;�/=L� may be defined in a similar manner.

2.2 Surgery on surfaces

For a compact oriented surface ƒ with zero or one boundary components, a complete
set of meridian-longitude pairs is a collection of pairs of oriented simple closed curves
f.mj ; lj /g

k
jD1

such that collections fmj g
k
jD1

and flj gkjD1
are geometrically dual and

together generate H1.ƒIZ/.

Given such a collection, let pj denote the point of intersection between mj and lj
and choose a set of arcs f�j gkjD1

in ƒ intersecting only at a common initial point �ƒ
so that each �j intersects the collection of simple closed curves only at its terminal
point pj ; if @ƒ ¤ ¿ choose �ƒ 2 @ƒ. Using ‡ D

Sk
jD1�j as a “base tree”, the

curves of f.mj ; lj /g
k
jD1

may be viewed as elements of �1.ƒ;�ƒ/. In the case where
@ƒ¤¿ we may — after relabeling, reordering, and choosing appropriate orientations
on the simple closed curves and on @ƒ— assume that @ƒD

Qk
jD1 m�1

j l�1
j mj lj in

�1.ƒ;�ƒ/.

Remark 2 Since ƒ is not presumed to bound or be embedded in a 3–manifold,
common distinctions between longitude and meridian (or neither) are nonexistent here;
a given curve could play either role, depending upon the setup. Nevertheless, the
informal use of this terminology will be convenient for discussing certain curves and
collections of curves.
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Suppose now that ƒ, with zero or one boundary components and a complete set
f.mj ; lj /g

k
jD1

of meridian-longitude pairs, is embedded in an n–manifold N n (n� 5)
and that each mj is homotopically trivial in N n . Then we may surger ƒ to a 2–sphere
or 2–disk in the following manner:

� For convenience, choose a collection fmj g
k
jD1

of simple closed curves in ƒ
where each mj is parallel to mj and disjoint from ‡ . Do this so that fmj g

k
jD1

is geometrically dual to flj gkjD1
.

� Let fDj g
k
jD1

be a collection of pairwise disjoint 2–disks embedded in N n with
ƒ\Dj D @Dj Dmj .

� For each j , let Aj be a small annular neighborhood of mj in ƒ with boundary
curves m �j and m Cj .

� For each j , let D�j and DCj be disks parallel to Dj having m �j and m Cj as
boundaries.

� Let ƒ� be the 2–sphere or 2–disk obtained by removing the interiors of the Aj

from ƒ and sewing in D�j and DCj .

If ƒ has a preferred orientation, there is a corresponding orientation of ƒ� where
the two agree on ƒ �

S
Aj . Under that orientation of ƒ� disk pairs D˙j inherit

opposite orientations when compared by projecting onto Dj . Suppose Qn�2 is a
closed oriented submanifold of N n intersecting ƒ transversely in finitely many points.
By applying a small isotopy if necessary, we may assume none of those intersection
points is contained in

S
Aj . Adjust the Dj (rel boundary) so they also intersect Qn�2

transversely. Corresponding to each p 2Dj \Qn�2 there are points p� 2D�j \Qn�2

and pC 2 DCj \Qn�2 . Thus the intersection ƒ� \Qn�2 consists of the points of
ƒ\Q n�2 together with one pair of points fp�;pCg for each point p of a Dj\Qn�2 .
If N n is oriented, it is clear that "Z.p

�/D�"Z.p
C/ for each of those pairs, so when

ƒ is closed, we have "Z.ƒ
�;Qn�2/D "Z.ƒ;Q

n�2/.

For "Z�1.N n;�/.ƒ
�;Qn�2/ the situation is more complicated. In order to compare

contributions of points p� and pC , assume the necessary setup discussed in the
previous subsection: base points �, �Q , �ƒ� D �ƒ and corresponding base paths �Q

and �ƒ� , and a local orientation at �; assume also that Qn�2 is simply connected.
Determination of "Z�1.N n;�/.p

�/ and "Z�1.N n;�/.p
C/ require paths �� and �C in

ƒ� from �ƒ� to p� and pC . Let �� be the path in ƒ� that follows �j � ‡ to the
longitude lj , travels along the unique arc l�j � lj that arrives at D�j without leaving
ƒ� , and then travels through D�j to p� . Choose �C similarly, noting that lCj goes the
opposite way around lj . Lastly, choose paths �� and �C in Qn�2 from �Q to p�

and pC ; these can be chosen identical except in a small neighborhood of p . If we write
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"Z�1.N;�/.p
�/ D sgn.p�/g and "Z�1.N;�/.p

C/ D sgn.pC/h then g is represented
by �ƒ� � �� � .��/�1 ���1

Q
and h by �ƒ� � �C � .�C/�1 ���1

Q
. It is easy to check that

hD lj g in �1.N;�/ and that sgn.p�/D�!1.lj / sgn.pC/. See Figure 1.

mj

lj

D˙j

ƒ
�ƒ

�j

pj

Figure 1: Surgering a surface

So, together this pair of points contributes ˙.1�!1.lj /lj /g to "Z�1.N n;�/.ƒ
�;Qn�2/.

For later reference, we record the following lemma which follows immediately from
the above observations.

Lemma 2.1 Let f.mj ; lj /g
k
jD1

a complete set of meridian-longitude pairs for a closed
oriented surface ƒ in the interior of an n–manifold N n and let Qn�2 be a closed
simply connected oriented .n� 2/–manifold also lying in int N n and intersecting ƒ
transversely. Assume that each of the meridional curves mj contracts in N n and let
ƒ� be a 2–sphere obtained by surgering ƒ along a collection of parallel curves; do
this in such a way that ƒ� and Qn�2 intersect transversely. Choose base points �,
�ƒ D �ƒ� , and �Q , base paths �ƒ and �Q from � to �ƒ and �Q , respectively and a
local orientation of N n at �. Then:

(1) If each longitudinal curve li also contracts in N n , then "Z�1.N
n;�/.ƒ;Q

n�2/

is well-defined and equal to "Z�1.N
n;�/.ƒ

�;Qn�2/.

(2) If L is a normal subgroup of �1.N
n;�/ with !1.L/� 1 and each li represents

an element of L, then "ZŒ�1.N
n;�/=L�.ƒ;Q

n�2/ is well-defined and equal to
"ZŒ�1.N

n;�/=L�.ƒ
�;Qn�2/.
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2.3 Perfect groups and nearly perfect subgroups

The commutator subgroup of a group G , denoted ŒG;G�, is the subgroup generated by
all commutator elements Œm; l �Dm�1l�1ml for l;m 2G . It is standard knowledge
that ŒG;G� is a normal and that G=ŒG;G� is abelian; in fact, ŒG;G� is the smallest
subgroup of G with abelian quotient. If GD ŒG;G�, or equivalently G=ŒG;G� is trivial,
we say G is perfect. In this paper, we are interested in topological implications of these
concepts. If GD�1.X;x/ and ˛D

Qk
jD1Œmj ; lj �2 ŒG;G� then there exists a (mapped

in) compact orientable surface ƒ˛ with boundary corresponding to ˛ and a base tree
for which a complete set of meridian-longitude pairs has the form f.mj ; lj /g

k
jD1

. If
˛ 2K , where K is a perfect subgroup of G , we may arrange that all of the mj and lj
are elements of K ; this is a key property of perfect subgroups of �1.X;x/.

