
msp
Algebraic & Geometric Topology 13 (2013) 2827–2843

Borsuk–Ulam theorems and their parametrized
versions for spaces of type .a;b/
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Let X be a space of type .a; b/ equipped with a free G –action, with G DZ2 or S1 .
In this paper, we prove some theorems of Borsuk–Ulam-type and the corresponding
parametrized versions for such G –spaces.

55M20; 55R91, 55R25

1 Introduction

Following the second author, H K Singh and T Singh [11] and H K Singh [13], we
define a space of type .a; b/ as follow. Let X be a simply connected finite CW complex
with Z–cohomology groups satisfying H j .X IZ/ D Z, if j D 0; n; 2n or 3n, and
H j .X IZ/D 0, otherwise .n> 1/. Let ui generate H in.X IZ/, for i D 0; 1; 2 and 3.
Then the structure of the Z–cohomology ring of X is determined by the two integers a

and b for which u2
1
D au2 and u1u2 D bu3 . In this case, X is said to be of type

.a; b/. These spaces include certain products of spheres and projective spaces, and
were first studied by James [6] and Toda [16].

In [11], Pergher et al proved that G D Z2 cannot act freely on a space of type .a; b/
if a is odd and b is even, and G D S1 cannot act freely on a space of type .a; b/ if
a¤ 0. For the remaining .a; b/, we may have free actions, for example, S3 �S6 is
of type .0; 1/ and admits free G –actions for G DZ2 and S1 (for other examples, see
Dotzel and T Singh [4] and [13]), and also in [11] the possible Z2 –cohomology rings of
orbit spaces X=G of free actions of G D Z2 on spaces of type .a; b/, where a and b

are even, and of free actions of G D S1 on spaces of type .0; b/, were determined.
For G D S1 , one has two possibilities for the ring structure of the Z2 –cohomology of
X=G , which are described in Theorem 2.5. We denote by ƒ1 , (respectively ƒ2 ), the
collection of all free G D S1–actions on X for which H�.X=GIZ2/ has the structure
described in Theorem 2.5(ƒ1 ), (respectively, in Theorem 2.5(ƒ2 )).
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The first aim of this paper is to prove results of Borsuk–Ulam-type involving spaces X

of type .a; b/. For general information about the Borsuk–Ulam Theorem, including
many of the concepts in this paper, the book [8] of Matous̆ek is recommended. In this
direction, the results below concern to the existence of equivariant maps.

Theorem 1.1 (i) Let X be a space of type .a; b/, characterized by a natural
number n > 1, where a and b are even, and let Y be a Hausdorff, pathwise
connected and paracompact space. Suppose that X and Y are equipped with
free Z2 –actions and H kC1.Y=GIZ2/ D 0, for some k , 1 � k < 3n. Then,
there is no Z2 –equivariant map f W X ! Y .

(ii) Let X be a space of type .0; b/, characterized by a natural odd number n> 1,
and let Y be a Hausdorff, pathwise connected and paracompact space. Suppose
that X is equipped with a free S1–action � 2ƒ1 , (respectively � 2ƒ2 ), and Y

is equipped with a free S1–action; further, suppose H kC1.Y=GIZ2/D 0, for
some k , with 1 � k < 3n, (respectively 1 � k < n). Then, there is no S1–
equivariant map f W X ! Y .

Remark In the above direction, some related results were obtained in [11], concerning
the existence of equivariant maps Sm ! X , where Sm is equipped with standard
G–actions (G D Z2 or S1 ) and X is a space of type .a; b/ equipped with arbitrary
free G –actions.

Note that, in Theorem 1.1, Y can be taken as the k –dimensional sphere Sk .

In addition, the following Borsuk–Ulam-type theorems will be obtained.

Theorem 1.2 Let X be a space of type .a; b/, characterized by a natural number
n > 1, where a and b are even. Suppose X is equipped with a free Z2 –action,
determined by a free involution T W X !X .

(i) Then, for every continuous map f W X !Rk ,

cov: dim A.f /� 3n� k if 3n� k;

where A.f / denotes the Z2 –coincidence set of f (that is, A.f /D fx 2 X j

f .x/D f .T .x//g/.

(ii) If Y is a finite k –dimensional CW complex and 3n � 2k , then for every
continuous map f W X ! Y , A.f / is nonempty.
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Remark Theorem 1.2(i) is the Yang version of the Borsuk–Ulam theorem for spaces
of type .a; b/. In particular, we will compute the Z2 –index of Yang for these Z2 –
spaces. Theorem 1.2(ii) has the spirit of the results of Izydorek and Jaworowski [5],
with spheres being replaced by spaces of type .a; b/.

