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Spectra associated to symmetric monoidal bicategories

ANGÉLICA M OSORNO

We show how to construct a � –bicategory from a symmetric monoidal bicategory
and use that to show that the classifying space is an infinite loop space upon group
completion. We also show a way to relate this construction to the classic � –category
construction for a permutative category. As an example, we use this machinery to
construct a delooping of the K–theory of a rig category as defined by Baas, Dundas
and Rognes [2].

18D05, 55B20, 55P42; 19D23, 55N15

Introduction

Symmetric monoidal bicategories appear in many contexts in mathematics. One
example is Bimod , the bicategory of rings, bimodules and homomorphisms of bi-
modules, with tensor product as the monoidal structure. Another example is nCob,
the bicategory of closed n–manifolds, cobordisms and diffeomorphisms between
cobordisms, with disjoint union as the monoidal structure. The definition of symmetric
monoidal bicategory is cumbersome. Some incomplete definitions can be found in
McCrudden [19] and Day and Street [5], while the most concise and complete definition
can be found in Schommer-Pries [24]. Shulman [27] shows how to obtain symmetric
monoidal bicategories from symmetric monoidal double categories, which are easier to
understand.

In view of the importance of the construction of spectra from symmetric monoidal
categories (see May [17] and Segal [25]), we can ask if there is a similar construction
for symmetric monoidal bicategories. More specifically, we would like to know if the
group completion of the classifying space of a symmetric monoidal bicategory is an
infinite loop space. In this paper we show that this is the case for strict symmetric
monoidal bicategories. To do this, we use Segal’s theory of � –spaces [25]. Our
procedure gives a functor from symmetric monoidal bicategories to spectra that we
call A. This functor is analogous to the functor E from symmetric monoidal categories
to spectra, as developed by Elmendorff and Mandell [6].

Baas, Dundas and Rognes [2] defined the K–theory of a rig category. A rig category
is a category that roughly behaves like a ring with no additive inverses. Given a rig
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category R, we construct the bicategory of R–modules, GL.R/. It turns out that the
K–theory space of R is the group completion of the classifying space of GL.R/. We
prove that GL.R/ is a strict symmetric monoidal bicategory, and hence, K.R/ is an
infinite loop space. We compare this result with those of Baas, Dundas, Richter and
Rognes [1], where the authors obtain an equivalence of spaces

K.R/'K.ER/;

where the right-hand side is the infinite loop space associated to the algebraic K–theory
spectrum of the ring spectrum ER. We prove that this equivalence is an equivalence
of infinite loop spaces. See Theorem 4.7 for the precise statement.

The paper is organized as follows. Section 1 contains the necessary background
information on bicategories and �–spaces. Section 2 includes the statements of the
main results. Section 3 is dedicated to the application of the main results to the K–
theory of rig categories, in particular, we show that the K–theory of a rig category is an
infinite loop space. In Section 4, we recall the construction of the ring spectrum ER
and show that there is a map of infinite loop spaces between K.R/ and K.ER/. This
section also contains some material on symmetric spectra in the category of categories
that is needed for some of the constructions. Section 5 contains the main proofs and
constructions. Appendix A gives an account of the construction of the classifying space
of a bicategory.

The results from this paper are part of the author’s PhD thesis under the supervision of
Mark Behrens. We would like to thank Peter May for suggesting the current organization
and for his many comments on earlier versions of this paper. Finally, we would like to
thank the referee, for his very detailed report and many suggestions for improvement.

1 Background

1.1 Bicategories

In this paper we will be working with bicategories. For definitions and proofs of the
basic theorems, we refer the reader to the early papers of Bénabou [3] and Street [28]
on bicategories and some more recent accounts by Leinster [13] and Street [29].

Throughout the document we will assume categories and bicategories are enriched over
Top, the category of compactly generated Hausdorff spaces, without explicitly saying it.
A bicategory is enriched over topological spaces if all the categories of morphisms are
enriched. We do this so that we can accommodate the main example of VectC , which
has a natural topology on the sets of morphisms GLn.C/.
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Given a bicategory C , we will denote the vertical composition by ı, and the horizontal
composition by �. For an object A in C , IA denotes the identity 1–morphism. For a
1–morphism f , idf denotes the identity 2–morphism. The associativity isomorphism
is denoted by a, while the right and left identity isomorphisms are denoted by r

and l , respectively. We use the term 2–category to refer to the strict version, that is, a
bicategory where the natural isomorphisms a, r and l are all identities.

Let F W C!D be a pseudofunctor. We denote the functoriality 2–isomorphisms by

F2
f;gW F.g/�F.f /! F.g �f / and F0

AW IFA! F.IA/:

These are subject to coherence axioms as stated in [29, page 566]. A pseudofunctor is
said to be strict if the 2–isomorphisms F2

f;g
and F0

A
are the identity.

1.2 � –spaces

Segal’s �–spaces give an infinite loop space machine. In [25], it is shown that a
symmetric monoidal category M gives rise to a � –space, and hence to a connective
spectrum, whose zero space is the group completion of the classifying space of M.
The connection between symmetric monoidal categories and connective spectra was
made precise by Thomason [31], proving that there is an equivalence of categories
between a suitably defined stable homotopy category of symmetric monoidal categories
and the stable homotopy category of connective spectra. This result has been recently
reproved by Mandell [15].

We will recall briefly what a � –space is, since the definition will play a central role in
the paper.

Let F denote the skeletal category of finite pointed sets and pointed maps. This
category has as objects the sets nC D f0; 1; : : : ; ng, for n� 0. Here 0 is the basepoint.

For 1� k � n, we define ik W nC! 1C as

ik.j /D

�
0 if j ¤ k;

1 if j D k:

Let Top� be the category of compactly generated Hausdorff spaces with a basepoint.

Definition 1.1 A � –space X is a functor X W F ! Top� . We say X is special if the
map

pnW X.nC/!X.1C/�n

obtained by assembling the maps ik is a weak equivalence for all n� 0.
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The conditions in the definition above roughly imply that the space X.1C/ has a
multiplication that is associative and commutative up to coherent higher homotopies.
The precise statement in given by the following theorem:

Theorem 1.2 [25, Proposition 1.4] Let X be a special � –space. Then X.1C/ is an
infinite loop space upon group completion.

Segal and May [17] show how to construct a � –category from a symmetric monoidal
category enriched over topological spaces, thus getting an infinite delooping of the
classifying space of a symmetric monoidal category. As we mention in the introduction,
given a permutative category M, we denote the associated spectrum by E.M/. We
will follow a similar approach in the context of bicategories.

1.3 Symmetric monoidal bicategories

In broad terms, a symmetric monoidal bicategory is a bicategory with a product
pseudofunctor that is associative, unital, and commutative up to coherent natural
equivalences. The precise definition is quite involved, as one would imagine. For
a precise definition and a historical account of the theory of symmetric monoidal
bicategories we refer the reader to Schommer-Pries [24]. Incomplete versions of the
definition can be found in McCrudden [19] (definition of sylleptic monoidal bicategory)
and Day and Street [5] (definition of symmetric Gray monoid). Shulman [27] provides
a way of constructing examples of symmetric monoidal bicategories.

In this paper we will be working with a strict version of symmetric monoidal bicategories,
and that is what we will define here.

Recall that a transformation � between pseudofunctors F;GW C ! D consists of a
1–morphism �AW FA! GA for each A 2 Ob.C/, and for every pair A;B , natural
2–isomorphisms

�2
f W Gf � �A) �B �Ff:

The latter must satisfy some coherence conditions (see [29, page 568]).