Next we generalize the notion of “perfectness” for subgroups of G . Suppose K�L�G ,
where K and L are normal in G . Then ŒK;L� is the subgroup of G generated by
all elements of the form Œm; l � where m 2 K and l 2 L. It is easy to see that
ŒK;L�D ŒL;K� and ŒK;L��K . We say that K is strongly L–perfect if K � ŒK;L�.
Clearly, K is perfect if and only if it is strongly K–perfect; more generally, the smaller
the subgroup L containing K , the closer a strongly L–perfect group is to being perfect.
When G D �1.X;x/, for each element ˛ of a strongly L–perfect group K , there
exists a (mapped in) compact orientable surface ƒ˛ with boundary corresponding to
˛ and a base tree for which a complete set of meridian-longitude pairs has the form
f.mj ; lj /g

k
jD1

, where each mj 2K and lj 2L.

Remark 3 We have reserved the term “L–perfect” (as compared to “strongly L–
perfect”) for the case K � ŒL;L�, a weaker condition that is developed in [4] but is
not used here.

2.4 Basic handle theory

Let N n be an n–manifold, B a component of @N n and J a subset of B homeomorphic
to Sk�1�Dn�k . The act of attaching a k –handle (or a handle of index k ) to N n along
J is the creation of an adjunction space N n[f Dn , where Dn is viewed as Dk�Dn�k

and f W Sk�1 �Dn�k ! J is a homeomorphism. We denote the adjunction space by
N n[ hk ; here hk denotes the image of Dn under the quotient map qW N n tDn!

N n[fDn . We call J the attaching tube of hk and ˛k�1 D q.Sk�1 � f0g/ the
attaching sphere. We call ek D q.Dk � f0g/ the core and q.f0g �Dn�k/ the cocore
of hk ; the boundary of the cocore, ˇn�k�1 D q.f0g � Sn�k�1/, is the belt sphere
and q.Dk �Sn�k�1/ is the belt tube of hk . We refer to the boundary component of
N n [ hk consisting of B � J and the belt tube of hk informally as the right-hand
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boundary component. The homeomorphism f W Sk�1 � Dn�k ! J is called the
framing of hk ; it affects the homeomorphism type of N n [ hk . More explicitly, if
f1; f2W S

k�1�Dn�k! J is a pair of framings, then the resulting manifolds N n[hk
1

and N n[ hk
2

need not be homeomorphic.

The pair .N n [ hk ;N n/ is homotopy equivalent to .N n [ ek ;N n/ in the obvious
manner. Thus, if W n D N n [ h1 [ � � � [ hr is obtained from N n by successive
attachment of handles of nondecreasing index, each to the right-hand boundary of the
preceding space, then .W n;N n/ is homotopy equivalent to a relative CW complex
.K;N n/ with one j –cell for each j –handle. A useful relationship between these
spaces is the equivalence of the Z–incidence number "Z.e

jC1; ej / for a pair of cells
ejC1 and ej of K and the Z–intersection number "Z.˛

j ; ˇn�j�1/ of the attaching
sphere and the belt sphere of corresponding .j C 1/- and j –handles, and similarly for
Z�1 –incidence and intersection numbers. (Both of these observations require a careful
setup involving base points, base paths, orientations, etc. and some special care in
dealing with those cases where the attaching or belt sphere is not simply connected. The
reader is referred to [6] for details.) The upshot of all this is that intersection numbers,
employed appropriately, allow one to calculate algebraic data such as Z–homology,
Z�1 –homology, and Whitehead torsion for manifolds constructed through the addition
of handles.

2.5 Unbased k–spheres as elements of �k.N;�/

Let †1 and †2 be embedded oriented k –spheres (k � 2) in a connected manifold N ,
� 2N , �1 2†1 , and �2 2†2 . Let Sk be the standard k –sphere with the canonical
base point e1 D .1; 0; : : : ; 0/. In order to view †1 as an element of �k.N;�/, choose
a path � from � to �1 . Now define a map of .Sk ; e1/ into .N;�/ as follows. Let
Dk � Sk be a small k –disk centered at e1 . Send e1 to � and the radial lines of
Dk emanating from e1 each onto �; then send Sk �Dk homeomorphically onto
†1�f�1g in an orientation preserving manner. We denote the corresponding element
of a �k.N;�/ by Œ�†1�. Stated differently, Œ�†1� is the image of Œ†1� 2 �k.N;�1/

under the change of base points isomorphism induced by �. (See [5, Section 4.1].)

Remark 4 If �1 D �, then � is a loop and we represent Œ�†1� by �Œ†1�, the image
of Œ†1� when acted upon by � under well-known action of �1.N;�/ on �k.N;�/.
Since �k.N;�/ is abelian, this action may be extended in the obvious way to an action
of ZŒ�1.N;�/� on �k.N;�/. Again see [5, Section 4.1].

Returning to the original setup, if �0 is another path from � to �1 , then Œ�†1� and
Œ�0†1� need not be equal; it is easy to see that Œ�0†1�D .�

0 ���1/Œ�†1�.
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Now suppose � is a path from a point �0 2†1 to �2 . By a strategy similar to the above,
we may obtain a map of Sk into N sending a slightly shrunken lower hemisphere
onto †1 , a slightly shrunken upper hemisphere onto †2 (both in orientation preserving
manners), and taking a product neighborhood of Sk�1 onto � . When the codimension
is sufficiently high we may obtain an embedded version of the above, denoted †1 #�†2 ,
it consists of punctured copies of †1 and †2 joined by a “tube” following � . In either
case, we express the corresponding element of �k.N;�1/ by Œ†1 #� †2�. Returning to
our preferred base point we have Œ�.†1 #� †2/� 2 �k.N;�/, an element that may be
expressed as an algebraic sum as follows: choose a path � in †1 from �1 to �0 , then
Œ�.†1 #� †2/�D Œ�†1�C Œ.� � � � �/†2�:

3 Spherical alteration of a handle

In this section we give a precise formulation of spherical alteration and prove the
corresponding technical lemma. Although the technique can be applied to handles
of various indices (usually with some restrictions on codimension), all of our current
applications involve alterations of 2–handles. For that reason, we restrict attention
to 2–handles and invite the reader to consider possible applications of higher index
alterations.

Let R be an n–manifold of dimension at least 6, B a codimension 0 submanifold
of @R, S � B � Œ0; 1� a collar neighborhood of B in R, and h2 a 2–handle attached
to the interior boundary component B1 of S and lying in R�S . Let T D S [ h2 ,
B2 D @T �B , and e2 the core of h2 . In addition, let †2 be an oriented 2–sphere
embedded in the interior of R�T and � an arc in R from a point p 2 e2 to q 2†2 ,
intersecting e2[†2 at no other points. See Figure 2.