The second general goal of this paper is to prove parametrized Borsuk–Ulam theorems
for spaces of type .a; b/. Jaworowski [7], Dold [3], Nakaoka [10] and others extended
the Borsuk–Ulam problem to a fibrewise setting, by considering continuous maps
f W S.E/! E0 which preserve fibres, where E and E0 are total spaces of vector
bundles over a space B and S.E/ means the associated sphere bundle. In this direction,
related results were proved by the first and third authors in [9] (for bundles whose fibre
has the same cohomology (mod p ) of a product of spheres, with any free Zp –action,
and for bundles whose fibre has the same rational cohomology ring as a product of
spheres, with any free S1–action), and in M Singh [14] (for bundles whose fibre has
the mod 2 cohomology algebra of a real or complex projective space, with any free
involution).

In this paper, we obtain results of this nature, for bundles whose fibre is a space of
type .a; b/ with any free Z2 –action and a; b even (or free S1–action with a D 0).
Specifically, we will prove the following two theorems.

Theorem 1.3 Let X be a space of type .a; b/, characterized by a natural number
n > 1, where a and b are even. Given a paracompact space B , let � W X ,!E! B

be a fibre bundle equipped with a fibrewise free Z2 –action, such that the quotient
bundle y� W yE! B has the cohomology extension property; see Spanier [15, Chapter 5,
Section 7] and Bredon [1, page 372]. Also, consider � 0W E0! B , a k –dimensional
vector bundle, equipped with a fibrewise Z2 –action on E0 , which is free on E0�f0g

(f0g is the image of the zero-section). Let f W E!E0 be a fibre preserving equivariant
map and set Zf D f

�1.f0g/. If 3n� k , then

cohom: dim Zf � cohom: dim BC 3n� k:

Theorem 1.4 Let X be a space of type .0; b/, characterized by a natural odd number
n > 1. Given a paracompact space B , let � W X ,! E! B be a fibre bundle with a
fibrewise free S1–action, such that the quotient bundle y� W yE!B has the cohomology
extension property. Let � 0W E0! B be a k –dimensional vector bundle, where k is
even, with fibrewise S1–action on E0 , which is free on E0�f0g. Consider f W E!E0 ,
a fibre preserving equivariant map and set Zf D f

�1.f0g/.

(1) If the free S1–action � on X belongs to ƒ1 and 3n� k , then

cohom: dim Zf � cohom: dim BC 3n� k:
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(2) If the free S1–action � on X belongs to ƒ2 and n� k , then

cohom: dim Zf � cohom: dim BC n� k:

Finally, in the next result, we estimate the size of the Z2 –coincidence set of a fibre
preserving map.

Theorem 1.5 Let X be a space of type .a; b/, characterized by a natural number
n> 1, where a and b are even. Given a paracompact space B , let � W X ,!E! B a
fibre bundle, equipped with a fibrewise free Z2 –action, such that the quotient bundle
y� W yE ! B has the cohomology extension property. Consider � 00W E00 ! B , a k –
dimensional vector bundle, and f W E ! E00 be a fibre preserving map. As before,
consider A.f / D fx 2 E j f .x/ D f .T x/g, the Z2 –coincidence set of f , where
T W E!E is the generator of the free Z2 –action on E . If 3n� k , then

cohom: dim A.f /� cohom: dim BC 3n� k:

Remark If B is a point, Theorem 1.5 reduces to Theorem 1.2(i).

The paper is organized as follows. In Section 2, we recall the required definitions
and results, and establish notation. In Section 3, we compute a numerical index for
spaces of type .a; b/, which is related to the Z2 –index of Yang. By using these
indices, we prove Theorems 1.1 and 1.2. In Section 4, we present some lemmas
involving the H�.B/–algebra of H�. yE/. In Section 4.2, we prove such Lemmas
and Theorems 1.3, 1.4 and 1.5, using characteristic polynomials (these characteristic
polynomials are presented in Section 4.1).

2 Preliminaries

We start by introducing some basic facts and establishing some notation. We assume
that all spaces under consideration are paracompact and Hausdorff spaces. Here H�

denotes C̆ech cohomology, unless otherwise indicated. The symbol “Š” denotes an
appropriate isomorphism between algebraic objects.

