
Algebraic & Geometric Topology 10 (2010) 1781–1806 1781

� –homology of algebras over an operad

ERIC HOFFBECK

The purpose of this paper is to study generalizations of Gamma-homology in the con-
text of operads. Good homology theories are associated to operads under appropriate
cofibrancy hypotheses, but this requirement is not satisfied by usual operads outside
the characteristic zero context. In that case, the idea is to pick a cofibrant replacement
Q of the given operad P . We can apply to P–algebras the homology theory associated
to Q in order to define a suitable homology theory on the category of P–algebras.
We make explicit a small complex to compute this homology when the operad P is
binary and Koszul. In the case of the commutative operad PD Com , we retrieve the
complex introduced by Robinson for the Gamma-homology of commutative algebras.

16E40; 18D50, 18G55, 18G60

The classical homology theories of commutative algebras (Harrison homology in the
differential graded setting over a field of characteristic 0, see Harrison [11], and
André–Quillen homology in the simplicial setting over a ring of any characteristic,
see Quillen [16] and André [1]) can be considered as homology theories associated
to the commutative operad Com. There is another homology theory for commutative
algebras, � –homology (Gamma-homology in plain words, also called topological
André–Quillen), which has been introduced by Robinson and Whitehouse in [18], and
by Basterra in [3] (with a different point of view), to solve obstruction problems in
homotopy theory. In the setting of [18], Gamma-homology is defined as the homology
theory associated to an E1–operad (a cofibrant replacement of Com). This new
homology can be defined in the context of differential graded or simplicial context or
in the context of spectra, and gives the same result in each case (see Mandell [15]), in
contrast with the usual André–Quillen homology.

The purpose of this paper is to study generalizations of � –homology in the context of
operads.

Usual methods of homotopical algebra apply to the categories of algebras associated
to operads which are cofibrant, or at least which fulfill sufficiently strong cofibrancy
requirements. As a consequence, we have a good homology theory HQ

� associated
to any such operad Q. But many usual operads, like the commutative operad Com or
the Lie operad Lie, do not fit this framework (unless we work with differential graded
modules over a field of characteristic 0). In this situation, a natural idea is to pick a

Published: 30 August 2010 DOI: 10.2140/agt.2010.10.1781

http://www.ams.org/mathscinet/search/mscdoc.html?code=16E40,(18D50, 18G55, 18G60)
http://dx.doi.org/10.2140/agt.2010.10.1781


1782 Eric Hoffbeck

cofibrant replacement of the given operad P, let Q
�
!P, and to apply the homology

HQ
� to P–algebras in order to obtain a consistent homology theory on the category of

P–algebras. We use the notation H�P
� DHQ

� and the name � –homology to refer to
this homology theory after observing that different choices of Q give the same result.

This generalizes the usual notion of � –homology where PD Com and Q is an E1–
operad. The homology HQ

� associated to a cofibrant replacement of the operad Lie has
also been used by Chataur, Rodriguez and Scherer in [4].

The problem is that the choice of a cofibrant replacement is satisfying in theory, but
making such a cofibrant replacement explicit is often very difficult (especially when the
ground ring is not a field of characteristic 0). We give a direct definition of H�P

� , which
agrees with the initial one, but where the choice of an operadic cofibrant replacement
is avoided. The idea is to use the model category on P–bimodules, which only needs
mild assumptions on P. We show how to define a complex to determine H�P

� from a
choice of a cofibrant replacement of the operad P, not in the category of operads, but
in the category of P–bimodules, the operad P being viewed as a bimodule over itself.
The category of P–bimodules is easier to deal with than the category of operads.

In [17], Robinson makes explicit a small complex, analogous to Harrison’s complex,
which computes usual � –homology. In the case where the operad P is Koszul, we
define an explicit complex to compute the � –homology associated to P. Recall that
an operad is Koszul if we have a quasi-isomorphism between .P ıKP ıP; @/ and P,
where KP is the Koszul construction, defined by K.P/.s/ WDHs.B�.P/.s/; @/. In [2],
Balavoine defined a complex computing HP

� when working over a field of characteristic
0, using the Koszul construction. When we work over a ring of any characteristic,
finding a complex is more complicated, as we need to resolve the symmetries in KP.
This can be done by tensoring the Koszul construction by the acyclic bar construction
of the symmetric group. Finally, we get a small explicit complex computing the � –
homology of P–algebras. In the case P D Com, we obtain a variant of Robinson’s
complex. As an illustration, we make our complex explicit in the case PD Lie.

We also define a cohomology theory H��P associated to any operad P.

In Section 1, we recall the model category structures we use in the paper: dg-modules,
†�–modules, bimodules, algebras over operads. Most of the model structures we
consider are defined by a transfer of structure. We make the cofibrations explicit in
each case. In a second part, we recall the usual notion of homology for algebras over a
cofibrant operad, and show how to reduce the complex when we are given a cofibrant
replacement of bimodules. Then we make a similar construction of a reduced complex
when the operad is not cofibrant. This leads us to the definition of � –homology of
algebras over an operad (without any cofibrancy hypothesis). In Section 3, we construct
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an explicit complex for any binary Koszul operad P to compute � –homology. This
complex is defined using the Koszul construction KP and the acyclic bar construction
of the symmetric group.

Convention We work in the differential graded setting. We take a category of dif-
ferential graded modules (for short dg-modules) over a fixed base ring K as a base
category (see Section 1.2 for details). We use the letter C to denote this category. When
necessary, we assume tacitly that any dg-module, and more generally that any object
defined over this base category, consists of projective modules over the ground ring.

We review the definition of the model category of †�–modules underlying the category
of operads in Section 1.4, the model category of bimodules in Section 1.5. All operads
P will be assumed to be connected, in the sense that P.0/D 0 and P.1/DK. All †�–
modules M , and more generally any object defined over the category of †�–modules,
will be assumed to be connected, that is M.0/D 0.

1 Model categories

We review here the model structures for the categories which are used in this paper.
For general references on the subject, we refer the reader to the survey of Dwyer and
Spalinksi [5] and the books of Hirschhorn [13] and Hovey [14]. For model structures
in the operadic context, we refer to the articles of Hinich [12] and of Goerss and
Hopkins [10], and the book of Fresse [7].

