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A second order algebraic knot concordance group

MARK POWELL

Let C be the topological knot concordance group of knots S1 � S3 under connected
sum modulo slice knots. Cochran, Orr and Teichner defined a filtration:

C � F.0/ � F.0:5/ � F.1/ � F.1:5/ � F.2/ � � � �

The quotient C=F.0:5/ is isomorphic to Levine’s algebraic concordance group; F.0:5/
is the algebraically slice knots. The quotient C=F.1:5/ contains all metabelian concor-
dance obstructions.

Using chain complexes with a Poincaré duality structure, we define an abelian
group AC2 , our second order algebraic knot concordance group. We define a group
homomorphism C!AC2 which factors through C=F.1:5/ , and we can extract the
two stage Cochran–Orr–Teichner obstruction theory from our single stage obstruction
group AC2 . Moreover there is a surjective homomorphism AC2! C=F.0:5/ , and
we show that the kernel of this homomorphism is nontrivial.

57M25, 57M27, 57N70, 57R67; 57M10, 57R65

1 Introduction

A knot is an oriented, locally flat embedding of S1 in the 3–sphere. We say that two
knots K and K0 are concordant if there exists an oriented, locally flat embedding of an
annulus C DS1�I in S3�I with C \S3�f0gDK and C \S3�f1gD�K0 . The
monoid of knots under connected sum becomes a group when we factor out by the equiv-
alence relation of concordance, called the knot concordance group, and denoted by C .

This paper unifies previously known obstructions to the concordance of knots by using
chain complexes with a Poincaré duality structure. In particular, we attempt to find an
algebraic formulation that computes portions of the knot concordance group as filtered
by the work of T Cochran, K Orr and P Teichner.

We view this as an initial framework for extending the algebraic theory of surgery of
A Ranicki [20] to classification problems involving 3– and 4– dimensional manifolds.
In order to apply Ranicki’s machinery to low-dimensional problems, we incorporate
extra information which keeps track of the effect of duality on the fundamental groups
involved.
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Cochran, Orr and Teichner [8] introduced a filtration of the classical knot concordance
group C by subgroups:

C � F.0/ � F.0:5/ � F.1/ � F.1:5/ � F.2/ � � � � :

Knots in the subgroup F.n/ are called .n/–solvable knots, for n 2 1
2
N [ f0g. The

subgroups F.n/ are geometrically defined. A knot is .n/–solvable if there is some
choice of four manifold whose boundary is zero-framed surgery on the knot, and which
is an n–th order approximation to the exterior of a slice disk (see Definition 5.2).

In this paper, we focus on the .0:5/; .1/ and .1:5/ levels of this filtration, corresponding
to abelian and metabelian quotients of knot groups and of the fundamental groups
of appropriate 4–manifolds. Our methods extend to the higher terms of the filtration,
which will appear in a future paper. (For an outline, see the appendix of the author’s
thesis [19].) As in [8, Theorem 1.1 and Remark 1.3.2], the quotient C=F.0:5/ is
isomorphic to Levine’s algebraic concordance group [17], which we denote AC1 (see
Definition 6.2). We produce a purely algebraically defined group of concordance
invariants, AC2 , and prove the following theorem.

Theorem 1.1 There exists a second order algebraic knot concordance group AC2 ,
with a nontrivial homomorphism C!AC2 which factors through C=F.1:5/ . There is a
commutative diagram

C //

!! !!

AC2

����
AC1

with both of the maps to AC1 surjections. A knot whose image in AC2 is trivial has
vanishing Cochran–Orr–Teichner .1:5/–level obstructions. Moreover, the Cochran–
Orr–Teichner obstructions can be extracted algebraically from an element of AC2 . In
particular the Cheeger–Gromov von Neumann �–invariants used in [8] can be defined
purely algebraically and used to detect nontriviality of elements of AC2 .

We will define (Definition 7.4) a pointed set which encapsulates the Cochran–Orr–
Teichner obstruction theory in a single object, which we denote COT .C=1:5/ . We
summarise Theorem 1.1 in the following commutative diagram, where dotted arrows
are used to denote morphisms of pointed sets.

AC2

���
�

''
C // C=F.1:5/ //___

''

66

COT .C=1:5/ AC1:

C=F.0:5/

88
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Our aim is to compute the group C=F.1:5/ and we view Theorem 1.1 as a first step
toward this goal.

Question 1.2 How close is our homomorphism C=F.1:5/ ! AC2 to a (rational)
isomorphism? Can we identify elements in the kernel and cokernel?

The following corollary of Theorem 1.1 is a consequence of Kim [14] and Cochran,
Orr and Teichner [9].

Corollary 1.3 The kernel of AC2!AC1 is of infinite rank.

The first examples of knots which lie in the kernel of the map C!AC1 were given
by A Casson and C Gordon in [3]. Their seminal work was the basis for the work of
Cochran, Orr and Teichner. We expect it to be the case that a knot whose image in AC2

is trivial also has vanishing Casson–Gordon slice obstructions, but we do not directly
address this in the present work.

Cochran–Orr–Teichner concordance obstructions are a secondary obstruction theory in
a similar manner to obstructions to lifting a map up a tower of fibrations, or extending
a map over the skeleta of a CW–complex. One uses the vanishing at each level of
obstructions to define new obstructions, which if they in turn vanish, can be used
to define further obstructions, and so on. A knot being .n/–solvable implies that
there is some path of vanishing Cochran–Orr–Teichner obstructions of length dne. By
contrast, AC2 contains well-defined knot concordance invariants, which do not need
to be indexed by choices of lower level vanishing.

The approach is partially inspired by work of Gilmer [11]. He defined an analogue
of AC2 which attempted to capture invariants from AC1 together with Casson–Gordon
invariants. That influential, and still important paper, has errors relating to the universal
coefficient theorem. We avoid such problems by defining our group using chain
complexes with symmetric structure instead of forms defined on homology. A chain
complex with symmetric structure is a purely algebraic analogue of a Poincaré duality
space. Consequently, our work has an altogether different character from Gilmer’s.

By avoiding homology pairings and the associated universal coefficient theorem issues
in the definition of our invariant, we avoid Ore localisation, the ad hoc introduction of
principal ideal domains, and we obtain a group with a homomorphism C!AC2 : the
chain complexes behave well under connected sum. Traditionally, cobordism groups
use disjoint union to define their addition operation. Our operation of addition mirrors
much more closely the geometric operation of addition of knots. The most important
advantage derived from defining our obstruction in terms of chain complexes is that we
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have a single stage obstruction which captures the first two main stages of the Cochran–
Orr–Teichner obstruction theory. Finally, since we keep the whole chain complex as part
of our data, we potentially have more information than can be gleaned from the Cochran–
Orr–Teichner obstructions, although computable invariants are elusive at present.

Organisation of the paper

The paper is devoted to the proof of Theorem 1.1. Section 2 contains some definitions
and constructions which will be central to the rest of the paper, including the definition
of a symmetric Poincaré triad and the structure and behaviour of metabelian quotients of
knot groups. We define a monoid of chain complexes P in Section 3, corresponding to
the monoid of knots under connected sum. In Section 4, we impose an extra equivalence
relation on P corresponding to concordance of knots, and so define the group AC2 .
Section 5 contains the proof that .1:5/–solvable knots map to the trivial element
of AC2 . Section 6 describes the homomorphism to the algebraic concordance groups
and proves the facts about Blanchfield forms which will be required in subsequent
sections. Section 7 defines the Cochran–Orr–Teichner obstruction set, before Section 8
shows how to extract the Cochran–Orr–Teichner obstructions from an element of AC2 ,
showing that AC2 is nontrivial.

Acknowledgements This work is a shortened version of my PhD thesis. Most of
all, I would like to thank my supervisor Andrew Ranicki for all the help he has given
me over the last three and a half years, in particular for suggesting this project, and
for the ideas and advice which were instrumental in solving so many of the problems
encountered. I would also like to thank in particular Stefan Friedl, Kent Orr and Peter
Teichner, and also Spiros Adams-Florou, Julia Collins, Diarmuid Crowley, Wolfgang
Lück, Tibor Macko, Daniel Moskovich, Paul Reynolds and Dirk Schütz for many
helpful and stimulating conversations and generous advice.

2 Preliminaries

2.1 Symmetric structures on chain complexes representing manifolds
with boundary

All of the chain complexes in this paper will come equipped with an algebraic Poincaré
duality structure: the symmetric structure of Mischenko and Ranicki. In this section
we collect the basic constructions which we will need in order to define algebraic
cobordisms. For more details on the material presented here, see Ranicki [20, Part I],
from which the definitions in this section are taken, and [19], where I gave an extended
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explanation of the derivation of symmetric structures, and in particular of how to
produce one explicitly for a knot exterior.

In the following we let A be a ring with involution. A symmetric chain complex
over A is a chain complex C together with an element ' 2 Qn.C /: refer to [20,
Part I, page 101] for the definition of the symmetric Q–groups Qn.C /. A symmetric
pair over A is a chain map f W C !D with an element .ı'; '/2QnC1.f /. Likewise,
refer to [20, Part I, pages 133–134] for the definition of the relative Q–groups. Such
complexes are said to be Poincaré if the symmetric structure induces, respectively,
the Poincaré and Poincaré-Lefschetz duality isomorphisms between cohomology and
homology.

We can represent a manifold with boundary in two ways: on the one hand, as a
symmetric Poincaré pair, and on the other hand as a symmetric complex which is not
Poincaré. The algebraic Thom and algebraic Poincaré thickening constructions of the
following definition make the correspondence between these two representations of a
manifold with boundary precise.

Definition 2.1 [20] An n–dimensional symmetric complex .C; ' 2Qn.C; "// is con-
nected if H0.'0W C

n��!C�/D 0. The algebraic Thom complex of an n–dimensional
"–symmetric Poincaré pair over A

.f W C !D; .ı'; '/ 2Qn.f; "//

is the connected n–dimensional "–symmetric complex over A

.C.f /; ı'=' 2Qn.C.f /; "//;

where C.f / is the algebraic mapping cone of f , and

.ı'='/s WD

�
ı's 0

.�1/n�r�1'sf
� .�1/n�rCsT"'s�1

�
W C.f /n�rCs

D Dn�rCs
˚C n�rCs�1

! C.f /r DDr ˚Cr�1 .s � 0/:

The boundary of a connected n–dimensional "–symmetric complex .C; ' 2Qn.C; "//

over A, for n� 1, is the .n�1/–dimensional "–symmetric Poincaré complex over A

.@C; @' 2Qn�1.@C; "//

given by

d@C D

�
dC .�1/r'0

0 @� D dC n��

�
W @C r

D CrC1˚C n�r
! @Cr D Cr ˚C n�rC1;
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@'0 D

�
.�1/n�r�1T"'1 .�1/r.n�r�1/"

1 0

�
W @C n�r�1

D C n�r
˚CrC1

! @Cr D CrC1˚C n�r ;

and, for s � 1,

@'s D

�
.�1/n�rCs�1T"'sC1 0

0 0

�
W @C n�rCs�1

D C n�rCs
˚Cr�sC1

! @Cr D CrC1˚C n�r :

See [20, Part I, Proposition 3.4 and pages 141–2] for the full details on the boundary
construction.

The algebraic Poincaré thickening of a connected "–symmetric complex over A,
.C; ' 2Qn.C; "//, is the "–symmetric Poincaré pair over A

.iC W @C ! C n��; .0; @'/ 2Qn.iC ; "//;

where iC D .0; 1/W @C D CrC1˚C n�r ! C n�r . The algebraic Thom complex and
algebraic Poincaré thickening are inverse operations [20, Part I, Proposition 3.4].

Next, we give the definition of a symmetric Poincaré triad. This is the algebraic version
of a manifold with boundary where the boundary is split into two along a submanifold;
in other words a cobordism of cobordisms which restricts to a product cobordism
on the boundary. Note that our notion is not quite as general as the notion in [21,
Sections 1.3 and 2.1], since we limit ourselves to the case that the cobordism restricted
to the boundary is a product. We also circumvent the more involved definitions of [21],
and define the triads by means of [21, Proposition 2.1.1], with a sign change in the
requirement of i� to be a symmetric Poincaré pair.

Definition 2.2 [21] An .nC2/–dimensional (Poincaré) symmetric triad is a triad of
finitely generated projective A–module chain complexes:

C

g
�

i� //

iC
��

D�

f�
��

DC
fC

// Y

with chain maps i˙; f˙ , a chain homotopy gW f� ı i� ' fC ı iC and structure maps
.'; ı'�; ı'C; ˆ/ such that .C; '/ is an n–dimensional symmetric (Poincaré) complex,

.iCW C !DC; .ı'C; '// and .i�W C !D�; .ı'�;�'//
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are .nC1/–dimensional symmetric (Poincaré) pairs and

.eW D�[C DC! Y; .ˆ; ı'�[' ı'C//

is a .nC2/–dimensional symmetric (Poincaré) pair, where

e D .f� ; .�1/r�1g ;�fC/W .D�/r ˚Cr�1˚ .DC/r ! Yr :

See [20, Part I, pages 117–119] for the formulae which enable us to glue together two
chain complexes along a common part of their boundaries with opposite orientations:
the union construction. We write .D00 DD[C 0 D

0; ı'00 D ı' ['0 ı'
0/ for the union

of .D; ı'/ and .D0; ı'0/ along .C; '0/.

A chain homotopy equivalence of symmetric triads is a set of chain equivalences

�C W C ! C 0 �D� W D�!D0�;

�DC W DC!D0C �E W Y ! Y 0;

which commute with the chain maps of the triads up to chain homotopy, and such
that the induced maps on Q–groups map the structure maps .'; ı'�; ı'C; ˆ/ to the
equivalence class of the structure maps .'0; ı'0�; ı'

0
C; ˆ

0/. See [20, Part I, page 140]
for the definition of the maps induced on relative Q–groups by an equivalence of
symmetric pairs.

Definition 2.3 [20, Part I, pages 134–136] An "–symmetric cobordism between
symmetric complexes .C; '/ and .C 0; '0/ is an .nC1/–dimensional "–symmetric
Poincaré pair with boundary .C ˚C 0; '˚�'0/:

..fC ; fC 0/W C ˚C 0!D; .ı'; '˚�'0/ 2QnC1..fC ; fC 0/; "//:

The next lemma contains a fact which is key for constructing algebraic cobordisms
corresponding to products M � I . We place it here so as not to interrupt the main text;
we will have repeated cause to appeal to it. Although this is well-known to the experts,
I have not found a proof in the literature.

Lemma 2.4 Given a homotopy equivalence f W .C; '/! .C 0; '0/ of n–dimensional
symmetric Poincaré chain complexes such that f %.'/ D '0 , there is a symmetric
cobordism ..f; 1/W C ˚C 0! C 0; .0; '˚�'0//. This symmetric pair is also Poincaré.

Proof We need to check that the symmetric structure maps .0;'˚�'0/2QnC1..f;1//

induce isomorphisms H r ..f; 1//
'
!HnC1�r .C

0/. We use the long exact sequence in
cohomology of a pair, associated to the short exact sequence

0! C 0
j
�! C..f; 1//! S.C ˚C 0/! 0
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to calculate the homology H r ..f; 1//. The sequence is

H r�1.C 0/
.f �;1�/T

������!H r�1.C˚C 0/
@
�!H r ..f; 1//

j�

�!H r .C 0/
.f �;1�/T

������!H r .C˚C 0/:

We have ker..f �; 1�/T W H r .C 0/!H r .C˚C 0//Š0, so j � is the zero map, and there-
fore @ is surjective. The image im..f �; 1�/T W H r�1.C 0/!H r�1.C /˚H r�1.C 0// is
the diagonal, so that the images of elements of the form .0;y0/2H r�1.C /˚H r�1.C 0/

generate H r ..f; 1//.

The map H r ..f; 1//!Hn�rC1.C
0/ generated by .0; '˚�'0/, on the chain level, is�

0; .f 1/

�
'0 0

0 �'0
0

��
W .C 0/r ˚ .C ˚C 0/r�1

! C 0n�rC1

which sends y0 2 H r�1.C 0/ to �'0
0
.y0/. We therefore have an isomorphism on

homology since .C 0; '0/ is a symmetric Poincaré complex, so we have a symmetric
Poincaré pair

..f; 1/W C ˚C 0! C 0; .0; '˚�'0//;

as claimed.

2.2 Second derived covers and connected sum

Our obstructions, since they aim to capture second order information, work at the
level of the second derived covers of the manifolds involved. We therefore need to
understand the behaviour of the second derived quotients of knot groups. We denote
the exterior of a knot K � S3 by

X WD S3
n �K:

Proposition 2.5 Let � be the quotient map

�W �1.X /=�1.X /
.2/
! �1.X /=�1.X /

.1/ '
�! Z:

Then for each choice of splitting homomorphism  W Z! �1.X /=�1.X /
.2/ such that

� ı D Id, let t WD  .1/. There is an isomorphism

� W �1.X /=�1.X /
.2/ '
�! ZËH;

g 7! .�.g/;gt��.g//;

where H WDH1.X IZŒZ�/ is the Alexander module.

Proof This is well-known, so we omit the proof. See eg [16, page 307].
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Although the following proposition is well-known, the careful treatment of inner
automorphisms, used to take care of any ostensible dependence on the choice of
splitting in Proposition 2.5, will be invaluable in Section 3.

Proposition 2.6 Let K , K| and K} WD K ]K| be oriented knots, with associated
exteriors X;X | and X } , and denote H | WDH1.X

|IZŒZ�/ and H } WDH1.X
}IZŒZ�/.

The behaviour of the second derived quotients under connected sum is given by

�1.X
}/=�1.X

}/.2/ Š ZËH }
Š ZË .H ˚H |/:

That is, we can take the direct sum of the Alexander modules.

Proof First we observe that

�1.X
}/Š �1.X /�Z �1.X

|/;

by the Seifert–van Kampen theorem: the knot exterior of a connected sum is given
by gluing the exteriors of the summands together along neighbourhoods of meridians
S1 �D1 � @X; @X | . Note that H , H | and H } are modules over the group ring
ZŒt; t�1� for the same t , which comes from the preferred meridian of each of X;X |

and X } respectively; when the spaces are identified these meridians all coincide.