Definition 1.3 A strict symmetric monoidal bicategory .M;�; 0; ˇ/ consists of the
following data:

� a bicategory M;
� a strict functor of bicategories �WM�M!M;
� an object 0 in M called the unit;
� a transformation ˇW � ! � ı �; where � denotes the twist pseudofunctor

M�M!M�M.
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The monoidal product � is required to be strictly associative, and 0 is a strict unit, the
following diagrams must commute:

A � B � C
ˇ�IC //

ˇ ((

B � A � C

IB�ˇ

��
B � C � A

A � B

ˇ %%

A � B

B � A

ˇ

99

Remark 1.4 The strict version defined above is just one of the many ways in which
one can strictify the notion of symmetric monoidal bicategory. In fact, there are different
levels of strictness one could consider. We choose this level because it is convenient to
work with and it covers the applications we have in mind. It is easy to check that this
definition is a special case of the general definition of symmetric monoidal bicategory.
It is not yet known whether any symmetric monoidal bicategory can be strictified to a
strict symmetric monoidal bicategory as defined here.

It is known that any monoidal bicategory is equivalent to a Gray monoid by Gordon,
Power and Street [7], which is a 2–category with a certain product pseudofunctor, which
is strictly associative and unital. The extra data needed for the monoidal bicategory to
be symmetric is carried across the equivalence but does not necessarily get any stricter.

The symmetric monoidal structure on a bicategory translates into an H –space structure
on its classifying space (see Appendix A for details on the construction of the classifying
space of a bicategory). In the case of symmetric monoidal categories, we know that
we obtain an infinite loop space structure upon group completion. To show that this
is also the case for (strict) symmetric monoidal bicategories we will be using Segal’s
� –space machine in the context of bicategories.

Let Bicat� denote the category of (small) pointed bicategories and pseudofunctors that
preserve the base object.

Definition 1.5 A pseudofunctor F W C!D is an equivalence of bicategories if there
exists a pseudofunctor GW D! C and natural equivalences, ie weakly invertible trans-
formations,

idC ' G ıF and idD ' G ıF :

Other authors use the term biequivalence to refer to the definition above.
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Definition 1.6 A � –bicategory A is a functor AW F ! Bicat� . We say A is special
if the map

pnW A.nC/!A.1C/�n

is an equivalence of bicategories for all n� 0.

This definition is analogous to that of a special � –space, with the connection made
clear by the following lemma, where jN.�/j denotes the classifying space functor as
constructed in Appendix A.

Lemma 1.7 Let A be a special �–bicategory. Then jNAjW F ! Top� is a special
� –space.

Proof The classifying space functor jN.�/jW Bicat ! Top preserves products and
sends equivalences of bicategories to homotopy equivalences of spaces (see
Proposition A.4).

2 Statement of results

We are now ready to state the main results of the paper. The proofs of both these
theorems are delayed until Section 5.

Theorem 2.1 Let M be a (strict) symmetric monoidal bicategory. Then there is a
special � –bicategory WM such that

.WM/.1C/ŠM:

Therefore the classifying space jNMj is an infinite loop space upon group completion.

Using this theorem, we can construct a functor

AW SymMonBicat �! Spectra:

This functor will be used in Section 3 to construct the K–theory of rig categories.

We will compare the � –bicategory construction to the standard � –category construc-
tion; see May [17] and Shimada and Shimakawa [26]. The construction studied in
these papers gives a functor

U W Perm �! �Cat;

from the category of permutative categories to the category of � –categories.
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Given a 2–category M, let TM denote the category enriched over topological spaces
obtained from M as follows: the objects are the same as the objects of M and the
space of morphisms TM.X;Y / is the classifying space of the category M.X;Y /. If
M is a strict symmetric monoidal 2–category such that the braiding is a strict natural
isomorphism, then TM is a permutative topological category.

Theorem 2.2 Let M be a strict symmetric monoidal 2–category such that the braiding
is a strict natural isomorphism. Then there is a special � –(2–category) VM and a
levelwise equivalence

VM �!WM

of special � –bicategories. Furthermore, there is a levelwise isomorphism

UTM �! T VM

of � –categories.

By [4, Theorem 6.4], the geometric realization of the 2–nerve of a strict 2–category C
is equivalent to the classifying space of the category T C (see Appendix A for details).
Applying this to �–(2–categories) levelwise, we get the middle equivalence in the
following corollary.

Corollary 2.3 Let M be a strict symmetric monoidal 2–category. Then there are
levelwise equivalences of � –spaces

BUTM' BT VM' jNVMj ' jNWMj:

3 Delooping K –theory of rig categories

Baas, Dundas and Rognes [2] introduce the notions of 2K–theory and 2–vector bundles
as a way to categorify topological K–theory and vector bundles. One of their objectives
is to define a cohomology theory of a geometric nature that has chromatic level 2.

In general they define the K–theory space of a (commutative) rig category R in terms
of a bar construction for monoidal categories and show there is an equivalence of spaces

(3.1) K.R/'K.ER/

between the K–theory of the rig category R and the algebraic K–theory space of the
ring spectrum ER.
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3.1 Definition of K –theory of a rig category

The notion of a rig category (also known as a bimonoidal category) is obtained by
categorifying the notion of a ring without negatives. Here is a categorically incomplete
definition.

Definition 3.2 A rig category (R;˚; 0; 
˚;˝; 1; ı ) consists of a permutative cate-
gory (R;˚; 0; 
˚ ), together with a strict monoidal structure (˝; 1), such that right
distributivity and nullity of zero hold strictly, and there is a left distributivity natural
isomorphism

ıW a˝ .b˚ c/! .a˝ b/˚ .a˝ c/:

A bipermutative category R is a rig category that is permutative under .˝; 1/, with
commutativity isomorphism 
˝ .

In the commutative case, the coherence diagrams necessary for a precise definition of
the less strict notion of a symmetric bimonoidal category were given by Laplaza [12],
and the coherence diagrams for a nonsymmetric bimonoidal category can be found,
for example, in Guillou [8, Definition 3.1]. By May [16, Proposition VI.3.5], any
symmetric bimonoidal category is equivalent to a bipermutative category. Similarly, by
[8, Theorem 1.2], any bimonoidal category is equivalent to a rig category.

Let .R;˚; 0; c˚;˝; 1; ı/ be a rig category. Then, as in [2], we can define Mn.R/, the
category of n� n matrices over R. Its objects are matrices V D .Vi;j /

n
i;jD1

whose
entries are objects of R. The morphisms are matrices �D .�i;j /

n
i;jD1

of isomorphisms
in R, such that the source (resp, target) of �i;j is the .i; j /�entry of the source (target)
of � . As a category, Mn.R/ is isomorphic to Rn�n .

Moreover, Mn.R/ is a monoidal category, with multiplication

Mn.R/�Mn.R/
�
!Mn.R/

given by sending the pair .U;V / to

Wik D

nM
jD1

Uij ˝Vjk :

Since ˚ is strictly associative, there is no ambiguity.

This multiplication has a unit object In , given by the matrix with 1 in the diagonal
and 0 elsewhere. The objects 0 and 1 are strict units for ˚ and ˝ respectively, and
the nullity of 0 holds strictly, so In is a strict unit as well.
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Proposition 3.3 [2, 3.3] Matrix multiplication makes .Mn.R/; � ; In/ into a monoidal
category.

The natural associativity isomorphism

aW U � .V �W /! .U �V / �W

is given by entry-wise use of 
˚ and ı .

Recall that if R is a semiring, GLn.R/ is the subgroup of Mn.R/ that contains all
the matrices which are invertible as matrices over the ring completion GrC.R/. The
following definition is also taken from [2].

Definition 3.4 Let GLn.R/ � Mn.R/ be the full subcategory of matrices V D

.Vi;j /
n
i;jD1

whose matrix of path components lies in GLn.�0.R//. We call GLn.R/
the category of weakly invertible matrices. By convention we will let GL0.R/D 1 be
the unit category, with one object and one morphism.

Note that GLn.R/ inherits a monoidal structure from Mn.R/.