1.1 Transfer of structure

We use the notion of a pair of adjoint functors to transport model structures. Suppose
we have an adjunction

F W X � A WU
such that X is a cofibrantly generated model category and A is a category equipped
with colimits and limits. We can then define classes of weak equivalences, fibrations
and cofibrations in A.

� The weak equivalences in A are morphisms f such that U.f / is a weak
equivalence in X .

� The fibrations in A are morphisms f such that U.f / is a fibration in X .

� The cofibrations are the morphisms which have the left lifting property (in short,
LLP) with respect to acyclic fibrations.
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Under some technical hypotheses (see Hirschhorn [13, Theorem 11.3.2]), a classical
result says that A is equipped with a model structure given by the weak equivalences,
fibrations and cofibrations above. Under weaker hypotheses (see Fresse [7, Theorem
12.1.4]), the category A is equipped with a semi-model category, that is the lifting
and factorization axioms only hold when the morphisms have a cofibrant domain.
Semi-model categories will be enough for us here.

We can describe the generating (acyclic) cofibrations of the semi-model category A
explicitly: they are the morphisms F.i/W F.C /! F.D/ such that i ranges over the
generating (acyclic) cofibrations of X .

1.2 Model category structure for dg-modules

In this paper, the dg-modules we consider are Z–graded modules endowed with a
differential ı decreasing the degree by 1. The category of dg-modules is denoted by
C . The internal hom of this category is denoted by HomC.C;D/, for all C;D 2 C .
This dg-module is spanned in degree d by the linear maps f W C !D which raises
degrees by d . The differential of such a map in HomC.C;D/ is defined by its graded
commutator with the internal differential of C and D . We adopt the terminology of
homomorphisms to distinguish the elements of the dg-hom HomC.C;D/ from the
actual morphisms of dg-modules, the linear maps which preserve gradings and commute
with differentials.

The category of dg-modules is equipped with its usual model structure: The weak
equivalences are the quasi-isomorphisms and the fibrations are degreewise surjective
maps (cofibrations are characterized by the LLP with respect to acyclic fibrations).

Let Dn D Kdn˚Kcn�1 where dn is a homogeneous element in degree n sent by
the differential to cn�1 in degree n� 1. Let Cn be Kcn�1 , submodule of Dn . The
embeddings Cn!Dn , n 2 Z, define a set of generating cofibrations in C . The maps
0!Dn define generating acyclic cofibrations.

In what follows, the underlying dg-module of any object is tacitly assumed to be
cofibrant.

1.3 Twisted dg-modules

In general, we assume that a dg-module C is equipped with a differential ıW C ! C .
We sometimes twist this internal differential by a cochain @ 2 HomC.C;C / of degree
�1 in order to get a new differential ıC@. We assume the relation ıı@C@ııC@2D0, in
order to obtain that ıC@ satisfies .ıC@/2D 0. We usually omit the internal differential
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ı in the notation: We write C for the module C with differential ı and write .C; @/
to denote the module C with differential ıC @.

We are going to define quasi-free objects (algebras over operads, bimodules), twisted
objects .C; @/ such that C is free with respect to an algebraic structure.

1.4 Model category structure for †� -modules

We use the notation M for †�–modules. We have an adjunction between the forgetful
functor U (from the category M to the category of chain complexes) and the free
†�–module functor †�˝�.

The transfer process of Section 1.1 gives us a model structure on †�–modules where
weak equivalences are morphisms all of whose components are weak equivalences
of dg-modules and where fibrations are morphisms all of whose components are
epimorphisms of dg-modules. Cofibrations are given by the LLP with respect to acyclic
fibrations. Again, we can say more precisely which maps are cofibrations (see Fresse [7,
Proposition 11.4.A]). The generating cofibrations are given by tensor products

i ˝Fr W C ˝Fr !D˝Fr

where i W C !D ranges over the generating cofibrations of dg-modules and Fr ; r 2N
denote the †�–modules such that

Fr .n/D

�
KŒ†r �; for nD r;

0; otherwise.

We will use the composition product ı of †�–modules. Recall that for a constant
†�–module N (such that N.0/DC and N.r/D 0 for r > 0), the composition M ıC

represents the application of a symmetric functor with coefficients in M to C :

M ıC D

C1M
rD1

.M.r/˝C˝r /†r

This object is denoted by S.M;C / in the book by Fresse [7], but we use the notation
M ıC in the paper.

In general, the composite M ıN is defined such that the associativity relation M ı

.N ıC /D .M ıN /ıC is satisfied for all constant †�–modules C . The composition
product ı is a monoidal product for the category of †�–modules.

Recall that an operad is a †�–module P equipped with an initial morphism I! P

(where I is the unit †�–module, with K in arity 1 and 0 everywhere else) and a
composition product 
 W PıP! P. As mentionned in the introduction, we assume that
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any operad P satisfies P.0/D 0 and P.1/DK, so that the initial morphism of P is an
isomorphism in arity 0 and in arity 1. We use the notation xP for the †�–submodule of
P formed by the components P.n/ of arity n> 1 and trivial in arity 0 and in arity 1.

In what follows, we will often consider †�–cofibrant operads, operads P such that the
initial morphism I! P is a cofibration of †�–modules.

1.5 Model category structure for bimodules over operads

Let P and Q be operads. Let PM0
Q be the category of connected (that is M.0/D 0)

P–Q–bimodules in the sense of Fresse [7]. We have an adjunction

P ı�ıQWM � PM0
Q WU;

where U is the forgetful functor.

The transfer process gives us a semi-model structure on P–Q–bimodules, where weak
equivalences are morphisms all of whose components are weak equivalences of dg-
modules and where fibrations are morphisms all of whose components are epimorphisms
of dg-modules. Cofibrations are given by the LLP with respect to acyclic fibrations.

We now describe a particular class of cofibrant P–Q–bimodules that we will use
extensively later.

1.6 Proposition Let P and Q be connected operads and M a cofibrant †�–module.

The quasi-free P–Q–bimodule .P ıM ıQ; @/ is cofibrant if the differential is decom-
posable (that is @.M / has no component in I ıM ı I, or equivalently that each element
in @.M / is a sum of composites with at least a non-trivial element of P or of Q).

This result will be deduced from the following lemmas.

1.6.1 Lemma Let Q be a connected operad and M a cofibrant †�–module.

The quasi-free Q–module .M ıQ; @/ is cofibrant if the differential is decomposable
(that is @.M / has no component in M ı I).