(1)

ZËH }
Š �1.X

}/=�1.X
}/.2/ Š �1.X /�Z �1.X

|/=.�1.X /�Z �1.X
|//.2/

Š

�
�1.X /

�1.X /.2/
�Z

�1.X
|/

�1.X |/.2/

�.
Œ�1.X /

.1/; �1.X
|/.1/�

Š
.ZËH /�Z .ZËH |/

Œ�1.X /.1/; �1.X |/.1/�
:

We now need to be sure that the two group elements which we identify, which we
call g1 2 �1.X / and g

|
1
2 �1.X

|/, map to .1; 0/ 2 Z ËH and .1; 0|/ 2 Z ËH |

respectively under the compositions

�1.X /!�1.X /=�1.X /
.2/
!ZËH and �1.X

|/!�1.X
|/=�1.X

|/.2/!ZËH |:

If we had chosen  .1/Dg12�1.X /=�1.X /
.2/ and  |.1/Dg

|
1
2�1.X

|/=�1.X
|/.2/

then this would be the case and we would have

.ZËH /�Z .ZËH |/

Œ�1.X /.1/; �1.X |/.1/�
Š

ZË .H �H |/

ŒH;H |�
Š ZË .H ˚H |/;

and the proof would be complete. The point is that we can always arrange that the
image of g1 is .1; 0/ by applying an inner automorphism of Z ËH , and similarly
for g

|
1

and ZËH | . Suppose that �.g1/D .1; h1/. Recall [18, Proposition 1.2] that
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1 � t acts as an automorphism of H . We can therefore choose h0
1
2 H such that

.1� t/h0
1
D h1 . Then we have that

.0; h01/
�1.1; h1/.0; h

0
1/D .0;�h01/.1; h1/.0; h

0
1/

D .1;�h01C h1/.0; h
0
1/

D .1;�h01C h1C th01/

D .1; h1� .1� t/h01/D .1; h1� h1/D .1; 0/:

So, as claimed, in the last isomorphism of (1), we can compose � and �| with suitable
inner automorphisms and so achieve the desired conditions on the meridians which we
identify. Therefore the second derived quotients of the fundamental groups indeed add
under connected sum as claimed.

This concludes the preliminaries that we wish to collect prior to making our main
definitions.

3 A monoid of chain complexes

We shall define a set of purely algebraic objects which capture the necessary information
to produce concordance obstructions at the metabelian level. We define a set comprising
3–dimensional symmetric Poincaré triads over the group ring ZŒZËH � for certain
ZŒZ�–modules H . In some sense, we are to forget that these chain complexes originally
arose from geometry, and to perform operations on them purely with reference to the
algebraic data which we store with each element. The primary operation which we
introduce in this section is a way to add these chain complexes, so that we obtain an
abelian monoid. On the other hand, we would not do well pedagogically to forget
the geometry. The great merit of the addition operation we put forward here is that it
closely mirrors geometric addition of knots by connected sum.

A manifold triad is a manifold with boundary .X; @X / such that the boundary splits
along a submanifold into two manifolds with boundary, @X D @X0[@X01

@X1 . In our
case of interest where X is a knot exterior we have a manifold triad

S1 �S0 //

��

S1 �D1

��
S1 �D1 // X;

where the longitude is divided into two copies of D1 . Such a manifold triad gives
rise to a corresponding triad of chain complexes: noting that the knot exterior has the
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homology of a circle and the inclusion of each of the boundary components S1 �D1

induces an isomorphism on Z–homology, we obtain a chain complex Z–homology
cobordism from C�.S

1 �D1/ to itself, which is a product along the boundary.

The chain complexes are taken over the group rings ZŒZËH � of the semidirect products
which arise, as in Proposition 2.5, as the quotients of knot groups by their second
derived subgroups, with H an Alexander module (Theorem 3.1). The crucial extra
condition is a consistency condition, which relates H to the actual homology of the
chain complex. Since the Alexander module changes under addition of knots and in a
concordance, this extra control is vital in order to formulate a concordance obstruction
theory.

We quote the following theorem of Levine, specialised here to the case of knots in
dimension 3, and use it to define the notion of an abstract Alexander module. Recall
that we denote the exterior of a knot K by X WD S3 n �K .

Theorem 3.1 (Levine [18]) Let K be a knot and H WDH1.X IZŒZ�/ŠH1.X1IZ/
be its Alexander module. Take ZŒZ� D ZŒt; t�1�. Then H satisfies the following
properties:

(a) The Alexander module H is of type K : that is, H is finitely generated over
ZŒZ�, and multiplication by 1� t is a module automorphism of H . These two
properties imply that H is ZŒZ�–torsion.

(b) The Alexander module H is Z–torsion free. Equivalently, for ZŒZ�–modules of
type K , the homological dimension1 of H is 1.

(c) The Alexander module H satisfies Blanchfield Duality:

xH Š Ext1ZŒZ�.H;ZŒZ�/Š Ext0ZŒZ�.H;Q.Z/=ZŒZ�/Š HomZŒZ�.H;Q.Z/=ZŒZ�/;

where xH is the conjugate module defined using the involution defined by
t 7! t�1 .

Conversely, given a ZŒZ�–module H which satisfies properties (a), (b) and (c), there
exists a knot K such that H1.X IZŒZ�/ŠH .

Definition 3.2 A ZŒZ�–module which satisfies (a), (b) and (c) of Theorem 3.1 is an
Alexander module, and we denote the class of Alexander modules by A.

Before we give the definition of our set of symmetric Poincaré triads, we exhibit
some basic symmetric chain complexes which correspond to the spaces S0 �S1 and
S1 �D1 .

1This is defined as the minimal possible length of a projective resolution.
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Definition 3.3 Let H be an Alexander module. Let h1 2H and define g1 WD .1; h1/2

ZŒZËH �. Moreover let la 2ZŒZËH �, denote gq WD l�1
a g1la and let lb WD l�1

a . The
symmetric Poincaré chain complex .C 0; 'C 0 D '˚�'/ of the form

C 00
ı1 //

'0˚�'0

��

C 01

'0˚�'0

��
'1˚�'1

xx
C 0

1

@1 // C 0
0

is given by

L
2 ZŒZËH �

�
g�1

1
�1 0

0 g�1
q �1

�
//

�
1 0
0 �1

�

��

L
2 ZŒZËH �

�
g1 0
0 �gq

�

��

�
1 0
0 �1

�

yyL
2 ZŒZËH �

�
g1�1 0

0 gq�1

�
//
L

2 ZŒZËH �:

The annular chain complexes D0
˙

fit into symmetric Poincaré pairs

.i 0˙W C
0
!D0˙; .ı'˙ D 0; 'C 0//

(they are Poincaré pairs by Lemma 2.4), defined as follows:

D0� ZŒZËH �
.g1�1/ // ZŒZËH �

C 0

i0�

OO

i0
C

��

L
2 ZŒZËH � �

g1�1 0
0 gq�1

� //

�
1

l�1
a

� OO

�
l�1
b

1

�
��

L
2 ZŒZËH �

�
1

l�1
a

�OO

�
l�1
b

1

�
��

D0C ZŒZËH �
.gq�1/

// ZŒZËH �;

The chain complexes D0
˙

arise by taking tensor products ZŒZËH �˝ZŒZ�C�.S
1IZŒZ�/,

with homomorphisms ZŒZ�!ZŒZËH � given by t 7! g1 for D0� and t 7! gq for D0C .
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There is therefore a canonical chain isomorphism $ W D0�!D0C given by

ZŒZËH �
.g1�1/ //

.la/

��

ZŒZËH �

.la/

��
ZŒZËH �

.gq�1/
// ZŒZËH �:

Definition 3.4 We define the set P to be the set of equivalence classes of triples
.H;Y; �/ where: H 2A is an Alexander module; Y is a 3–dimensional symmetric
Poincaré triad of finitely generated projective ZŒZËH �–module chain complexes of
the form

.C; 'C /

g
�

i� //

iC
��

.D�; ı'�/

f�
��

.DC; ı'C/
fC // .Y; ˆ/;

with the symmetric Poincaré pairs .i˙W C !D˙; .ı'˙; 'C // chain homotopy equiva-
lent to .i 0

˙
W C 0!D0

˙
; .0; '˚�'// from Definition 3.3, where the chain maps f˙

induce Z–homology equivalences, and with a chain homotopy gW f� ı i� � fC ı iCW

C�! Y�C1 ; and

�W H
'
�!H1.ZŒZ�˝ZŒZËH � Y /

is a ZŒZ�–module isomorphism.

Moreover we require that the maps ı'˙ have the property that $ı'�$� D �ı'C ,
and that there is a chain homotopy �W fC ı$ ' f� . This implies that objects of our
set are independent of the choice of f� and fC .

The maps f˙ must induce Z–homology isomorphisms; note H�.Z˝ZŒZËH �D˙/Š

H�.S
1IZ/:

.f˙/�W H�.Z˝ZŒZËH �D˙/
'
�!H�.Z˝ZŒZËH � Y /:

We call the condition that the isomorphism �W H
'
!H1.ZŒZ�˝ZŒZËH � Y / exists, the

consistency condition, and we call � the consistency isomorphism.

We say triples .H;Y; �/ and .H %;Y%; �%/ are equivalent if there is a ZŒZ�–module
isomorphism !W H

'
! H % inducing a ring isomorphism ZŒZËH �

'
! ZŒZËH %� ,

and if there exists a chain equivalence of triads j W ZŒZËH %�˝ZŒZËH �Y!Y% , such
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that the following diagram commutes:

H
�

Š //

! Š

��

H1.ZŒZ�˝ZŒZËH � Y /

j� Š

��

H %
�%

Š // H1.ZŒZ�˝ZŒZËH %� Y
%/:

The induced map j� on ZŒZ�–homology makes sense, as there is an isomorphism
ZŒZ�Š ZŒZ�˝ZŒZËH %�ZŒZËH %�, so that

H1.ZŒZ�˝ZŒZËH � Y /
'
�!H1.ZŒZ�˝ZŒZËH %�ZŒZËH %�˝ZŒZËH � Y /:

It is easy to see that we have indeed described an equivalence relation: symmetry
is seen using the inverses of the vertical arrows and transitivity is seen by vertically
composing two such squares.

Given a knot K with exterior X , we define a triple .H;Y; �/ as follows. Let H WD

�1.X /
.1/=�1.X /

.2/ considered as a ZŒZ�–module via the action given by conjugation
with a meridian. Let Y be the triad of handle chain complexes associated to the
�1.X /

.2/–cover of the manifold triad

S1 �S0 //

��

S1 �D1
C

��
S1 �D1

�
// X;

with symmetric structures for C�.S
1�S0/ and C�.S

1�D1
˙
/ as given in Definition 3.3,

and with the symmetric structure for C�.X / given by the image under a chain level
approximation to the diagonal map

�W C.X IZ/! C.X IZŒZËH �/˝ZŒZËH � C.X IZŒZËH �/

of a relative fundamental class ŒX; @X � 2 C3.X IZ/. Lastly, let � be the Hurewicz
isomorphism

�W H
'
�!H1.X IZŒZ�/ŠH1.ZŒZ�˝ZŒZËH � Y /:

Then we have:

Proposition 3.5 Let Knots be the set of isotopy classes of locally flat oriented knots.
The above association of .H;Y; �/ to a knot K defines a function

Knots! P :
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Proof We take

Y WD C.X IZŒZËH �/ WD ZŒZËH �˝ZŒ�1.X /� C.X IZŒ�1.X /�/;

using the handle chain complex of X with coefficients twisted by the group ring
of the fundamental group. We use a handle decomposition which contains a handle
decomposition of a regular neighbourhood of the boundary @X�I as a subcomplex. We
split the boundary into two annular pieces S1�S1DS1�D1

C[S1�S0 S1�D1
� , with

the longitude split in two. We pick a meridian of K and call it g1 2 �1.X /, and we let
la and lb be the images in �1.X /=�1.X /

.2/ of the two halves of the longitude, suitably
based. Take .C; 'C /; .D˙; ı'˙/ and i˙ to be the complexes defined in Definition 3.3.
Define the maps f˙ and g to be the maps induced by the inclusion of the boundary.
The symmetric structure ˆ on Y� D C�.X IZŒZËH �/ is given, as described, by the
image of a relative fundamental class under a diagonal approximation chain map. Note
that for the model chain complexes, $ D .la/W .D�/i! .DC/i so fC ı$ D f� and
we can take �D 0.

It is important that our objects do not depend on choices, so that equivalent knots define
equivalent triads. Different choices of la and lb affect these elements only up to a
conjugation, or in other words an application of an inner automorphism, which means
we can vary C;DC and fC by a chain isomorphism and obtain chain equivalent triads.
A different choice of element g1 D .1; h1/ 2 ZËH is related by a conjugation, or in
other words an application of an inner automorphism, as in the proof of Proposition 2.6,
so that we can change C;D˙ and Y by chain isomorphisms and obtain chain equivalent
triads. The point is that we need to make choices of g1 and of la in order to write
down a representative of an equivalence class of symmetric Poincaré triads, but still
different choices yield equivalent triads. We investigate the effect of such changes on
the consistency isomorphism � . A change in la does not affect the isomorphism � .
A change in g1 affects � as follows. When we wish to change the boundary maps
and chain maps in a triad by applying an inner automorphism, conjugating by an
element h 2 ZËH say, we define the chain equivalence of triads Y ! Y% which
maps basis elements of all chain groups as follows: ei 7! hei : Y% has the same
chain groups as Y but with the relevant boundary maps and chain maps conjugated
by h. This induces an isomorphism which by a slight abuse of notation we denote
h�W H1.ZŒZ�˝ZŒZËH � Y /

'
�!H1.ZŒZ�˝ZŒZËH %� Y

%/. We take !W H !H % DH

as the identity. In order to obtain an equivalent triple, we therefore take �% D h� ı � .

An isotopy of knots induces a homeomorphism of the exteriors X !�X % , fixing the
boundary, which itself induces an isomorphism

!W �1.X /
.1/=�1.X /

.2/
DH

'
! �1.X

%/.1/=�1.X
%/.2/ DH %:
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Likewise the isotopy induces an equivalence of triads ZŒZËH %�˝ZŒZËH � Y! Y% .
The geometrically defined maps � and �% fit into the commutative square as required
in Definition 3.4.

Finally, we should check that the conditions on homology for an element of P are
satisfied. First, Z˝ZŒZËH � D˙ is given by 0W Z �! Z, which has the homology of
a circle. Alexander duality or an easy Mayer–Vietoris argument using the decompo-
sition of S3 as X [@X�S1�S1 S1 �D2 shows that H�.C�.X IZ// Š H�.S

1IZ/,
with the generator of H1.X IZ/ being any of the meridians. So the chain maps
Id˝ZŒZËH �f˙W Z˝D˙! C�.X IZ/ induce isomorphisms on homology.

The consistency condition is satisfied, since we have the canonical Hurewicz isomor-
phism H

'
!H1.X IZŒZ�/ as claimed. So we have indeed defined an element of P .

Remark 3.6 In [19], I gave an algorithm to construct a symmetric Poincaré triad
explicitly, given a diagram of a knot, using a handle decomposition of the knot exterior.
The novel part of this was to construct the symmetric structure maps explicitly, at the
level of the universal cover.

We now define the notion of addition of two triples .H;Y; �/ and .H |;Y|; �|/ in P .
In the following, the notation should be transparent: everything associated to Y| will
be similarly decorated with a dagger.

Definition 3.7 We define the sum of two triples

.H };Y}; �}/D .H;Y; �/ ] .H |;Y|; �|/;

as follows. The first step is to make sure that the two triads are over the same group
ring. Pick a representative in the equivalence class of each of the triples on the right
hand side which satisfy g1 D .1; 0/ and g

|
1
D .1; 0|/ respectively. It was explained

how to achieve this, with the application of inner automorphisms of ZËH and ZËH | ,
in the proofs of Propositions 2.6 and 3.5. Now define H } WD H ˚H | . We use the
homomorphisms

ZËH ! ZË .H ˚H |/;

.n; h/ 7! .n; .h; 0|//;

ZËH |
! ZË .H ˚H |/;

.n; h|/ 7! .n; .0; h|//

to form the tensor products ZŒZËH }�˝ZŒZËH � Y and ZŒZËH }�˝ZŒZËH |� Y| , so
that both symmetric Poincaré triads are over the same group ring. This will be assumed
for the rest of the present definition without further comment.
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The next step is to exhibit a chain equivalence �W C | �!C . We show this for the models
for each chain complex from Definition 3.3, since any C;C | which can occur is itself
chain equivalent to these models. In fact, for the operation of connected sum which we
define here, we describe how to add our two symmetric Poincaré triads Y and Y| using
the models given for i˙W .C; 'C /! .D˙; ı'˙/ and i

|
˙
W .C |; 'C |/! .D

|
˙
; ı'

|
˙
/ in

Definition 3.3, since there is always an equivalence of symmetric triads mapping to
one in which C;C | and D

|
˙

have this form, by definition. Note that, to achieve this
with g1 D .1; 0/D g

|
1

, we may have to change the isomorphisms � and �| as in the
proof of Proposition 3.5.

The chain isomorphism �W C
|
� ! C� is given byL

2 ZŒZËH }� �
g

|
1
�1 0

0 g
|
q�1

� //

�
1 0

0 .l
|
a /
�1la

�
��

L
2 ZŒZËH }�

�
1 0

0 .l
|
a /
�1la

�
��L

2 ZŒZËH }�

�
g1�1 0

0 gq�1

�
// L

2 ZŒZËH }�:

In order to see that these are chain maps we need the relation g
|
1
D g1 2 Z ËH }

which, since by definition gq D l�1
a g1la and g

|
q D .l

|
a/
�1g

|
1
l
|
a implies that gq D

l�1
a l

|
ag

|
q.l

|
a/
�1la . We can also use this to calculate that �.'|˚�'|/�� D ' ˚�' .

Recall that we also have a chain isomorphism $ W D|
� DD�!DC .