The spherical alteration of h2 over †2 along � is another 2–handle in R with the
same attaching tube as h2 , but with a core e2 #� †2 (the connected sum of e2 with
†2 along a tube contained in a regular neighborhood of � ). We will denote this new
2–handle by h2.�;†2/. An orientation on e2 (induced by a preferred characteristic
map for h2 ) and on †2 are necessary to define e2 #� †2 ; the connecting tube must be
chosen to respect these orientations. More precisely, let E �E0 � e2 and F �†2 be
small 2–disks centered at p and q , and Z� an embedded copy of S1� Œ0; 1� contained
in a regular neighborhood of � such that Z�\e2D @E and Z�\†

2D @F (at opposite
ends of Z� ). Then

e2 #� †2
D .e2

� VE/[Z� [ .†
2
� VF /:
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B

B1

ˇn�3
h2 �

R

†2

S

Figure 2: Setup for a spherical alteration

If the orientation on e2 � VE translated along Z� does not match the orientation on
†2� VF , use the extra codimension to rechoose Z� with a twist so that the orientations
match.

Use a parameterization of h2 as D2 �Dn�2 to identify P; VP � h2 corresponding to
E0 �Dn�2 and VE0 �Dn�2 , respectively; we will refer to P as the alteration region
in h2 . Let bh D h2� VP and choose a relative regular neighborhood N of the 2–disk

.E0� VE/[Z� [ .†
2
� VF /�R� .S [bh/

so that N intersects the boundary precisely in P � VP � S1�Dn�2 . Define h2.�;†2/

to be bh [ N , which is a regular neighborhood of e2 #� †2 in R�S , and thus a
2–handle. Clearly h2.�;†2/ has the same attaching tube as h2 (possibly with different
framing). We also identify a common belt sphere for h2 and h2.�;†2/ lying just
outside the alteration region: let z 2D2 correspond to a point of e2 lying just outside
E0 and let ˇn�3 be the .n� 3/–sphere corresponding to @.z�Dn�2/. Finally, let B0

2

denote the right-hand boundary of T 0 D S [ h2.�;†2/. See Figure 3.

Now assume that, in addition to the above, there is a 2–sphere �2 lying in B2 and
transverse to ˇn�3 . If �2 and ˇn�3 intersect in an essential way, then �2 will not lie
in B0

2
. Instead, each “sheet” of �2 that cuts through ˇn�3 leaves B0

2
at the alteration

region. We wish to define an alteration of �2 to a 2–sphere that lies in B0
2

and
intersects ˇn�3 in the same way that �2 does. Let �2\ˇn�3 D fp1; : : : ;pkg. Using
the product structure of the belt tube, we may arrange (via an ambient isotopy) that
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B

B1
B0

2

ˇn�3

R

h2.�;†2/

S

h2 �

†2

Figure 3: Schematic of a spherical alteration

�2 \ h2 D fD1; : : : ;Dkg, where the Di are 2–disks in the belt tube parallel to e2 .
Remove from each Di the interior of the subdisk D0i DDi \P , and replace it with an
oriented disk D00i which has the same boundary (and induces the same orientation on
that boundary), but lies in the boundary of the regular neighborhood N . Note that D00i
will be parallel in N to the core of N , with the two having matching orientations if
sgn.pi/D 1 and opposite orientations when sgn.pi/D�1. (Orientations are compared
by retracting N onto its core.) By general position, we may assume the D00i are disjoint;
thus we have a new 2–sphere �2.�;†2/, called the corresponding spherical alteration
of �2 over †2 along � .

Our main lemma equates "ZŒ�1.B2;�/�.�
2; ˇn�3/ with "ZŒ�1.B

0
2
;�/�.�

2.�;†2/; ˇn�3/

and compares �2 and �2.�;†2/ when viewed as elements of �2.R;�/. Making
our assertions precise requires preliminary work. First, choose � to lie in a portion
of B1 away from h2 ; then � lies in both B2 and B0

2
. Although T need not be

homeomorphic to T 0 (attaching tubes of the 2–handles are the same, but framings
may differ), the fundamental groups are canonically isomorphic: both are obtained
by taking the quotient of �1.B1;�/ by the normal closure of the common attaching
circle for the 2–handles. Since B2 ,! T and B0

2
,! T 0 induce �1 –isomorphisms,

there is a canonical isomorphism �W �1.B2;�/! �1.B
0
2
;�/ that associates each loop

in B2 missing the alteration region (a collection that generates the entire fundamental
group) to the identical loop in B0

2
. In a casual sense, � may be viewed as an identity

map. Let b�W ZŒ�1.B2;�/�! ZŒ�1.B
0
2
;�/� be the corresponding “identity-like” ring

isomorphism.
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In order to calculate "ZŒ�1.B2;�/�.�
2; ˇn�3/ we select some initial data. Assume that

fp1; : : : ;pkg is nonempty and choose p1 as base point for both �2 and ˇn�3 . Choose
a local orientation for B2 at � and a path � in B2 from � to p1 to serve as base path
for both �2 and ˇn�3 . The remaining data needed for "ZŒ�1.B2;�/�.�

2; ˇn�3/ is a
collection of paths �i in �2 and �i in ˇn�3 and from p1 to pi for each i D 2; : : : ; k .
(�1 and �1 can be constant paths). When calculating "ZŒ�1.B

0
2
;�/�.�

2.�;†2/; ˇn�3/

notice that �2.�;†2/\ˇn�3 D fp1; : : : ;pkg and that the local orientation at � and
each of the points and paths just selected can be chosen to lie simultaneously in B2 and
B0

2
; one simply avoids the alteration region. By using the same initial data for both, it is

immediate that "ZŒ�1.B2;�/�.�
2; ˇn�3/ is the same as "ZŒ�1.B

0
2
;�/�.�

2.�;†2/; ˇn�3/;
more precisely, b� takes the former to the latter.

Two more items are needed in preparation for the statement of our main lemma. First,
for each i D 1; : : : ; k , choose a path �i from pi to the point q 2†2 which travels the
short distance through the belt tube from pi to the alteration region, then runs parallel
to � and ends at q . It is then clear that each �i is homotopic in R (rel endpoints) to
��1

i � �1 . Finally, the inclusion j W B2 ,!R induces a group homomorphism

j#W �1.B2;�/! �1.R;�/

and a corresponding ring homomorphismbj #W ZŒ�1.B2;�/�! ZŒ�1.R;�/�

that plays a role in the following.

Lemma 3.1 (Spherical alteration) Given the spherical alteration of h2 over †2 along
� described above, the corresponding alteration of �2 , and all of the base point, path,
and homomorphism data selected in the previous three paragraphs, the following is
true:

(1) "ZŒ�1.B2;�/�.�
2; ˇn�3/ is taken to "ZŒ�1.B

0
2
;�/�.�

2.�;†2/; ˇn�3/ by

b� W ZŒ�1.B2;�/�! ZŒ�1.B
0
2;�/�:

(2) As elements of �2.R;�/, Œ��2.�;†2/� is equal to

Œ��2�C bj #."ZŒ�1.B2;�/�.�
2; ˇn�3//Œ.� � �1/†

2�:

Proof Item (1) was covered in the lead-up to this lemma.