Proof The complex .M ıQ; @/ is filtered by

ar�.M ıQ; @/D .ar�M ıQ; @/

where ar�M.n/DM.n/ if n� � and 0 otherwise, and where the differential is just
the restriction of the differential on .M ıQ; @/.

Note that @.ar�M /� ar��1.M ıQ/.
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We have the following pushout of right Q–modules:

.@M.n/ ıQ; 0/

��

// .arn�1M ıQ; @/

��

.@M.n/ ıQ
L

M.n/ ıQ; @/ // .arnM ıQ; @/:

The arrow on the left is a generating cofibration. Thus the arrow on the right is a
cofibration too.

Thus .M ıQ; @/D colim� ar�.M ıQ; @/ is a cofibrant right Q–module.

1.6.2 Lemma Let N D .M ıQ; @/ be a right Q–module with the hypothesis of the
above lemma. Let P be a connected operad.

The quasi-free P–Q–bimodule .PıN; @/ is cofibrant if the differential is decomposable
(that is @.N /� xP ıN , or equivalently @.N / has no component in I ıN ).

Proof First, note that @.ar�N /� xP ı ar��1N . Therefore we can define a filtration
by ar�.P ıN; @/D .P ı ar�N; @/.

Note that @.ar�N /� ar��1.P ıN /. Using a similar argument as in the above proof,
the obvious arrow ar��1.PıN; @/! ar�.PıN; @/ is a cofibration of P–Q–bimodules.

Thus .P ıN; @/D colim� ar�.P ıN; @/ is a cofibrant P–Q–bimodule.

Proof of Proposition 1.6 The proof follows from Lemmas 1.6.1 and 1.6.2.

1.7 Model category structure for algebras over an operad

We have an adjunction between the forgetful functor U from P–algebras to dg-modules
and the free P–algebra functor P ı�.

If P is †�–cofibrant, the transfer process of Section 1.1 gives us a semi-model category
on P–algebras, where weak equivalences are morphisms which are weak equivalences
of dg-modules and where fibrations are morphisms which are epimorphisms of dg-
modules. Cofibrations are given by the LLP with respect to acyclic fibrations.

The model category structure allows us to define the cofibrant replacement of a P–
algebra A. It is a cofibrant P–algebra QA such that we have a weak equivalence of
P–algebras QA

�
!A.
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If we are given a cofibrant replacement P ResP
�
!P in the category of P–bimodules,

we can easily make explicit a cofibrant replacement of a P–algebra A.

First we need to recall the definition of the relative composition product of P–modules.
Suppose that M is a right P–module and A a P–algebra. We denote by M ıP A the
quotient of M ıA coequalizing the right action of P on M and the left action of P on
A. When M is a P–bimodule, the relative composite M ıP A inherits a P–algebra
structure.

We can now give the result:

1.7.1 Lemma We get a cofibrant replacement .PResP ıPA; @0/ of A in the category
of P–algebras, with @0 D @ ıP A:

Proof The P–algebra .PResP ıPA; @0/ is cofibrant, following the same argument of the
proof of Lemma 1.6.1. The P–bimodule P ResP is cofibrant, thus it is cofibrant as a right
P–module. The operad P is also cofibrant as a right P–module. As the functor �ıP A

preserve weak equivalences between cofibrant objects (see Fresse [7, Theorem 15.1.A]),
we get that .PResP ıPA; @0/ is a cofibrant replacement of P ıP A. But P ıP A D A,
thus .PResP ıPA; @0/ is a cofibrant replacement of A in the category of P–algebras.
Explicitly, the differential @0 is given by @0.m ı .a1; : : : ; an//D .@.m// ı .a1; : : : ; an/

where m lies in P ResP and @.m/ in P ı .P ResP/ ıP. Note that we use the structure
of P–algebra of A on the right hand side to get an element of P ResP ıPA.

2 Gamma-homology of P-algebras

In this section, we recall the definition of the homology of Q–algebras for Q a †�–
cofibrant operad. In the differential graded setting over a field of characteristic 0,
homology with trivial coefficients was defined by Ginzburg and Kapranov in [9] and by
Getzler and Jones in [8]. Homology with coefficients was defined by Balavoine in [2].
The extension to any category of dg-modules can be found in Hinich [12]. We adopt
conventions of Fresse [7] where these notions are reviewed. We define � –homology of
P–algebras for any operad P, using bimodule resolutions. Then we prove the identity
HQ
� DH�P

� when Q is a †�–cofibrant replacement of P.

2.1 Recollections on the homology of Q-algebras

We refer the reader to Fresse [7, Section 4] for the first definitions.

Let Q be a †�–cofibrant operad, B an algebra over Q.
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We denote by UQ.B/ the enveloping algebra of B and by �Q.B/ the module of Kähler
differentials of B .

The enveloping algebra UQ.B/ is spanned by elements q.˘; b1; : : : ; bn/, where q 2

Q.nC 1/, b1; : : : ; bn 2 B and the symbol ˘ denotes a free input, divided out by the
relations

p.˘; b1; : : : ; bi�1; q.bi ; : : : ; bn/; bnC1; : : : ; bm/D

p ıiC1 q.˘; b1; : : : ; bi�1; bi ; : : : ; bm/:

The product is given by

p.˘; a1; : : : ; an/:q.˘; b1; : : : ; bm/D p ı1 q.˘; b1; : : : ; bm; a1; : : : ; an/:

We can put ˘ at any place since the action of †nC1 on Q.nC1/ allows us to permute
the inputs of any operation q 2 Q.nC 1/.

We represent graphically an element q.˘; b1; : : : ; bn/ by

˘ b1 bn

q :

The module of Kähler differentials �Q.B/ is a left module over UQ.B/ such that

HomUQ.B/.�Q.B/;F /D DerQ.B;F /

for all left modules F over UQ.B/, where DerQ.B;F / denotes the dg-module of Q–
derivations B!F (not necessarily preserving the degree) and HomUQ.B/.�Q.B/;F /

is the dg-module of homomorphisms of left UQ.B/–modules between �Q.B/ and F .