We now glue the two symmetric triads together. The idea is that we are following the
geometric addition of knots, where the neighbourhoods of a chosen meridian of each
knot get identified. We have the diagram

.D�; 0D ı'�/

f�

��

.C; '˚�' D 'C /
i�oo

iC

��

g
�

yy

.C |; '|˚�'| D 'C |/

�
'oo

i|
�

��

i
|
C //

g|

�

&&

.D
|
C; 0D ı'

|
C/

f
|
C

��
.Y; ˆ/ .DC; 0D ı'C/

fCoo .D|
�; 0D ı'

|
�/

f |
� //

$
'oo .Y |; ˆ|/;

where the central square commutes. We then use the union construction from [20,
Part I, pages 117–119] to define Y} :

.C }; 'C }/

g}

�

i}
� //

i
}
C

��

.D}
�; ı'

}
�/

f }
�

��

.D
}
C; ı'

}
C/

f
}
C // .Y }; ˆ}/;
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.C }; 'C }/ WD .C |; 'C |/; i
}
C WD i

|
C; i}

� WD i� ı �;

.D}
�; ı'

}
�/ WD .D�; ı'� D 0/; .D

}
C; ı'

}
C/ WD .D

|
C; ı'

|
C D 0/;

.Y }; ˆ}/ WD .C..�fC ı$;f
|
�/

T W D|
�! Y ˚Y |/; ˆ[ı'|

�
ˆ|/,

so that

Y }
r WD Yr ˚ .D

|
�/r�1˚Y |

r ;

dY } WD

0@dY .�1/rfC ı$ 0

0 dD|
�

0

0 .�1/r�1f |
� dY |

1A W Y }
r ! Y

}
r�1

;

f }
� WD . f� 0 0 /T W .D}

�/r D .D�/r ! Y }
r D Yr ˚ .D

|
�/r�1˚Y |

r ;

f
}
C WD . 0 0 f

|
C
/T W .D

}
C/r D .D

|
C/r ! Y }

r D Yr ˚ .D
|
�/r�1˚Y |

r ;

ˆ}
s WD .ˆ[ı'|

�
ˆ|/s D

0@ˆs 0 0

0 0 0

0 0 ˆ
|
s

1A ;
.Y }/3�rCs

D Y 3�rCs
˚ .D|

�/
2�rCs

˚ .Y |/3�rCs
! Y }

r D Yr ˚ .D
|
�/r�1˚Y |

r

.0� s � 3/;

g}
WD .g ı � .�1/rC1i|

� g|/T W C }
r D C |

r ! Y
}
rC1
D YrC1˚ .D

|
�/r ˚Y

|
rC1

:

The mapping cone is of the chain map .�fC ı$;f |
�/

T , with a minus sign to reflect
the geometric fact that when one adds together oriented knots; one must identify the
boundaries with opposite orientations coinciding, so the resulting knot is also oriented.

We therefore have the chain maps i
}
˙

given by

D}
� DD� ZŒZËH }�

.g1�1/ // ZŒZËH }�

C } D C |

i}
�Di�ı�

OO

i
}
C
Di

|
C

��

L
2 ZŒZËH }� �

g
|
1
�1 0

0 g
|
q�1

� //

�
1

.l
|
a /
�1

� OO

�
.l

|
b
/�1

1

�
��

L
2 ZŒZËH }�

�
1

.l
|
a /
�1

�OO

�
.l

|
b
/�1

1

�
��

D
}
C DD

|
C ZŒZËH }�

.g
|
q�1/

// ZŒZËH }�;

which means we can take g
}
1
WDg

|
1
Dg12ZËH }DZË .H ˚H |/, l

}
a WD l

|
a 2ZËH }

and l
}

b
WD l

|
b
2 ZËH } , so that g

}
q WD g

|
q 2 ZËH } . We have a chain isomorphism

Algebraic & Geometric Topology, Volume 12 (2012)



A second order algebraic knot concordance group 703

$|W D� D D|
� ! D

|
C . To construct a chain homotopy �}W .0; 0; f

|
C ı$

|/T '

.f�; 0; 0/
T we first use �|W .0; 0; f

|
C ı$

|/T ' .0; 0; f |
�/

T . We then have a chain
homotopy given by

.0; Id; 0/T W .D|
�/0! Y

}
1
D Y1˚ .D

|
�/0˚Y

|
1
;

.0;� Id; 0/T W .D|
�/1! Y

}
2
D Y2˚ .D

|
�/1˚Y

|
2
;

which shows that

.0; 0; f |
�/

T
' .fC ı$; 0; 0/

T
W D|
�! C..�fC ı$;f

|
�/

T /:

We finally have �W .fC ı$; 0; 0/T ' .f�; 0; 0/T . Combining these three homotopies
yields

�}
W .0; 0; f

|
C ı$

|/T ' .f�; 0; 0/
T :

This completes our description of the symmetric Poincaré triad

Y}
WD Y ]Y|:

Finally, easy Mayer–Vietoris arguments show that f }
˙
W H�.D

}
˙
IZ/ '!H�.Y

}IZ/ are
isomorphisms and that there is a consistency isomorphism

�}
W H } '

�!H1.ZŒZ�˝ZŒZËH }� Y
}/;

which shows that the consistency condition is satisfied and defines the third element of
the triple

.H };Y}; �}/D .H;Y; �/ ] .H |;Y|; �|/ 2 P :
This completes the definition of the addition of two elements of P .

Proposition 3.8 The sum operation ] on P is abelian, associative and has an identity,
namely the triple containing the fundamental symmetric Poincaré triad of the unknot.
Therefore, .P; ]/ is an abelian monoid.

Let “Knots” denote the abelian monoid of isotopy classes of locally flat oriented knots
in S3 under the operation of connected sum. Then the function Knots! P from
Proposition 3.5 becomes a monoid homomorphism.

Proof Refer [19, Proposition 6.8] for the proof of this proposition, which is too long for
the present paper, and is relatively straight-forward. It is hopefully intuitively plausible,
given that our algebraic connected sum so closely mirrors the geometric connected
sum, that our addition is associative, commutative, and that algebraic connected sum
with the symmetric Poincaré triad .f0g;YU ; Id/ associated to the unknot produces an
equivalent triad.
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4 Algebraic concordance

In this section we introduce an algebraic concordance relation on the elements of P
which closely captures the notion of .1:5/–solvability, in the sense that the Cochran–Orr–
Teichner obstructions vanish if a knot is algebraically .1:5/–solvable (Definition 4.3)
which in turn holds if a knot is geometrically .1:5/–solvable.

We proceed as follows. Given two triples .H;Y; �/; .H |;Y|; �|/ 2 P , we formulate
an algebraic concordance equivalence relation, modelled on the concordance of knots
and corresponding to Z–homology cobordism of manifolds, with the extra control
on the fundamental group which is evidently required, given the prominence of the
Blanchfield form in [8] when controlling representations. We take the quotient of our
monoid P by this relation, and obtain a group AC2 WD P=�. Our goal for this section
is to complete the set up of the following commuting diagram, which has geometry in
the left column and algebra in the right column:

Knots //

����

P

����
C // AC2;

where Knots is the monoid of geometric knots under connected sum and C is the
concordance group of knots. We shall first define our concordance relation, and show
that it is an equivalence relation. We will then define an inverse �.H;Y; �/ of a
triple .H;Y; �/, and show that .H;Y; �/ ] � .H;Y; �/ � .f0g;YU ; Idf0g/, where
.f0g;YU ; Idf0g/ is the triple of the unknot, so that we obtain a group AC2 .

Proposition 4.1 Two knots K and K| are topologically concordant if and only if the
3–manifold

Z WDX [@XDS1�S1 S1
�S1

� I [S1�S1D@X | �X |

is the boundary of a topological 4–manifold W such that

(i) the inclusion i W Z ,!W restricts to Z–homology equivalences

H�.X IZ/
'
�!H�.W IZ/

'
 �H�.X

|
IZ/;

(ii) the fundamental group �1.W / is normally generated by a meridian of (either of)
the knots.

We omit the proof of this proposition, which is well-known to the experts, and refer
the interested reader to [19, Proposition 8.1].
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We need to construct the algebraic version of Z from two symmetric Poincaré triads Y
and Y| so that we can impose conditions on the algebraic 4–dimensional complexes
which have it as their boundary. As part of the definition of a symmetric Poincaré
triad Y over ZŒZËH � (Definition 2.2),

.C; 'C /

g
�

i� //

iC
��

.D�; ı'�/

f�
��

.DC; ı'C/
fC // .Y; ˆ/;

we can construct a symmetric Poincaré pair

.�W E WDD�[C DC! Y; .ˆ; ı'�['C
ı'C//

�D .f� ; .�1/r�1g ; �fC/W Er D .D�/r ˚Cr�1˚ .DC/r ! Yr :where

In our case of interest, E , for the standard models of C;D˙ , is given by

E2 Š
L

2 ZŒZËH �
@2
�!E1 Š

L
4 ZŒZËH �

@1
�!E0 Š

L
2 ZŒZËH �;

@1 D

0BB@
g1� 1 0

1 la
l�1
a 1

0 gq � 1

1CCA and @2 D

�
�1 g1� 1 0 �la
�l�1

a 0 gq � 1 �1

�
;where

with �0W E
2�r !Er

E0
ı1 //

�0

��

E1
ı2 //

�0

��

E2

�0

��
E2

@2 // E1

@1 // E0

given by

L
2 ZŒZËH �

ı1 //

�
�1 la

0 0

�

��

L
4 ZŒZËH �

ı2 //

0B@0 g1 �lagq 0

0 0 0 la

0 0 0 �1
0 0 0 0

1CA
��

L
2 ZŒZËH �

�
0 g1la

0 �gq

�

��L
2 ZŒZËH �

@2 //
L

4 ZŒZËH �
@1 //

L
2 ZŒZËH �:
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We have replaced l�1
b

with la here. Note that the boundary and symmetric structure
maps still depend on the group element la . The next lemma shows that, over the group
ring ZŒZË .H ˚H |/�DZŒZËH }�, the chain complexes E;E| of the boundaries of
two different triads Y;Y| are isomorphic. It is used to construct the top row of the
triad in Definition 4.3.

Lemma 4.2 There is a chain isomorphism of symmetric Poincaré complexes

$E W ZŒZËH }�˝ZŒZËH �E! ZŒZËH }�˝ZŒZËH |�E
|;

E2

@2 //

$E

��

E1

@1 //

$E

��

E0

$E

��

E
|
2

@
|
2 // E|

1

@
|
1 // E|

0

omitting ZŒZ Ë H }�˝ZŒZËH � and ZŒZ Ë H }�˝ZŒZËH |� from the notation of the
diagram, given by

L
2 ‡

}

�
�1 g1�1 0 �la

�l�1
a 0 gq�1 �1

�
//

�
1 0

0 l�1
a l

|
a

�

��

L
4 ‡

}

0B@
g1�1 0

1 la

l�1
a 1

0 gq�1

1CA
//

0BB@
1 0 0 0
0 1 0 0

0 0 l�1
a l

|
a 0

0 0 0 l�1
a l

|
a

1CCA
��

L
2 ‡

}

�
1 0

0 l�1
a l

|
a

�

��L
2 ‡

}  
�1 g

|
1
�1 0 �l

|
a

�.l
|
a /
�1 0 g

|
q�1 �1

! // L
4 ‡

} 0BBB@
g

|
1
�1 0

1 l
|
a

.l
|
a /
�1 1

0 g
|
q�1

1CCCA
// L

2 ‡
}

where ‡} WD ZŒZËH }�.

Proof To see that $E is a chain map, as usual one needs the identities

lagql�1
a D g1 D g

|
1
D l|

ag|
q.l

|
a/
�1:

The maps of $E are isomorphisms, and the reader can calculate that $E�$
�
E
D �| .

Note that this proof relies on the fact that lalb D 1 and would require extra control
over the longitude if we were not working modulo the second derived subgroup, but
instead were only factoring out further up the derived series.
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Definition 4.3 We say that two triples .H;Y; �/; .H |;Y|; �|/ 2 P are second order
algebraically concordant or algebraically .1:5/–equivalent, written �, if there is a
ZŒZ�–module H 0 of type K , that is H 0 satisfies the properties of (a) of Theorem 3.1,
with a homomorphism

.j[; j
|
[
/W H ˚H |

!H 0

which induces homomorphisms

ZŒZËH �! ZŒZËH 0� and ZŒZËH |�! ZŒZËH 0�;

along with a finitely generated projective ZŒZËH 0�–module chain complex V with
structure maps ‚, the requisite chain maps j ; j |; ı , and chain homotopies ;  | , such
that there is a 4–dimensional symmetric Poincaré2 triad

.ZŒZËH 0�˝ .E; �//˚ .ZŒZËH 0�˝ .E|;��|//

.;|/
�

.Id;Id˝$
E| / //

�
Id˝� 0

0 Id˝�|

�
��

ZŒZËH 0�˝ .E; 0/

ı

��
.ZŒZËH 0�˝ .Y; ˆ//˚ .ZŒZËH 0�˝ .Y |;�ˆ|//

.j ;j|/ // .V; ‚/;

which satisfies two homological conditions. The first is that

j W H�.Z˝ZŒZËH 0� .ZŒZËH 0�˝ZŒZËH � Y //
'
�!H�.Z˝ZŒZËH 0� V /;

j |
W H�.Z˝ZŒZËH 0� .ZŒZËH 0�˝ZŒZËH |� Y

|//
'
�!H�.Z˝ZŒZËH 0� V /

are isomorphisms, so that H�.Z˝ZŒZËH 0�V /ŠH�.S
1IZ/. The second homological

condition is the consistency condition, that there is a consistency isomorphism

� 0W H 0
'
�!H1.ZŒZ�˝ZŒZËH 0� V /;

such that the diagram below commutes:

H˚H |
.j[;j

|
[
/

//

�
� 0

0 �|

�
Š

��

H 0

�0Š

��
H1.ZŒZ�˝ZŒZËH �Y /˚H1.ZŒZ�˝ZŒZËH |�Y

|/
IdZŒZ�˝.j�;j

|
�/// H1.ZŒZ�˝ZŒZËH 0�V /:

2The top row is a symmetric Poincaré pair by Lemma 2.4)
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We say that two knots are second order algebraically concordant if their triples are, and
we say that a knot is second order algebraically slice or algebraically .1:5/–solvable
if it is second order algebraically concordant to the unknot.

Remark 4.4 In what follows we frequently omit the tensor products when reproducing
versions of the diagram of the triad in Definition 4.3, taking as understood that all chain
complexes are tensored so as to be over ZŒZËH 0� and all homomorphisms act with
an identity on the ZŒZËH 0� component of the tensor products.

Definition 4.5 The quotient of P by the relation � of Definition 4.3 is the second
order algebraic concordance group AC2 . See Proposition 4.7 for the proof that � is
an equivalence relation and Proposition 4.9 for the proof that AC2 is a group.

Proposition 4.6 Two concordant knots K and K| are second order algebraically
concordant.

We postpone the proof of this result: Proposition 4.6 is a corollary of Theorem 5.1. See
[19, Proposition 8.6] for a proof of this special case.

Proposition 4.7 The relation � of Definition 4.3 is an equivalence relation.

Proof We begin by showing that � is well-defined and reflexive: that .H;Y; �/ �
.H %;Y%; �%/, where .H;Y; �/ and .H %;Y%; �%/ are equivalent in the sense of
Definition 3.4. This is the algebraic equivalent of the geometric fact that isotopic knots
are concordant. Suppose that we have an isomorphism !W H ! H % , and a chain
equivalence of triads j W ZŒZËH %�˝ZŒZËH � Y! Y% , such that the relevant square
commutes, as in Definition 3.4 (see below). To show reflexivity, we take H 0 WDH % ,
and take .j[; j[/ D .!; Id/W H ˚H % ! H % and .V; ‚/ WD .Y %; 0/. We tensor all
chain complexes with ZŒZËH %�, which do not already consist of ZŒZËH %�–modules.
We have, induced by j , an equivalence of symmetric Poincaré pairs

.jE ; jY I k/W .Id˝�W ZŒZËH %�˝ZŒZËH �E

! ZŒZËH %�˝ZŒZËH � Y /! .�%
W E%

! Y %/;

where kW �%jE � jY � is a chain homotopy (see [20, Part I, page 140]). We therefore
have the symmetric triad

ZŒZËH %�˝ZŒZËH � .E; �/˚ .E
%;��%/

.k;0/
�

.jE ;Id/ //

�
Id˝� 0

0 �%

�
��

.E%; 0/

�%

��
.Y; ˆ/˚ .Y %;�ˆ%/

.jY ;Id/ // .Y %; 0/:

Algebraic & Geometric Topology, Volume 12 (2012)



A second order algebraic knot concordance group 709

The proof of Lemma 2.4 shows that this is a symmetric Poincaré triad. Applying
the chain isomorphism $E% W E% '! ZŒZËH %�˝ZŒZËH �E to the top right corner
produces the triad

ZŒZËH %�˝ZŒZËH � .E; �/˚.E
%;��%/

.k;0/
�

.$E%ıjE ;$E% ///

�
Id˝� 0

0 �%

�
��

.ZŒZËH %�˝ZŒZËH �E; 0/

�%ı.$E% /
�1

��
.Y; ˆ/˚.Y %;�ˆ%/

.jY ;Id/ // .Y %; 0/;

as required. The homological conditions are satisfied since the maps j ; j | from
Definition 4.3 are chain equivalences and the chain complex V D Y % . The consistency
condition is satisfied since the commutativity of the square

H
�

Š //

! Š

��

H1.ZŒZ�˝ZŒZËH � Y /

j� Š

��

H %
�%

Š // H1.ZŒZ�˝ZŒZËH %� Y
%/;

which shows that .H;Y; �/ and .H %;Y%; �%/ are equivalent in the sense of Definition
3.4, extends to show that the square

H ˚H %
.!;Id/ //

�
� 0

0 �%

�
��

H %

�%

��
H1.ZŒZ�˝ZŒZËH � Y /˚H1.ZŒZ�˝ZŒZËH � Y

%/
.j�;Id�/ // H1.ZŒZ�˝ZŒZËH 0� Y

%/

is also commutative. Therefore Definition 4.3 is satisfied, so � is indeed a reflexive
relation. It is easy to see that � is symmetric; we leave the straight-forward check to
the reader.