Given a monoidal category C , the authors in [2] define a bar construction for monoidal
categories, B�C , which is a simplicial object in Cat: As we point out in Remark A.2,
this definition coincides with the 2–nerve of the bicategory †C , that is, the bicategory
with one object whose category of morphisms is given by C .

We note that block sum of matrices in R makesa
n�0

jB�GLn.R/j

into a topological monoid, since it is strictly associative and unital. Hence we define
the K–theory of R to be the group completion

K.R/ WD�B

�a
n�0

jB�GLn.R/j
�
:

The motivation behind the definition of K–theory for rig categories comes from the
categorification of complex K–theory. As we know well, the complex K–theory space
classifies virtual vector bundles.

A 2–vector space, as defined by Kapranov and Voevodsky [9], is a category equivalent
to .VectC/n for some n. Heuristically, this should be thought of as a module category
over VectC . In [2], the authors introduce the notion of a complex 2–vector bundle over
a topological space and construct a classifying space for these bundles. A 2–vector
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bundle is roughly a bundle of 2–vector spaces over X , defined in terms of transition
functions, which are given by matrices of vector spaces. For the precise definition we
refer the reader to [2, Section 2].

One of the main results in [2] is that the stable equivalence classes of virtual 2–vector
bundles over a space X are in one-to-one correspondence with homotopy classes of
maps from X to K.VectC/, where VectC is a considered as a rig category using direct
sum and tensor product.

3.2 K –Theory as a classifying space of a bicategory

We now define the bicategory GL.R/, whose classifying space can be used to con-
struct K.R/.

Definition 3.5 Let GL.R/ be the bicategory of finite dimensional free modules over R,
defined as follows. The objects are labeled by the natural numbers n� 0. Given objects
n;m, the category of morphisms is

GL.R/.n;m/D
�

GLn.R/ if nDm;

∅ if n¤m:

and the composition is given by matrix multiplication. In other words,

GL.R/D
a
n�0

†GLn.R/:

With this identification, the identity 1–morphism for the object n is given by the
identity matrix In .

Example 3.6 Let Vectk be the commutative rig category of vector spaces over the
field k . Then GL.Vectk/ is a sub-bicategory of the bicategory of 2–vector spaces
defined by Kapranov and Voevodsky [9]. The 1–morphisms are matrices of vector
spaces such that their matrices of dimensions have determinant ˙1.

We can use the bicategory GL.R/ to give an alternative definition of the K–theory
of R. We have the following identifications of simplicial categories:a

n�0

B�GLn.R/D
a
n�0

N†GLn.R/D N
�a

n�0

†GLn.R/
�
D NGL.R/;

where N.�/ denotes the 2–nerve (see Appendix A). Hence, we can redefine the
K–theory space

K.R/ WD�BjNGL.R/j:
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This is the definition we will use in the following sections. In the next section we will
show that the multiplication on jNGL.R/j comes from a strict functor

GL.R/�GL.R/! GL.R/;

which will give GL.R/ the structure of a strict symmetric monoidal bicategory.

3.3 Symmetric monoidal structure on the bicategory GL.R/

Just as we can take direct sum of modules over a ring, we can take direct sum of
modules over a rig category. This will provide GL.R/ with a symmetric monoidal
structure, which in turn will give rise to an infinite delooping of K.R/.

Theorem 3.7 The bicategory GL.R/ is strict symmetric monoidal with the monoidal
operation given by block sum of matrices:

�W GL.R/�GL.R/! GL.R/
.n;m/ 7! nCm

.U;V / 7!

�
U 0

0 V

�
.';  / 7!

�
' 0

0  

�
:

The matrix Œ0� is the matrix with all entries equal to 0, the unit of ˚ in R.

Proof We first note that the operation described above gives a strict functor of bicate-
gories, since it preserves the identity and the composition:

In � Im D InCm;�
U 0 0

0 V 0

�
�

�
U 0

0 V

�
D

�
U 0 �U 0

0 V 0 �V

�
:

The second equation holds because of the strict nullity and unity of 0 in R.

The unit of � is 0. We note that for U 2 GLn.R/, V 2 GLm.R/ and W 2 GLp.R/,

.U � V /� W D U � .V � W /;

I0 � U D U D U � I0:

The natural equivalence ˇn;mW n � m!m � n is given by the block matrix�
0 Im

In 0

�
:
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Since 0 and 1 are strict units in R, for U 2 GLn.R/ and V 2 GLm.R/,

ˇn;m � .U � V /D

�
0 V

U 0

�
D .V � U /�ˇn;m;

so ˇ is a strict transformation.

We note that ˇm;n �ˇn;m D InCm which both implies that ˇ is a natural isomorphism
and that it is its self-inverse. We conclude that GL.R/ is a strict symmetric monoidal
bicategory.

By Theorem 2.1, there exists a spectrum A.GL.R//. We can thus define the K–theory
spectrum of R as

K.R/ WDA.GL.R//:

It is clear from the construction that the zeroth space of this spectrum is precisely the
K–theory space, as defined in Section 3.2, obtaining thus the following result.

Theorem 3.8 The K–theory space of the rig category R is an infinite loop space,
with the additive structure provided by the block sum of matrices. More precisely, we
can identify K.R/ with the zeroth space of the spectrum K.R/.

4 Algebraic K –theory of ER

In order to compare K.R/ with K.ER/, we must first describe the latter. Given
a rig category R, by forgetting the multiplicative structure, we can construct the
spectrum ER associated to the permutative category .R;˚/. The results of [6; 18]
show that the multiplicative structure of R makes ER into a ring spectrum, and
furthermore, if R is commutative, ER is an E1 ring spectrum. Note that in [2; 1]
the authors denote ER by HR, pointing out the analogy to the Eilenberg–Mac Lane
spectrum of a ring.

The model we are taking for the symmetric ring spectrum ER is that of [6]. We now
construct the category GL.ER/.

Let ER.p/ denote the p–th space of the spectrum ER. We let

Mn.ER.p//DMap�.nC;nC ^ER.p//:

This should be thought of as the space of n� n matrices with entries in ER.p/, such
that at most one of the entries per column is not equal to the basepoint.
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Then the space of matrices

Mn.ER/D hocolim
p2I

�mMn.ER.m//

is a topological monoid, as we explain shortly. The homotopy colimit here is taken
over I , which is the category of finite sets and injections. Since Mn.ER/ is a
topological monoid, then so is GLn.ER/, which is defined by the pullback

GLn.ER/ //

��

Mn.ER/

��
GLn.�0ER/ // Mn.�0ER/:

The category GL.ER/ has as objects the natural numbers n. The spaces of morphisms
are given by

GL.ER/.n;m/D
�

GLn.ER/ if nDm;

∅ if n¤m:

Block sum of matrices makes GL.ER/ into a permutative topological category, with
associated spectrum K.ER/.
In order to compare the classifying spaces of GL.R/ and GL.ER/, we use two auxiliary
bicategories, and to define them, we need a theory of symmetric spectra in Cat , which
we now develop.

4.1 Symmetric spectra of categories

We generalize Minian’s definition of spectra in Cat [21, Definition 5.1] to symmetric
spectra and symmetric ring spectra as follows.

We first recall some notation from [20; 21].

For pointed categories C;D , we denote by C ^D the smash product, as defined in
[20, Definition 2.2]. By construction, the smash product satisfies the universal property
given by the isomorphism between the pointed sets of pointed functors

Fun�.C ^D;E/Š Fun�.C;Cat�.D;E//:

It is not true in general that B.C ^D/ is equivalent to BC ^BD , but there is a natural
map BC ^BD! B.C ^D/.