The module of Kähler differentials �Q.B/ can be seen as the dg-module spanned by
elements q.b1; : : : ; dbi ; : : : ; bn/, where q 2 Q.n/, b1; : : : ; bn 2 B and d denotes a
formal differentiation symbol, divided out by the relations

p.b1; : : : ; q.bi ; : : : ; bn/; bnC1; : : : ; dbj ; : : : ; bm/D

p ıi q.b1; : : : ; bi ; : : : ; bn; : : : ; dbj ; : : : ; bm/ for i ¤ j ;

and

p.b1; : : : ; dq.bi ; : : : ; bn/; bnC1; : : : ; : : : ; bm/D

nX
jDi

p ıi q.b1; : : : ; bi ; : : : ; dbj ; : : : ; bn; : : : ; bm/:

Algebraic & Geometric Topology, Volume 10 (2010)



1790 Eric Hoffbeck

Let us now define the homology and the cohomology of an algebra over Q.

We choose QB a cofibrant replacement of B . Let E be a right UQ.QB/–module and
F be a left UQ.QB/–module.

The homology of B as a Q–algebra with coefficients in E is defined by HQ
� .B;E/D

H�.E ˝UQ.QB/ �Q.QB//. In a similar way, the cohomology of B is defined by
H�Q.B;F /DH�.HomUQ.QB/.�Q.QB/;F //.

We will use the following usual lemma to reduce the complex appearing in the calcula-
tion of the homology and the cohomology.

2.1.1 Lemma If QA is a quasi-free Q–algebra QA D .Q.C /; @
0/, then we have an

isomorphism of left UQ.QA/–modules

.UQ.QA/˝C; @00/'�Q.QA/

where the differential @00W UQ.QA/˝C ! UQ.QA/˝C is a twisting homomorphism
on UQ.QA/˝C induced by the action of the twisting derivation of QA on UQ.QA/˝C

(see the detailed representation in Figure 2).

Proof We begin by proving the result for a free algebra QA D Q.C /.
First, we have DerQ.Q.C /;F /D HomC.C;F /. To prove this identification, we define
ˆW DerQ.Q.C /;F /! HomC.C;F / by ˆ.�/D �jC W C ! F . This map is an isomor-
phism. The inverse map ˆ�1 associates to any f W C ! F the derivation �f such
that �f .q.c1; : : : ; cn//D˙

P
i q.c1; : : : ; f .ci/; : : : ; cn/ where the signs are induced

by the usual Koszul rule.

We have
HomC.C;F /D HomUQ.QA/.UQ.QA/˝C;F /;

which gives us

DerQ.QA;F /D HomUQ.QA/.UQ.QA/˝C;F /:

But �Q.QA/ is defined by

HomUQ.QA/.�Q.QA/;F /D DerQ.QA;F /:

Thus Yoneda’s lemma gives us an isomorphism ‰ of UQ.QA/–modules between
UQ.QA/˝C and �Q.QA/.

The map ‰W UQ.QA/˝C !�Q.QA/ associates to the element q.˘; a1; : : : ; an/˝ c

the element q.dc; a1; : : : ; an/.
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c1

8>>>>>>>>>>:
9>>>>>>>>>>;@

cn

q0 a1 ar

q

D

nX
iD1

c1 dci cn

q0 a1 ar

q

D

nX
iD1

c1 dci cn a1 ar

q ı1 q0

‰�1

7�!

nX
iD1

c1 ˘ cn a1 ar

q ı1 q0 ˝ ci

where the empty box is the i th input of the tree.

Figure 1: A graphical representation of the inverse isomorphism ‰�1 .

Its inverse ‰�1W �Q.QA/! UQ.QA/˝C sends

q.dq0.c0/; a1; : : : ; ar /D
X

i

q ı1 q0.c1; : : : ; dci ; : : : ; cn; a1; : : : ; ar /

to X
i

q ı1 q0.c1; : : : ;˘; : : : ; cn; a1; : : : ; ar /˝ ci ;

where c0 D .c1; : : : ; cn/.

A graphical representation of the isomorphism ‰�1 is given in Figure 1.

This morphism ‰ commutes with the internal differential of C .

We now consider a quasi-free Q–algebra QA D .Q.C /; @
0/ with a twisting differential

@0 and explain the twisting differential @00 we obtain on UQ.QA/˝C . A graphical
representation of the twisting part of the differential is given in Figure 2.

We consider an element ! D q.˘; a1; : : : ; an/˝ c in UQ.Q.C //˝C . We compute

@0.‰.!//D @0.q.dc; a1; : : : ; an//

D q.d@0c; a1; : : : ; an/„ ƒ‚ …
@00.‰.w//

C

X
i

q.dc; a1; : : : ; @
0ai ; : : : ; an/„ ƒ‚ …

‰.q.˘;a1;:::;@0ai ;:::;an/˝c/

:
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@00

0BB@
˘ a1 an

q ˝ c

1CCA .def/
D ‰�1

0BB@
d.@0c/ a1 an

q

1CCA

D ‰�1

0BBBBBBB@
c00�

8>>>>>>>>>>>>:
9>>>>>>>>>>>>;

X
@0.c/

d

c00�

q0 a1 an

q

1CCCCCCCA

where @0.c/D
X
@0.c/

c00� c00�

q0 and a1; : : : ; an 2QA:

By the identity of Figure 1, the last expression can be rewritten to give

@00

0BB@
˘ a1 an

q ˝ c

1CCADX
@0.c/

X c00� ˘ c00� a1 an

q ı1 q0 ˝ c00�

Figure 2: A graphical representation of the twisting differential in UQ.QA/˝C .

The second term of this sum is induced by the action of @0W QA!QA . The image by
‰�1 of the first term is computed in Figure 2. We denote ‰�1@00.‰.!// by @00.!/.

To conclude, the twisting differential added to ı is the sum of @0W QA!QA and of
@00 induced by the action of @0 on C in UQ.QA/˝C . There are two equivalent ways
to see the module UQ.QA/˝C with its twisting differential: .UQ.QA/˝C; @00/ or
.UQ.Q.C //˝C; @0C @00/:

Note that we have not used the cofibrancy hypothesis on Q in the proof of the lemma.

2.2 From quasi-free Q-bimodules to resolutions of an algebra

We suppose here that Q is a †�–cofibrant operad. Let B be a Q–algebra and E a
right UQ.QB/–module.