Suppose that G is a compact Lie group. Write BG , as usual, for the classifying space
of G and EG ! BG for the universal G–bundle. Given a G–space X , there is an
associated fibration pX W XG! BG , with fibre X , where XG D .EG �X /=G is the
Borel construction. There is also a natural map �W XG !X=G which is a homotopy
equivalence if G acts freely on X , and thus in this case the cohomology rings H�.XG/
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and H�.X=G/ are isomorphic. Associated to the fibration pX W XG! BG , one has
the cohomological Leray–Serre spectral sequence. This spectral sequence has

E
k;l
2
DH k.BG IHl.X IR//;

as its E2 –term and converges to H�.XG IR/ as an algebra in the sense of Bredon,
where R is a commutative ring with unit; here, H k.BG IHl.X IR// is the cohomology
of BG with local coefficients in the cohomology of X .

Suppose that X is connected. Then the local coefficients system H0.X IR/ over BG

is trivial and
E
�;0
2
DH�.BG IH

0.X IR//DH�.BG IR/:

We say that the index of the G–space X is s , which depends on R, and we write
i.X IR/D s , if the following condition is satisfied:

E
�;0
2
D � � � DE�;0s ¤E

�;0
sC1

:

If E
�;0
2
D � � � DE

�;0
1 , we say that i.X IR/D1.

This index has the following property.

Proposition 2.1 (Volovikov [17, Property(iii), page 917]) If GDZ2 and X is a free
G –space, then i.X IZ2/D i.X / exceeds the Z2 –index of Yang of [18] by unity, ie,

(1) i.X /D 1C Z2 –Yang-index .X /:

Others results related to i.X / include the following.

Theorem 2.2 [17, Theorem 2.2, page 918, G D Z2 ] Let X be a compact and
connected Z2 –space such that i.X IZ2/ � 2mC 1. Let Y be a CW complex of
dimension m and f W X ! Y a continuous map. In addition, if i.X IZ2/D 2mC 1,
assume that f �W H m.Y /!H m.X / is trivial. Then A.f / is nonempty.

Theorem 2.3 (Coelho and the second and third authors [2, Theorem 1.1]) Let G

be a compact Lie group and X;Y be Hausdorff, pathwise connected and paracom-
pact free G–spaces. Suppose that for some natural m � 1, i.X IR/ � mC 1 and
H kC1.Y=GIR/D 0, for some 1� k �m.

(i) If k D m and ˇm.X IR/ < ˇmC1.BG IR/, there is no G–equivariant map
f W X ! Y .

(ii) If 1� k <m and 0<ˇkC1.BG IR/, there is no G –equivariant map f W X!Y .

Here, ˇi. � IR/ denotes the i th Betti number.
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We recall the following well known facts:

H�.BG IZ2/D

(
Z2Œs� deg s D 1; G D Z2;

Z2Œt � deg t D 2; G D S1:

2.1 The cohomology rings of some orbit spaces

In [11], Pergher et al determined the possible Z2 –cohomology rings of orbit spaces X=G

of free actions of G D Z2 on spaces of type .a; b/, where a and b are even, and of
free actions of G D S1 on spaces of type .0; b/. This is described below.

Theorem 2.4 [11, Theorem 4.1] Let G D Z2 act freely on a space X of type .a; b/,
characterized by a natural number n > 1, where both a and b are even. Then, as a
graded commutative algebra,

H�.X=GIZ2/D Z2Œx; z�=hx
3nC1; z2

C˛xnzCˇx2n;xnC1zi;

where ˛; ˇ 2 Z2 , deg x D 1 and deg z D n.

Theorem 2.5 [11, Theorem 4.2] Let G D S1 act freely on a space X of type .0; b/,
characterized by a natural number n> 1. Then H�.X=GIZ2/ is isomorphic to one of
the following graded commutative algebras:

(ƒ1 ) Z2Œy; z�=hy
.3nC1/=2; z2 C ˛yn;y.nC1/=2zi, where ˛ 2 Z2 , deg y D 2, and

deg z D n.

(ƒ2 ) Z2Œy; z�=hy
.nC1/=2; z2i, where deg y D 2, deg z D 2n, and b is odd.

3 Proofs of the theorems of Borsuk–Ulam-type

In this section, we prove Theorems 1.1 and 1.2. We need the following lemma, where
the G–spaces X are understood as those described in the statements of these two
theorems.