To show transitivity, suppose that .H;Y; �/� .H |;Y|; �|/ using

.j[; j
|
[
/W H ˚H |

!H 0;

and also .H |;Y|; �|/� .H };Y}; �}/, using

.j
|
[
; j

}

[
/W H |

˚H }
! SH 0;
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so that there is a diagram of ZŒZË SH 0�–module chain complexes

.E|; �|/˚ .E};��}/

.|;}/
�

.Id; z$
E} / //

�
�| 0

0 �}

�
��

.E|; 0/

xı

��
.Y |; ˆ|/˚ .Y };�ˆ}/

.j|;j}/ // . xV ; x‚/:

In this proof the bar is a notational device and has nothing to do with involutions. To
show that .H;Y; �/ � .H };Y}; �}/, first we must define a ZŒZ�–module xxH so that
we can tensor everything with ZŒZË xxH �. We will glue the symmetric Poincaré triads
together to show transitivity; first we must glue together the ZŒZ�–modules. Define

.j[; j
}

[
/W H ˚H }

!
xxH WD coker..j |

[
;�j

|
[
/W H |

!H 0˚ xH 0/:

Now, use the inclusions followed by the quotient maps:

H 0!H 0˚ SH 0! xxH and SH 0!H 0˚ SH 0! xxH

to take the tensor product of both the 4–dimensional symmetric Poincaré triads
which show that .H;Y; �/� .H |;Y|; �|/, and that .H;Y|; �|/� .H };Y}; �}/, with
ZŒZË xxH �, so that both contain chain complexes of modules over the same ring ZŒZË xxH �.
Then algebraically gluing the triads together, as in [21, pages 117–119], we obtain the
4–dimensional symmetric Poincaré triad

.E; �/˚ .E};��}/

xxD

0@ 0
0 0

0 }

1A

 
Id 0
0 0
0 z$

E}

!
//

�
� 0

0 �}

�
��

. xxE;�0[�| 0/

xxıD

0@ı .�1/r�1| 0

0 �| 0

0 .�1/r�1| xı

1A
��

.Y; ˆ/˚ .Y };�ˆ}/ 0@j 0
0 0

0 j}

1A
// . xxV; xx‚/;

where
xxE WD C..$E| ; Id/T W E|

!E˚E|/;

xxV WD C..j |; j |/T W Y |
! V ˚ xV / and xx‚ WD‚[ˆ|

x‚:
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We need to show that this is equivalent to a triad where the top right term is .E; 0/.
First, to see that E ' xxE , the chain complex of xxE is given by

E
|
2

.$
E| ;@E| ;Id/T // E2˚E

|
1
˚E

|
2

@
xxE

2 // E1˚E
|
0
˚E

|
1

@
xxE

1 // E0˚E
|
0
;

where

@
xxE

2 D

0@@E �$E| 0

0 @E| 0

0 � Id @E|

1A and @
xxE

1 D

�
@E $E| 0

0 Id @E|

�
:

It is easy to see that the chain map

�0 WD .Id ; 0 ;�$E| W Er ˚E
|
r�1
˚E|

r !Er

is a chain equivalence, with chain homotopy inverse

�0�1
WD .Id ; 0 ; 0/T W Er !Er ˚E

|
r�1
˚E|

r :

We therefore have the diagram:

.E; 0/

xxıı�0�1

mm

.E; �/˚ .E};��}/

.Id;�$E|ı z$E}/

''

 
Id 0
0 0
0 z$

E}

!
//

xx
�

��

. xxE;�0[�| 0/

'

�0

77

xxı

��

k0
�

.Y; ˆ/˚ .Y };�ˆ}/ // . xxV; xx‚/

The top triangle commutes, while the bottom triangle commutes up to a chain homotopy
k 0 : k 0 gets composed with  to make the new triad. Furthermore, �0.�0[�| 0/�0�D 0,
so that we indeed have an equivalent triad with the top right as .E; 0/.

To complete the proof, we need to see that the consistency condition holds. The
following commutative diagram has exact columns, the right hand column being
part of the Mayer–Vietoris sequence. The horizontal maps are given by consistency
isomorphisms. Recall that

xxH WD coker..j |
[
;�j

|
[
/W H |

!H 0˚ xH 0/:

Algebraic & Geometric Topology, Volume 12 (2012)



712 Mark Powell

All homology groups in this diagram are taken with ZŒZ�–coefficients.

H |

��

�|

Š
// H1.Y

|/

��
H 0˚ SH 0

��

Š

�
�0 0

0 S�0

�
// H1.V /˚H1. xV /

��

H ˚H }

ff

xxq q q q q q q Š

�
� 0

0 �}

�
// H1.Y /˚H1.Y

}/

55

))SSSSSSSSS

SSH 0

��

Š

S�0 //_____________________________ H1.
xxV /

��
0 0

The diagonal dotted arrows are induced by the diagram, so as to make it commute. The
horizontal dotted arrow xxH !H1.ZŒZ�˝ZŒZË

xxH �
xxV / is induced by a diagram chase:

the quotient map H 0˚ SH 0! xxH is surjective. We obtain a well-defined isomorphism

S� 0W xxH
'
�!H1.ZŒZ�˝ZŒZË

xxH �
xxV /:

The commutativity of the diagram above implies the commutativity of the induced
diagram

H ˚H } //

�
� 0

0 �}

�
��

xxH

S�0

��

H1.ZŒZ�˝ZŒZËH � Y /˚H1.ZŒZ�˝ZŒZËH � Y
}/ // H1.ZŒZ�˝ZŒZËH 0�

xxV /:

This completes the proof that � is transitive and therefore completes the proof that �
is an equivalence relation.

Definition 4.8 Given an element .H;Y; �/ 2 P , choose a representative with the
boundary given by the model chain complexes.

.C; '˚�'/

g
�

i� //

iC
��

.D�; 0/

f�
��

.DC; 0/
fC // .Y; ˆ/:
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The following is also a symmetric Poincaré triad

.C;�'˚'/

g
�

i� //

iC
��

.D�; 0/

f�
��

.DC; 0/
fC // .Y;�ˆ/;

which define as the element �Y . This is the algebraic equivalent of changing the
orientation of the ambient space and of the knot simultaneously. The chain equivalence

& D

�
0 la

l�1
a 0

�
W Ci! Ci

for i D 0; 1 sends '˚�' to �'˚' and satisfies i˙ı& D i˙ . We can therefore define
the inverse �.H;Y; �/ 2 P to be the triple .H;�Y; �/, where �Y is the symmetric
Poincaré triad

.C; '˚�'/

gı&
�

i� //

iC
��

.D�; 0/

f�
��

.DC; 0/
fC // .Y;�ˆ/:

Summarising, to form an inverse we replace g with g ı& , and change the sign on the
symmetric structures everywhere but on C in the top left of the triad.

Proposition 4.9 Recall .f0g;YU ; Idf0g/ is the triple of the unknot, and let .H;Y; �/
and .H |;Y|; �|/ be two triples in P . Then

.H;Y; �/ ] � .H |;Y|; �|/� .f0g;YU ; Idf0g/

if and only if .H;Y; �/� .H |;Y|; �|/.

Proof We omit the proof of this result, and instead refer the reader to [19, Propo-
sition 8.10]. It is hopefully intuitively plausible, given that two knots K;K| are
concordant if and only if K ] �K| is slice. See Figures 1 and 2.

Proposition 4.9 completes the proof that we have defined an abelian group.

5 .1:5/–Solvable knots are algebraically .1:5/–solvable

This section contains the proof of the following theorem.

Theorem 5.1 A .1:5/–solvable knot is algebraically .1:5/–solvable.
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.Y; ˆ/ .DC; 0/.D�; 0/

.V; ‚/.D�; 0/ .DC; 0/

.D|
�; 0/

.Y |;�ˆ|/ .D
|
C; 0/

.C; '˚�'/

.C |; '|˚�'|/

Figure 1. The cobordism which shows that Y � Y|

.Y; ˆ/

D|
�

D�

.V; ‚/D� D|
�

D� D� D Y U D�

C

C

DC

D
|
C

D
|
C

.Y |;�ˆ|/

C |

Figure 2. The cobordism which shows that Y ] �Y| � YU

We begin by recalling the definition of .n/–solubility. We denote the zero framed
surgery on a knot K by MK .

Definition 5.2 [8, Definition 1.2] A Lagrangian of a symmetric form �W P �P!R

on a free R–module P is a submodule L� P of half-rank on which � vanishes.
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For n 2N0 WDN [f0g, let �n be the equivariant intersection pairing, and �n the self-
intersection form, on the middle dimensional homology H2.W IZŒ�1.W /=�1.W /.n/�/

of the covering space W .n/ corresponding to the subgroup �1.W /.n/ � �1.W /:

�nW H2.W IZŒ�1.W /=�1.W /.n/�/�H2.W IZŒ�1.W /=�1.W /.n/�/

! ZŒ�1.W /=�1.W /.n/�:

An .n/–Lagrangian is a submodule of H2.W IZŒ�1.W /=�1.W /.n/�/, on which �n

and �n vanish, which maps via the covering map onto a Lagrangian of �0 .

We say that a knot K is .n/–solvable if the zero framed surgery MK bounds a
topological spin 4–manifold W such that the inclusion induces an isomorphism on
first homology and such that W admits two dual .n/–Lagrangians. In this setting,
dual means that �n pairs the two Lagrangians together nonsingularly and their images
freely generate H2.W IZ/.

We say that K is .n:5/–solvable if in addition one of the .n/–Lagrangians is the image
of an .nC1/–Lagrangian.

An .n/–solution W is an approximation to a slice disc complement; if K is slice
then it is .n/–solvable for all n, so if we can obstruct a knot from being .n/– or
.n:5/–solvable then in particular we show that it is not slice.

It is an interesting question (Question 1.2) to wonder whether the converse of Theorem
5.1 holds. At present, AC2 does not capture the subtle quadratic refinement information,
encoded in �2 , which is part of Definition 5.2. Until the construction of AC2 is
improved so as to take the self intersection form into account it is unlikely that the
converse to Theorem 5.1 should hold. Perhaps rationally there is more hope.

The idea of the proof of Theorem 5.1 is as follows. The Cappell–Shaneson technique [2]
looks for obstructions to being able to perform surgery on a 4–manifold W whose
boundary is the zero framed surgery MK , in order to excise the second Z–homology
and create a homotopy slice disc exterior. The main obstruction to being able to do
this surgery is the middle-dimensional intersection form of W , as in the Cochran–
Orr–Teichner definition of .n/–solubility. However, even if the Witt class of the
intersection form vanishes, with coefficients in ZŒ�1.W /=�1.W /.2/� for testing .1:5/–
solubility, this does not imply that we have a half basis of the second homology
H2.W IZŒ�1.W /=�1.W /.2/�/ representable by disjointly embedded spheres, as our
data for surgery: typically the homology classes will be represented as embedded
surfaces of nonzero genus, whose fundamental group maps into �1.W /.2/ . We cannot
do surgery on such surfaces.
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However, the conditions on a .1:5/–solution are, as we shall see, precisely the conditions
required for being able to perform algebraic surgery on the chain complex of the .1:5/–
solution. The .1:5/–level algebra cannot see the differences between .2/–surfaces and
spheres, so that we can obtain an algebraic .1:5/–solution V .

In particular, the existence of the dual .1/–Lagrangian allows us to perform algebraic
surgery without changing the first homology at the ZŒZ� level, therefore maintaining the
consistency condition. When performing geometric surgery on a 4–manifold W along
a 2–sphere, we remove S2 �D2 and glue in D3 �S1 . Removing the thickening D2

potentially creates new elements of H1.W IZŒZ�/. However, the existence of a dual
surface to the S2 which we remove guarantees that the boundary S1 of the thickening
D2 bounds a surface on the other side, so that we do not create extra 1-homology. This
phenomenon will also be seen when performing algebraic surgery; as ever, the degree
of verisimilitude provided by the chain level approach is somewhat remarkable.

Definition 5.3 An n–dimensional symmetric complex .C; ' 2 Qn.C; "// is con-
nected if H0.'0W C

n��! C�/D 0. An n–dimensional symmetric pair .f W C !D;

.ı'; '/ 2Qn.f; "// is connected if H0..ı'0; '0f
�/T W Dn��! C.f /�/D 0.

Definition 5.4 [20, Part I, page 145] Given a connected n–dimensional symmetric
chain complex over a ring A, .C; ' 2Qn.C; "//, an algebraic surgery on .C; '/ takes
as data a connected .nC1/–dimensional symmetric pair

.f W C !D; .ı'; '/ 2QnC1.f; "//:

The output, or effect, of the algebraic surgery is the connected n–dimensional symmetric
chain complex over A, .C 0; '0 2Qn.C 0; "//, given by

dC 0 D

0@ dC 0 .�1/nC1'0f
�

.�1/rf dD .�1/rı'0

0 0 .�1/rıD

1A W
C 0r D Cr ˚DrC1˚Dn�rC1

! C 0r�1 D Cr�1˚Dr ˚Dn�rC2;

with the symmetric structure given by

'00 D

0@ '0 0 0

.�1/n�rf T"'1 .�1/n�r T"ı'1 .�1/r.n�r/"

0 1 0

1A W
C 0n�r

D C n�r
˚Dn�rC1

˚DrC1! C 0r D Cr ˚DrC1˚Dn�rC1;
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'0s D

0@ 's 0 0

.�1/n�rf T"'sC1 .�1/n�r T"ı'sC1 0

0 0 0

1A W
C 0n�rCs

D C n�rCs
˚Dn�rCsC1

˚Dr�sC1! C 0r D Cr ˚DrC1˚Dn�rC1

for s � 1.

The reader can check that d2
C 0
D 0 and that f'0sg 2Qn.C 0; "/. Algebraic surgery on a

chain complex which is symmetric but not Poincaré preserves the homotopy type of
the boundary; see [20, Part I, Proposition 4.1 (i)] for the proof.

Definition 5.5 The suspension morphism S on chain complexes raises the degree:
.SC /r D Cr�1I dSC D dC .

Proof of Theorem 5.1 We need to show that the triple .H K ;YK ; �K / of a .1:5/–
solvable knot K , with a .1:5/–solution W , is equivalent to the identity element of AC2 ,
which is represented by the triple .f0g;YU ; Idf0g/ corresponding to the unknot.

The chain complex NK WDEK [EK˚EU Y K ˚Y U is chain equivalent to the chain
complex C�.MK IZŒZ ËH1.MK IZŒZ�/�/ of the second derived cover of the zero
framed surgery on K . Our first attempt for a chain complex which fits into a 4–
dimensional symmetric Poincaré triad as required in Definition 4.3 is the chain complex
of the second derived cover of the .1:5/ solution W

.V 0; ‚0/ WD .C�.W IZŒZËH1.W IZŒZ�/�/; n�.ŒW;MK �//;

so that
H 0 WD �1.W /.1/=�1.W /.2/

'
�!H1.W IZŒZ�/;

and we have the triad

.EK ; �K /˚ .EU ;��U /

.K ;U /
�

.Id;Id˝$
EK / //

�
�K 0

0 �U

�
��

.EK ; 0/

ı

��
.Y K ; ˆK /˚ .Y U ;�ˆU /

.jK ;jU / // .V 0; ‚0/;

with a geometrically defined consistency isomorphism

H 0
'
�!H1.W IZŒZ�/DH1.ZŒZ�˝ZŒZËH 0� V /:

The problem is that H2.W IZ/ is typically nonzero: if it were zero, we would have
our topological concordance exterior and in particular K would be second order
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algebraically slice. We therefore need, as indicated above, to perform algebraic surgery
on V 0 to transform it into a Z–homology circle. We form the algebraic Thom complex
(Definition 2.1)

C�.W;MK IZŒZËH 0�/' xV WD C..ı; .�1/r�1K ; .�1/r�1U ;�j K ;�j U /W

.NK /r DEK
r ˚EK

r�1˚EU
r�1˚Y K

r ˚Y U
r ! V 0r /;

with symmetric structure x‚ WD‚0=.0[�K˚��U ˆK ˚�ˆU /. In this section the bar
is again a notational device and has nothing to do with involutions.

This gives us the input for surgery, since the input for algebraic surgery must be a
symmetric chain complex. Next, we need the data for surgery.

As in the proof of [8, Proposition 4.3], any compact topological 4–manifold has the
homotopy type of a finite simplicial complex; see [15, Annex B III, page 301]. In
particular this means that H2.W IZ/ is finitely generated. We therefore have homology
classes l 0

1
; : : : ; l 0

k
2 H2.W IZŒZ ËH 0�/ which generate the .2/–Lagrangian whose

existence is guaranteed by definition of a .1:5/–solution W . There are therefore
dual cohomology classes l1; : : : ; lk 2H 2.W;MK IZŒZËH 0�/, by Poincaré-Lefschetz
duality. Taking cochain representatives for these, we have maps li W xV2! ZŒZËH 0�.
We then take as our data for algebraic surgery the symmetric pair�

xf W xV ! B WD S2

�M
k

ZŒZËH 0�/; .0; x‚

��
;

where
xf D .l1; : : : ; lk/

T
W xV2! B2 D

M
k

ZŒZËH 0�:

The fact that the li are cohomology classes means that lid xV D 0, so that xf is a chain
map. The requirement that the l 0i generate a submodule of H2.W IZŒZËH 0�/DH2.V

0/

on which the intersection form vanishes means that the duals li generate a submodule
of H 2. xV / on which the cup product vanishes. The cup product of any two li ; lj is
given by

��0.li ˝ lj /.ŒW;MK �/D .li ˝ lj /.�0.ŒW;MK �//D .li ˝ lj /x‚0;

which under the slant isomorphism is li x‚0l�j , and so we see that each of these com-
posites vanishes.

The only possibility for nonzero symmetric structure in the data for surgery would
arise when s D n � 2r � 1 D 4 � 2 � 2 � 1 D �1, so no such nonzero structure
maps exist. Therefore the condition for our data for surgery to be a symmetric pair
is that xf x‚0

xf � D 0; which is the condition that the k � k matrix with .i; j /–th

Algebraic & Geometric Topology, Volume 12 (2012)



A second order algebraic knot concordance group 719

entry li x‚0l�j , is zero. This is satisfied as we saw above, since li x‚0l�j W ZŒZËH 0�!

ZŒZ ËH 0� is a module homomorphism given by multiplication by the same group
ring element as the evaluation on the relative fundamental class ŒW;MK � of the cup
product of two cohomology classes dual to the .2/–Lagrangian, and so equals the value
of �2.l

0
i ; l
0
j /. This means that we can proceed with the operation of algebraic surgery

to form the symmetric chain complex .V; ‚/, which is the effect of algebraic surgery,
shown below. We may assume, since W is a 4–manifold with boundary, that we have
a chain complex V 0 whose nonzero terms are V 0

0
;V 0

1
;V 0

2
and V 0

3
. The nonzero terms

in xV will therefore be of degree less than or equal to four.