Suppose we have a quasi-free Q–bimodule .Q ıN ıQ; @/ weakly equivalent to Q as
Q–bimodules, with N a cofibrant †�–module satisfying N.0/D 0.
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Applying Lemma 1.7.1, we get a cofibrant replacement .Q ıN ıB; @0/ of B in the
category of Q–algebras, with @0 D @ ıQ B:

This particular cofibrant replacement allows us to compute the homology and the
cohomology of B as a Q–algebra using a smaller complex. We first get

HQ
� .B;E/DH�.E˝UQ.QıN ıB/�Q.Q ıN ıB//:

By Lemma 2.1.1 (applied to C DN ıB ), this homology is identified with

HQ
� .B;E/DH�.E˝N ıB; @00/

where @00 is induced by @ in two steps explained in the proofs of Lemmas 1.7.1 and
2.1.1.

2.3 An analogous smaller complex for all operads

Let P be an operad and A an algebra over P.

Suppose we have a quasi-free P–bimodule .P ıM ıP; @/ weakly equivalent to P as a
P–bimodule and such that

(1) the †�–module M is connected and cofibrant as a †�–module;

(2) the differential @ is decomposable, that is @.M / has no component in I ıM ı I.

Under these hypotheses, Proposition 1.6 implies that .P ıM ıP; @/ is cofibrant as a
P–bimodule.

Let QA D .P ıM ıA; @0/ be the P–algebra defined by the construction of Section
2.2 with the operad P instead of the operad Q. Form the dg-module .E ˝UP.QA/

�P.QA/; @
00/ associated to this P–algebra. We have again a map from QA to A, but

this map is not a weak equivalence without a cofibrancy hypothesis on P. Nevertheless,
with the result of Lemma 2.1.1, we can again reduce .E ˝UP.QA/ �P.QA/; @

0/ to
.E˝M ıA; @00/.

Moreover, we have the following lemma of homology invariance:

2.3.1 Lemma A weak equivalence of P–bimodules .P ıM1 ı P; @1/
�
! .P ıM2 ı

P; @2/ (both satisfying the above hypotheses (1) and (2)) induces a quasi-isomorphism
.E˝M1 ıA; @00

1
/! .E˝M2 ıA; @00

2
/.
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Proof We consider a filtration on .E˝M1 ıA; @00
1
/ and then use a spectral argument.

We set Fs.E˝M1ıA/DSpanr�sf�˝m.a1; : : : ; ar /g. This complex is a subcomplex
of E˝M1 ıA.

Let x�W M1!M2 denote the map I ıP � ıP I . The hypothesis (2) for M1 and M2

implies that x� is the indecomposable part of � , and is a trivial †�–cofibration. We
get that x� ıAW M1 ıA!M2 ıA is a trivial cofibration of dg modules.

Abusing the notation, we let � denote also E˝� ıAW E˝M1 ıA!E˝M2 ıA.

Let us now prove that �.Fs.E˝M1ıA//�Fs.E˝M2ıA/ and that E0�DE˝x�ıA.

�.�˝m.a1; : : : ; ar //

.1/
D�˝�.m/.a1; : : : ; ar /

.2/
D�˝ x�.m/.a1; : : : ; ar /C

X
�˝p.y1; : : : ;yt /.q1; : : : ; qs/.a/

.3/
D�˝ x�.m/.a1; : : : ; ar /C

X
�˝p.y1.q1.a1/; : : : ;yt .q t .at ////

.4/
D�˝ x�.m/.a1; : : : ; ar /C

XX
i

�:ui ˝yi.qi.ai//:

Underlined elements denote sequences of elements. Equality (2) is just using the defini-
tion of x� as the indecomposable part of � . Equality (3) comes from the composition of
the subtree above each yi . In the equality (4), we use the isomorphism of Lemma 2.1.1,
and ui D p.y1.q1.a1//; : : : ;˘; : : : ;yt .q t .at /// with the hole in the i th position. The
important thing to notice is that the arity of each yi is smaller than r , as the differential
is decomposable. This proves �.Fs.E˝M1 ıA//� Fs.E˝M2 ıA/.

We now consider the associated graded complex

E0
s .E˝M1ıA/DFs.E˝M1ıA/=Fr<s.E˝M1ıA/D Spanf�˝m.a1; : : : ; as/g:

The above calculation implies that E0� DE˝ x� ıA.

With this equality and as x� is a trivial cofibration, we get that E1.�/DH�.E˝ x� ıA/

is an isomorphism. Moreover, the spectral sequence converges, as it is a homological
spectral sequence with an increasing exhaustive filtration which is bounded below.

This result implies that H�.�/ is an isomorphism.

Thus we have the following result:

2.3.2 Lemma The homology of .E ˝M ıA; @00/ does not depend on the choice
of the bimodule .P ıM ıP; @/ weakly equivalent to P (as a P–bimodule) such that
hypotheses (1) and (2) are satisfied.
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Proof Suppose we have the following configuration:

.P ıM1 ıP; @1/

� ((

.P ıM2 ıP; @2/

�vv
P

First the semi-model structure on P–bimodules gives a weak equivalence between
.P ıM1 ıP; @1/ and .P ıM2 ıP; @2/ (as .P ıM1 ıP; @1/ is cofibrant). Then Lemma
2.3.1 implies that the induced arrow .E ˝M1 ı A; @00

1
/ ! .E ˝M2 ı A; @00

2
/ is a

quasi-isomorphism.

2.4 Definition of � –homology

Let P be an operad, A an algebra over P and E a right UP.A/–module. Suppose we
have a quasi-free P–bimodule .PıM ıP; @/ weakly equivalent to P as a P–bimodule,
satisfying hypotheses (1) and (2) of Section 2.3.

Define the � –homology of the P–algebra A with coefficients in E to be the homology
of the small complex defined in Section 2.2:

H�P
� .A;E/DH�.E˝M ıA; @00/:

Lemma 2.3.2 proves that the notion of �–homology is well defined, as it does not
depend on the choice of the bimodule .P ıM ıP; @/.

Moreover:

2.5 Theorem Let Q be a †�–cofibrant replacement of P.
For A a P–algebra and E a right UP.A/–module, we have H�P

� .A;E/DHQ
� .A;E/:

Proof First, note that a P–algebra will also be a Q–algebra and E will also be a right
UQ.A/–module. Suppose that we are given .QıM ıQ; @/

�
!Q a cofibrant replacement

as Q–bimodules with the hypotheses above. The functor PıQ�ıQP induces a Quillen’s
adjunction, and therefore we get a weak equivalence .PıM ıP; @/

�
!P between quasi-

free P–bimodules. Seeing A as a Q–algebra, we get HQ
� .A;E/DH�.E˝M ıA; @00/.