Lemma 3.1 (i) If G D Z2 or G D S1 , with � 2ƒ1 , then

i.X IZ2/D 3nC 1:

(ii) If G D S1 , with � 2ƒ2 , then

i.X IZ2/D nC 1:
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Proof In the case that G D Z2 , for the generators of H�.X IZ2/, we have the
relations u2

1
D 0 and u1u2 D 0. For the corresponding spectral sequence, one has

that Ek;l
2
ŠH k.BG/˝H l.X /, the sequence does not collapse at the E2 –term and

no line can survive to infinity (see [11, proof of Theorem 4.1]). By the multiplicative
properties of the spectral sequence, we have dnC1.1˝ u1/ D 0, dnC1.1˝ u3/ D 0

and dnC1.1˝u2/ 6D 0. Therefore, we get that Ek;l
nC2
D Z2 , for every k , if l D 0 or

l D 3n. Also, we have Ek;l
nC2
D Z2 , for k D 0; 1; 2; : : : ; n, if l D n. In the remaining

cases, Ek;l
nC2
D 0. Again, the multiplicative properties show that dnC2.1˝ ui/D 0,

for i D 1; 2; 3, and dnC3.1˝u3/ 6D 0.

Then, the differential

d3nC1W E
k;3n
3nC1

!E
kC3nC1;0
3nC1

is an isomorphism and for all k � 0,

E
kC3nC1;0
3nC2

D
ker d3nC1

im d3nC1

D
E

kC3nC1;0
3nC1

E
kC3nC1;0
3nC1

D 0¤E
kC3nC1;0
3nC1

:

Thus,

E
�;0
2
D � � � DE

�;0
3nC1

¤E
�;0
3nC2

;

which implies i.X IZ2/D 3nC 1.

For G D S1 , in both cases, the proof is analogous by using the properties of the
corresponding spectral sequence given in [11, proof of Theorem 4.2].

Proof of Theorem 1.1 For (i), by Lemma 3.1(i), we have that i.X IZ2/ D 3nC 1.
Since H kC1.Y=Z2IZ2/ D 0 for some 1 � k < 3n and ˇkC1.BZ2

/ D 1, it follows
from Theorem 2.3(ii) that there is no equivariant map X ! Y . The argument is
analogous for (ii).

Proof of Theorem 1.2 By Lemma 3.1(i), i.X IZ2/ D 3n C 1. It follows from
Proposition 2.1 that the Z2 –index of X is 3n. Thus, from [18, Theorem 4.1, page 270],

cov: dim A.f /� 3n� k;

which proves (i). For (ii), since i.X IZ2/ D 3nC 1 � 2k C 1 and additionally if
i.X IZ2/ D 2k C 1, f �W H k.Y /! H k.X / is trivial, it follows from Theorem 2.2
that A.f / is nonempty.

Algebraic & Geometric Topology, Volume 13 (2013)



2834 Denise de Mattos, Pedro L Q Pergher and Edivaldo L dos Santos

4 Proof of parametrized Borsuk–Ulam theorems for spaces
of type .a;b/

In this section, we prove Theorems 1.3, 1.4 and 1.5. First we develop a technical
discussion on the objects involved in these theorems, for which will be assumed the
hypotheses described in their statements. We will need some lemmas involving the
H�.B/–algebra of H�. yE/, where yE is the total space of quotient bundle y� W yE!B .

Given a topological space X of type .a; b/, where a and b are even (respectively, a
topological space X of type .0; b/), let � WX ,!E! B be a fibre bundle equipped
with a fibrewise free Z2 –action (respectively, fibrewise free S1–action) such that
the quotient bundle y� W yE ! B has the cohomology extension property. Consider
� 0W E0 ! B a k –dimensional vector bundle equipped with a fibrewise G–action
(G D Z2 or S1 ), which is free on E0 � f0g. If f W E ! E0 is a fibre preserving
G –equivariant map, write Zf D f

�1.f0g/ and yZf DZf =G .

Let H�.B/Œx; z� be the polynomial ring over H�.B/ in the indeterminates x and z .
For G D Z2 , in Section 4.1 we will introduce certain characteristic polynomials
belonging to H�.B/Œx; z�, denoted by W1.x; z/, W2.x; z/ and W3.x; z/, and will
show that H�. yE/ and H�.B/Œx; z�=hW1.x; z/;W2.x; z/;W3.x; z/i are isomorphic
as H�.B/–modules. Therefore, each polynomial q.x; z/ in H�.B/Œx; z� determines
an element of H�. yE/, which will be denoted by q.x; z/j yE . We will write q.x; z/j yZf

for the image of q.x; z/j yE by the H�.B/–homomorphism

i�W H�. yE/!H�. yZf /;

where i� is the homomorphism induced by the natural inclusion.