Let ˛ 2N . The ˛–circle S1
˛ is the pointed category depicted as (in the case of ˛ odd)

0 // 1 2 //oo 3 � � �oo ˛� 1:oott

The p–th ˛–sphere S
p
˛ is given by the iterated smash product .S1

˛/
^p .
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Let C be a pointed category. The ˛–loop category of C is defined as the category of
pointed functors and pointed natural transformations from S1

˛ to C , that is

�˛C WD Cat�.S1
˛ ;C /:

For ˇ � ˛ there are subdivision functors S1
ˇ
! S1

˛ inducing functors �˛C !�ˇC .
We define the loop category of C by taking the colimit over all subdivision functors:

�C WD colim
˛

�˛C:

The loop category has the property that its classifying space is weakly equivalent to
the loop space of the classifying space of C .

For ˛; ˇ , there is a functor �˛C��ˇC!�
C given by concatenation of loops. Here

 D ˛Cˇ or ˛CˇC1, depending on whether ˛ is even or odd. These concatenation
functors are compatible with the subdivision functors, so they give a functor

�C ��C !�C:

Now we can define symmetric spectra in Cat .

Definition 4.1 A symmetric spectrum C in Cat is a sequence of pointed categories
C0;C1; : : : together with pointed functors

S1
˛p
^Cp! CpC1

for some natural number p̨ , and a basepoint preserving left action of the symmetric
group †p on Cp such that the iterated functor

.S1
˛q
^S1

˛qC1
^ � � � ^S1

˛pCqD1
/^Cq! CpCq

is .†p �†q/–equivariant for all p � 1, q � 0.

Definition 4.2 A symmetric ring spectrum C is a symmetric spectrum together with
.†p �†q/–equivariant pairings

�p;qW Cp ^Cq! CpCq

for all p; q � 0 satisfying the usual coherence conditions (see [23, Section 2.1]).

4.2 The construction of symmetric spectra from permutative categories

There are many ways of passing from special � –categories to symmetric spectra. Here
we sketch one of them.
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Let AW F!Cat� be a special � –category. We now construct the symmetric spectrum
KA in Cat . This construction is the same as the construction in [21]. Here we point
out why this is a symmetric spectrum of categories.

The p–th category of the spectrum is given by the realization (in Cat) of the simplicial
category

k 7!A..kC/^p/:

Note that this simplicial category has a natural action of †p by permuting the factors
in .kC/^p . This gives an action of †p on KA.p/.

The category KA.p/ is isomorphic to the category BpA defined in [21]. Indeed,
consider the multisimplicial category

.k1; : : : ; kp/ 7!A.k1C ^ � � � ^kpC/:

Then KA.p/ is the realization of the diagonal simplicial category, and BpA is the
iteration of the realization one index at a time, from right to left. Using a similar
strategy to [22], one can show that the two are isomorphic.

It follows by the results in [21, Section 5] that there is a functor

S1
1 ^KA.p/!KA.pC 1/:

The iterated functors S
q
1
^KA.p/!KA.pC q/ are equivariant by construction, so

KA is a symmetric spectrum in Cat .

There are also may ways of passing from permutative categories to special � –categories.
For example, as we mentioned before, we can use the construction of [17] to produce a
special � –category UC from a permutative category C . Then KUC is the symmetric
spectrum in Cat associated to C .

4.3 The construction of symmetric ring spectra from rig categories

In [6], the authors construct an equivalent version of the symmetric spectrum associated
to a permutative category, which is better suited to handle multiplicative structure.
We will use their notation for the following definition. By realization of a simplicial
category, we mean the construction defined in [21, Section 3]. This construction gives
a functor from simplicial categories to categories that sends level-wise equivalences to
equivalences, and preserves products up to equivalence.

Let C be a rig category. We now define a symmetric spectrum yC in Cat . We set
yC.0/D C and for p > 0, we let yC.p/ be the realization of the simplicial category

k 7! xC.
p‚ …„ ƒ

kC; : : : ;kC/;
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where xC.k1C; : : : ;kpC/ is the category defined in [6, Construction 4.4]. This category
has an action of †p via permutation of the p entries.

In the proof of [6, Theorem 4.6], the authors show that there is an equivalence of
categories

UC.k1C ^ � � � ^kpC/! Ckp

and a functor
CkP

! xC.kC; : : : ;kC/

that is a left adjoint, giving a functor

UC.k1C ^ � � � ^kpC/!
xC.kC; : : : ;kC/

that is a strong homotopy equivalence in the sense of [21].

Thus, by [21, Proposition 4.5] there is an equivariant strong homotopy equivalence
KUC.p/! yC.p/.

Since realization of a bisimplicial category can be done taking the diagonal or by
realizing first in one direction and then in the other, the category yC.p C 1/ can be
constructed as the realization of the simplicial category

j 7! jk 7! xC.jC;
p‚ …„ ƒ

kC; : : : ;kC/j:

Noting that xC.1C; i1C; i2C; : : : ; ipC/ is isomorphic to xC.i1C; i2C; : : : ; ipC/ and using
[21, Remark 3.7], we obtain a functor

S1
1 ^
yC.p/! yC.pC 1/:

These functors are compatible with those for KUC and the iterated functors are
equivariant by construction. We thus have a symmetric spectrum yC , and a strong
homotopy equivalence of symmetric spectra KUC! yC .

If R is a rig category, the multiplication induces equivariant pairings

xR.k1C; : : : ;kpC/�
xR.l1C; : : : ; lqC/! xR.k1C; : : : ;kpC; l1C; : : : ; lqC/

that are strictly associative and unital. They induce pairings on the realization

yR.p/� yR.q/! yR.pC q/;

also strictly associative and unital, which make yR into a symmetric ring spectrum.
Note that yR.0/DR. The symmetric spectrum in Top ER is then given by taking the
classifying space levelwise.
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4.4 I–monoids in Cat and Top

We must explain why Mn.ER/ and GLn.R/ are topological monoids. In order to do
so, we will use the theory of I–categories and I–monoids in Cat , which we explain
in this section. This is analogous to the theory of I–spaces. A good source for all the
definitions and some of the main results is [23].

Let I be the skeletal category of finite sets and injections. Objects are given by the
natural numbers, with pD f1; 2; : : : ;pg, and 0 the empty set. For sets p and q, we
take the concatenation ptq to be the set pCq, where the first p elements correspond
to those of p, and the last q to those of q. This makes I into a permutative category,
with the braiding given by the permutation that exchanges the first p elements with
the last q .

An I–category (analogous to I–space) X is a functor X W I! Cat� . Note that the
category CatI� is symmetric monoidal, with the symmetric product X � Y given by
the left Kan extension of X � Y along tW I � I ! I . We say X is an I–monoid
if X is a monoid in CatI� . Unraveling this definition we get a natural transformation
�W X �X !X.�t�/. This transformation is given by functors

�p;qW X.p/�X.q/!X.pC q/;

for all pairs .p; q/. The requirement that this is a monoid means that this multi-
plication is strictly associative and unital, in the sense that �p;qCr ı .id � �q;r / D

�pCq;r ı .�p;q � id/, and the inclusion of the basepoint in X.0/ composed with �0;q

is equal to the projection ��X.q/!X.q/; and similarly for �p;0 .

Now consider the Grothendieck construction I
R

X . By [30], the classifying space
B.I

R
X / is a model for the homotopy colimit of BX . The extra structure of the

I–monoid X implies extra structure on the Grothendieck construction.

Theorem 4.3 Let X be an I–monoid in Cat . Then I
R

X is a strict monoidal
category.

Proof The objects of I
R

X are given by pairs .p;x/, where p is an object of I and
x is an object of X.p/. The morphisms between .p;x/ and .p0;x0/ are given by pairs
.i; f /, where i W p! p0 in I and f W X.i/x! x0 in X.p0/.