The output of algebraic surgery, which we denote as .V; ‚/ is then given, from
Definition 5.4, by

xV 0

�
d�
xV

0

�
//

.x‚0/

��

xV 1˚B2
.d�
xV
xf �/

//

�
x‚0 0
0 1

�

��

xV 2

 
d�
xV

� xf x‚�
0

!
//

.x‚0/

��

xV 3˚B2

.d�
xV

0/
//

�
x‚0 0

�f T x‚1 �1

�
��

xV 4

.x‚0/

��
xV4 �

d xV
0

� // xV3˚B2

.d xV �x‚0
xf �/

// xV2 �
d xV
xf

� // xV1˚B2
.d xV 0/

// xV0:

The higher symmetric structures ‚s are just given by the maps x‚s for s D 1; 2; 3; 4

except for the map

‚1 D .x‚1 ; � xf T x‚2/
T
W xV 4

! xV1˚B2:

Next, we take the algebraic Poincaré thickening (Definition 2.1) of V to get

iV W @V ! V 4��;

where, as in Section 2, we define the complex V 4�� by

.V 4��/r D HomZŒZËH 0�.V4�r ;ZŒZËH 0�/;

with boundary maps @�W .V 4��/rC1! .V 4��/r given by @� D .�1/rC1d�
V

, where
d�

V
is the coboundary map. By [20, Part I, Proposition 4.1 (i)], the operation of algebraic

surgery does not change the homotopy type of the boundary. There is therefore a chain
equivalence

.NK ; 0[�K˚��U ˆK
˚�ˆU /

�
! .@V; @‚/;
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so that using the composition of the relevant maps in

NK DEK
[EK˚EU Y K

˚Y U �
! @V ! V 4��

we again have a 4–dimensional symmetric Poincaré triad

.EK ; �K /˚ .EU ;��U /

�

//

��

.EK ; 0/

��
.Y K ; ˆK /˚ .Y U ;�ˆU / // .V 4��; 0/:

To complete the proof we need to check the homology conditions of Definition 4.3,
namely that V 4�� has the Z–homology of a circle and the consistency condition that
there is an isomorphism � 0W H 0

'
!H1.ZŒZ�˝ZŒZËH 0� V

4��/. We have

H4.Z˝ZŒZËH 0�V
4��/ŠH 0.Z˝ZŒZËH 0�

xV /ŠH 0.W;MK IZ/ŠH4.W IZ/Š 0;

H0.Z˝ZŒZËH 0�V
4��/ŠH 4.Z˝ZŒZËH 0�

xV /ŠH 4.W;MK IZ/ŠH0.W IZ/Š Z;

as required. For each basis element .0; : : : ; 0; 1; 0; : : : ; 0/ 2 B2 , where the 1 is in the
i –th entry, we have, for v 2 xV2 ,

xf �.0; : : : ; 0; 1; 0; : : : ; 0/.v/D .0; : : : ; 0; 1; 0; : : : ; 0/ xf .v/

D .0; : : : ; 0; 1; 0; : : : ; 0/.l1; : : : ; lk/
T .v/D li.v/:

As no li lies in the image of d�
xV
W xV 1! xV 2 , the kernel ker..d�

xV
; xf �/W xV 1˚B2! xV 2/

is isomorphic to ker.d�
xV
W xV 1! xV 2/, so that

H3.Z˝ZŒZËH 0� V
4��/ŠH 1.Z˝ZŒZËH 0�

xV /ŠH 1.W;MK IZ/Š 0:

Also, since the li are in the image of xf � , they are no longer cohomology classes
of V 4�� as they were of xV .

At this point we need the dual classes; recall that we have, from Definition 5.2, classes
d 0

1
; : : : ; d 0

k
2H2.W IZŒZ�/, whose images in H2.W IZ/ we also denote by d 0

1
; : : : ; d 0

k
,

which satisfy �1.l
0
i ; d
0
j / D ıij . We therefore have, by Poincaré–Lefschetz duality,

classes
d1; : : : ; dk 2H 2.W;MK IZŒZ�/;

with representative cochains which we also denote d1; : : : ; dk 2
xV 2 .

Since, as above, the intersection form is defined in terms of the cup product, we have,
over ZŒZ� and Z, that

li x‚
�
0d�j D ıij :
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We can use x‚�
0
DT x‚0 instead of x‚0 to calculate the cup products due to the existence

of the higher symmetric structure chain homotopy x‚1 . Then

� xf x‚�0.dj /D� xf x‚
�
0d�j .1/D�.l1

x‚�0d�j .1/; : : : ; lk
x‚�0d�j .1//

T

D�.0; : : : ; 0; 1; 0; : : : ; 0/T D�ej ;

where the 1 is in the j –th position, and for j D 1; : : : ; k we denote the standard basis
vectors by ej WD .0; : : : ; 0; 1; 0; : : : ; 0/

T 2 B2 . This means that the dj are not in the
kernel of � xf x‚�

0
. Then, since d�

xV
.dj / D 0 as the dj are cocycles in xV , we know

that the dj are no longer cohomology classes in H2.Z˝ZŒZËH 0� V
4��/. The group

H 2.Z˝ZŒZËH 0�
xV / was generated by the classes l1; : : : ; lk ; d1; : : : ; dk , which means

that we now have H2.Z˝ZŒZËH 0� V
4��/Š 0.

Moreover, over both ZŒZ� and Z, taking the element D WD
Pk

iD1 aj dj , for any
elements a1; : : : ; ak 2 ZŒZ�, we have that

� xf x‚�0.�D/D

kX
jD1

aj . xf x‚
�
0d�j .1//D

kX
jD1

aj ej 2 B2:

This means that � xf x‚�
0

is onto B2 . Therefore

H1.Z˝ZŒZËH 0�V
4��/ŠH 3.Z˝ZŒZËH 0�

xV /ŠH 3.W;MK IZ/ŠH1.W IZ/ŠZ;

so the first homology remains unchanged at the Z level as required. Similarly, with
ZŒZ� coefficients, we have the isomorphisms

H 0
'
�!H1.W IZŒZ�/

'
�!H 3.W;MK IZŒZ�/
'
�!H 3.ZŒZ�˝ZŒZËH 0�

xV /
'
�!H1.ZŒZ�˝ZŒZËH 0� V

4��/;

which define the map

� 0W H 0
'
�!H1.ZŒZ�˝ZŒZËH 0� V

4��/;

so the consistency condition is satisfied. As H 0 is isomorphic to the ZŒZ�–homology of
a finitely generated projective module chain complex which is a Z–homology circle, we
can apply Levine’s arguments [18, Propositions 1.1 and 1.2], to see that H 0 is of type K .
This completes the proof that .1:5/–solvable knots are second order algebraically slice,
or algebraically .1:5/–solvable.

Theorem 5.1 shows that the homomorphism from C to AC2 factors through F.1:5/ as
claimed.
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6 Extracting first order obstructions

In this section we obtain a surjective homomorphism from AC2 to Levine’s algebraic
concordance group AC1 . In itself this is an important property which a respectable
notion of a second order concordance group ought to have; moreover, this is the first
step in defining the Cochran–Orr–Teichner obstructions algebraically.

We give the definition of AC1 in terms of Blanchfield forms. For proofs of its
equivalence to the standard definition in terms of Seifert forms, see Kearton [13]
and Ranicki [23].

Definition 6.1 The Blanchfield form [1] of a knot K is the nonsingular Hermitian
sesquilinear pairing

BlW H1.MK IZŒZ�/�H1.MK IZŒZ�/!Q.Z/=ZŒZ�DQ.t/=ZŒt; t�1�

adjoint to the sequence of isomorphisms

H1.MK IZŒZ�/
'
�!H 2.MK IZŒZ�/

'
�!H 1.MK IQ.Z/=ZŒZ�/

'
�! HomZŒZ�

�
H1.MK IZŒZ�/;

Q.Z/

ZŒZ�

�
;

given by Poincaré duality, the inverse of a Bockstein homomorphism and the universal
coefficient spectral sequence (see [18]).

We say that a Blanchfield form is metabolic if it has a metaboliser. A metaboliser for
the Blanchfield form is a submodule P �H1.MK IZŒZ�/ such that

P D P? WD fv 2H1.MK IZŒZ�/ j Bl.v; w/D 0 for all w 2 Pg:

Definition 6.2 The algebraic concordance group, first defined in [17] and which we
denote AC1 , is defined as follows. A Blanchfield form [1] is an Alexander ZŒZ�–
module H (Theorem 3.1) with a ZŒZ�–module isomorphism

BlW H
'
�!H^ WD HomZŒZ�.H;Q.Z/=ZŒZ�/;

which satisfies BlDBl^ . We define the Witt group of equivalence classes of Blanchfield
forms, with addition by direct sum and the inverse of .H;Bl/ given by .H;�Bl/.
We call an element .H;Bl/ metabolic if there exists a metaboliser P � H such
that P D P? with respect to Bl. We say that .H;Bl/ is equivalent to .H 0;Bl0/ if
.H ˚H 0;Bl˚�Bl0/ is metabolic. Lemma 6.3 states the rational version of the fact
that this is transitive and is therefore an equivalence relation. The integral version is
harder, but follows from the proof (see eg [23, Theorems 3.10 and 4.2]) of the fact that
the Witt group of Seifert forms and the Witt group of Blanchfield forms are isomorphic.
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We only prove the rational version of the following lemma, since this is what we will
need in Proposition 7.5 to see that the equivalence relation used to define COT .C=1:5/
is transitive. In particular, in the proof of Proposition 7.5, we will need an explicit
description of the new metaboliser, as provided by Lemma 6.3.

The proof given is, in the author’s opinion, the correct way to prove such a statement,
since it shows most clearly the correspondence of the algebra to the underlying geometry.

Lemma 6.3 Let .H;Bl/ and .H 0;Bl0/ be rational Blanchfield forms. Suppose that
.H˚H 0;Bl˚Bl0/ is metabolic with metaboliser PDP?�H˚H 0 , and that .H 0;Bl0/
is metabolic with metaboliser QDQ? �H 0 . Then .H;Bl/ is also metabolic, and a
metaboliser is given by

R WD fh 2H j 9 q 2Q with .h; q/ 2 Pg �H:

Proof A Blanchfield form is the same as a 0–dimensional symmetric Poincaré com-
plex in the category of finitely generated QŒt; t�1�–modules with 1 � t acting as
an automorphism. By [21, Propositions 3.2.2 and 3.4.5 (ii)], a metaboliser P for a
Blanchfield form .H;Bl/ is the same as a 1–dimensional symmetric Poincaré pair

.f W C !D; .0;Bl^//;

where C D S0H^ and D D S0P^ , in the category of finitely generated QŒt; t�1�–
modules with 1� t acting as an automorphism. This is an algebraic null-cobordism of
.H^;Bl^/. Let �

g

g0

�
W P !H ˚H 0 and hW Q!H 0

be the inclusions of the metabolisers. We therefore have symmetric Poincaré pairs

.g^ g0^/W H^˚H 0^! P^ DD0; .0;Bl^˚Bl0^//;

.h^W H 0^!Q^ DD00; .0;�Bl0^//:

We have introduced a minus sign in front of Bl0^ , so that we can glue the two algebraic
cobordisms together along H 0^ to yield another algebraic cobordism

H 0^ DD00
1�

g0^

h^

�
��

H^ D C0

�
g^

0

�
// P^˚Q^ DD00

0
:

From this we deduce that

xR WD im
�
H 0.D00/!H 0.C /

�
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is a metaboliser for Bl^W H 0.C /DH^^ �H^^!Q.t/=QŒt; t�1�, where the over-
line indicates the use of the involution. Since the identification H^^ ŠH involves an
involution, we have that

xxRDRD im
�
.g 0/W ker

�
.g0 h/W P ˚Q!H 0

�
!H

�
;

is a metaboliser for Bl. Finally, this is indeed equal to

fh 2H j 9 q 2Q with .h; q/ 2 Pg:

To define the map AC2 ! AC1 , we begin by taking an element .H;Y; �/ 2 AC2 ,
and forming the algebraic equivalent of the zero surgery MK . Recall that we denote
the triple associated to the unknot by .f0g;YU ; Idf0g/. We construct the symmetric
Poincaré complex

.N; �/ WD ..Y ˚.ZŒZËH �˝ZŒZ�Y
U //[E˚.ZŒZËH �˝ZŒZ�EU /E; .ˆ˚0/[�˚��U 0/:

In the case that Y D YK is the fundamental symmetric Poincaré triad of a knot K ,
we have that N D NK ' C�.MK IZŒZ Ë H �/. The key observation is that the
Blanchfield form can be defined purely in terms of the symmetric Poincaré complex
.ZŒZ�˝ZŒZËH �N; Id˝�/.

In the following, recall the standard notation

.ZŒZ�˝ZŒZËH �N /i D HomZŒZ�.ZŒZ�˝ZŒZËH �Ni ;ZŒZ�/:

Proposition 6.4 Given Œx�; Œy� 2 H1.ZŒZ� ˝ZŒZËH � N /, the rational Blanchfield
pairing of Œx� and Œy� is given by

Bl.Œx�; Œy�/D
1

s
z.x/;

where
x;y 2 .ZŒZ�˝ZŒZËH �N /1; z 2 .ZŒZ�˝ZŒZËH �N /1;

@�.z/D s� 00.y/ for some s 2 ZŒZ��f0g;

and
� 00W .ZŒZ�˝ZŒZËH �N /1! .ZŒZ�˝ZŒZËH �N /2

is part of a chain homotopy inverse

� 00W .ZŒZ�˝ZŒZËH �N /r ! .ZŒZ�˝ZŒZËH �N /3�r ;

so that
�0 ı �

0
0 ' Id; � 00 ı �0 ' Id :

The Blanchfield pairing is nonsingular, sesquilinear and Hermitian.
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We omit the proof, since it is long but essentially comprises straight-forward computa-
tions. See [19, Proposition 10.2].

Proposition 6.5 There is a surjective homomorphism AC2 ! AC1 , which makes
following diagram commute:

C //

����

AC2

����
C=F.0:5/

' //

66

AC1:

The bottom map is an isomorphism; see [8, Remark 1.3.2].

Proof Given an element .H;Y; �/ 2AC2 , we can find the Blanchfield form on the
ZŒZ�–module:

BlW H1.ZŒZ�˝ZŒZËH �N /�H1.ZŒZ�˝ZŒZËH �N /!Q.Z/=ZŒZ�;

as in Proposition 6.4. To see that addition commutes with the map AC2 ! AC1 ,
note that the Alexander modules add as in Proposition 2.6. The symmetric structures
also have no mixing between the chain complexes of Y and Y | in the formulae in
Definition 3.7, so that, noting that there is a Mayer–Vietoris sequence isomorphism
H1.ZŒZ�˝ZŒZËH � Y /

'
!H1.ZŒZ�˝ZŒZËH �N /, the Blanchfield form of a connected

sum in AC2 is the direct sum of the two Blanchfield forms in the Witt group. Surjectivity
follows from the fact (see [18]) that every Blanchfield form is realised as the Blanchfield
form of a knot, and therefore as the Blanchfield form of the fundamental symmetric
Poincaré triad of a knot.

We will show the following, which we state as a separate result, and prove after the
rest of the proof of Proposition 6.5:

Theorem 6.6 For triple .H;Y; �/ 2AC2 which is second order algebraically concor-
dant to the unknot, via a 4–dimensional symmetric Poincaré pair

.j W ZŒZËH 0�˝ZŒZËH �N ! V; .‚; �//;

if we define

P WD ker.j�W H1.QŒZ�˝ZŒZËH 0�ZŒZËH 0�˝ZŒZËH �N /!H1.QŒZ�˝ZŒZËH 0�V //;

then P is a metaboliser for the rational Blanchfield form on H1.QŒZ�˝ZŒZËH �N /.
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Before proving Theorem 6.6, we will first show how it implies Proposition 6.5. The Witt
group of rational Blanchfield forms is defined as in Definition 6.1 and Definition 6.2
and Proposition 6.4, but with the coefficient ring Z replaced by Q. Now recall that
the Witt group of integral Blanchfield forms injects into the Witt group of rational
Blanchfield forms. To see this, first note that

H1.ZŒZ�˝ZŒZËH �N /�H1.QŒZ�˝ZŒZËH �N /ŠQ˝Z H1.ZŒZ�˝ZŒZËH �N /:

The first map is an injection since H1.ZŒZ� ˝ZŒZËH � N / is Z–torsion free (see
Theorem 3.1), while the second map is an isomorphism as Q is flat as a Z–module.
Then suppose that we have a metaboliser PQ for the rational Blanchfield form. This
restricts to a metaboliser

PZ WD PQ\ .Z˝Z H1.ZŒZ�˝ZŒZËH �N //

for the integral Blanchfield form, since the calculation, restricted to the image of
H1.ZŒZ�˝ZŒZËH �N /, is the same for the two forms. The symmetric structure map
in the rational case is just the integral map tensored up with the rationals: .� 0

0
/Q D

IdQ˝Z.�
0
0
/Z .

Therefore, the only place that the two calculations could differ is if one took s 2

QŒZ�nZŒZ� or z 2 .QŒZ�˝ZŒZËH �N /1 n .ZŒZ�˝ZŒZËH �N /1 . Note that we can con-
sider .ZŒZ�˝ZŒZËH �N /1 as a subset of .QŒZ�˝ZŒZËH �N /1 since QŒZ�˝ZŒZËH �N Š

Q˝ZZŒZ�˝ZŒZËH �N , and QŒZ�ŠQ˝ZZŒZ�. In the cases that such an s or such a z

are chosen, we can clear denominators in the equation @�.z/D s� 0
0
.y/ to get @�.nz/D

ns� 0
0
.y/, for some n 2Z, so that now ns 2ZŒZ� and nz 2 .ZŒZ�˝ZŒZËH �N /1 . Then

1

ns
.nz/.x/D

n

ns
z.x/D

1

s
z.x/;

which is the same outcome. By Theorem 6.6, second order algebraically slice triples
map to metabolic rational Blanchfield forms, which we have now seen restrict to
metabolic integral Blanchfield forms. By applying Proposition 4.9, we see that we have
a well-defined homomorphism as claimed. This completes the proof of Proposition 6.5,
modulo Theorem 6.6.

Next, we will prove Theorem 6.6. This theorem is an algebraic reworking of [8,
Theorem 4.4], which we state here (for nD 1).

Theorem 6.7 [8, Theorem 4.4] Suppose MK is .1/–solvable via W . Then the
rational Blanchfield form of MK is metabolic, and in fact if we define

P WD ker.i�W H1.MK IQŒZ�/!H1.W IQŒZ�//;

then P D P? with respect to Bl.
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In Section 8, Theorem 6.6 will be crucial for the control which the Blanchfield form
provides on which 1–cycles of QŒZ�˝ZŒZËH �N bound in some 4–dimensional pair,
which in turn controls which representations extend over putative algebraic slice disc
exteriors. The proof will require the following proposition 6.10 of [8]. Since we will
also require the use of Proposition 6.10 when extracting the Cochran–Orr–Teichner
obstructions, we give the statement here in the noncommutative setting, even though
this is not required for the proof of Theorem 6.6. Before we can do this, we need two
definitions.