Similarly, for G D S1 , we will show that if the free S1–action on X is in ƒ1

(respectively in ƒ2 ), then H�.B/Œy; z�=hW1.y; z/;W2.y; z/;W3.y; z/i (respectively
H�.B/Œy; z�=hW1.y/;W2.y; z/i) and H�. yE/ are isomorphic as H�.B/–modules;
again, W1.y; z/;W2.y; z/ and W3.y; z/ will be certain special characteristic polyno-
mials belonging to H�.B/Œy; z�. Therefore, each polynomial q.y; z/ in H�.B/Œy; z�

yields elements q.y; z/j yE and q.y; z/j yZf
in H�. yE/ and H�. yZf /, respectively.

Also, we will recall the known characteristic polynomial W 0.x/, used by Dold [3]
(and called there the Stiefel–Whitney polynomial), which is a characteristic polynomial
in the indeterminate x of degree 1, associated to the vector bundle � 0W E0!B . With
these objects in hand, we have the following lemmas.
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Lemma 4.1 (Case G D Z2 ) Suppose that q.x; z/ 2 H�.B/Œx; z� is a polynomial
satisfying q.x; z/j yZf

D 0. Then, there are polynomials r1.x; z/, r2.x; z/ and r3.x; z/

in H�.B/Œx; z� so that

q.x; z/W 0.x/D r1.x; z/W1.x; z/C r2.x; z/W2.x; z/C r3.x; z/W3.x; z/:

Lemma 4.2 (Case G D S1 ) Suppose that q.y; z/ 2 H�.B/Œy; z� is a polynomial
satisfying q.y; z/j yZf

D 0.

(i) If the free S1–action on X is in ƒ1 , then there are polynomials r1.y; z/, r2.y; z/

and r3.y; z/ in H�.B/Œy; z� so that

q.y; z/W 0.y/D r1.y; z/W1.y; z/C r2.y; z/W2.y; z/C r3.y; z/W3.y; z/:

(ii) If the free S1–action on X is in ƒ2 , then there are polynomials r1.y; z/ and
r2.y; z/ in H�.B/Œy; z� so that

q.y; z/W 0.y/D r1.y; z/W1.y/C r2.y; z/W2.y; z/:

4.1 Characteristic polynomials

As announced above and using the Dold technique, in this section we introduce the
characteristic polynomials associated to the fibre bundle .X;E; �;B ). Since the
quotient bundle .X=G; yE; y�;B/ (G is Z2 or S1 ) has the cohomology extension
property, the Leray–Hirsch Theorem can be applied (see [1, Chapter VII, Theorem
1.4]). There are two cases to consider.

4.1.1 Case G D Z2 From Theorem 2.4, one has that H�.X=GIZ2/ is a free graded
module generated by the elements

1; a; a2; : : : ; a3n�1; a3n; c; ac; : : : ; anc;

subject to the relations a3nC1 D 0, c2C ˛anc C ˇa2n D 0 and anC1c D 0, where
a 2H 1.X=GIZ2/, c 2H n.X=GIZ2/ and ˛; ˇ 2 Z2 .

It follows from the Leray–Hirsch theorem that there exist elements a 2H 1. yE/ and
c 2H n. yE/ such that the natural homomorphism j �W H�. yE/!H�.X=G/ maps a
into a and c into c . Further, via the induced homomorphism y�� , H�. yE/ is an
H�.B/–module generated by

(2) 1; a; a2; : : : ; a3n�1; a3n; c; ac; : : : ; anc:
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Then, we can express the elements a3nC1 2 H 3nC1. yE/, anC1c 2 H 2nC1. yE/ and
c2 C ˛ancC ˇa2n 2 H 2n. yE/ in terms of the basis (2), that is, there exist unique
elements !i ; x!i ; �i ; x�i ; �i ; x�i 2H i.B/ such that

a3nC1
D !3nC1C!3naC � � �C!1a3n

C x!2nC1cC x!2nacC � � �C x!nC1anc;
anC1cD �2nC1C �2naC � � �C �1a2n

C 
a2nC1
Cx�nC1cCx�nacC � � �C x�1anc;

c2
C˛ancCˇa2n

D �2nC�2n�1aC � � �C�1a2n�1
Cˇ0a2n

C x�ncC � � �
C x�1an�1cC˛0anc;

where ˛; ˛0; ˇ; ˇ0; 
 2 Z2 . The announced characteristic polynomials in the inde-
terminates x and z of degrees 1 and n, respectively, associated to the fibre bundle
.X;E; �;B/, are then defined by the following formulas:

W1.x; z/D !3nC1C!3nxC � � �C!1x3n
Cx3nC1

C x!2nC1zC � � �C x!nC1xnz;

W2.x; z/D �2nC1C�2nxC� � �C�1x2n
C
x2nC1

Cx�nC1zC� � �Cx�1xnzCxnC1z;

W3.x; z/D �2nC�2n�1xC � � �C�1x2n�1
C .ˇCˇ0/x2n

C x�nzC � � �

C x�1xn�1zC .˛C˛0/xnzC z2:

Consider the homomorphism of H�.B/–algebras,

(3) � W H�.B/Œx; z�!H�. yE/; determined by .x; z/ 7! .a; c/:

We have that ker.�/ is the ideal generated by the characteristic polynomials W1.x; z/,
W2.x; z/ and W3.x; z/ and, consequently,

(4) H�.B/Œx; z�=hW1.x; z/;W2.x; z/;W3.x; z/i ŠH�. yE/:

The characteristic polynomial for the bundle � 0W E 0!B Following [3; 10], we
first recall the characteristic polynomial associated to a k –dimensional vector bun-
dle � 0W E0! B , equipped with a fibrewise Z2 –action which is free on E0 � .f0g/.
Write SE0 for the total space of the sphere bundle associated to � 0W E0!B . Since Z2

acts freely on SE0 , we obtain the projective bundle .RPk�1;cSE0; y� 0;B/ and the
principal Z2 –bundle SE0!cSE0 . We have that

H�.RPk�1
IZ2/Š Z2Œa

0�=ha0
k
i;

where a0 D .i 0/�.s/, s 2 H 1.BZ2/ is the generator and i 0W RPk�1 ! BZ2 is a
classifying map for the principal Z2 –bundle Sk�1 ! RPk�1 . Consider the class
a0 D h�.s/ 2 H 1.cSE0/, where hW cSE0! BZ2 is a classifying map for the principal
Z2 –bundle SE0!cSE0 . The Z2 –module homomorphism � W H�.RPk�1/!H�.cSE0/
defined by a0 7! a0 is a cohomology extension of the fibre. Then, it follows from the
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Leray–Hirsch theorem that H�.cSE0/ is an H�.B/–module, via the induced homomor-
phism .y� 0/� , generated by the elements

1; a0; .a0/2; : : : ; .a0/k�1
:

We can express .a0/k 2H k.cSE
0
/ as

.a0/k D !0k C!
0
k�1a0C � � �C .a0/k�1

;

for unique elements !0i 2H i.B/. Following the usual pattern, the characteristic poly-
nomial in the indeterminate x of degree 1, associated to the vector bundle � 0W E0!B ,
is defined as

W 0.x/D !0k C!
0
k�1xC � � �C!01xk�1

Cxk :

As before, we then have the isomorphism of H�.B/–algebras

H�.B/Œx�=hW 0.x/i ŠH�.cSE
0
/;

which comes from the rule x 7! a0 .

4.1.2 Case G D S 1 Taking the previously considered fibre bundle .X;E; �;B/,
let us now consider the quotient bundle .X=G; yE; y�;B/. It follows from Theorem 2.5
and Leray–Hirsch Theorem that H�. yE/ is H�.B/–isomorphic to one of the following
H�.B/–algebras:

(i) If the free S1–action � on X is in ƒ1 ,

(5) H�.B/Œy; z�=hW1.y; z/;W2.y; z/;W3.y; z/i;

where the characteristic polynomials associated to the fibre bundle .X;E; �;B/, in
the indeterminates y and z , of degrees 2 and n, respectively, are given by

W1.y; z/D !3nC1C!3n�1yC � � �C!2y.3n�1/=2
Cy.3nC1/=2

C x!2nC1zC � � �

C x!nC2y.n�1/=2z;

W2.y; z/D �2nC1C �2n�1yC � � �C �2y.2n�1/=2
Cx�nC1zCx�n�1yzC � � �

C x�2y.n�1/=2zCy.nC1/=2z;

W3.y; z/D �2nC�2n�2yC � � �C�2yn�1
C˛0yn

C x�nzC x�n�2yz

C x�1y.n�1/=2zC z2;

with !i ; x!i ; �i ; x�i ; �i ; x�i 2H i.B/ and ˛0 2 Z2 .