As for item (2), it is easy to see that the embedding which takes S2 onto �2.�;†2/ is
homotopic in R to the map indicated by

�2 #�1
.sgn.p1/†

2/ #�2
.sgn.p2/†

2/ #�3
� � � #�k

.sgn.pk//†
2;
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where a minus sign indicates a reversed orientation. By repeatedly applying the
observations made in Section 2.5, we see that

Œ�.�2#�1
.sgn.p1/†

2/ #�2
.sgn.p2/†

2/ #�3
� � � #�k

.sgn.pk//†
2/�

D Œ��2�C Œ.� � �1/ sgn.p1/†
2�C

kX
iD2

sgn.pi/Œ.� � �i � �i/†
2�

D Œ��2�C sgn.p1/Œ.� � �1/†
2�C

kX
iD2

sgn.pi/Œ.� � �i � .�
�1
i � �1//†

2�

D Œ��2�C sgn.p1/Œ.� � �1/†
2�C

kX
iD2

sgn.pi/Œ.� � �i � �
�1
i � .�

�1
��/ � �1/†

2�

D Œ��2�C sgn.p1/Œ.� � �1/†
2�C

kX
iD2

sgn.pi/.� � �i � �
�1
i ��

�1/Œ.� � �1/†
2�

D Œ��2�C sgn.p1/Œ.� � �1/†
2�C

kX
iD2

sgn.pi/gi Œ.� � �1/†
2�

D Œ��2�C

�
sgn.p1/C

kX
iD2

sgn.pi/gi

�
Œ.� � �1/†

2�;

where gi D � � �i � �
�1
i � �

�1 is precisely the loop used in defining "ZŒ�1.B2;�/�.pi/

for i D 2; : : : ; k . By our choice of base paths, the loop corresponding to p1 is
null-homotopic, so "ZŒ�1.B2;�/�.p1/D sgn.p1/. Thus�

sgn.p1/C

kX
iD2

sgn.pi/gi

�
D "ZŒ�1.B2;�/�.�

2; ˇn�3/:

The inclusion of each gi into .R;�/ yields j#.gi/, thereby converting

sgn.p1/C

kX
iD2

sgn.pi/gi to bj#

�
sgn.p1/C

kX
iD2

sgn.pi/gi

�
:

So the lemma is proved.

4 The embedded manifold plus construction

In this section we employ the method of spherical alteration described above to obtain
a constructive proof of Theorem 4.2. An indirect proof, relying on the s–cobordism

Algebraic & Geometric Topology, Volume 13 (2013)



48 Craig R Guilbault and Frederick C Tinsley

theorem, was given in [4]. An advantage to the current approach is that it may be
modified to obtain more general results; that is the content of the last two sections
of this paper. A side benefit of the constructive proof is that it yields a proof of the
classical manifold plus construction which avoids many subtleties related to framings
and bundle theory.

We begin by reviewing a proof of the classical manifold plus construction. Suppose
.W;A;B/ is a compact cobordism between closed manifolds and A ,!W is a ho-
motopy equivalence, in which case we call .W;A;B/ a one-sided h–cobordism. An
application of Poincaré duality in the universal cover (see [3, Theorem 2.5]) shows
that �1.B/! �1.W / is surjective with perfect kernel. The manifold plus construction
provides a converse to that observation.

Theorem 4.1 (Manifold plus construction) Let B be a closed .n � 1/–manifold
.n � 6/ and � W �1.B;�/!H a surjective homomorphism onto a finitely presented
group such that ker � is perfect. Then there exists a compact one-sided h–cobordism
.W;A;B/ such that ker.�1.B;�/! �1.W;�//D ker � . In fact, it may be arranged
that A ,! W is a simple homotopy equivalence, in which case W unique up to
homeomorphism rel B .

A one-sided h–cobordism .W;A;B/ for which the homotopy equivalence A ,!W is
simple will be called a plus cobordism. To avoid repetition, we adopt the convention
that whenever a one-sided (or plus) cobordism is discussed, it will be the first of the
two boundary components listed, ie the middle term in the triple, which includes into
W as a (simple) homotopy equivalence.

A classical proof of Theorem 4.1 Step I (Attaching 2–handles to kill ker � ) Asso-
ciate B with B � f0g � S D B � Œ0; 1� and let B1 D B � f1g. By a standard group
theoretic argument, ker � is the normal closure of a finite set of elements of �1.B;�/;
identify a corresponding collection of nicely embedded oriented loops f˛ig

r
iD1

in B1 .
Since we are dealing with a normal closure, we need not be concerned with base points,
so we may assume the loops are pairwise disjoint. Since all elements of ker � are
homologically trivial, each ˛i has a regular neighborhood in B1 homeomorphic to
S1�Dn�2 . Identify a pairwise disjoint collection fJig

r
iD1

of such neighborhoods and
use them as attaching tubes for a set fh2

i g
r
iD1

of 2–handles. For the moment, we do
not concern ourselves with the framings of those 2–handles. The resulting n–manifold
T has fundamental group isomorphic to H . By inverting these handles, T may be
obtained by attaching a collection of .n � 2/–handles to a collar neighborhood of
B2D @T �B , a process that does not change fundamental group, so B2 ,! T induces
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a �1 –isomorphism. Note, however, that Hn�2.T;B2IZ/Š Zr , so we do not have a
one-sided h–cobordism.

Step II (Attaching complementary 3–handles) Here we will attach a collection of
3–handles that are complementary to the above 2–handles (in an appropriately strong
sense) so that the end result is the desired cobordism .W;A;B/. Along the way, we may
need to rechoose the framings of the 2–handles attached in Step I. Let fˇn�3

i gr
iD1

be the
collection of belt spheres of fh2

i g
r
iD1

. Our initial goal is to identify a pairwise disjoint
collection f�2

i g
r
iD1

of 2–spheres in B2 that is algebraically dual over ZŒ�1.B2;�/�

to fˇn�3
i gr

iD1
. In order to utilize the f�2

i g
r
iD1

as attaching spheres for a collection
of 3–handles fh3

i g
r
iD1

, we must also ensure that each has a regular neighborhood
homeomorphic to S2�Dn�3 in B2 . Once that is accomplished, our task is essentially
complete; we will let W DB� Œ0; 1�[fh2

i g
r
iD1
[fh3

i g
r
iD1

and AD @W �B . Inverting
that handle decomposition, we may view W as a collar on A together with a collection
of .n�3/–handles fhn�3

i gr
iD1

(the duals of the 3–handles) with belt spheres f�2
i g

r
iD1

and a collection of .n � 2/–handles fhn�2
i gr

iD1
(the duals of the 2–handles) with

attaching spheres fˇn�3
i gr

iD1
. Then A ,!W induces a �1 –isomorphism with each

fundamental group isomorphic to H ; moreover, the intersection data (as discussed in
Section 2.4) tells us that the corresponding cellular ZŒ�1.A/�–complex for the pair
.W;A/ is of the form

0! eC n�2

@n�2
�! eC n�3! 0! � � � ! 0;

where each of eC n�2 and eC n�3 is isomorphic to a free ZŒ�1.A/�–module on r

generators and, with respect to the obvious preferred bases, the boundary operator @n�2

can be represented by a diagonal matrix with diagonal entries all being ˙1. It follows
that A ,!W is a simple homotopy equivalence.