But the right hand side is by definition H�P
� .A;E/, as long as the differential is the

same. It is the case, as both differentials are induced by the initial differential of
Q ıM ıQ.

Thus the definition of homology by replacement of bimodules is equivalent to the
natural definition by replacement of operads. Also, when the operad is †�–cofibrant,
we recover the usual notion of homology:

2.6 Corollary Let Q be a †�–cofibrant operad, B a Q–algebra and E a right
UQ.B/–module. Then H�Q

� .B;E/DHQ
� .B;E/.
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2.7 Definition of � –cohomology

Let P be an operad, A an algebra over P and F a left UP.A/–module. Suppose we
have a quasi-free P–bimodule .PıM ıP; @/ weakly equivalent to P as a P–bimodule,
satisfying hypotheses (1) and (2) of Section 2.3.

When the operad P is †�–cofibrant, we can make a similar reduction of the complex
HomUP.QA/.�P.QA/;F / computing cohomology. We take for QA the explicit cofi-
brant replacement .P ıM ıA; @0/ given by Lemma 1.7.1. We apply now Lemma 2.1.1
and we get HomUP.QA/..UP.QA/˝M ıA; @00/;F /. By adjunction, this complex is
just .HomC.M ıA;F /; @00/.

Following the same ideas as in Section 2.3, we consider this complex even when the
operad P does not satisfy any cofibrancy hypothesis.

We define the � –cohomology of the P–algebra A with coefficients in F

H�P .A;F /DH�.HomC.M ıA;F /; @00/

A lemma similar to Lemma 2.3.2 proves that this notion is well-defined. We recover
also the usual notion of cohomology when P is †�–cofibrant.

2.8 Theorem Let Q be a †�–cofibrant replacement of P.
For A a P–algebra and F a left UP.A/–module, we have H��P .A;F /DH�Q.A;F /:

2.9 Corollary Let Q be a †�–cofibrant operad, B a Q–algebra and F a left UQ.B/–
module. Then H��Q.B;F /DH�Q.B;F /:

2.10 Remark If the ground ring K is a field of characteristic 0, then every operad
P is †�–cofibrant. Hence in that case Corollary 2.6 and Corollary 2.9 imply that our
� –(co)homology agrees with the standard (co)homology of P–algebras.

3 Explicit complex à la Robinson

From now on, we assume that P is a connected binary (quadratic) Koszul operad. We
define an explicit P–bimodule complex, using the Koszul construction KP and the
bar construction of the symmetric group. Then we prove we can use this complex to
compute � –homology of P–algebras. In the case PD Com, we retrieve the complex
introduced by Robinson.

Before defining the P–bimodules involved in the complex, we construct maps which
will be needed to define the differential.
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3.1 Maps between bijections

Let r be a positive integer. Let X and Y be two ordered sets with r elements.

We represent an element w of Bij.X ;Y / by a table of values:

w D

�
x1 x2 : : : xr

w.x1/ w.x2/ : : : w.xr /

�
The ordering amounts to a fixed bijection between f1; : : : ; rg and X (respectively Y /.
We can use these bijections to identify elements of Bij.X ;Y / with permutation of
f1; : : : ; rg.

For each pair fi; j g � Y and e a dummy variable, we form the bijection

ce
i;j .w/D

�
x1 x2 : : : w�1.i/ : : : yw�1.j / : : : xr

w.x1/ w.x2/ : : : e : : : yj : : : w.xr /

�
if w�1.i/ < w�1.j / or the bijection

ce
i;j .w/D

�
x1 x2 : : : w�1.j / : : : yw�1.i/ : : : xr

w.x1/ w.x2/ : : : e : : : yi : : : w.xr /

�
if w�1.j / < w�1.i/.

If w�1.i/ < w�1.j /, we have removed the column where j is the image, and i

has been replaced by e . The map ce
i;j .w/ is a bijection from X X fw�1.j /g to

Y X fi; j g
`

e . In X X fw�1.j /g, we consider the restriction of the order of X . In
Y X fi; j g

`
e , we consider the restriction of the order in Y with e at the place of i .

Note that the map ce
i;j .w/ can be identified with an element of †r�1 .

In the case where w�1.j /<w�1.i/, we have removed the column where i is the image,
and j has been replaced by e . The map ce

i;j .w/ is a bijection from X X fw�1.i/g to
Y X fi; j g

`
e and can be identified with an element of †r�1 .

For each element i in Y , we form the bijection

c∅;i.w/D

�
x1 x2 : : : yw�1.i/ : : : xr

w.x1/ w.x2/ : : : yi : : : w.xr /

�
:

Here we have only removed the column where i is the image.

The map c∅;i.w/ is a bijection from X X fw�1.i/g to Y X fig. Again, it can be
identified with an element of †r�1 by considering the induced orders. These maps
ce

i;j and c∅;i play different roles, but note that c∅;i.w/ is just c
y
y;i.w/ for any y in Y

such that w�1.y/ < w�1.i/.
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3.1.1 Lemma Let � be an element of Bij.Y /'†r and w an element of Bij.X ;Y /.

The maps ce
i;j .w/ and c∅;i.w/ are compatible with the action of the symmetric group on

the left, that is x�:ce
i;j .w/D ce

�.i/;�.j/
.�:w/, where x� is the bijection fixing e induced

by � on Y n fi; j g
`

e .

Proof We prove the lemma in the case where w�1.i/ < w�1.j /. The proof for the
other case is obtained by permuting i and j .

We already know that

ce
i;j .w/D

�
x1 : : : w�1.i/ : : : yw�1.j / : : : xr

w.x1/ : : : e : : : yj : : : w.xr /

�
:

We get

x�:ce
i;j .w/D

�
x1 : : : w�1.i/ : : : yw�1.j / : : : xr

�.w.x1// : : : e : : : y�.j / : : : �.w.xr //

�
:

On the right hand side, we have

�:w D

�
x1 : : : w�1.i/ : : : w�1.j / : : : xr

�.w.x1// : : : �.i/ : : : �.j / : : : �.w.xr //

�
and then

ce
�.i/;�.j/.�:w/D

�
x1 : : : w�1.i/ : : : yw�1.j / : : : xr

�.w.x1// : : : e : : : y�.j / : : : �.w.xr //

�
:

We extend the definition of ce
i;j to sequences of bijections w D .w0; : : : wn/ by

ce
i;j .w/D .c

e
i;j .w0/; : : : ; c

e
i;j .wn//.