(ii) If the free S1–action � on X is in ƒ2 ,

(6) H�.B/Œy; z�=hW1.y/;W2.y; z/i;
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where the characteristic polynomials in the indeterminates y and z , of degrees 2

and 2n, respectively, are given by:

W1.y/D !nC1C!n�1yC � � �C!2y.n�1/=2
Cy.nC1/=2

W2.y; z/D �4nC �4n�2yC � � �C �3nC1y.n�1/=2
Cx�2nzCx�2n�2yzC � � �

C x�nC1y.n�1/=2zC z2;

with !i ; �i ; x�i 2H i.B/.

Characteristic polynomial for the bundle � 0W E 0!B with S 1–action Similarly
to the Z2 –case, we recall the characteristic polynomial associated to a k –dimensional
vector bundle � 0W E0 ! B , equipped with a fibrewise S1–action which is free on
E0� .f0g/, with k even. Denote by SE0 the total space of the sphere bundle associated
to � 0W E0 ! B . Since S1 acts freely on SE0 , we obtain the complex projective
bundle .P .k�2/=2.C/;cSE0; y� 0;B/ and the principal S1–bundle SE0 ! cSE0 , where
P .k�2/=2.C/D Sk�1=S1 denotes the .k � 2/–dimensional complex projective space.
We have

H�.P .k�2/=2.C/IZ2/Š Z2Œb
0�=..b0/k=2/;

with b0 D i�.t/ 2 H 2.P .k�2/=2.C/IZ2/, where t 2 H 2.BS1IZ2/ is the genera-
tor and i W P .k�2/=2.C/ ! BS1 is a classifying map for the principal S1–bundle
Sk�1! P .k�2/=2.C/.

Following the same argument of the Z2 –case, we have

H�.B/Œy�

hW 0.y/i
ŠH�.bSE0 /;

where
W 0.y/D !0mC11C!0m�1yC � � �C!02y.k�2/=2

Cyk=2

is the characteristic polynomial associated to E0! B .

4.2 Proofs of the announced results

Proof of Lemma 4.1 The arguments follow the pattern developed by Dold [3]. Let
q.x; z/ be a polynomial in H�.B/Œx; z� with q.x; z/j yZf

D 0. From the continuity
property of the C̆ech cohomology, there is an open subset V � yE , with V � yZf and
q.x; z/jV D 0. From the exact sequence

� � � // H�. yE;V /
j�

1 // H�. yE/ // H�.V / // � � � ;

Algebraic & Geometric Topology, Volume 13 (2013)



Borsuk–Ulam theorems and their parametrized versions for spaces of type .a; b/ 2839

there exists � 2H�. yE;V / such that j �
1
.�/D q.x; z/j yE , where j1W

yE! . yE;V / is
the natural inclusion. Now consider the map

yf W yE � yZf !
yE0�f0g

induced by the equivariant map f W E! E0 . Since W 0.a0/D 0 and yf � , the homo-
morphism induced in cohomology, is a H�.B/–homomorphism, we get

W 0.x/j yE� yZf
DW 0.a/DW 0. yf �.a0//D yf �.W 0.a0//D 0:

On the other hand, from the exact sequence

: : : // H�. yE; yE � yZf /
j�

2 // H�. yE/ // H�. yE � yZf /
// : : : ;

there is � 2H�. yE; yE� yZf / such that j �
2
.�/DW 0.x/j yE , where j2W

yE! . yE; yE� yZf /

is the inclusion. Hence,

q.x; z/W 0.x/j yE D j �1 .�/j
�
2 .�/D j �.�^ �/

by the naturality of the cup product. Note that

�^ � 2H�. yE;V [ . yE � yZf //DH�. yE; yE/;

which implies �^ � D 0. Thus, q.x; z/W 0.x/j yE D 0, and from (4) we conclude that
there exist polynomials r1.x; z/; r2.x; z/ and r3.x; z/ in H�.B/Œx; z� such that

q.x; z/W 0.x/D r1.x; z/W1.x; z/C r2.x; z/W2.x; z/C r3.x; z/W3.x; z/

in the ring H�.B/Œx; z�. This completes the proof.