We now turn to the construction of f�2
i g

r
iD1

. This is the heart of the matter; it is where
the beauty of the plus construction lies. Since each ˛i represents an element of the
perfect group ker � it may be expressed as

Qki

jD1
Œmi

j ; l
i
j �, where f.mi

j ; l
i
j /g

ki

jD1
is a

complete set of meridian-longitude pairs for a compact orientable surface ƒi � B1

and each mi
j and l i

j also lies in ker � . Using general position and the radial structure
of the attaching tubes Ji , we can adjust these surfaces so that each has boundary ˛0i
which lies in @Ji and is parallel to ˛i . In addition we may assume that the ƒi are
properly embedded in B1�

Sr
iD1 int Ji and pairwise disjoint. Complete each ƒi to

a closed surface bƒi � B2 by adding a 2–disk bDi lying in the belt tube of h2
i and

parallel to its core. It is here that we must pay attention to framings. Since ƒi is
orientable and deformation retracts onto a bouquet of circles, where each of those
circles corresponds to an mi

j or an l i
j , all of which have trivial normal bundles, standard
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bundle theory can be used to verify that ƒi has a product relative regular neighborhood
in B1�

Sr
iD1 int Ji . If necessary, we now rechoose the framing used to attach h2

i so
that the corresponding trivial normal bundle for bDi matches up with that of ƒi to givebƒi a product regular neighborhood in B2 ; indeed, this is precisely the matter which
determines the framings that must be used for attaching the 2–handles. (One may argue
that this should have been discussed before attaching the 2–handles; however, it seems
instructive to discover the issue in context.)

Notice that each surface bƒi intersects the belt sphere ˇn�3
i transversely in exactly

one point and that it intersects no other belt spheres. Thus, fbƒig is a collection of
geometric duals for fˇn�3

i g, and since the fundamental group of each bƒi includes
trivially into B2 , this may be expressed in terms of ZŒ�1.B2/�–intersection numbers.
After choosing all necessary base points, base paths, and orientations the geometric
intersection properties imply that "ZŒ�1.B2/�.

bƒi ; ˇ
n�3
j /D 0 whenever i ¤ j and each

"ZŒ�1.B2/�.
bƒi ; ˇ

n�3
i /D˙gi for some gi 2 ZŒ�1.B2/�. We may arrange that each of

the latter intersection numbers is ˙1 by rechoosing some of the base paths.

Unfortunately, the bƒi will usually have genus > 0, and thus be unusable for attaching
3–handles. We remedy that problem by surgering the surfaces to 2–spheres in the
manner outlined in Section 2.2. Since each mi

j contracts in B2 we may surger bƒi

to a 2–sphere �i in B2 using disks bounded by the various meridional curves. (In
the notation of Section 2.2, �i D

bƒ�i .) By Lemma 2.1(1) this operation preserves
ZŒ�1.B2/�–intersection numbers, so "ZŒ�1.B2/�.ˇ

n�3
i ; �j /D˙ıij for all 1� i; j � r .

Another application of standard bundle theory ensures that the �i inherit trivial normal
bundles from the bƒi , so they may be used as attaching spheres for the 3–handles
fh3

i g
r
iD1

, thereby supplying the final ingredient of the manifold plus construction.

The uniqueness part of this theorem follows from a clever application of the s–
cobordism theorem. Since it is not of primary importance to this paper, we refer
the reader to [1, page 197] for a proof.

We are now ready for the embedded version of the manifold plus construction. Much
of the strategy and notation employed above is recycled into the proof, the main ideas
are the same. Some issues become more complex due to our desire to embed the
construction in an ambient manifold; as a pleasant surprise, other issues become easier
for the same reason.

Theorem 4.2 (Embedded manifold plus construction) Let R be an n–manifold
(n� 6) containing a closed .n� 1/–manifold B in its boundary and suppose

ker.i�W �1.B;�/ �! �1.R;�//
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contains a perfect group G that is the normal closure in �1.R;�/ of a finite set of
elements. Then there exists an embedding of a plus cobordism .W;A;B/ into R which
is the identity on B and for which ker.�1.B/! �1.W //DG .

Proof Step I (Finding embedded 2–handles that kill ker i# ) Let S � B � Œ0; 1� be a
collar neighborhood of B in R and let B1 denote the interior boundary component of
S . Choose a pairwise disjoint collection of properly embedded 2–disks fD1; : : : ;Dr g

in R�S whose boundaries in B1 represent a finite normal generating set for G .
By taking regular neighborhoods, thicken the Di to a pairwise disjoint collection of
2–handles fh2

i g
r
iD1

. Let T D S[ h2
1
[ � � � [ h2

r and B2 D @T � B ; for later use,
let Ji denote the attaching tube for h2

i . Then �1.B2/ Š �1.T / Š �1.B/=G and
ker.�1.B/! �1.T // D G . For the remainder of the proof, all work will be done
within a regular neighborhood R0 of T in R. Since R0 is just T with a collar added
along B2 , B2 ,!R0�T induces a �1 –isomorphism, a fact that will be utilized only
in the special argument needed for the nD 6 case.

Step II (Altering the embedded 2–handles so that complementary embedded 3–handles
exist) We would like to find a pairwise disjoint collection of 3–handles fh3

i g
r
iD1

embedded in R0�T with attaching 2–spheres algebraically dual over ZŒ�1.B2/� to
the collection fˇn�3

i gr
iD1

of belt spheres of fh2
i g

r
iD1

. Adding those handles to T

(and following the argument used in the previous theorem) would give us the desired
W �R0 .

Toward that end goal, we construct a collection f�ig
r
iD1

of 2–spheres in B2 which are
algebraic duals for the collection fˇn�3

i gr
iD1

in precisely the same manner employed in
Step II of the previous theorem. (But unlike that proof, we need not concern ourselves
with framings of the 2–handles or regular neighborhoods of the 2–spheres.)

Under ideal circumstances, the f�ig
r
iD1

would contract in R0�T allowing us to obtain
a pairwise disjoint collection of properly embedded 3–disks in R0�T with the �i as
boundaries. Thickening those disks to 3–handles would complete the construction of
W .

The main strategy of this proof can now be described: by utilizing a carefully selected
sequence of spherical modifications of the fh2

i g
r
iD1

we arrive at a new collection of
embedded 2–handles so that the correspondingly altered versions of the f�ig

r
iD1

satisfy
the desired contractibility condition.

Step II1 (Spherical alteration of h2
1

) Locate a parallel copy of �1 lying in the interior
of the space R0�T . (Push �1 along collar lines.) Reverse the orientation on that copy
and denote it by �1 . Choose a base point p1 for �1 lying in the belt tube of h2

1
but
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missing the belt sphere ˇn�3
1

, and let �1 be the track of p1 in R0�T under the push.
Extend �1 slightly to an arc � 0

1
which connects the core of h2

1
to �1 , and perform a

spherical alteration of h2
1

over �1 along � 0
1

to obtain h2
1
.� 0

1
; �1/. Then perform the

corresponding spherical alterations on each 2–sphere in the collection f�ig
r
iD1

(Note:
Although the algebraic intersection number of �i with ˇn�3

1
is 0 when i � 2, the two

need not be disjoint; so the alterations must be done in order to obtain a collection that
lies in the right-hand boundary B

.1/
2

of T .1/ D S [h2
1
.� 0

1
; �1/[h2

2
[ � � � [h2

r .) Now
make the following observations:

(a1 ) The collection f�2
i .�
0
1
; �1/g

r
iD1

of altered 2–spheres is algebraically dual to the
set fˇn�3

i gr
iD1

of belt spheres of the new collection of 2–handles

fh2
1.�
0
1; �1/; h

2
2; : : : ; h

2
r g

in B
.1/
2

. (Recall that the belt sphere ˇn�3
1

of h2
1

is also the belt sphere for h2
1
.� 0

1
; �1/.)