Definition 6.8 A poly-torsion-free-abelian, or PTFA, group � is a group which admits
a finite sequence of normal subgroups f1g D �0 C �1 C � � �C �k D � such that the
successive quotients �iC1=�i are torsion-free abelian for each i � 0.

Definition 6.9 The Ore condition determines whether a multiplicative subset S of a
noncommutative ring without zero-divisors can be formally inverted. A ring A satisfies
the Ore condition if, given s 2 S and a 2A, there exists t 2 S and b 2A such that
at D sb . Then the Ore localisation S�1A exists. If S D A� f0g then S�1A is a
skew-field which we denote by K.A/, or sometimes just K if A is understood.

Note that if AD ZŒZ�, then K.A/DQ.Z/. The rational group ring of a PTFA group
satisfies the Ore condition [8, Proposition 2.5]. See Stenström [24, Chapter 2] for more
details on the Ore condition, such as for the fact that the Ore localisation K.A/ is flat
as a module over A.

Proposition 6.10 [8, Proposition 2.10] Let � be a PTFA group. If C� is a non-
negative chain complex over Q� which is finitely generated projective in dimensions
0� i � n and such that Hi.Q˝Q� C�/Š 0 for 0� i � n, then Hi.K˝Q� C�/Š 0.

The statement of [8, Proposition 2.10] is made with the hypothesis that the chain
complex is finitely generated free. We note that the statement can be relaxed to C

being a finitely generated projective module chain complex, since this still allows the
lifting of the partial chain homotopies.

Proof of Theorem 6.6 A large part of this proof can be carried over verbatim from
the proof of [8, Theorem 4.4], subject to a manifold-chain complex dictionary, as
follows. The homology of MK with coefficients in a ring R should be replaced with
the homology of: R˝ZŒZËH � N ; the (co)homology of W with coefficients in R

should be replaced with the (co)homology of R˝ZŒZËH 0� V ; and the homology of
the pair .W;MK / with coefficients in R should be replaced with the homology of:

R˝ZŒZËH 0� C.j W ZŒZËH 0�˝ZŒZËH �N ! V /:
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To complete the proof we need to show that:

(i) The relative linking pairings ˇrel are nonsingular. This will follow from the
argument in the proof of [8, Theorem 4.4] once we show, for an algebraic
.1:5/–solution V , that H�.Q.Z/˝ZŒZËH 0� V / Š 0. Note that this also im-
plies by universal coefficients that H�.Q.Z/ ˝ZŒZËH 0� V / Š 0, and that
H�.QŒZ�˝ZŒZËH 0� V / is torsion, since Q.Z/ is flat over QŒZ�.

(ii) The sequence

TH2.QŒZ�˝ZŒZËH 0� C.j //
@
�!H1.QŒZ�˝ZŒZËH �N /

j�
�!H1.QŒZ�˝ZŒZËH 0� V /

is exact.

To prove (i) we apply Proposition 6.10 to the chain complex

QŒZ�˝ZŒZËH 0� C.j ıf�W ZŒZËH 0�˝ZŒZËH �D�! V /:

Since j ıf� induces isomorphisms on rational homology, the relative homology groups
vanish:

H�.Q˝QŒZ�QŒZ�˝ZŒZËH 0� C.j ıf�//Š 0:

Proposition 6.10 then says that

H�.Q.Z/˝QŒZ�QŒZ�˝ZŒZËH 0� C.j ıf�//Š 0;

which implies the second isomorphism of

H�.Q.Z/˝ZŒZËH 0� V /ŠH�.Q.Z/˝QŒZ�QŒZ�˝ZŒZËH 0� V /

ŠH�.Q.Z/˝QŒZ�QŒZ�˝ZŒZËH �D�/:

Then since Q.Z/˝ZŒZËH �D� is given by the contractible chain complex t�1W Q.t/�!
Q.t/, we see that H�.Q.Z/˝ZŒZËH 0� V /Š 0.

The definitions of the relative linking pairings can be made purely algebraically using
chain complexes, using the corresponding sequences of isomorphisms:

TH2.QŒZ�˝ZŒZËH 0� C.j //
'
�! TH 2.QŒZ�˝ZŒZËH 0� V /

'
�!H 1.Q.Z/=QŒZ�˝ZŒZËH 0� V /

'
�! HomQŒZ�.H1.QŒZ�˝ZŒZËH 0� V /;Q.Z/=QŒZ�/;

TH1.QŒZ�˝ZŒZËH 0� V /
'
�! TH 3.QŒZ�˝ZŒZËH 0� V /

'
�!H 2.Q.Z/=QŒZ�˝ZŒZËH 0� V /

'
�! HomQŒZ�.H2.QŒZ�˝ZŒZËH 0� V /;Q.Z/=QŒZ�/:
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There are also explicit chain level formulae for the pairings ˇrel in a similar vein to
that for Bl in Proposition 6.4; for us, the important point is that the above maps are
indeed isomorphisms.

To prove (ii), we show that in fact H2.QŒZ�˝ZŒZËH 0� C.j // is entirely torsion. This
follows from the long exact sequence of the pair

IdQ.Z/˝j W Q.Z/˝ZŒZËH �N !Q.Z/˝ZŒZËH 0� V:

We have the following excerpt:

H2.Q.Z/˝ZŒZËH 0� V /!H2.Q.Z/˝ZŒZËH 0� C.j //!H1.Q.Z/˝ZŒZËH �N /:

We have already seen in (i) that H2.Q.Z/˝ZŒZËH 0� V /Š 0. We claim that

H1.Q.Z/˝ZŒZËH �N /Š 0;

which then implies by exactness that the central module H2.Q.Z/˝ZŒZËH 0� C.j // is
also zero. Then note, since Q.Z/ is flat over QŒZ�, that

H2.Q.Z/˝ZŒZËH 0� C.j //ŠQ.Z/˝QŒZ�H2.QŒZ�˝ZŒZËH 0� C.j //:

That this last module vanishes means that H2.QŒZ�˝ZŒZËH 0� C.j // is QŒZ�–torsion.
To see the claim that H1.Q.Z/˝ZŒZËH �N /Š 0, recall that

H1.QŒZ�˝ZŒZËH �N /ŠH1.QŒZ�˝ZŒZËH � Y /ŠQ˝Z H1.ZŒZ�˝ZŒZËH � Y /

ŠQ˝Z H;

and that an Alexander module H is ZŒZ�–torsion, so that the QŒZ�–module Q˝Z H

is QŒZ�–torsion. This completes the proof of (ii); and therefore completes the proof of
all the points that the chain complex argument for Theorem 6.6 is not directly analogous
to the geometric argument in the proof of [8, Theorem 4.4], completing the present
proof and therefore also the proof of Proposition 6.5.

7 The Cochran–Orr–Teichner obstruction theory

Before explaining how to extract the Cochran–Orr–Teichner obstructions, first we need
to define them. In this section we not only define but also repackage the Cochran–
Orr–Teichner metabelian obstructions, to put them into a single pointed set, which
we denote COT .C=1:5/ . This construction involves taking large disjoint unions over
all of the possible choices which are implicit in defining the Cochran–Orr–Teichner
obstructions. By contrast, the construction of AC2 is significantly simpler, as well as
having the advantage of being a group.
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Cochran, Orr and Teichner [8] use their obstruction theory to detect that certain knots are
not .1:5/– and .2:5/–solvable. In [10] it is shown that certain knots are .n/–solvable
but not .n:5/–solvable for any n 2N0 . We focus on the .1:5/–level obstructions for
this exposition. Following [16], who worked on the metabelian case, Cochran, Orr and
Teichner define representations of the fundamental group of the zero framed surgery
�W �1.MK /!� , where �D�1 WDZËQ.t/=QŒt; t�1�, their universally .1/–solvable
group. To define the semidirect product in � , n 2 Z acts by left multiplication by tn .
The representation

�W �1.MK /!�1.MK /=�1.MK /
.2/
!ZËH1.MK IQŒt; t

�1�/!ZËQ.t/=QŒt; t�1�

is given by g 7! .n WD �.g/; h WD gt��.g// 7! .n;Bl.p; h//, where �W �1.MK /! Z
is the abelianisation homomorphism and t is a preferred meridian in �1.MK /, the
pairing Bl is the Blanchfield form, and p is an element of H1.MK IQŒt; t

�1�/.

Now suppose that there is .1/–solution W . As in Theorem 6.7, define

P WD ker.i�W H1.MK IQŒZ�/!H1.W IQŒZ�//:

Then for each p 2 P , by [8, Theorem 3.6], we have a representation z�W �1.W /! � ,
which enables us to define the intersection form

�2W H2.W IQ�/�H2.W IQ�/!Q�:

Since W is a manifold with boundary, this will in general be a singular intersection
form. To define a nonsingular form we localise coefficients: Cochran, Orr and Teichner
use the noncommutative Ore localisation to formally invert all the nonzero elements
in Q� to obtain a skew-field K , as in Definition 6.9; note that � is a PTFA group, so
the Ore localisation exists by [8, Proposition 2.5].

As is proved in [8, Propositions 2.9, 2.10 and 2.11 and Lemma 2.12], the homology of
MK D @W vanishes with K coefficients. Therefore the intersection form on the middle
dimensional homology of W becomes nonsingular over K , so we have an element in the
Witt group of nonsingular Hermitian forms over K . Moreover, using Proposition 6.10,
control over the size of the Z–homology translates into control over the size of the
K–homology of W . To explain how this gives us a well-defined obstruction, which
does not depend on the choice of 4–manifold, and how this obstruction lives in a group,
we define L–groups and the localisation exact sequence in L–theory.

Definition 7.1 [20, I.3] Two n–dimensional "–symmetric Poincaré finitely generated
projective A–module chain complexes .C; '/ and .C 0; '0/ are cobordant if there is
an .nC1/–dimensional "–symmetric Poincaré pair

.f; f 0/W C ˚C 0!D; .ı'; '˚�'0/:
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The union operation of [20, Part I, pages 117–119] shows that cobordism of chain
complexes is a transitive relation. The equivalence classes of symmetric Poincaré chain
complexes under the cobordism relation form a group Ln.A; "/, with

.C; '/C .C 0; '0/D .C ˚C 0; '˚'0/; �.C; '/D .C;�'/:

As usual if we omit " from the notation we assume that " D 1. In the case n D 0,
L0.A/ coincides with the Witt group of nonsingular Hermitian forms over A.

Note that an element of an L–group is in particular a symmetric Poincaré chain complex.
This means that the intersection forms of .1/–solutions typically give elements of
L0.K/ but not of L0.Q�/.

Definition 7.2 [21, Chapter 3] The localisation exact sequence in L–theory is given,
for a ring A without zero divisors and a multiplicative subset S D A� f0g, which
satisfies the Ore condition, as follows:

� � � !Ln.A/!Ln.S�1A/!Ln.A;S/!Ln�1.A/! � � �

The relative L–groups Ln.A;S/ are defined to be the cobordism classes of .n�1/–
dimensional symmetric Poincaré chain complexes over A which become contractible
over S�1A, where the cobordisms are also required to be contractible over S�1A. For
nD 2 this is equivalent to the Witt group of S�1A=A–valued linking forms on H 1 of
the chain complex.

The first map Ln.A/!Ln.S�1A/ in the localisation sequence is given by considering
a chain complex over the ring A as a chain complex over S�1A, by tensoring up using
the inclusion A!S�1A. The salient effect of this is that some maps become invertible
which previously were not. We say that a symmetric chain complex is K–Poincaré if it
is Poincaré after tensoring with K .

The second map Ln.S�1A/!Ln.A;S/ is the boundary construction. Let .C�; '/
represent an element of Ln.S�1A/. By clearing denominators, there is a chain complex
which is chain equivalent to .C�; '/, in which all the maps are given in terms of A.
We may therefore assume that we have a symmetric but typically not Poincaré complex
.C�; '/ over A, and take the mapping cone C.'0W C

n�� ! C�/. This gives, as in
Definition 2.1, an .n�1/–dimensional symmetric Poincaré chain complex over A

which becomes contractible over S�1A, since '0 is a chain equivalence over S�1A,
ie we have an element of Ln.A;S/.

On the level of Witt groups, this map sends a Hermitian S�1A–nonsingular intersection
form over A, .L; �W L! L�/, to the linking form on coker.�W L! L�/ given by
.x;y/ 7! z.x/=s , where x;y 2L�; z 2L; sy D �.z/ [21, pages 242–243].
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The third map Ln.A;S/!Ln�1.A/ is the forgetful map on the equivalence relation;
it forgets the requirement that the cobordisms be contractible over S�1A, simply
asking for algebraic cobordisms over A.

The obstruction theory of Cochran, Orr and Teichner, for suitable representations
�1.MK /! � , detects the class of .C�.MK IQ�/; n�.ŒMK �// in L4.Q�;S/, where
S WDQ� �f0g; we have an invariant of the 3–manifold MK . The first question we
ask, corresponding to .1/–solvability, is whether the chain complex of MK bounds
over Q� . Suppose that K is a .1/–solvable knot. Then we have a symmetric Poincaré
complex

.C�.MK IQ�/; n�.ŒMK �// 2 ker.L4.Q�;S/!L3.Q�//:

The obstruction which detects that there is no K–contractible null-cobordism of
C�.MK IQ�/ therefore lies in L4.K/= im.L4.Q�//.

A .1/–solution W defines an element of L4.K/ by taking the symmetric K–Poincaré
chain complex

.C�.W;MK IK/DK˝Q� C�.W;MK IQ�/; n�.ŒW;MK �//:

The image of L4.Q�/ represents the change corresponding to a different choice of
.1/–solution W : the obstruction defined must be independent of this choice. Since
2 is invertible in the rings K and Q� , we can do surgery below the middle dimension
[20, Part I, 3.3 and 4.3] to see that our obstruction lives in L0.K/= im.L0.Q�//.
Taking two choices of 4–manifold W;W 0 with boundary MK and gluing to form
V WDW [MK

�W 0 , we obtain a 4–manifold whose image in L4.Q�/ Š L0.Q�/
gives the difference between the Witt classes of the intersection forms of W and W 0 ,
showing that the invariant in L0.K/= im.L0.Q�// is well-defined. If this obstruction
does not vanish then K cannot be .1:5/–solvable and therefore in particular is not slice.

The main obstruction theorem of Cochran, Orr and Teichner, at the .1:5/ level, is the
following:

Theorem 7.3 [8, Theorem 4.2] Let K be a knot and define for p 2H1.MK IQŒZ�/:

B WD .C�.MK IQ�/; n�.ŒMK �// 2L4.Q�;Q� �f0g/:

Suppose that K is .1/–solvable via a .1/–solution W . Then there exists a metaboliser
P D P? �H1.MK IQŒZ�/ such that for all p 2 P ,

B 2 ker.L4.Q�;Q� �f0g/!L3.Q�//:

Suppose that K is .1:5/–solvable via a .1:5/–solution W . Then there exists a
metaboliser P D P? �H1.MK IQŒZ�/ such that for all p 2 P , B D 0.
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Proof We give a sketch proof. The fact that a meridian of K maps nontrivially
under � is sufficient, as in [8, Section 2], to see that C�.MK IK/' 0, so that indeed
B 2L4.Q�;Q� �f0g/. The .1/–solvable condition ensures, by Theorem 6.7 and [8,
Theorem 3.6], that certain representations extend over �1.W /, for .1/–solutions W ,
so that B 7! 0 2L3.Q�/. If W is also a .1:5/–solution, there is a metaboliser for the
intersection form on H2.W IK/: as mentioned above the fact that we have control over
the rank of the Z–homology translates into control on the rank of the K–homology.
We have a half-rank summand on which the intersection form vanishes: the intersection
form is therefore trivial in the Witt group L0.K/. Since L4.K/ŠL0

S
.K/ by surgery

below the middle dimension, we indeed have B D 0.

We now define a pointed set, which is algebraically defined, which we call the Cochran–
Orr–Teichner obstruction set, and denote .COT .C=1:5/;U /. The above exposition then
enables us to define a map of pointed sets C=F.1:5/! COT .C=1:5/ : the Cochran–Orr–
Teichner obstructions do not necessarily add well, so we are only able to consider
pointed sets, requiring that .1:5/–solvable knots map to U , the marked point of
COT .C=1:5/ . The reason for this definition is that the second order Cochran–Orr–
Teichner obstructions depend for their definitions on certain choices of the way in which
the first order obstructions vanish. More precisely, for each element p2H1.MK IQŒZ�/
we obtain a different representation �1.MK /! � and therefore, if it is defined, a
potentially different obstruction B from Theorem 7.3. The following definition gives
an algebraic object, COT .C=1:5/ , which encapsulates the choices in a single set. Our
second order algebraic concordance group AC2 gives a single stage obstruction group
from which an element of COT .C=1:5/ can be extracted; for this see Section 8. I would
like to thank Peter Teichner for pointing out that I ought to make Definition 7.4.

In the following definition, for intuition, .N; �/ should be thought of as corresponding
to the symmetric Poincaré chain complex of the zero surgery MK on a knot in S3 , � WD
ZËQ.t/=QŒt; t�1�, and H should be thought of as corresponding to H1.MK IQŒZ�/.
There is no requirement that .N; �/ actually is the chain complex associated to a knot:
we are working more abstractly.