Proof of Theorem 1.3 Let q.x/ 2H�.B/Œx; z� be a nonzero polynomial such that
deg q.x/ < 3n� kC 1. If q.x/j yZf

D 0, consider the equality

q.x/W 0.x/D r1.x; z/W1.x; z/C r2.x; z/W2.x; z/C r3.x; z/W3.x; z/;

given by Lemma 4.1. Note we have that deg W 0.x/ D k , deg W1.x; z/ D 3nC 1,
deg W2.x; z/D 2nC 1 and deg W3.x; z/D 2n. Since

deg q.x/C k Dmax
i
fdeg ri.x;y/C deg Wi.x;y/g;
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we get
deg q.x/C k � deg r1.x;y/C 3nC 1� 3nC 1:

Therefore, deg q.x/ � 3nC 1 � k , which is a contradiction. Hence q.x/j yZf
¤ 0.

Equivalently, the H�.B/–homomorphism

3n�kM
iD0

H�.B/:xi
!H�. yZf /;

given by x 7! xj yZf
, is a monomorphism. Thus, if 3n� k ,

cohom: dim Zf � cohom: dim BC 3n� k;

since cohom: dim Zf � cohom: dim yZf by Quillen [12, Proposition A.11].

Next, we prove the results for the case G D S1 .

Proof of Lemma 4.2 For (i), let q.y; z/ be a polynomial in H�.B/Œy; z� such that
q.y; z/j yZf

D 0. From arguments similar to those used in the proof of Lemma 4.1, we
conclude that q.y; z/W 0.y/j yE D 0. Therefore, by (5), there are polynomials r1.y; z/,
r2.y; z/ and r3.y; z/ in H�.B/Œy; z� such that

q.y; z/W 0.y/D r1.y; z/W1.y; z/C r2.y; z/W2.y; z/C r3.y; z/W3.y; z/:

Using (6), the proof for (ii) is completely analogous.

Proof of Theorem 1.4 For (1), let q.y/2H�.B/Œy; z� be a nonzero polynomial such
that deg q.y/ < 3n� kC 1. If q.y/j yZf

D 0, one has from Lemma 4.2(i) that

q.y/W 0.y/D r1.y; z/W1.y; z/C r2.y; z/W2.y; z/C r3.y; z/W3.y; z/;

where we have deg W 0.y/D k , deg W1.y; z/D 3nC 1, deg W2.y; z/D 2nC 1 and
deg W2.y; z/ D 2n. Thus, we conclude that deg q.y; z/ � 3n � k C 1, which is a
contradiction. Hence q.y/j yZf

¤ 0. As above, the H�.B/–homomorphism

.3n�k�1/=2M
iD0

H�.B/:yi
!H�. yZf /;

given by yi 7! yi j yZf
, is a monomorphism. Thus, if 3n� k ,

cohom: dim Zf � cohom: dim BC 3n� k:

Using Lemma 4.2(ii), the proof for (2) is completely analogous.
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Finally, we prove the announced parametrized result.

Proof of Theorem 1.5 Let ˛ denote the vector bundle E00! B , and V denote the
total space of ˛˚˛ . Then, Z2 acts on V by permuting coordinates in each fibre. This
action has the diagonal �� V as its fixed point set. Note that � is the total space of
a k –dimensional subbundle of ˛˚˛ , and the orthogonal complement �? is also the
total space of a k –dimensional subbundle of ˛˚˛ , which is called the diagonal bundle.
Note that �? is invariant under the Z2 –action on V , and this restricted Z2 –action
on �? is free outside the zero section. Consider the fibre preserving Z2 –equivariant
map F W E! V given by

F.x/D .f .x/; f .T x//:

The linear projection along the diagonal defines an equivariant fibre preserving map
r W .V;V ��/! .�?; �?�0/, where 0 is the zero section of �? . Let hD r ıF be
the composition

.E;E �A.f //
F
�! .V;V ��/

r
�! .�?; �?� 0/:

Note that Zh D h�1.0/ D F�1.�/ D A.f / and hW E ! �? is a fibre preserving
Z2 –equivariant map. Applying Theorem 1.3 to the map h, if 3n� k we obtain

cohom: dim A.f /D cohom: dim Zh � cohom: dim BC 3n� k:

Remark In Theorem 1.5, we observe that the fibre preserving map f W E ! E00

is not necessarily Z2 –equivariant with respect to the standard fibrewise Z2 –action
on E00 ! B , where the generating involution of the Z2 –action is taken to be the
antipodal map (in each fibre) x 7! �x , which is free away from the zero section.
In the case that f W E ! E00 is equivariant with respect to the antipodal action on
E00! B , one has an explicit formula in the proof of Theorem 1.5; indeed, one has
r.x;y/D ..x�y/=2; .y �x/=2/ and thus hD r ıF.x/D .f .x/;�f .x//.
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