We need only check that

"
ZŒ�1.B

.1/

2
;�/�
.ˇn�3

i ; �2
j .�
0
1; �1//D "ZŒ�1.B2;�/�.ˇ

n�3
i ; �j /

for all 1� i; j � r . But this is clear, since �2
i .�
0
1
; �1/ and �i are identical over path

connected subsets which contain all points of intersection with elements of fˇn�3
i gr

iD1
.

This means that all paths and loops utilized in determining the two intersection numbers
can be chosen to be identical; such loops represent the “same” elements of �1.B

.1/
2
/

as they do in �1.B2/.

(b1 ) �2
1
.� 0

1
; �1/ contracts in R0 . To see this, let �1 be a path from the base point p0

of R0 to p1 , then by Lemma 3.1, as elements of �2.R
0;p0/,

Œ�1�
2
1 .�
0
1; �1/�D Œ�1�

2
1 �C Œ.�1 � �1/.�1/�

D Œ�1�
2
1 �C Œ�1.��

2
1 /�

D Œ�1�
2
1 �� Œ�1.�

2
1 /�D 0:

So �2
1
.� 0

1
; �1/ contracts in R0 .

Step II2 (Spherical alteration of h2
2

) Now begin with the collection of 2–handles

fh2
1.�
0
1; �1/; h

2
2; : : : ; h

2
r g

attached to S in R0 and the collection f�2
i .�
0
1
; �1/g

r
iD1

of algebraic duals to their belt
spheres fˇn�3

i gr
iD1

in B
.1/
2

. Obtain a 2–sphere �2 by pushing the element �2.�
0
1
; �1/

into the interior of the space R0�T .1/ and then reversing its orientation. Let p2 be an
appropriately chosen base point for �2.�

0
1
; �1/ and �2 be the track of p2 in R0�T .1/
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under the push. Extend �2 slightly to an arc � 0
2

which connects the core of h2
2

to �2 ,
and perform the spherical alteration of h2

2
over �2 along � 0

2
to obtain h2

2
.� 0

2
; �2/.

Then perform the corresponding spherical alterations on each 2–sphere in the collection
f�2

i .�
0
1
; �1/g

r
iD1

. To save on notation, we denote the twice altered version of �2
i by

�2
i .
F2

jD1 �
0
j ; �j /. Let T .2/ D S [ h2

1
.� 0

1
; �1/[ h2

2
.� 0

2
; �2/[ h2

3
: : : h2

r . Using the
same arguments as above, we now have:

(a2 ) The collection f�2
i .
F2

jD1 �
0
j ; �j /g

r
iD1

of twice altered 2–spheres is algebraically
dual to the set fˇn�3

i gr
iD1

of belt spheres of the new collection of 2–handles

fh2
1.�
0
1; �1/; h

2
2.�
0
2; �2/; h

2
3; : : : ; h

2
r g

in B
.2/
2

.

(b2 ) Both

�2
1

� 2G
jD1

� 0j ; �j

�
and �2

2

� 2G
jD1

� 0j ; �j

�
contract in R0 . (Contractibility of �2

1
.
F2

jD1 �
0
j ; �j / follows from Lemma 3.1 and the

fact that "
Z�1.B

.1/

2
/
.ˇn�3

2
; �2

1
.� 0

1
; �1//D 0.)

Continue the above process until each of h2
1
; : : : ; h2

r has been altered by a similar
process, and let T .r/ denote the union of S and these altered 2–handles. At this point
we have:

(ar ) The collection �
�2

i

� rG
jD1

� 0j ; �j

��r

iD1

of r –times altered 2–spheres is algebraically dual to the set fˇn�3
i gr

iD1
of belt spheres

of the handles fh2
i .�
0
i ; �i/g

r
iD1

in B
.r/
2

.

(br ) �2
1
.
Fr

jD1 �
0
j ; �j /; : : : ; �

2
r .
Fr

jD1 �
0
j ; �j / contract in R0 .

Before proceeding to the final stage of our proof, let us simplify the above notation.
From now on each of the altered 2–handles h2

i .�
0
i ; �i/ will be denoted by Ph2

i and each
of the r –times altered 2–spheres �2

i .
Fr

jD1 �
0
j ; �j / by P�2

i . Thus, we have

T .r/
D S [ Ph2

1[ � � � [
Ph2
r �R0

and a collection f P�2
i g

r
iD1

of 2–spheres algebraically dual over ZŒ�1.B
.r/
2
;�/� to the

collection fˇn�3
i gr

iD1
of belt spheres of those 2–handles in B

.r/
2

. In addition, each P�2
i
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contracts in R0 . By general position, these 2–spheres also contract in R0�T .r/ . This
is because any contraction of P�2

i in R0 can be pushed off the 2–dimensional cores
of all of the 2–handles and, thus, entirely out of the interior of T .r/ . Assume for the
moment that the dimension of R0 is at least 7, Then we may choose a pairwise disjoint
collection fD3

i g
r
iD1

of properly embedded 3–disks in R0�T .r/ such that @D3
i D
P�2

i

for each i D 1; : : : ; r . Take pairwise disjoint relative regular neighborhoods of these
3–disks in R0�T .r/ to obtain 3–handles f Ph3

i g
r
iD1

in R0�T .r/ attached to B
.r/
2

. Let

W D T .r/
[

� r[
iD1

Ph3
i

�
D S [

� r[
iD1

Ph2
i

�
[

� r[
iD1

Ph3
i

�
and let A D @W �B . By the same reasoning used in Theorem 4.1, .W;A;B/ is a
plus cobordism.

Step III (� –� argument for the nD 6 case) The only place the above proof runs into
trouble is in the use of general position to obtain a pairwise disjoint collection fD3

i g
r
iD1

of properly embedded 3–disks in R0�T .r/ with @D3
i D

P�2
i for each i . If n D 6,

we may use general position to obtain a collection of immersed 3–disks feD3

i g
r
iD1

,
each containing a finite collection of interior transverse self-intersection points, and
a finite number of interior points where it transversely intersects another member of
the collection. We will employ a well-known strategy (see, for example, the proof of
the � –� Theorem in [9, Chapter 4]) to eliminate all intersection and self-intersection
points. Once that is accomplished, the proof may be completed in the previous manner.

Let p 2 eD3

i \
eD3

j for some i ¤ j . Choose arcs ˛ and ˛0 in eD3

i and eD3

j respectively
missing all other intersection points and connecting p to points in B

.r/
2

. Since B
.r/
2
,!

R0�T .r/ induces a �1 –isomorphism (a surjection is sufficient), we may connect the
endpoints of ˛ and ˛0 by an arc ˛00 in B

.r/
2

such that the loop ˛[˛0[˛00 contracts
in R0�T .r/ . By general position we may choose an embedded 2–disk ı bounded by
˛ [ ˛0 [ ˛00 which intersects the collection feD3

kg
r
kD1

only at ˛ [ ˛0 , and intersects
B
.r/
2

only at ˛00 . Use ı to define a proper isotopy of eD3

i in R0�T .r/ which moves
points in a small neighborhood of ˛ across ı to the other side of ˛0 , thus eliminating
the point of intersection p . See Figure 4.