The monoidal structure is defined as

..p;x/; .q;y// 7! .ptq; �p;q.x;y//;

..i; f /; .j ;g// 7! .i t j ; �p0;q0.f;g//:

The unit of the monoidal structure is given by .0;�/, where � denotes the basepoint
of X.0/. Since � is associative and unital, the monoidal structure is strict.
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We also consider a weak version of I–monoids as follows. Let CatI� be the 2–category
of strict functors I! Cat� , strict natural transformations and modifications, where
Cat� is the 2–category of based categories. This is a symmetric monoidal 2–category
with the same product as defined above for CatI� .

A (strictly unital) I–pseudomonoid X is a (strictly unital) pseudomonoid in CatI� , as
defined in [19, Section 2]. This implies that we have an I–category X together with a
natural transformation � as above and a modification ˛ , which on the triple .p; q; r/
is given by a natural transformation

p̨;q;r W �p;qCr ı .id ��q;r /! �pCq;r ı .�p;q � id/;

satisfying the pentagon axiom. The proof of the following theorem is the same as
above, with the added associativity constraint given by ˛ .

Theorem 4.4 Let X be a strictly unital I–pseudomonoid in Cat . Then I
R

X is a
strictly unital monoidal category.

4.5 I–monoids coming from symmetric spectra

Let C by a symmetric spectrum in Cat . Consider the functor ��C.�/ from I
into Cat� . Note that any morphism p ! q in I can be factored as the standard
inclusion followed by a permutation. There is a †p action on �p

˛Cp D Cat�.S
p
˛ ;Cp/

given by conjugation. We then get an action of †p on �pC.p/. We use this action to
define the functor on permutations.

Let i W p!pCq be the standard inclusion. We have the structure functor S
q

ˇp;q
^Cp!

CpCq . Taking the adjoint, mapping into the colimit and applying �p.�/, we get a
functor �pCp!�pCqCpCq .

If C is a symmetric ring spectrum, we can give ��C.�/ the structure of an I–monoid.
The multiplication map is given by the colimit of the maps

�p
˛Cp ��

q
˛Cq �!�pCq

˛ CpCq

.f W Sp
˛ ! Cp;gW S

q
˛ ! Cq/ 7�! Œs ^ t 7! �p;q.f .s/;g.t//�:

4.6 From K.R/ to K.ER/

With the machinery from the previous sections, we can now describe a map K.R/!
K.ER/ which is equivalent to the one in [1], and show that it is a map of infinite loop
spaces.

We construct two auxiliary bicategories, fGL.ER/ and GL.ER/, as follows.
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Consider the symmetric ring spectrum in Cat , yR, as described in Section 4.3. Recall
that nC denotes the pointed set f0; 1; : : : ; ng. We use the same notation to denote the
discrete category with nC as set of elements. Let Mn. yR.p//DCat�.nC;nC^ yR.p//,
analogous to the definition for spaces. As a category, this is equivalent to

Q
n

W
n
yR.p/,

and as such it is a symmetric spectrum, with the structure functors inherited from those
of yR.

It is furthermore a symmetric ring spectrum, with the pairing given on

.f;g/ 2Mn. yR.p//�Mn. yR.q//

by the composition

nC
g
�! nC ^ yR.q/

f^id
�! nC ^ yR.p/^ yR.q/

id^�p;q

�! nC ^ yR.pC q/:

Thus, by the results of Section 4.5, the categories �pMn. yR.p// form an I–monoid
in Cat . We take the homotopy colimit (Grothendieck construction)

hocolim
p2I

�mMn. yR.p//

and obtain a strict monoidal category by Theorem 4.3. Using the results of Thoma-
son [30] and Minian [20; 21] we obtain the following string of weak equivalences of
spaces:

B.hocolim
p2I

�pMn. yR.p///' hocolim
p2I

B.�pMn. yR.p///

' hocolim
p2I

�pB.Mn. yR.p///D hocolim
p2I

�pMn.ER.p//:

If we restrict to the connected components over GLn.�0R/, we obtain a strict monoidal
category fGLn.ER/ such that the classifying space BfGLn.ER/ is monoidally equiv-
alent to the topological monoid GLn.ER/. We let fGL.ER/ be the 2–category with
objects given by the natural numbers and categories of morphisms given by fGLn.ER/.
Then we have that the category GL.ER/ is equivalent to T fGL.ER/. Notice moreover
that block sum of matrices makes fGL.ER/ into a strict symmetric monoidal 2–category.

The second auxiliary bicategory is constructed as follows. Let Matn. yR.p// be the
category of n�n matrices over the category yR.p/. Since it is just n2 copies of yR.p/,
we get a symmetric spectrum in Cat . Thus, the categories �pMatn. yR.p// form an
I–category. There are also maps

�p;qW �
pMatn. yR.p//��qMatn. yR.q//!�pCqMatn. yR.pC q//;

given by “matrix multiplication,” using the pairing �p;q as multiplication and the
concatenation of loops as addition. These maps are not strictly associative. There is an
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associativity natural isomorphism between �p;qCr ı.id��q;r / and �pCq;r ı.�p;q�id/,
making p 7!�pMatn. yR.p// into an I–pseudomonoid (see Section 4.4 for definition).
This in turn implies that the homotopy colimit taken as the Grothendieck construction
is a monoidal category.

By taking the components over GLn.�0R/, we obtain a monoidal category GLn.ER/.
We let GL.ER/ be the bicategory with objects given by the natural numbers, and
categories of morphisms given by GLn.ER/. In this case as well, block sum of
matrices makes GL.ER/ into a strict symmetric monoidal bicategory.

The following proposition relates the three bicategories in sight.

Theorem 4.5 There exist symmetric monoidal pseudofunctors

GL.R/ �! GL.ER/ � fGL.ER/:

Proof Since the set of objects in all three bicategories is the same, and the monoidal
structure is given my block sum of matrices, it is enough to produce monoidal functors

GLn.R/ �! GLn.ER/ � fGLn.ER/

between the categories of morphisms.

Recall from Section 4.3 that yR.0/DR. The functor GLn.R/! GLn.ER/ is given
by the inclusion into the first term of the homotopy colimit. On the other hand, we
can include Mn. yR.p// into Matn. yR.p// as the matrices with only one nonbasepoint
entry per column.

Symmetric monoidal pseudofunctors give rise to maps of � –bicategories. We thus
obtain the following corollary.

Corollary 4.6 There is a sequence of maps of � –spaces

jNW .GL.R//j �! jNW .GL.ER//j
f
 � jNW .fGL.ER//j ' jNV .fGL.ER//j

' BT V .fGL.ER//
' BUGL.ER/;

where the map labeled f is a stable equivalence.

Proof The first two maps follow from the symmetric monoidal pseudofunctors from
Theorem 4.5. The map f is a stable equivalence since Mn. yR.m//Š

Q
n

W
n
yR.m/

and Matn. yR.m//Š
Q

n2
yR.m/, and wedges and products are stably equivalent.

The rest of the equivalences come from the fact that GL.ER/ ' T fGL.ER/ and
Corollary 2.3.
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The main theorem of this section is a consequence of Corollary 4.6 and [1, Theorem 1.1].

Theorem 4.7 There is a stable equivalence of spectra

K.R/ ��!K.ER/;

which at the level of infinite loop spaces gives the map

K.R/ �!
.3:1/

K.ER/:

Remark 4.8 In the case where R is a bipermutative category, the ring spectrum ER
is an E1 ring spectrum, and thus K.ER/ is an E1 ring spectrum itself. We expect
that the symmetry of the multiplication in R will allow us to define a second monoidal
structure on GL.R/, analogous to tensor product of modules. It is expected that
following an approach similar to that of [6], we can prove that this gives an E1 ring
structure on K.R/ compatible to the one on K.ER/.