3.2 Definition of the complex

We now define a †�–module M involved in our explicit complex computing � –
homology. We are given P a connected binary (quadratic) Koszul operad.

We consider KP the Koszul construction of P, defined by K.P/.s/ WDHs.B�.P/.s//.
It is a cooperad. The Koszul construction with coefficients PıKPıP is equipped with
a differential, such that .P ıKP ı P; @/ is quasi-isomorphic to P. For more details,
we refer the reader to the initial article of Ginzburg and Kapranov [9] or the article of
Fresse [6], of which we adopt the convention.

We also consider the chain complex C�.E†�/ of the total space of the universal
†n –bundles in simplicial spaces, n 2N . The chain complex C�.E†n/ is the acyclic
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homogeneous bar construction of the symmetric group †n , the module spanned in
degree t by the .tC1/–tuples of permutations w D .w0; : : : ; wt / together with the
differential ı such that ı.w/D

P
i.�1/i.w0; : : : ; ywi ; : : : ; wt /. We consider the left

action of the symmetric group on this chain complex.

We define the †�–module M D KP � C�.E†�/ by M.r/ D KP.r/˝ C�.E†r /.
The action of the symmetric group is the diagonal action.

Now we construct a map �W M ! P ıM ı P which defines a twisting differential
once extended by P–linearity on the right and as a P–derivation on the left.

Recall that the quadratic component of the cooperad product of KP is given by the
dual of the operadic composition in P:

1 r

KP �!

X j1 j`

i1 i2 KP
e

ik

KP

where the sum ranges over all partitions fi1; : : : ; ikg
`
fj1; : : : ; j`g D f1; : : : ; rg and

e is a dummy variable. We define two restrictions of this coproduct:
� �� where we only keep the components of the differential where the set
fi1; : : : ; ikg is reduced to one index (when the element below in the composition
is binary).

� �C where we only keep the components of the differential where the set
fj1; : : : ; j`g is composed of two indices (when the element above in the compo-
sition is binary).

Note that ��.
 /D�C.
 / when 
 is an element with three inputs.

We use this coproduct � on KP to define � on KP� C�.E†�/ by the following
composite:

1 r

KP ˝w �!

X
i

1 yi r

i KP ˝c∅;i.w/

KP

C

X
fi;jg

i j

1 KP
e

yj r

KP ˝ce
i;j .w/

�!

X
i

1 yi r

i KP ˝c∅;i.w/

P

C

X
fi;jg

i j

1 P
e

yj r

KP ˝ce
i;j .w/
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The first arrow consists in using �� and �C on KP and the ce
i;j defined in the

previous paragraph. The second arrow comes from the twisting cochain �W KP! P

(which identifies elements of arity 2 in KP with elements of arity 2 in P).

This construction defines � on representatives with the entries ordered from 1 to r .
We apply Lemma 3.1.1 to extend this definition to KP.

3.2.1 Lemma The map � determines a differential of †�–modules on P ıM ıP.

Proof For an element 
 2 KP.r/ and w a sequence of permutations in †r , we
decompose �2.
 ˝w/ in the sum of three terms: the part induced by �C�C , the
part induced by ���� and the part induced by �C��C���C .

The composite �C�C yields terms of the form

a b c

: : : �.
 00/ ıf �.

000/

e


 0˝ ce
f;a

c
f

b;c
.w/

;(I)

a b c d

�.
 00/
e

::: �.
 000/
f


 0˝ ce
a;b

c
f

c;d
.w/

:(II)

� Let fi < j < kg D fa; b; cg denote the ordered subset formed by the triple
fa; b; cg in the indexing set. We can identify the permutation occuring in terms
of the form (I):

ce
f;ac

f

b;c
.w/D

 
: : : w�1.i/ : : : yw�1.j / : : : yw�1.k/ : : :

: : : e : : : yj : : : yk : : :

!
:

Thus the result of the composite ce
a;b

c
f

c;d
only depends on fi < j < kg.

The sum of the terms associated to a given triple fi < j < kg is 0 because the
sum of the compositions

i j k

�.
 00/ ıf �.

000/
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cancels in P by construction of the Koszul dual (see Fresse [6, Section 5.2]) and
the sum of terms (I) is 0.

� For terms (II), we have the relation ce
a;b

c
f

c;d
.w/D c

f

c;d
ce

a;b
.w/. By coassocia-

tivity of the coproduct in KP, the terms (II) cancel each another. Note simply
that a permutation of � with a suspension produces a sign opposition.

Thus the part of �2 induced by �C�C is 0.

The cancellation of the part induced by ���� is similar to the proof of the cancellation
of terms (I).

We now study the part induced by �C��C���C . The composite ���C yields
terms of the form

(III’)

b c

a �.
 000/
f

: : : 
 00˝ c∅;ac
f

b;c
.w/

e

�.
 0/

;

while the composite �C�� yields terms of the form

(III”)

b c

a �.
 000/

f

: : : 
 00˝ c
f

b;c
c∅;a.w/

e

�.
 0/

:

But c
f

b;c
c∅;a.w/D c∅;ac

f

b;c
.w/. So by coassociativity of the coproduct in KP, we

prove the cancellation of terms (III’) with terms (III”). We use again that a permutation
of � with a suspension produces a sign opposition.

Thus the part of �2 induced by �C��C���C is 0.

Finally, we have proved that �2 D 0.

Moreover, the map is compatible with the symmetric action by Lemma 3.1.1.
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We now consider the differential of the bar construction of the symmetric group and
use it to define another differential ı on P ıM ıP.

For w D .w0; : : : wn/, recall that ı.w/D
P

i.�1/i.w0; : : : ; ywi ; : : : ; wn/.

We define the map ı on KP� C�.†�/!KP� C�.†�/ by

ı.
 ˝w/D .�1/j
 j
 ˝ ı.w/:

3.2.2 Lemma The map ı induces a differential on P ı .KP � C�.E†�// ı P that
anticommutes with �.

Putting all this together, we get:

3.3 Theorem We have defined a quasi-free dg P–bimodule

.P ı .KP� C�.E†�// ıP; �C ı/;

where � and ı are both a differential.