Alternatively, perform a “finger move” on eD3

i along the arc ˛00 to create a new point
p0 of transverse intersection between eD3

i and eD3

j . The disk ı contains a Whitney disk
which allows us to simultaneously remove p and p0 via an isotopy of eD3

i (after finger
move) which takes place entirely in a neighborhood of ı . Similar procedures may be
used to eliminate a point of self-intersection from a given eD3

i .

Apply the above procedure to each point of intersection between distinct elements of
feD3

kg
r
kD1

and each point of self-intersection of each eD3

i to arrive at a pairwise disjoint
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R  
R  

S  S  

T

p

'
' '

T

r(  )
r(  )

˛

˛0˛00

eD3

i

eD3

j

p

S

T .r/

ı

D3
i

RS

T .r/

Figure 4: Eliminating a point of intersection using the � –� procedure

collection of properly embedded 3–disks fD3
k
gr
kD1

. Note that the boundary of each
D3

k
is isotopic to the original P�2

k
in B

.r/
2

. Hence, the f@D3
k
gr
kD1

is still a collection of
algebraic duals for the fˇn�3

k
gr
kD1

in B
.r/
2

.

Remark 5 The reader will note that a key issue in the proof of Theorem 4.1 — the
existence of product neighborhoods for the 2–spheres along which the 3–handles will
be attached — does not appear in the proof of Theorem 4.2. In the latter setting, the
3–handles are realized as regular neighborhoods of embedded 3–disks; as such, product
neighborhoods of their boundaries are guaranteed by regular neighborhood theory.

This is the essence of our alternate proof of Theorem 4.1. One first carries out Step I
of the classical proof; in particular, construct a manifold T by attaching finitely many
2–handles to B � Œ0; 1� to kill ker � (and with no attention given to the framings used).
Theorem 4.2 applied to the inclusion i W B ,! T with G D ker i� D ker � then assures
the existence of the desired plus cobordism lying inside T . It strikes us as surprising
that the full plus cobordism can be found embedded in the first stage of that construction,
even when the first stage is done with the wrong framings.

5 Generalized manifold plus constructions and their embed-
dings

The techniques employed in the proofs of Theorems 4.1 and 4.2 can be carried out
without the full hypothesis of “perfectness” on the subgroups ker � and G , provided
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one is satisfied with weaker (but still useful) conclusions. In this section we develop
results of that type. Primary motivation for the definitions and results found here is
provided by our ongoing study of noncompact manifolds [2].

Our first goal is to formulate appropriate generalizations of “one-sided h–cobordism”
and “plus cobordism”. Let .X;A/ be a connected CW pair and L E �1.A/. The
inclusion A ,!X is a .mod L/–homotopy equivalence if it induces an isomorphism
on fundamental groups and is a ZŒ�1.A/=L�–homology equivalence; if that homology
equivalence is simple we call A ,!X is a .mod L/–simple homotopy equivalence.

A compact cobordism .W;A;B/ is a .mod L/–one-sided h–cobordism if B ,!W

induces a surjection of fundamental groups and A ,! W is a .mod L/–homotopy
equivalence. A one-sided .mod L/–h–cobordism for which A ,!W is a .mod L/–
simple homotopy equivalence is called a .mod L/–plus cobordism.

Remark 6 Standard arguments show that the notions of .mod L/–homotopy equiva-
lence, .mod L/–one-sided h–cobordism, and .mod L/–plus cobordism reduce to the
classical definitions when LD f1g. In that case the surjectivity of �1.B/! �1.W /

is automatic and need not be included in the definitions (see the second paragraph of
Section 4). When L is nontrivial that condition must be included in the definition
to obtain a theory that parallels the classical situation. For example, it provides a
natural correspondence between �1.A/=L and �1.B/=L

0 where L0 is the preimage
of L; from there it follows (by Poincaré duality) that B ,!W is also a ZŒ�1.A/=L�–
homology equivalence.

The following provides an important connection between .mod L/–one-sided h–
cobordisms and the material presented in Section 2.3.

Lemma 5.1 Let .W;A;B/ is a .mod L/–one-sided h–cobordism and i#W �1.B/!

�1.W / the inclusion induced surjection. Then ker i# is strongly L0–perfect, where
L0 D i�1

# .L/.

Proof This follows from Poincaré duality and the 5–term exact sequence from the
theory of group homology [7; 8]. See [2] for a detailed proof.

We are now ready to state and prove generalizations of the two main theorems from
the previous section.

Theorem 5.2 (Generalized manifold plus construction) Let B be a closed .n� 1/–
manifold .n � 6/ and � W �1.B;�/! H a surjective homomorphism onto a finitely
presented group such that ker � is strongly L0–perfect for some group L0 where
ker �EL0E�1.B;�/ and !1.L

0/D1. Then, for LDL0= ker � , there exists a compact
.mod L/–plus cobordism .W;A;B/ such that ker.�1.B;�/! �1.W;�//D ker � .
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Theorem 5.3 (Generalized embedded manifold plus construction) Let R be an
n–manifold (n � 6) containing a closed .n � 1/–manifold B in its boundary and
suppose �1.B;�/ contains a pair of normal subgroups G � L0 , each contained in
ker.i�W �1.B;�/�! �1.R;�//, such that G is strongly L0–perfect. Suppose also that
G is the normal closure in �1.B;�/ of a finite set of elements. Then, for LDL0=G ,
there exists an embedding of a .mod L/–plus cobordism .W;A;B/ into R which is
the identity on B and for which ker.�1.B/! �1.W //DG .

Proofs of each of these theorems can be obtained by reworking those from the previous
section with the new weaker hypotheses, obtaining correspondingly weaker conclusions.
We sketch out the details of those changes needed to obtain Theorem 5.2 and leave it
to the reader to carry out the analogous changes required to obtain Theorem 5.3.

Sketch of the generalized manifold plus construction Begin by repeating Step I of
the proof of Theorem 4.1; in particular, attach a collection fh2

i g
r
iD1

of 2–handles to
B1 D B � f1g � S D B � Œ0; 1� to kill a finite set f˛ig

r
iD1

of oriented loops which
normally generate ker � . Let T D S [ .

Sr
iD1 h2

i /. Moving to Step II, strong L0–
perfectness ensures that each ˛i bounds a compact oriented surface ƒi � B1 which
contains a complete set f.mi

j ; l
i
j /g

ki

jD1
of meridian-longitude pairs for which each mi

j

corresponds to an element of ker � and each l i
j to an element of L0 . Using the same

general position and bundle-theoretic arguments employed earlier, add a disk to each
ƒi to obtain a pairwise disjoint collection fbƒig

r
iD1

of closed oriented surfaces in B2D

@T �B geometrically dual to the collection fˇn�3
i gr

iD1
of belt spheres of the fh2

i g
r
iD1

.
By rechoosing the framings of the 2–handles if necessary, we may arrange that each bƒi

has a product neighborhood in B2 ; here we utilize the hypothesis that !.L0/D 1. Since
each bƒi has a fundamental group that includes into L E �1.B2/, the ZŒ�1.B2/=L�–
intersection numbers between elements of fbƒig

r
iD1

and fˇn�3
i gr

iD1
are well-defined.