5 Constructions of � –bicategories

In this section we present the construction of the special � –bicategory for a symmetric
monoidal bicategory, and a slightly modified construction for when M is a 2–category.
The constructions are inspired by the analogous construction for symmetric monoidal
categories found in [26]. The main difference between the bicategorical and categorical
cases is that certain diagrams of morphisms that were required to commute in the
categorical case only commute up to 2–isomorphism in the bicategorical construction,
and those 2–isomorphisms must satisfy certain coherence axioms.

5.1 Pasting diagrams

In the proof below we will make extensive use of pasting diagrams for bicategories. A
pasting diagram is a polygonal arrangement on the plane, where the vertices correspond
to objects, the directed edges correspond to 1–morphisms and the faces are usually
filled with double arrows corresponding to 2–morphisms. For example, the diagram

g

""

�� ��
�� �

f
<<

h

//

indicates that � is a 2–morphism from g �f to h.
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We can combine pasting diagrams to depict certain compositions of 2–morphisms. For
example the diagram

f //

g ""

k

""

�� ��
�� '

�� ��
��  h

<<

l

//

represents the 2–morphism given by the composition

k �f
k�'
H) k � .h�g/

a
H) .k � h/�g

 �g
H) l �g:

We note here that the 2–morphisms are not actually composable; we need to use the
associativity isomorphism. In general, for larger diagrams, the source and target of
the 2–morphisms we are composing may differ by their bracketing. By the Coherence
Theorem of Bicategories [14, Section 2] we know that there is a unique canonical
associativity isomorphism between two bracketings, so we use these isomorphisms to
connect the source and target of the 2–morphisms we are composing and hence make
sense of the diagram.

Once we specify a bracketing of the outside 1–morphisms, the diagram has a unique
meaning, no matter what order we use to compose the 2–morphisms. We refer the
reader to Kelly and Street [10] and Street [29, Section 3].

When we say “pasting diagram A is equal to pasting diagram B ” we mean that with
a given bracketing of the outside 1–morphisms, the given 2–morphisms that they
both define are equal. Note that if this is true for a given bracketing, it is true for all
bracketings.

5.2 The proof of Theorem 2.1

For a strict symmetric monoidal bicategory M, we construct a � –bicategory as follows.
The bicategory WM.nC/ for n� 0 is given by:

(1) Objects are of the form fAS ; aS;T gS;T , where S runs over all the subsets
of nC that do not contain the basepoint 0; .S;T / runs over all pairs of such
subsets such that S \T D∅; AS 2 ObM and aS;T W AS[T !AS � AT is a
1–equivalence, that is a 1–morphism that is invertible up to isomorphism. We
require further
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(a) A∅ D 0;
(b) a∅;S D IAS

D aS;∅ ;
(c) for every triple .S;T;U / of subsets such that S\T DS\U DT \U D∅,

the diagram

(5.1)

AS[T[U

aS[T;U

��

aS;T[U // AS � AT[U

IAS
�aT;U

��
AS[T � AU

aS;T �IAU

// AS � AT � AU

strictly commutes;
(d) for every pair of subsets .S;T /, the diagram

(5.2)

AS[T

aS;T // AS � AT

ˇAS ;AT

��
AT[S aT;S

// AT � AS

strictly commutes.

(2) A 1–morphism fAS ; aS;T g! fA
0
S
; a0

S;T
g is given by a system ffS ; �S;T gS;T ,

where S;T are as above; fS W AS !A0
S

is a 1–morphism in M and �S;T is
a 2–isomorphism:

(5.3)

AS[T

aS;T //

fS[T

��

������ �S;T

AS � AT

fS �fT

��
A0

S[T
a0

S;T

// A0
S

� A0
T
:

We require:

(a) �∅;S W fS � IAS
D fS ) fS D IAS

� fS is the identity 2–morphism and
similarly for �S;∅ ;
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(b) for every pairwise disjoint S;T;U the following equation of pasting dia-
grams holds:

(5.4)

AS[T[U

aS;T[U//

fS[T[U

��





�	 �S;T[U

AS � AT[U

fS �fT[U

��

IAS
�aT;U

//





�
 l�1�r��

AS � AT � AU

fS �fT �fU

��
A0

S[T[U
a0

S;T[U

// A0
S

� A0
T[U

D

I
A0

S
�a0

T;U

// A0
S

� A0
T

� A0
U

AS[T[U

aS[T;U//

fS[T[U

��





�	 �S[T;U

AS[T � AU

fS[T �fU

��

aS;T �IAU //





�
 ��l�1�r

AS � AT � AU

fS �fT �fU

��
A0

S[T[U
a0

S[T;U

// A0
S[T

� A0
U

a0
S;T

�I
A0

U

// A0
S

� A0
T

� A0
U
;

where r; l denote the coherent identity isomorphisms in M, that is lf W IB �

f ! f and rf W f � IA! f ;
(c) for every S;T the following equation holds:

(5.5)

AS[T

aS;T //

fS[T

��
�����	 �S;T

AS � AT

fS �fT

��

ˇ //

D

AT � AS

fT �fS

��
D

AT[S

aT;S //

fT[S

��
�����	 �T;S

AT � AS

fT �fS

��
A0

S[T
a0

S;T

// A0
S

� A0
T ˇ

// A0
T

� A0
S

A0
T[S

a0
T;S

// A0
T

� A0
S
:

(3) Given 1–morphisms

ffS ; �S;T g; fgS ; 
S;T gW fAS ; aS;T g ! fA
0
S ; a
0
S;T g;

a 2–morphism between them is given by a system f Sg of 2–morphisms in M,
 S W fS ) gS , such that for all S;T as above the following equation holds:

AS[T

aS;T //

fS[T

��

gS[T

��

____ks
 S[T

������ �S;T

AS � AT

fS �fT

��

D

AS[T

aS;T //

gS[T

��

������
S;T

AS � AT

fS �fT

��

gS �gT

��

____ks
 S � T

A0
S[T

a0
S;T

// A0
S

� A0
T

A0
S[T

a0
S;T

// A0
S

� A0
T
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Remark 5.6 We note that the symmetric monoidal structure being strict allows us
to use this simple construction. The reader will remark that in the definition of the
objects we require certain diagrams to commute strictly, as opposed to having a 2–
isomorphism relating the two sides. This can be done because the braiding ˇ satisfies
the commutativity of the diagrams of Definition 1.3 on the nose. This cannot be done
for the definition of the 1–morphisms, and this is where the construction here differs
from that of [26]; in order to get a well-defined bicategory we cannot require the
diagram in (5.3) to commute, instead we must have the isomorphism �S;T as part of
the data of the 1–morphism.

We now need to show that these data indeed define a bicategory. We will first show
that given objects fAS ; aS;T g, fA0S ; a

0
S;T
g, the 1–morphisms and 2–morphisms form

a category WM.nC/.fAS ; aS;T g; fA
0
S
; a0

S;T
g/:

Given two 2–morphisms f Sg; f 
0
S
g, vertical composition is defined componentwise.