3.4 Homology of the complex

The goal of this paragraph is to prove that we have a quasi-isomorphism

.P ı .KP� C�.E†�// ıP; �C ı/
�
!P

of P–bimodules.

First, we consider a dg-module morphism defined by:�
KP.r/˝C0.†r /!KP.r/

KP.r/˝C�1.†r /! 0:

The first part of the arrow just forgets the permutation.

This morphism induces a P–bimodule morphism

.P ı .KP� C�.E†�// ıP; �C ı/
�
!.P ıKP ıP; @/;

by extension by linearity on the right, and as a derivation on the left. We call � this
P–bimodule morphism. Note that � is sent to the usual differential @ of the Koszul
construction with coefficients P ıKP ıP, while ı is sent to 0.

We will now use a spectral argument to show that .P ı .KP� C�.E†�// ıP; �C ı/

is quasi-isomorphic to .P ıKP ıP; �/.
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We see .P ı .KP� C�.E†�// ı P/ as a bimodule, with differentials � and ı . The
first graduation is the bar degree r in KP and the second graduation is the number �
of permutations.

.E0
r;�; d

0/D .P ı .KPr � C�.E†�// ıP; ı/

We now use that C�.E†�/ is acyclic, that is Hn.C�.E†�// D K if n D 0 and 0

otherwise. We also use that the functors P ı�, �ıP and KPr ˝� preserve quasi-
isomorphisms (for instance, see Fresse [6, Theorem 2.1.15]).

Thus we get that Hn.P ı .KPr � C�.E†�// ıP; ı/D P ıKPr ıP.

.E1
r;0; d

1/D .P ıKPr ıP; @/

E2
r;0 DHr .P ıKP ıP; @/

We know that the spectral sequence of a bicomplex (both graduations being bounded
below) converges to the total homology of the bicomplex.

Thus H�.P ı .KP� C.E†�// ıP; �C ı/DH�.P ıKP ıP; @/.

This proves that � is a quasi-isomorphism

.P ı .KP� C�.E†�// ıP; �C ı/
�
!.P ıKP ıP; @/:

We can compose it with the quasi-isomophism between PıKPıP and P, and finally this
gives us a quasi-isomorphism .P ı .KP� C�.E†�// ıP; �C ı/

�
!P of P–bimodules.

3.5 Back to � –homology

We now prove that the P–bimodule constructed in the previous paragraphs satisfies all
the required hypotheses so we can use it to compute � –homology.

It has the form P ıM ıP , with M a †�–module such that M.0/D 0. We now have
to prove that .P ı .KP� C�.E†�// ıP; �C ı/ is a cofibrant P–bimodule.

The P–bimodule .P ı .KP� C�.E†�// ıP; �C ı/ can be seen as

.P ı .KP� C�.E†�/; ı/ ıP; �/:

The differential � is decomposable. We first prove that .KP � C�.E†�/; ı/ is a
cofibrant †�–module, and then Proposition 1.6 will give us the result.

3.5.1 Lemma The †�–bimodule .KP� C�.E†�/; ı/ is cofibrant.
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Proof We consider the map f of †�–modules 0! .KP � C�.E†�/; ı/, which
can be written as f D .0˝ id†r

/r2N . According to the description of generating
cofibrations in Section 1.4, we have to prove that 0! .KP.r/; 0/ is a cofibration of
dg-modules. But .KP.r/; 0/ is assumed to be free and its differential is 0. Hence the
claim is immediate.

Thus we have proved the following.

3.6 Proposition The P–bimodule .P ı .KP� C�.E†�// ıP; �C ı/ is cofibrant.

Besides, we have seen in the previous paragraph that .Pı.KP�C�.E†�//ıP; �Cı/

is weakly equivalent to P.

So we can use KP�C�.E†�/ to compute � –homology of algebras over P. Explicitly,
we have:

3.7 Theorem Let P be a binary Koszul operad, A an algebra over P and E a right
UP.A/–module.

H�P
� .A;E/DH�.E˝ .KP� C�.E†�// ıA; @00/

where @00 is the differential induced by �C ı in two steps, explained in the proofs of
Lemmas 1.7.1 and 2.1.1.

Explicitly, for x 2E , 
 2KP such that

�C.
 /D
X
i<j

i j

1 
 00C
e

yj r


 0C

and ��.
 /D
X

i

1 yi r

i 
 00�


 0�

;

.w0; : : : ; w�/ 2 C�.E†r / and a1; : : : ; ar in A, we have:

@00.x˝ 
 ˝ .w0; : : : ; w�/˝ .a1; : : : ; ar //DX
i<j

˙x˝ 
 0C˝ .c
e
i;j .w0/; : : : ; c

e
i;j .w�//˝ .a1; : : : ; �.


00
C/.ai ; aj /; : : : ; yaj ; : : : ar /

C

X
i

˙�.
 0�/.x; ai/˝ 

00
�˝ .c∅;i.w0/; : : : ; c∅;i.w�//˝ .a1; : : : ; yai ; : : : ; ar /:

Signs are induced by the usual Koszul rule.
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3.8 Examples
(1) For PDCom, we have KPD .ƒLie/# where ƒ denotes the operadic suspension

and # denotes the linear duality. Here we retrieve Robinson’s complex (up to a
usual isomorphism on the bar construction).

(2) For PD Lie, we have KPD .ƒCom/# . We denote 
r the generator of KP in
arity r (it is in degree 1� r ). Let A be a Lie algebra concentrated in degree 0.

@00.x˝ 
r ˝ .w0; : : : ; w�/˝ .a1; : : : ; ar //DX
i<j

.�1/j x˝
r�1˝.c
e
i;j .w0/; : : : ; c

e
i;j .w�//˝.a1; : : : ; �.
2/.ai ; aj /; : : : ; yaj ; : : : ar /

C

X
i

.�1/i�1�.
2/.x; ai/˝
r�1˝ .c∅;i.w0/; : : : ; c∅;i.w�//˝ .a1; : : : ; yai ; : : : ; ar /:

Note that we find the same signs as in the complex of Chevalley–Eilenberg.

Similarly for the cohomology, we have the following theorem:

3.9 Theorem Let P be a binary Koszul operad, A an algebra over P and F a left
UP.A/–module.

H�Q.A;F /DH�.Hom.KP� C�.E†�/ ıA;F /; @00/:

where @00 is the differential induced by �C ı in two steps, explained in the proofs of
Lemmas 1.7.1 and 2.1.1.
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