By making appropriate choices of local orientation and base paths, we may arrange that
"ZŒ�1.B2/=L�.

bƒi ; ˇ
n�3
j /D˙ıij for all 1� i; j � r . By applying Lemma 2.1(2), these

surfaces may be surgered into a collection of 2–spheres f�ig
r
iD1

which is algebraically
dual over ZŒ�1.B2/=L� to the collection fˇn�3

i g. Standard bundle theory again ensures
that the �i inherit trivial normal bundles from the bƒi . Attach 3–handles along regular
neighborhoods of these 2–spheres to obtain a cobordism .W;A;B/. Then A ,!W

induces a �1 –isomorphism, with �1.A/Š�1.W /Š�1.B2/ and the above intersection
data assures that A ,!W is a simple ZŒ�1.A/=L�–equivalence. The surjectivity of
�1.B/! �1.W / is clear from the construction.

Sketch of the generalized embedded manifold plus construction For the most part,
this proof follows the same outline as the proof of Theorem 4.2 with modifications
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analogous to those found in the above sketch. A few items become more delicate; we
focus our attention on those issues.

(1) In the proof of Theorem 4.2 we carried out the entire construction inside a regular
neighborhood R0 of T , chosen early in the proof. That was done solely for use in
Step III. There it was crucial that B

.r/
2
,!R0�T .r/ induce a �1 –surjection, thereby

allowing us to choose an arc ˛00 in B
.r/
2

so that the loop ˛ [ ˛0 [ ˛00 contracted in
R0�T .r/ . In the more general case at hand, it will be impossible to carry out the
entire construction in a regular neighborhood of T . Instead, we will expand the region
where we work to an open set R00 � T in which all loops corresponding to elements
of L0 contract and for which B2 ,! R00� int T induces a �1 –surjection. If L0 is
the normal closure in �1.B;�/ of a finite set of its elements, this is easy: Let S �

B�Œ0; 1� be a collar neighborhood of B in R with B1 the interior boundary component.
Choose a pairwise disjoint collection of properly embedded 2–disks fD1; : : : ;Dr g

in R�S whose boundaries in B1 represent a finite normal generating set for G ,
then supplement that collection with a disjoint collection of pairwise disjoint 2–disks
fDrC1; : : : ;Dsg in R�S whose boundaries, together with those of fD1; : : : ;Dr g,
form a normal generating set for L0 . Then T may be viewed as a regular neighborhood
of S[.

Sr
iD1Di/ in R and we may let R00 be a regular neighborhood of S[.

Ss
iD1Di/

chosen to contain T in its interior.

When L0 is not normally finitely generated we use a similar, but more delicate construc-
tion. Choose an infinite collection of 2–disks fDrC1;DrC2; : : : g whose boundaries,
together with those of fD1; : : : ;Dr g generate L0 . These may be chosen inductively
so that each Di has a neighborhood Ui for which the collection fUig

1
iD1

is pairwise
disjoint. We may then thicken each Di (i > r ) to a 2–handle h2

i � Ui and add to a
slightly enlarged copy of T the interiors of each of these 2–handles. This creates an
open subset R00 of R containing T and having the desired properties.

(2) Following the same strategy sketched out in the proof of Theorem 5.2, but utilizing
the more delicate item (2) of Lemma 2.1, we obtain a collection of 2–spheres f�ig

r
iD1

in B2 which is algebraically dual over ZŒ�1.B2/=L� to the collection fˇn�3
i gr

iD1
.

(Note that !1.L
0/� 1 since L0 � ker.i�W �1.B;�/�! �1.R;�//.) Next we proceed

inductively through the spherical alteration process in the same manner as Step II of
the proof of Theorem 4.2 so that, at the conclusion, we have a new set of 2–handles
f Phig

r
iD1

in R00 attached to S and a collection f P�2
i g

r
iD1

of 2–spheres algebraically dual
over ZŒ�1.B

.r/
2
;�/=L� to the collection fˇn�3

i gr
iD1

of belt spheres of those 2–handles
in B

.r/
2

. In addition, each P�2
i contracts in R00 . Contractibility of the 2–spheres is more

delicate in this generalized situation. We use the full strength of Lemma 3.1(2), the
key point being that j#W �1.B2;�/! �1.R

00;�/ is precisely the homomorphism that
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kills L E �1.B2;�/. By general position these 2–spheres also contract in R
00
�T .r/ ,

so for n� 7 we may thicken a corresponding collection of pairwise disjoint 3–disks
to 3–handles to complete the construction of W .

(3) For nD 6, Step III of the proof Theorem 4.2 goes through without any changes.
It is here, however, where we use the carefully chosen set R00 in which to carry out the
construction.

6 A more general lemma

The following technical lemma was specifically designed for use in [2]. It is more
general than Theorem 5.3, but no new ideas or techniques are needed. For the reader
who has made it this far, the proof is almost immediate.

Lemma 6.1 Let R0 �R be a pair of n–manifolds (n� 6) with a common boundary
component B , and suppose there is a subgroup L0 of ker.�1.B/! �1.R// for which
K D ker.�1.B/! �1.R

0// is strongly L0–perfect. Suppose further that there is a
clean submanifold T � R0 consisting of a finite collection H2 of 2–handles in R0

attached to a collar neighborhood S of B with T ,!R0 inducing a �1 –isomorphism
(the 2–handles precisely kill the group K ) and a finite collection f‚2

t g of pairwise
disjoint embedded 2–spheres in @T � B , each of which contracts in R0 . Then on
any subcollection fh2

j g
k
jD1
� H2 , one may perform spherical alterations to obtain

2–handles f Ph2
j g

k
jD1

in R0 so that in @ PT �B (where PT is the correspondingly altered
version of T ) there is a collection of 2–spheres f P�2

j g
k
jD1

that are algebraically dual
over ZŒ�1.B/=L

0� to the belt spheres fˇn�3
j gk

jD1
common to fh2

j g
k
jD1

and f Ph2
j g

k
jD1

with the property that each P�2
j contracts in R. Furthermore, each correspondingly

altered 2–sphere P‚2
t (now lying in @ PT �B ) has the same ZŒ�1.B/=L

0�–intersection
number with those belt spheres and with any other oriented .n� 3/–manifold lying in
both @T �B and @ PT �B as did ‚2

t . Whereas the 2–spheres f‚2
t g each contracted in

R0 , the f P‚2
t g each contract in R.

Remark 7 In the usual way, when n � 7, the above result together with general
position assures the existence of a pairwise disjoint collection of embedded 3–disks
in R� PT with boundaries corresponding to the 2–spheres f P�2

j g
k
jD1
[f P‚2

t g. Those
3–disks may be thickened to 3–handles by taking regular neighborhoods. When nD 6,
the same is true, but the � –� argument used in the proofs of Theorems 4.2 and 5.3
must again be employed to obtain embedded and pairwise disjoint 3–disks. In that
case we should also use the strategy used in the proof of Theorem 5.3 to ensure that
we are working within a submanifold R00 of R which contains T and in which the
group L0 dies and �1.B/! �1.R

00/ is surjective.
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