Definition 7.4 Let H be a rational Alexander module, that is a QŒZ�–module such
that H DQ˝Z H 0 for some H 0 2A. We denote the class of such H by Q˝Z A.
Let

BlW H �H !Q.t/=QŒt; t�1�

be a nonsingular, sesquilinear, Hermitian pairing, and let p 2H . We define the set

L4
H ;Bl;p.Q�;Q� �f0g/
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to comprise pairs ..N; � 2 Q3.N //; �/, where .N; �/ is a 3–dimensional symmet-
ric Poincaré complex over Q� which is contractible when tensored with the Ore
localisation K of Q�

K˝Q� N ' 0;

which satisfies
H�.Q˝Q� N /ŠH�.S

1
�S2
IQ/;

and where � is an isomorphism

�W H
'
�!H1.QŒZ�˝Q� N /:

Using the 3–dimensional symmetric Poincaré chain complex .QŒZ�˝Q� N; Id˝�/,
we can define the rational Blanchfield form (see Proposition 6.4):eBlW H1.QŒZ�˝Q� N /�H1.QŒZ�˝Q� N /!Q.t/=QŒt; t�1�:

We require that Bl.x;y/D eBl.�.x/; �.y// for all x;y 2H . In the case that pD02H ,
we have a further condition that

(2) ..N; �/; �/0 Š ..QŒZ�˝Q� N; Id˝�/; �/ 2L4
H ;Bl;0.Q�;Q� �f0g/:

We consider the union, for a fixed H 2Q˝ZA and a fixed BlW H�H!Q.t/=QŒt; t�1�:

AF .C=1:5/.H;Bl/ WD
G

p2H

L4
H ;Bl;p.Q�;Q� �f0g/;

over all p 2H . Next, we consider the union over all possible H and Bl of a class of
certain subsets of AF .C=1:5/.H;Bl/, namely the subsets which have one element of
L4

H ;Bl;p.Q�;Q� �f0g/ for each p 2H :[
H2Q˝ZA

BlW xH
'

�!Ext1QŒZ�.H ;QŒZ�/

� G
p2H

f..N; �/; �/pg �AF .C=1:5/.H;Bl/
�
:

By defining a partial ordering on this class we can make it into a set by taking an
inverse limit. For each QŒZ�–module isomorphism ˛W H

'
!H % , we define a map

˛�W L
4
H ;Bl;p.Q�;Q� �f0g/!L4

H %;Bl%;˛.p/.Q�;Q� �f0g/;

where Bl%.x;y/ WD Bl.˛�1.x/; ˛�1.y// by

..N; � 2Q3.N //; �/ 7! ..N; � 2Q3.N //; � ı˛�1/:

This defines a map

˛�W AF .C=1:5/.H;Bl/!AF .C=1:5/.H %;Bl%/;
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which we use to map subsets to subsets. We say that a subsetG
p2H

f..N; �/; �/pg �AF .C=1:5/.H;Bl/;

is less than or equal toG
q2H %

f..N; �/; �%/qg �AF .C=1:5/.H %;Bl%/;

if the latter is the image of the former under ˛� . We then define

AF .C=1:5/ WD lim
 �

� G
p2H

f..N; �/; �/pg �AF .C=1:5/.H;Bl/ jH 2Q˝Z A;

BlW xH
'
�! Ext1QŒZ�.H;QŒZ�/

�
:

Finally, we must say what it means for two elements of AF .C=1:5/ to be equivalent, in
such a way that isotopic and concordant knots map to equivalent elements of AF .C=1:5/ ,
and we must define the class of the zero object, so that we have a pointed set.

The distinguished point is the equivalence class of the 3–dimensional symmetric
Poincaré chain complex:

U WD
��

Q�˝QŒZ� C�.S
1
�S2
IQŒZ�/; n�.ŒS1

�S2�/
�
; � D IdW f0g ! f0g

�
2AF .C=1:5/.f0g;Blf0g/:

We declare two elements of AF .C=1:5/ to be equivalent, denoted �, if we can choose
a representative class for the inverse limit construction of each ie pick representativesG

p2H

f..N; �/; �/pg �AF .C=1:5/.H;Bl/;

G
q2H |

f..N |; �|/; �|/qg �AF .C=1:5/.H |;Bl|/

for some H;H | 2Q˝Z A such that there is a metaboliser P �H ˚H | of

Bl˚�Bl|W H ˚H |
�H ˚H |

!Q.Z/=QŒZ�

for which all the elements of L4.Q�;Q� �f0g/ in the disjoint unionG
.p;q/2P

f..Np˚N |
q ; �p˚��

|
q /; �p˚ �

|
q/g �AF .C=1:5/.H ˚H |;Bl˚�Bl|/

bound a 4–dimensional symmetric Poincaré pair

.jp˚ j |
q W Np˚N |

q ! V.p;q/; .ı�.p;q/; �p˚��
|
q / 2Q4.jp˚ j |

q //
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over Q� such that

H1.Q˝Q� Np/
'
�!H1.Q˝Q� V.p;q//

'
 �H1.Q˝Q� N |

q /

such that the isomorphism

�p˚ �
|
q W H ˚H | '

�!H1.QŒZ�˝Q� Np/˚H1.QŒZ�˝Q� N |
q /

restricts to an isomorphism

P
'
�! ker

�
H1.QŒZ�˝Q� Np/˚H1.QŒZ�˝Q� N |

q /!H1.QŒZ�˝Q� V.p;q//
�
;

and such that the algebraic Thom complex (Definition 2.1), taken over the Ore localisa-
tion, is algebraically null-cobordant in L4

S
.K/ŠL0

S
.K/:

Œ.K˝Q� C..jp˚ j |
q //; Id˝ı�.p;q/=.�p˚��

|
q //�D Œ0� 2L4

S .K/:

The relation � is an equivalence relation; see Proposition 7.5.

Taking the quotient of AF .C=1:5/ by this equivalence relation defines the second order
Cochran–Orr–Teichner obstruction pointed set .COT .C=1:5/;U /: there is a well-defined
map from concordance classes of knots modulo .1:5/–solvable knots to this set, which
maps .1:5/–solvable knots to the equivalence class of U , as follows.

Define H WDH1.MK IQŒZ�/. For each p2H , we use the corresponding representation
�W �1.MK /! � to form the complex

..N; �/; �/p WD ..Q�˝ZŒ�1.MK /� C�.MK IZŒ�1.MK /�/; n�.ŒMK �//; �/

2L4
H ;Bl;p.Q�;Q� �f0g/:

This gives a well-defined map; see Proposition 7.6. This completes our description of
the Cochran–Orr–Teichner pointed set.

Proposition 7.5 The relation � of Definition 7.4 is indeed an equivalence relation.

Proof To see reflexivity, note that the diagonal H � H ˚H is a metaboliser for
Bl˚�Bl. Then take V.p;p/ WDNp and ı�.p;p/ WD 0. It is straight-forward to see that
� is symmetric. For transitivity, suppose thatG

p2H

..N; �/; �/p �
G

q2H |

..N |; �|/; �|/q

with a metaboliser P �H ˚H | and chain complexes .V.p;q/; ı�.p;q//, and thatG
q2H |

..N |; �|/; �|/q �
G

r2H }

..N }; �}/; �}/r :

with a metaboliser Q�H |˚H } and chain complexes . xV.q;r/; ı� .q;r//.

Algebraic & Geometric Topology, Volume 12 (2012)



A second order algebraic knot concordance group 737

We define the metaboliser R�H ˚H } by

R WD f.p; r/ 2H ˚H }
j 9 q 2H | with .p; q/ 2 P and .q; r/ 2Qg:

The proof of Lemma 6.3 shows that this is a metaboliser. For each .p; r/ 2R we can
therefore choose a suitable q and so glue the chain complexes:

. xxV.p;r/; ı� .p;r// WD .V.p;q/[N
|
q

xV.q;r/; ı�.p;q/[�|
q
ı� .q;r//;

to create an algebraic cobordism for each .p; r/ 2R. Easy Mayer–Vietoris arguments
show that the inclusions Np!

xxV.p;r/ and N
}
r !

xxV.p;r/ induce isomorphisms on first
Q–homology, and that

�p˚ �
}
r W H ˚H } '

�!H1.QŒZ�˝Q� Np/˚H1.QŒZ�˝Q� N }
r /

restricts to an isomorphism

R
'
�! ker

�
H1.QŒZ�˝Q� Np/˚H1.QŒZ�˝Q� N }

r /!H1.QŒZ�˝Q�
xxV.p;r//

�
:

Since K˝Q� N
|
q ' 0, the elements of L4

S
.K/ add and we still have the zero element

of L4
S
.K/ as required.

Proposition 7.6 The map C=F.1:5/! COT .C=1:5/ in Definition 7.4 is well-defined.

Proof To see that the map is well-defined, we show that if K ] �K| is .1:5/–solvable,
then the image of K is equivalent to the image of K| in COT .C=1:5/ . Let W be a
.1:5/–solution for K ] �K| , and let

P WD ker.H1.MK IQŒZ�/˚H1.MK | IQŒZ�/!H1.W IQŒZ�//;

noting that

H1.MK IQŒZ�/˚H1.MK | IQŒZ�/
'
�!H1.MK ]�K | IQŒZ�/:

We define, for all .p; q/2P , V.p;q/ WDC�.W;MK ]�K | IQ�/ to be the chain complex
of W relative to MK ]�K | .

Then K˝Q� V.p;q/ represents an element of L4
S
.K/ as in Definition 7.2. Since W is

a .1:5/–solution, as in Theorem 7.3, we have B D 0. That is, the intersection form of
V.p;q/ is hyperbolic as required.

Applying the algebraic Poincaré thickening (Definition 2.1) yields a symmetric Poincaré
pair C�.MK ]�K | IQ�/.p;q/! V 4��

.p;q/
. Now note that

C�.MK ]�K | IQ�/.p;q/ ' C�.XK [S1
�S1

� I [XK | IQ�/.p;q/:
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By gluing the chain complex C�.S
1�D2�I IQ�/ to V 4��

.p;q/
along C�.S

1�S1�I IQ�/,
we obtain a symmetric Poincaré pair

.C�.MK IQ�/p˚C�.MK | IQ�/q! yV.p;q/; . bı� .p;q/; �p˚��|
q //:

Since C�.S
1 �D2 � I IK/' 0, this gluing does not change the element of L4

S
.K/

produced. We therefore indeed have that K and K| map to equivalent elements in
COT .C=1:5/ , as claimed.

8 Extracting the Cochran–Orr–Teichner concordance ob-
structions

In this section we define a map AC2! COT .C=1:5/ and show that it is a morphism
of pointed sets. Recall that � WDZËQ.t/=QŒt; t�1�. A map C=F.1:5/! COT .C=1:5/
was implicitly defined in Section 7. We will prove the following theorem:

Theorem 8.1 A triple in AC2 which is second order algebraically concordant to the
triple of the unknot has zero Cochran–Orr–Teichner metabelian obstruction, ie it maps
to U in COT .C=1:5/ . See Theorem 8.5 for a more general and precise statement.

We can summarise the results of this section in the following diagram:

C=F.1:5/

&&NNNNNN
// AC2

���
�
�

COT .C=1:5/:

Recall that we use dotted arrows for morphisms of pointed sets.

To define the map AC2! COT .C=1:5/ , as in Section 6, we begin by taking an element
.H;Y; �/ 2AC2 , and forming the algebraic equivalent of the zero surgery MK . We
construct the symmetric Poincaré complex

.N; �/ WD ..Y ˚.ZŒZËH �˝ZŒZ�Y
U //[E˚.ZŒZËH �˝ZŒZ�EU /E; .ˆ˚0/[�˚��U 0/:

By defining representations ZËH!� , we will obtain elements of L4.Q�;Q��f0g/.
Recall that L4.Q�;Q��f0g/ is the group of 3–dimensional symmetric Poincaré chain
complexes over Q� which become contractible when we tensor over the Ore localisa-
tion (Definition 6.9) K of Q� with respect to Q��f0g. The group L4.Q�;Q��f0g/
fits into the localisation exact sequence

L4.Q�/!L4.K/!L4.Q�;Q� �f0g/!L3.Q�/:
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The reduced L.2/–signature [8, Section 5] obstruct the vanishing of an element of
L0.K/= im.L0.Q�//. After the proof of Theorem 8.1, we will describe how to define
these signatures purely in terms of the algebraic objects in AC2 . By making use of a
result of Higson and Kasparov [12] which applies to PTFA groups, we do not need to
appeal to geometric 4–manifolds to calculate the von Neumann �–invariants.

In order to define a representation �W ZËH ! � , first we choose a p 2H , and then
define

�W .n; h/ 7! .n;Bl.p; h// 2 �;

where Bl is the Blanchfield pairing, which is defined on H as follows.

Compose � with the rationalisation map, to get

�W H
'
�!H1.ZŒZ�˝ZŒZËH �N /�H1.QŒZ�˝ZŒZËH �N /:

The second map is injective by Theorem 3.1 (b): H is Z–torsion free. In this section
we abuse notation and also refer to this composition of � with the rationalisation map
as � .

We define BlW H �H !Q.t/=QŒt; t�1� by

Bl.p; h/ WD Bl.�.p/; �.h//:

Proposition 8.2 The chain complex .Q�˝ZŒZËH �N; Id˝�/ defines an element of
L4.Q�;Q� �f0g/. That is, K˝Q� Q�˝ZŒZËH �N is contractible.

Proof First note � is a PTFA group (Definition 6.8), since Œ�; ��DQ.t/=QŒt; t�1�;
therefore Œ�; �� is abelian and �=Œ�; �� Š Z. The fact that � is PTFA means that,
by [8, Proposition 2.5], the Ore localisation of Q� with respect to nonzero elements
Q� � f0g exists. The proof follows that of [8, Proposition 2.11] closely, but in
terms of chain complexes. The chain complex of the circle C�.S

1IQŒZ�/ is given
by t � 1W QŒZ� �! QŒZ�. Tensor with Q� over QŒZ� using the homomorphism � ı

.f�/� , where we have to define .f�/�W Z ! Z Ë H . Recall that f� is a chain
map in our symmetric Poincaré triad Y (Definition 3.4), and so we define .f�/�
to be the corresponding homomorphism of groups: there is, as ever, a symbiosis
between the group elements and the 1–chains of the complex. The homomorphism
.f�/�W Z!ZËH sends t 7! .1; h1/, where h1 is, as in Definition 3.4, the element of
H which makes f� a chain map. Thus, passing from C�.S

1IQŒZ�/ to C�.S
1IQ�/,

we obtain

Q�˝QŒZ�QŒZ�ŠQ�
.�ı.f�/�.t/�1/
����������!Q�˝QŒZ�QŒZ�ŠQ�:
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The chain map

1˝f�W C�.S
1
IQ�/DQ�˝ZŒZËH �D�!Q�˝ZŒZËH � Y !Q�˝ZŒZËH �N

is 1–connected on rational homology. Therefore, by the long exact sequence of a pair,

Hk.Q˝Q� C.1˝f�W C�.S
1
IQ�/!Q�˝ZŒZËH �N //Š 0

for k D 0; 1. We apply Proposition 6.10, with nD 1 and C� D C.1˝f�/, to show

Hk.K˝Q� C.1˝f�W C�.S
1
IQ�/!Q�˝ZŒZËH �N //Š 0

for k D 0; 1. This implies, again by the long exact sequence of a pair, that there is
an isomorphism H0.S

1IK/ Š H0.K˝ZŒZËH � N / and a surjection H1.S
1IK/�

H1.K˝ZŒZËH �N /. As in the proof of [8, Proposition 2.11], t maps to a nontrivial
element

� ı .f�/�.t/D �.1; h1/D .1;Bl.p; h1// 2 �:

Therefore � ı .f�/�.t/�1¤ 0 2Q� is invertible in K , so H�.S
1IK/Š 0. This then

implies that Hk.K˝ZŒZËH �N /Š 0 for k D 0; 1.

The proof that Q�˝ZŒZËH �N is acyclic over K is then finished by applying Poincaré
duality and universal coefficients. The latter theorem is straight-forward since K is a
skew-field, so we see that

Hk.K˝Q� .Q�˝ZŒZËH �N //Š 0

for k D 2; 3 as a consequence of the corresponding isomorphisms for k D 0; 1. A
projective module chain complex is contractible if and only if its homology modules
vanish [22, Proposition 3.14 (iv)], which completes the proof.

Remark 8.3 We can always define, for any representation which maps g1 to a non-
trivial element of � , a map AC2!L4.Q�;Q� �f0g/. However, we will only show
that it has the desired property: namely that it maps 02AC2 to 02L4.Q�;Q��f0g/,
in the case that �.p/ 2 P (recall that p was part of the definition of a representation
�W ZËH ! � ), for at least one of the submodules P �H1.QŒZ�˝ZŒZËH �N / such
that P D P? .

This contingent vanishing for the Cochran–Orr–Teichner obstruction theory is encoded
in the definition of COT .C=1:5/ ; see Definition 7.4. We have a two stage definition of
the metabelian Cochran–Orr–Teichner obstruction set, since we need the Blanchfield
form to define the elements and to restrict the allowable null-bordisms; whereas an
element of the group AC2 is defined in a single stage from the geometry, via a handle
decomposition of the knot exterior, and the allowable null-bordisms are restricted by
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the consistency square. Both stages of the Cochran–Orr–Teichner obstruction can be
extracted from the single stage element of AC2 .

Definition 8.4 Define the map AC2! COT .C=1:5/ by mapping a triple .H;Y; �/ toG
p2Q˝ZH

f.Q�˝ZŒZËH �N; Id˝�/p; �pg;

with each .Q�˝ZŒZËH �N /p defined using

�W ZËH ! �

.n; h/ 7! .n;Bl.p; h//

and �p given by the composition

�pW Q˝Z H
Id˝�
���!Q˝Z H1.ZŒZ�˝ZŒZËH � Y /

'
�!H1.QŒZ�˝ZŒZËH � Y /

'
�! H1.QŒZ�˝ZŒZËH �N /

'
�!H1.QŒZ�˝Q� .Q�˝ZŒZËH �N /p/:

The maps labelled as isomorphisms in this composition are given by the universal
coefficient theorem, a Mayer–Vietoris sequence, and a simple chain level isomorphism
for the final identification.

We prove a more general statement than that of Theorem 8.1. The purpose of this
generalisation is to show that the map of pointed sets of Definition 8.4 is well-defined.
Theorem 8.1 is a corollary of Theorem 8.5 by taking .H |;Y|; �|/D .f0g;YU ; Idf0g/.