We show that this composition satisfies Equation (5.7). Indeed, we see that, as wanted,
for all S;T ,

AS[T

aS;T//

��

h ____ks
 0

f

��

____ks
 

g

��

~~~~{� �

AS � AT

f�f

��

D

AS[T

aS;T //

g

��

h

��

____ks
 0 ������ 


AS � AT

f�f

��

g�g

��

____ks
 � 

A0
S[T

a0
S;T

// A0
S

� A0
T

A0
S[T

a0
S;T

// A0
S

� A0
T

AS[T

aS;T //

h

��

������ �

AS � AT

##

h�h ____ks
 0� 0

g�g

��

f�f

||

____ks
 � 

D

A0
S[T

a0
S;T

// A0
S

� A0
T
:

We also note that fidfS
g is a well-defined automorphism for ffS ; �S;T g and it is the

identity of the componentwise composition.

The composition functor � is given by

.fgS ; 
S;T g; ffS ; �S;T g/ 7! fgS �fS ; .
 ˘�/S;T g;

.f 0Sg; f Sg/ 7! f 
0
S � Sg;
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where the 2–morphism .
 ˘�/S;T is defined by the pasting diagram

AS[T

fS[T

��

aS;T //

				�� �S;T

AS � AT

fS �fTxx
gS�fS �gT �fT

��

A0
S[T

gS[T

��

a0
S;T//

				�� 
S;T

A0
S

� A0
T

D

gS �gT

%%
A00

S[T
a00

S;T

// A00
S

� A00
T
:

Showing that fgS �fS ; .
 ˘�/S;T g is a well-defined 1–morphism (that is, it satisfies
Equations (5.4) and (5.5)) can be done again using pasting diagrams, and the fact that
both ffS ; �S;T g and fgS ; 
S;T g satisfy those same equations. Analogously we can
show that f 0

S
� Sg is a well-defined 2–morphism.

The natural associativity isomorphism in this bicategory is given by the componentwise
associativity isomorphisms in M. More precisely, given composable 1–morphisms
ffS ; �S;T g, fgS ; 
S;T g, and fhS ; �S;T g, we define the 2–morphism f˛Sg, where

˛S W hS � .gS �fS /) .hS �gS /�fS

is the associativity isomorphism in M.

The fact that

f.hS �gS /�fS ; ..�˘ 
 /˘�/S;T g) fhS � .gS �fS /; .�˘ .
 ˘�//S;T g

is an allowed 2–morphism in WM.nC/ will follow from the uniqueness of pasting
diagrams and the functoriality of �. Naturality and the pentagonal axiom follow from
those in M.

Given an object fAS ; aS;T g, the identity 1–morphism is given by fIAS
; �S;T g, where

� is the appropriate coherent 2–isomorphism obtained by the composition of instances
of the 2–morphism r�1�l . It is clear that this is an allowed 1–morphism in WM.nC/
and that it is a weak identity, with right and left identity 2–isomorphisms given by
frfS
g, flfS

g. We conclude thus that WM.nC/ is indeed a bicategory.

We now need to prove that this construction extends to a functor WMW F ! Bicat� .
Given a morphism � W nC!mC in F we define a pseudofunctor

��W WM.nC/!WM.mC/
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as follows:

fAS ; aS;T g 7�! fA
�
U ; a

�
U;V g D fA��1.U /; a��1.U /;��1.V /g;

ffS ; �S;T g 7�! ff
�

U ; �
�
U;V g D ff��1.U /; ���1.U /;��1.V /g;

f Sg 7�! f 
�
U g D f ��1.U /g;

where U;V range over disjoint subsets of mC that do not contain the basepoint. Since
� is basepoint preserving, ��1.U / does not contain the basepoint and it is an allowed
indexing subset of nC . Also, since U and V are disjoint, their preimages under � are
also disjoint.

This assignment commutes strictly with all the compositions and identities in WM.nC/
and WM.mC/, giving a pseudofunctor between these bicategories.

It is clear from the construction that WM.1C/ is isomorphic to M.

We will end the proof by showing that for every n� 0, the pseudofunctor

pnW WM.nC/!M�n

is an equivalence of bicategories (Definition 1.5). This will show that the � –bicategory
is special. For ease of notation we will denote the subset fig 2 nC as i . The pseudo-
functor pn takes

fAS ; aS;T g 7�! fAig
n
iD1;

ffS ; �S;T g 7�! ffig
n
iD1;

f Sg 7�! f ig
n
iD1:

We will define an inverse pseudofunctor inWM�n!WM.nC/:

fAig
n
iD1 7�!

n
�
i2S

Ai ; eS;T

o
;

ffig
n
iD1 7�!

n
�
i2S

fi ; id
o
;

f ig
n
iD1 7�!

n
�
i2S

 i

o
:

Here, �i2S denotes the iterated monoidal operation � with the usual order of the
elements in S � nC . Recall that � is strictly associative.

The 1–morphism

eS;T W � �
i2S[T

Ai �!�
i2S

Ai � �
i2T

Ai
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is the unique composition of instances of the braiding ˇ that reorders the summands.
It is clear that f� i2S Ai ; eS;T g satisfies Equations (5.1) and (5.2).

We also have that .� i2S fi � � i2T fi/ � eS;T D eS;T � .� i2S[T fi/, thus we
can choose the 2–isomorphism to be the identity. The collection f� i2S fi ; idg
satisfies automatically Equations (5.4) and (5.5). It is also automatic that for any
f igW ffig ) fgig, we get that f� i2S  ig is an allowed 2–morphism between
f� i2S fi ; idg and f� i2S gi ; idg.

This assignment gives a strict functor since

in.fgi �fig/D
n
�
i2S

.gi �fi/; id
o

D

n �
�
i2S

gi

�
�

�
�
i2S

fi

�
; id˘ id

o
D in.fgig/� in.ffig/;

in.fIAi
g/D

n
�
i2S

IAi
; id
o
D fI� i2S Ai

; idg D idin.fAi g/:

Clearly pn ı in D idM�n . We now construct a natural equivalence

�W idWM.nC/! in ıpn:

Recall that a transformation is a natural equivalence if and only if the 1–morphism
corresponding to each object is a 1–equivalence.

Hence, to construct the natural equivalence � , we need a 1–equivalence

�fAS ;aS;T g
W fAS ; aS;T g !

n
�
i2S

Ai ; eS;T

o
for every object fAS ; aS;T g in WM.nC/.

Given the subset S , we define aS inductively as the composition

AS

aj ;S�j

�����!Aj � AS�j

idAj
�aS�j

��������!Aj � �
i2S�j

Ai D�
i2S

Ai ;

where j is the smallest element in S .

Note that by conditions (5.1) and (5.2) on the aS;T , the two compositions in the
diagram below differ by a specified associativity 2–isomorphism:

AS[T

aS;T //

aS[T

��
�����
 �S;T

AS � AT

aS �aT

��
� i2S[T Ai eS;T

//� i2S Ai � � i2T Ai :
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Since associativity isomorphisms are unique, faS ; �S;T g is a well-defined 1–morphism
in WM.nC/. This will be the corresponding 1–morphism of the transformation � .

To complete the data of the transformation, we need to provide a natural isomorphism
7�2 for every pair of objects fAS ; aS;T g, fA0S ; a

0
S;T
g in WM.nC/, which on the

component ffS ; �S;T g is given by a 2–morphism

�2.ffS ; �S;T g/W
n
�
i2S

fi ; id
o
� faS ; �S;T g) fa

0S ; �0S;T g � ffS ; �S;T g:

Given S , we define a 2–isomorphism in M, �S W .� i2S fi/ � aS ) a0S � fS ,
inductively as the pasting diagram

AS

aj ;S�j //

fS

��





�	 �j ;S�j

Aj � AS�j

fj �fS�j

��

IAj
�a0S�j

//





�
 l�1�r��S�j

� i2S Ai

� i2S fi

��
A0

S a0
j ;S�j

// A0j � A0
S�j

I
A0

j
�a0S�j

// � i2S A0i ;

where j is the smallest element in S . We need to show that f�SgS gives a 2–morphism
in WM.nC/, that is, that it satisfies Equation (5.7). This is done by induction on
jS [T j using pasting diagrams. We let �2.ffS ; �S;T g/D f�

Sg.

To show the naturality of �2 , we need to show that

AS
aS

//

fS

��

gS

��

____ks
 S

������ �S

� i2S Ai

� i2Sfi

��

D

AS
aS

//

gS

��

������
S

� i2S Ai

� i2Sfi

��

� i2S gi

��

____ks
� i2S i

A0
S

a0S
//� i2S A0i A0

S
a0S

//� i2S A0i :

This follows by induction on jS j, using the inductive definition of �S and Equation (5.7).
Since �S is invertible, we get a natural isomorphism as wanted.
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For the first and second axioms of a transformation [29, page 568] we need to show:

AS

fS

��

aS