Theorem 8.5 Let .H;Y; �/� .H |;Y|; �|/ 2AC2 be equivalent triples. ThenG
p2H

f.Q�˝ZŒZËH �N /p; �pg �
G

q2H |

f.Q�˝ZŒZËH |�N
|/q; �

|
qg 2 COT .C=1:5/:

That is, there exists a metaboliser

P D P? � .Q˝Z H /˚ .Q˝Z H |/

for the rational Blanchfield form

Bl˚�Bl|W .Q˝Z H /˚ .Q˝Z H |/� .Q˝Z H /˚ .Q˝Z H |/!Q.t/=QŒt; t�1�

such that, for any .p; q/ 2 .Q˝Z H /˚ .Q˝Z H |/, the corresponding element

..Q�˝ZŒZËH �N /p; �p/˚ ..Q�˝ZŒZËH �N
|/q;��

|
q / 2L4.Q�;Q� �f0g/

bounds a 4–dimensional symmetric Poincaré pair

.jp˚ j |
q W .Q�˝ZŒZËH �N /p˚ .Q�˝ZŒZËH �N

|/q! V.p;q/; .ı�.p;q/; �p˚��
|
q //
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over Q� such that

H1.Q˝Q� .Q�˝ZŒZËH �N /p/
'
�!H1.Q˝Q� V.p;q//

'
 �H1.Q˝Q� .Q�˝ZŒZËH �N

|/q/;

such that the isomorphism

�p˚ �
|
q W .Q˝Z H /˚ .Q˝Z H |/

'
�!H1.QŒZ�˝Q� .Q�˝ZŒZËH �N /p/˚H1.QŒZ�˝Q� .Q�˝ZŒZËH |�N

|/q/

restricts to an isomorphism

P
'
�!ker

�
H1.QŒZ�˝ZŒZËH �N /˚H1.QŒZ�˝ZŒZËH |�N

|/!H1.QŒZ�˝Q�V.p;q//
�
;

and such that the algebraic Thom complex (Definition 2.1), taken over the Ore localisa-
tion, is algebraically null-cobordant in L4

S
.K/ŠL0

S
.K/:

Œ.K˝Q� C..jp˚ j |
q //; Id˝ı�.p;q/=.�p˚��

|
q //�D Œ0� 2L4.K/:

Proof By the hypothesis we have a symmetric Poincaré triad over ZŒZËH 0�

.E; �/˚ .E|;��|/

.;|/
�

.Id;Id˝$
E| ///

�
� 0

0 �|

�
��

.E; 0/

ı

��
.Y; ˆ/˚ .Y |;�ˆ|/

.j ;j|/ // .V; ‚/;

with isomorphisms

H�.Z˝ZŒZËH � Y /
'
�!H�.Z˝ZŒZËH 0� V /

'
 �H�.Z˝ZŒZËH |� Y

|/;

and a commutative square

H˚H |
.j[;j

|
[
/

//

�
� 0

0 �|

�
��

H 0

�0

��
H1.ZŒZ�˝ZŒZËH �Y /˚H1.ZŒZ�˝ZŒZËH �Y

|/
IdZŒZ�˝.j�;j

|
�/// H1.ZŒZ�˝ZŒZËH 0�V /:
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Corresponding to the manifold triad

S1 �S1 tS1 �S1 //

��

S1 �S1 � I

��

S1 �D2 tS1 �D2 // S1 �D2 � I;

we have a symmetric Poincaré triad

.EU ;��U /˚ .EU ; �U /
.Id;Id/ //

�
�U 0

0 �U

�
��

.EU ; 0/

ıU

��
.Y U ; 0/˚ .Y U ; 0/

.jU ;jU / // .Y U ; 0/:

With this triad tensored up over ZŒZËH 0� sending t 7! g1 as usual, we glue the two
triads together as follows:

.Y U ; 0/˚ .Y U ; 0/
.jU ;jU / // .Y U ; 0/

.EU ;��U /˚ .EU ; �U /

�
�U 0

0 �U

� OO

.Id;Id/ // .EU ; 0/

ıU

OO

.E; �/˚ .E|;��|/

.;|/
�

Š

�
$E 0

0 $
E|

� OO

.Id;Id˝$
E| / //

�
� 0

0 �|

�
��

.E; 0/

Š $E

OO

ı

��
.Y; ˆ/˚ .Y |;�ˆ|/

.j ;j|/ // .V; ‚/

to obtain a symmetric Poincaré pair over ZŒZËH 0�:

..i; i|/W N ˚N |
! yV WD V [E Y U ; .y‚ WD‚[ 0; � ˚��|//:

We can define P , by Theorem 6.6, to be

P WD ker..Q˝Z H /˚ .Q˝Z H |/!H1.QŒZ�˝ZŒZËH �N /˚H1.QŒZ�˝N |/

!H1.QŒZ�˝ZŒZËH 0�
yV //:
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Now, for all .p; q/ 2 P , the representation

.Bl˚�Bl|/..�.p/; �|.q//; �/W H1.QŒZ�˝ZŒZËH �N /˚H1.QŒZ�˝ZŒZËH �N
|/

!
Q.t/

QŒt; t�1�
;

extends to a representation H1.QŒZ�˝ZŒZËH 0�
yV /! Q.t/=QŒt; t�1� by [8, Theo-

rem 3.6]. This holds since the proof of [8, Theorem 3.6] is entirely homological
algebra, so carries over to the chain complex situation without the need for additional
arguments. We therefore have an extension:

H˚H |
.j[;j

|
[
/

//

Š

�
� 0

0 �|

�
��

H 0

Š�0

��
H1.ZŒZ�˝ZŒZËH �N /˚H1.ZŒZ�˝ZŒZËH |�N

|/
IdZŒZ�˝.i;i

|/
//

��

��

H1.ZŒZ�˝ZŒZËH 0�
yV /

��

��
H1.QŒZ�˝ZŒZËH �N /˚H1.QŒZ�˝ZŒZËH |�N

|/
IdQŒZ�˝.i;i

|/
//

.Bl˚Bl|/..�.p/;�|.q//;�/

++

H1.QŒZ�˝ZŒZËH 0�
yV /

��
Q.t/=QŒt; t�1�:

Noting that, from the Mayer–Vietoris sequence for yV D V [E Y U , there is an isomor-
phism

H1.ZŒZ�˝ZŒZËH 0� V /
'
�!H1.ZŒZ�˝ZŒZËH 0�

yV /;

the top square commutes by the consistency condition. We therefore have an extension
of representations

ZË .H ˚H |/
.IdZ;.j[;j

|
[
//

//

�

))

ZËH 0

z�

��
�:

The element

..Q�˝ZŒZËH �N /p; �p/˚ ..Q�˝ZŒZËH |�N
|/q;��

|
q / 2L4.Q�;Q� �f0g/
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therefore lies, by the existence of Q�˝ZŒZËH 0�
yV.p;q/ , in ker.L4.Q�;Q� �f0g/!

L3.Q�//. As in the L–theory localisation sequence (Definition 7.2), we therefore
have the element

. xV.p;q/; x‚.p;q// WD ..K˝ZŒZËH 0� C..i; i
|///.p;q/; ‚.p;q/=.�p˚��

|
q // 2L4

S .K/;

whose boundary is

..Q�˝ZŒZËH �N /p; �p/˚ ..Q�˝ZŒZËH |�N
|/q;��

|
q / 2L4.Q�;Q� �f0g/:

Since 2 is invertible in K , we can do algebraic surgery below the middle dimension
[20, Part I, Proposition 4.4], on xV.p;q/ , to obtain a nonsingular Hermitian form

.�W H 2. xV.p;q//�H 2. xV.p;q//!K/ 2L0
S .K/ŠL4

S .K/;

whose image in the quotient L0
S
.K/=L0.Q�/ detects the class of Q�˝ZŒZËH �N 2

L4.Q�;Q� � f0g/. Once again, we will apply Proposition 6.10. Since j and j |

induce isomorphisms on Z–homology, and therefore on Q–homology, we have that
the chain map

Id˝i W Q˝Q� .Q�˝ZŒZËH �N /p!Q˝Q� .Q�˝ZŒZËH 0�
yV.p;q//

induces isomorphisms i�W Hk.Q˝ZŒZËH �N /
'
!Hk.Q˝ZŒZËH 0�

yV / for all k , by a
straight-forward Mayer–Vietoris argument. Therefore Hk.Q˝ZŒZËH 0� C.i//Š 0 for
all k by the long exact sequence of a pair. Applying Proposition 6.10, we therefore
have that Hk..K˝ZŒZËH 0� C.i//.p;q// Š 0 for all k . The long exact sequence in
K–homology associated to the short exact sequence

0! .K˝ZŒZËH 0� C.i//.p;q/! .K˝ZŒZËH 0� C..i; i
|///.p;q/

! S.K˝ZŒZËH |�N
|
q /! 0

implies, noting that H�.K˝ZŒZËH |�N
|
q /Š 0, that

Hk.K˝ZŒZËH 0� C..i; i
|//.p;q//DHk. xV.p;q//Š 0

for all k . In particular, since H2. xV.p;q// Š H 2. xV.p;q// Š 0, we see that the image
of xV.p;q/ in L0

S
.K/, which is the intersection form �, is trivially hyperbolic and

represents the zero class of L0
S
.K/. This completes the proof thatG

p2H

f.Q�˝ZŒZËH �N; Id˝�/p; �pg

�

G
q2H |

f.Q�˝ZŒZËH |�N
|; Id˝�|/q; �

|
qg 2 COT .C=1:5/:
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Finally, we have a nontriviality result, which shows that we can extract the L.2/–
signatures from AC2 . In order to obstruct the equivalence of triples .H;Y; �/ �
.H |;Y|; �|/ 2 AC2 , we just need, by Proposition 4.9, to be able to obstruct an
equivalence .H;Y; �/ � .f0g;YU ; Idf0g/. To achieve this, as in Definition 7.4, we
need to obstruct the existence of a 4–dimensional symmetric Poincaré pair over Q�
.j W .Q�˝ZŒZËH �N /p! Vp; .‚p; �p//, for at least one p ¤ 0, with �.p/ 2 P , for
each metaboliser P D P? �H1.QŒZ�˝ZŒZËH �N / of the Blanchfield form, where
Vp satisfies

�.p/ 2 ker.j�W H1.QŒZ�˝ZŒZËH �Np/!H1.QŒZ�˝Q� Vp//;

j�W H1.Q˝ZŒZËH �N /
'
!H1.Q˝Q� Vp/ is an isomorphism and ŒK˝Q� C.j /�D

Œ0� 2L4
S
.K/. We do this by taking L.2/–signatures of the middle dimensional pairings

on putative such Vp , to obstruct the Witt class in L4
S
.K/Š L0

S
.K/ from vanishing.

First, we have a notion of algebraic .1/–solvability.

Definition 8.6 We say that an element .H;Y; �/ 2 AC2 with image 0 2 AC1 is
algebraically .1/–solvable if the following holds. There exists a metaboliser P D

P?�H1.QŒZ�˝ZŒZËH �N / for the rational Blanchfield form such that for any p 2H

such that �.p/ 2 P , we obtain an element

Q�˝ZŒZËH �Np 2 ker.L4.Q�;Q� �f0g/!L3.Q�//;

via a symmetric Poincaré pair over Q�

.j W Q�˝ZŒZËH �Np! Vp; .‚p; �p//;

with
P D ker.j�W H1.QŒZ�˝ZŒZËH �N /!H1.QŒZ�˝Q� Vp//;

and such that
j�W H1.Q˝ZŒZËH �N /

'
�!H1.Q˝Q� Vp/

is an isomorphism. We call each such .j W Q� ˝ZŒZËH � Np ! Vp; .‚p; �p// an
algebraic .1/–solution.

Theorem 8.7 Suppose that .H;Y; �/ 2AC2 is algebraically .1/–solvable with alge-
braic .1/–solution .Vp; ‚p/ and �.p/ 2 P . Then since

ker.L4.Q�;Q� �f0g/!L3.Q�//ŠL4.K/=L4.Q�/ŠL0.K/=L0.Q�/;

we can apply the L.2/–signature homomorphism � .2/W L0.K/!R (see [8, Section 5])
to the intersection form

�KW H2.K˝Q� Vp/�H2.K˝Q� Vp/!K:
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We can also calculate the signature �.�Q/ of the ordinary intersection form

�QW H2.Q˝Q� Vp/�H2.Q˝Q� Vp/!Q;

and so calculate the reduced L.2/–signature z� .2/.Vp/ D �
.2/.�K/� �.�Q/. This is

independent, for fixed p , of changes in the choice of chain complex Vp .

Remark 8.8 Provided we check that the reduced L.2/–signature does not vanish, for
each metaboliser P of the rational Blanchfield form with respect to which .H;Y; �/ is
algebraically .1/–solvable, and for each P , for at least one p 2 P n f0g, then we have
a chain-complex von Neumann �–invariant obstruction. This obstructs the image of
the element .H;Y; �/ in COT .C=1:5/ from being U , and therefore obstructs .H;Y; �/
from being second order algebraically slice.

We do not require any references to 4–manifolds, other than for pedagogic reasons, to
extract the Cochran–Orr–Teichner L.2/–signature metabelian concordance obstructions
from the triple of a .1/–solvable knot, or indeed for any algebraically .1/–solvable
triple in AC2 . This result relies strongly on the reason for the invariance of the reduced
L.2/–signatures which is least emphasised in the paper of Cochran, Orr and Teichner [8].
This is the result of Higson and Kasparov [12] that the analytic assembly map is onto
for PTFA groups. The reader is encouraged to look at [8, Proposition 5.12], where it is
shown that the surjectivity of the assembly map implies that the L.2/–signature and
the ordinary signature coincide on the image of L0.Q�/. The key point is that this
result does not depend on manifolds for its statement; it is a purely algebraic result
(although the proof of [8, Proposition 5.12] uses Atiyah’s L.2/–Index theorem).

The Higson–Kasparov result does not hold for groups with torsion, a fact made use
of by eg Cha and Orr [4]. Homology cobordism invariants which use representations
to torsion groups appear to be using deeper manifold structure than is captured by
symmetric Poincaré complexes alone.

Proof of Theorem 8.7 For this proof we omit the p subscripts from the notation; it
is to be understood that tensor products with Q� depend on a choice of representation.
Given a pair .j W Q� ˝ZŒZËH � N ! V; .‚; �//, which exhibits .H;Y; �/ as being
algebraically .1/–solvable, we again take the element .K˝Q� C.j /;‚=�/ 2L4.K/,
and look at its image �K 2 L0.K/. We can calculate an intersection form �K on
H 2.K˝Q� C.j //, as in [21, page 19], by taking

x;y 2 .K ˝Q� C.j //2 Š HomK..K˝Q� C.j //2;K/;

and calculating
y0 D .‚=�/0.y/ 2 .K ˝Q� C.j //2:
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Then �K.x;y/ WD y0.x/ D x.y0/ 2 K . This uses, as in the definition of Bl in
Proposition 6.4, the identification of .K˝Q�C.j //2 with its double dual. By taking the
chain complex Q˝Q� C.j / we can also calculate the intersection form �Q 2L0.Q/,
with an analogous method. To see that the intersection form on H 2.Q˝Q� C.j // is
nonsingular, consider the following long exact sequence of the pair; we claim that the
maps labelled as j � and � are isomorphisms.

H 1.Q˝Q� V /
Š

j�
// H 1.Q˝ZŒZËH �N /

0 // H 2.Q˝Q� C.j //
Š

�
// H 2.Q˝Q� V /:

The intersection form is given by the composition

�QW H
2.Q˝Q� C.j //

�
�!H 2.Q˝Q� V /

'
�!H2.Q˝Q� C.j //

'
�! HomQ.H

2.Q˝Q� C.j //;Q/;

given by the map � from the long exact sequence of a pair, followed by a Poincaré duality
isomorphism induced by the symmetric structure, and a universal coefficient theorem
isomorphism. To show that �Q is nonsingular we therefore need to show that � is an
isomorphism. The assumption that there is an isomorphism j�W H1.Q˝ZŒZËH �N /

'
!

H1.Q˝Q� V / on rational first homology implies that, as claimed, there is also an iso-
morphism j �W H 1.Q˝Q� V /

'
!H 1.Q˝ZŒZËH �N / on rational cohomology, by the

universal coefficient theorem (the relevant Ext groups vanish with rational coefficients).
Therefore, by exactness, the map �W H 2.Q˝Q� C.j //!H 2.Q˝Q� V / is injective.
Over Q, for dimension reasons, it must therefore, as marked on the diagram, be an
isomorphism; the dimensions must be equal since the second and third maps in the com-
position which gives �Q show that H 2.Q˝Q� V /Š HomQ.H

2.Q˝Q� C.j //;Q/,
and the dimensions over Q of HomQ.H

2.Q˝Q�C.j //;Q/ and of H 2.Q˝Q�C.j //

coincide. Therefore the intersection form �Q is nonsingular as claimed.

The reduced L.2/–signature z� .2/.V /D � .2/.�K/��.�Q/ detects nontrivial elements
in the group L0

S
.K/=L0.Q�/. This will follow from [8, Proposition 5.12], which

uses a result of Higson and Kasparov [12] on the analytic assembly map for PTFA
groups such as � , and says that the L.2/–signature agrees with the ordinary signature
on the image of L0.Q�/. We claim that a nonzero reduced L.2/–signature, for all
possible metabolisers P DP? of the rational Blanchfield form, implies that .H;Y; �/
is not second order algebraically slice. To see this, we need to show that, for a fixed
representation � , the reduced L.2/–signature does not depend on the choice of chain
complex V .

We first note, by the proof of Theorem 8.5, that a change in .H;Y; �/ to an equivalent
element in AC2 produces an algebraic concordance which we can glue onto V as in
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Proposition 4.7, which neither changes the second homology of V with K nor with Q
coefficients, so does not change the corresponding signatures.

To show that the reduced L.2/–signature does not depend on the choice of V , suppose
that we have two algebraic .1/–solutions, that is two 4–dimensional symmetric Poincaré
pairs over Q� :

.j W Q�˝ZŒZËH �N ! V; .‚; �// and .j}W Q�˝ZŒZËH �N ! V }; .‚}; �//;

such that p D p} 2H . Use the union construction to form the symmetric Poincaré
complex

.V [Q�˝N V }; ‚[� �‚
}/ 2L4.Q�/:

Over K , Q�˝ZŒZËH �N is contractible, so that

.V [Q�˝N V }; ‚[��‚
}/' .V ˚V }; ‚˚�‚}/D .V; ‚/�.V }; ‚}/2L4

S .K/:

Therefore .V; ‚/� .V }; ‚}/D 0 2L4.K/=L4.Q�/, which means that the images
in L0

S
.K/ satisfy �K ��}K D 0 2 L0

S
.K/=L0.Q�/. If �K ��}K 2L0.Q�/, then by

[8, Proposition 5.12]:

� .2/.�K ��
}
K/D �.Q˝Q� V [Q�˝N V }; IdQ˝.‚[� �‚

}//D �.�Q/� �.�
}

Q/;

where the last equality is by Novikov Additivity. Novikov Additivity also holds for � .2/

(see [8, Lemma 5.9.3]), so that

� .2/.�K/� �
.2/.�}K/D �.�Q/� �.�

}

Q/;

and therefore z� .2/.V /D z� .2/.V }/ as claimed.

This completes the proof of Theorem 1.1.

Remark 8.9 The results of Kim [14], Cochran, Orr and Teichner [9] and Cochran,
Harvey and Leidy [5; 7; 6], which use Cheeger–Gromov von Neumann �–invariants
to show the existence of infinitely many linearly independent injections of Z and
of Z2 into F.1/=F.1:5/ , can also be applied, so that we can use the chain-complex
von Neumann �–invariant of Theorem 8.7 to show the existence of infinitely many
injections of Z and Z2 into ker.AC2!AC1/, which in particular implies the claim
in Corollary 1.3.
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