//

������ �S

� i2S Ai

� i2Sfixx
� i2S gi�fi

��

AS

gS�fS

��

aS
//

uuuuv~
.
˘�/S

� i2S Ai

� i2S gi�fi

��

A0
S

gS

��

a0S //

������ 
S

� i2S A0i
� i2S gi

%%

D

A00
S

a00S
//� i2S A00i A00

S
a00S

//� i2S A00i

AS

IAS

��

aS
//

�����	�S

� i2S Ai

I� i2S Ai

��

� i2S IAi

��

____ks D

AS

IAS

��

aS
//

aS

##

������ l

������r�1

� i2S Ai

I� i2S Ai

��
AS

aS

//� i2S Ai AS
aS

//� i2S Ai :

The first one is straightforward using induction on jS j and the definition of 
 ˘ � .
The second one holds again by induction on jS j, the fact that � is a composition of
instances of r and l which satisfy coherence conditions.

Hence we have a natural equivalence between idWM.nC/ and in ıpn . We conclude
that the bicategories WM.nC/ and M�n are equivalent, making WM into a special
� –bicategory.

5.3 The proof of Theorem 2.2

We now turn to the case of 2–categories. We note that if M is a strict symmetric
monoidal 2–category, with the braiding ˇ a strict natural isomorphism, then we can
construct a � –(2–category) in a similar but simpler way.

(1) Objects of .VM/.nC/ are the same as objects of .WM/.nC/.
(2) A 1–morphism between fAS ; aS;T g and fA0

S
; a0

S;T
g is given by a system ffSg,

where fS W AS !A0
S

is a 1–morphism in M. We require that for all S and T

the following diagram commutes strictly:

AS[T

aS;T //

fS[T

��

AS � AT

fS �fT

��
A0

S[T
a0

S;T

// A0
S

� A0
T
:
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(3) Given 1–morphisms ffSg; fgS ; gW fAS ; aS;T g ! fA
0
S
; a0

S;T
g, a 2–morphism

between them is given by a system f Sg of 2–morphisms in M,  S W fS)gS ,
such that for all S;T as above the following equation holds:

(5.7)

AS[T

aS;T //

fS[T

��

gS[T

��

____ks
 S[T

AS � AT

fS �fT

��

D

AS[T

aS;T //

gS[T

��

AS � AT

fS �fT

��

gS �gT

��

____ks
 S � T

A0
S[T

a0
S;T

// A0
S

� A0
T

A0
S[T

a0
S;T

// A0
S

� A0
T

In this case, vertical and horizontal composition is defined componentwise, and it is
easy to check that this is a well defined 2–category. Using the same methods as above,
we can extend this to be a � –(2–category) VM, and prove that is it special. There is
an inclusion of � –(2–categories) j W VM!WM that makes the following diagram
commute:

.VM/.nC/
jn //

pn &&

.WM/.nC/

pnxx
M�n

Thus j is a levelwise equivalence.

Consider the topologically enriched category TM. Since M is strict symmetric
monoidal, TM is a permutative category. Thus we can construct a special � –category
UTM as in [26]. We now compare this � –category with T VM.

Note that the objects in the categories T .VM/.nC/ and UTM.nC/ are the same.
Given objects AD fAS ; aS;T g and A0 D fA0

S
; a0

S;T
g, the spaces of morphisms corre-

spond to the same subspace of B
Q

S M.AS ;A
0
S
/:

B.VM/.nC/.A;A0/�B
Y
S

M.AS ;A
0
S /

D

UTM.nC/.A;A0/�
Y
S

BM.AS ;A
0
S /:

Thus we have maps of � –categories

UTM Š
�! T VM '

�! T WM;

where the first map is a levelwise isomorphism and the second is a levelwise equivalence.
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Appendix A Classifying spaces of bicategories

Categories are closely related to spaces through the classifying space construction. To
every category we can assign a topological space, with the property that functors are
sent to continuous maps, and natural transformations are sent to homotopies.

The same can be done with bicategories. In fact, there are many distinct constructions
of the classifying space of a bicategory [4]. All these constructions give equivalent
spaces. Here we describe the version of the two versions of the classifying space that
were used in the preceding sections.

Lack and Paoli [11] introduce a version of a nerve of nonenriched bicategories that
gives rise to a simplicial object in the category of small (nonenriched) categories. The
construction can be extended to the enriched case, giving a simplicial object in Cat ,
where Cat is the category of small categories enriched over topological spaces. This
construction is closely related to the bar construction for monoidal categories defined
in [2], as we point out. This nerve is called 2–nerve in [11] and Segal nerve in [4].

Definition A.1 Let C be a bicategory. The 2–nerve NC is the simplicial object in
Cat given by normal homomorphisms, that is,

NnC D NorHom.Œn�; C/;

where the objects are normal pseudofunctors and the morphisms are icons.

Normal pseudofunctors are those for which the identity natural isomorphism is the
identity. An icon (Identity Component Oplax Natural transformation) is an oplax
natural transformation (see [29, page 568]) such that the map �AW FA! GA is the
identity, so in particular, we require that FAD GA. We now unravel Definition A.1.

An object of NnC is given then by a collection of diagrams

Cj

fj k

!!
Ci

fij

>>

fik

//

�� ��
�� 'ij k

Ck ;

for all 0� i < j < k � n;

where 'ijk is an invertible 2–morphism. This collection must satisfy the following
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coherence condition for all 0� i < j < k < l � n:

Cj

  

Cj

!!

��

ppppt|
'ikl

����|� 'ij l
____ks

'j kl
Ci

>>

  

//

�� ��
�� 'ij k

Ck

~~

D Ci

>>

  

Ck :

}}
Cl Cl

Given objects fCi ; fij ; 'ijkg and fCi ; f
0

ij ; '
0
ijk
g (note that the collections of objects

are equal), a morphism between them is given by a collection of 2–morphisms
�ij W fij ) f 0ij for i � j , such that some coherence conditions [4, Equation (44)] are
satisfied.

Remark A.2 We note that the bar construction for monoidal categories of [2] is equal
to the 2–nerve. More precisely, if M is a monoidal category, then the simplicial
category B�M of [2] is equal to N†M. Furthermore (see [4, Remark 3.3]), since
Np†M'Mp , the geometric realization jN†Mj gives a model for the delooping of
the A1–space BM, that is, BBM' jN†Mj.

The 2–nerve is functorial with respect to normal pseudofunctors. It is the case that any
pseudofunctor can be normalized [11, Proposition 5.2].

It is clear from the definition that the 2–nerve preserves products.

Definition A.3 Let C be a bicategory. The classifying space of C is the realiza-
tion jNCj.

Let F ;GW C!D be pseudofunctors of bicategories, and �W F!G a transformation. As
pointed out in the proof of [4, Proposition 7.1], these data gives rise to a pseudofunctor

HW C � 1!D

that restricts to F and G at 0 and 1. This pseudofunctor can be normalized, yielding
the following result:

Proposition A.4 A transformation between pseudofunctors F ;GW C!D gives rise
to a homotopy between the maps

jNF j; jNGjW jNCj ! jNDj:
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An alternative construction for the classifying space of a bicategory C is described
in [4]. It is the classifying space of the pseudosimplicial category whose n simplices
are given by a

C0;:::;Cn

C.C0;C1/� � � � � C.Cn�1;Cn/:

As pointed out in [4, Remark 3.2], if C is a 2—category, then BC can be constructed
by first taking the classifying space of the categories of morphisms, to obtain T C ,
which is a category enriched over topological spaces, and then taking BT C .

By [4, Theorem 6.4], there is an equivalence of spaces BT C! jNCj.
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