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Instanton Floer homology and the Alexander polynomial

PETER KRONHEIMER

TOM MROWKA

The instanton Floer homology of a knot in the three-sphere is a vector space with a
canonical mod 2 grading. It carries a distinguished endomorphism of even degree,
arising from the 2–dimensional homology class represented by a Seifert surface.
The Floer homology decomposes as a direct sum of the generalized eigenspaces
of this endomorphism. We show that the Euler characteristics of these generalized
eigenspaces are the coefficients of the Alexander polynomial of the knot. Among
other applications, we deduce that instanton homology detects fibered knots.

57R58; 57M25

1 Introduction

For a knot K � S3 , the authors defined in [7] a Floer homology group KHI.K/, by a
slight variant of a construction that appeared first in Floer’s paper [3]. In brief, one
takes the knot complement S3 nN ı.K/ and forms from it a closed 3–manifold Z.K/

by attaching to @N.K/ the manifold F �S1 , where F is a genus–1 surface with one
boundary component. The attaching is done in such a way that fpointg �S1 is glued to
the meridian of K and @F�fpointg is glued to the longitude. The vector space KHI.K/
is then defined by applying Floer’s instanton homology to the closed 3-manifold Z.K/.
We will recall the details in Section 2. If † is a Seifert surface for K , then there is
a corresponding closed surface x† in Z.K/, formed as the union of † and one copy
of F . The homology class x� D Œx†� in H2.Z.K// determines an endomorphism �.x�/

on the instanton homology of Z.K/, and hence also an endomorphism of KHI.K/.
As was shown in [7], and as we recall below, the generalized eigenspaces of �.x�/ give
a direct sum decomposition,

(1) KHI.K/D
gM

jD�g

KHI.K; j /:

Here g is the genus of the Seifert surface. In this paper, we will define a canonical
Z=2 grading on KHI.K/, and hence on each KHI.K; j /, so that we may write

KHI.K; j /D KHI0.K; j /˚KHI1.K; j /:
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This allows us to define the Euler characteristic �.KHI.K; j // as the difference of the
ranks of the even and odd parts. The main result of this paper is the following theorem.

Theorem 1.1 For any knot in S3 , the Euler characteristics �.KHI.K; j // of the sum-
mands KHI.K; j / are minus the coefficients of the symmetrized Alexander polynomial
�K .t/, with Conway’s normalization. That is,

�K .t/D�
X

j

�.KHI.K; j //tj :

The Floer homology group KHI.K/ is supposed to be an “instanton” counterpart to
the Heegaard knot homology of Ozsváth and Szabó [12] and Rasmussen [13]. It is
known that the Euler characteristic of Heegaard knot homology gives the Alexander
polynomial; so the above theorem can be taken as further evidence that the two theories
are indeed closely related.

KC K� K0

Figure 1: Knots KC , K� and K0 differing at a single crossing

The proof of the theorem rests on Conway’s skein relation for the Alexander polynomial.
To exploit the skein relation in this way, we first extend the definition of KHI.K/ to
links. Then, given three oriented knots or links KC , K� and K0 related by the skein
moves (see Figure 1), we establish a long exact sequence relating the instanton knot (or
link) homologies of KC , K� and K0 . More precisely, if for example KC and K�
are knots and K0 is a 2–component link, then we will show that there is along exact
sequence

� � � ! KHI.KC/! KHI.K�/! KHI.K0/! � � � :

(This situation is a little different when KC and K� are 2–component links and K0

is a knot: see Theorem 3.1.)

Skein exact sequences of this sort for KHI.K/ are not new. The definition of KHI.K/
appears almost verbatim in Floer’s paper [3], along with outline proofs of just such a
skein sequence. See in particular part (20 ) of Theorem 5 in [3], which corresponds to
Theorem 3.1 in this paper. The material of Floer’s paper [3] is also presented by Braam
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and Donaldson [1]. The proof of the skein exact sequence which we shall describe
is essentially Floer’s argument, as amplified in [1], though we shall present it in the
context of sutured manifolds. The new ingredient however is the decomposition (1)
of the instanton Floer homology, without which one cannot arrive at the Alexander
polynomial.

The structure of the remainder of this paper is as follows. In Section 2, we recall the
construction of instanton knot homology, as well as instanton homology for sutured
manifolds, following [7]. We take the opportunity here to extend and slightly generalize
our earlier results concerning these constructions. Section 3 presents the proof of the
main theorem. Some applications are discussed in Section 4. The relationship between
�K .t/ and the instanton homology of K was conjectured in [7], and the result provides
the missing ingredient to show that the KHI detects fibered knots. Theorem 1.1 also
provides a lower bound for the rank of the instanton homology group:

Corollary 1.2 If the Alexander polynomial of K is
Pd
�d aj tj , then the rank of

KHI.K/ is not less than
Pd
�d jaj j.

The corollary can be used to draw conclusions about the existence of certain represen-
tations of the knot group in SU.2/.
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2 Background

2.1 Instanton Floer homology

Let Y be a closed, connected, oriented 3–manifold, and let w! Y be a hermitian
line bundle with the property that the pairing of c1.w/ with some class in H2.Y / is
odd. If E! Y is a U.2/ bundle with ƒ2E Š w , we write B.Y /w for the space of
PU.2/ connections in the adjoint bundle ad.E/, modulo the action of the gauge group
consisting of automorphisms of E with determinant 1. The instanton Floer homology
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group I�.Y /w is the Floer homology arising from the Chern–Simons functional on
B.Y /w . It has a relative grading by Z=8. Our notation for this Floer group follows [7];
an exposition of its construction is in [2]. We will always use complex coefficients, so
I�.Y /w is a complex vector space.

If � is a 2–dimensional integral homology class in Y , then there is a corresponding
operator �.�/ on I�.Y /w of degree �2. If y 2 Y is a point representing the generator
of H0.Y /, then there is also a degree–4 operator �.y/. The operators �.�/, for
� 2H2.Y /, commute with each other and with �.y/. As shown in [7] based on the
calculations of [10], the simultaneous eigenvalues of the commuting pair of operators
.�.y/; �.�// all have the form

(2) .2; 2k/ or .�2; 2k
p
�1/;

for even integers 2k in the range

j2kj � j� j:

Here j� j denotes the Thurston norm of � , the minimum value of ��.†/ over all
aspherical embedded surfaces † with Œ†�D � .

2.2 Instanton homology for sutured manifolds

We recall the definition of the instanton Floer homology for a balanced sutured manifold,
as introduced in [7] with motivation from the Heegaard counterpart defined in [4]. The
reader is referred to [7; 4] for background and details.

Let .M; 
 / be a balanced sutured manifold. Its oriented boundary is a union

@M DRC.
 /[A.
 /[ .�R�.
 //

where A.
 / is a union of annuli, neighborhoods of the sutures s.
 /. To define the
instanton homology group SHI.M; 
 / we proceed as follows. Let .Œ�1; 1� � T; ı/

be a product sutured manifold, with T a connected, oriented surface with boundary.
The annuli A.ı/ are the annuli Œ�1; 1�� @T , and we suppose these are in one-to-one
correspondence with the annuli A.
 /. We attach this product piece to .M; 
 / along
the annuli to obtain a manifold

(3) SM DM [
�
Œ�1; 1��T

�
:

We write

(4) @ SM D xRC[ .� xR�/:
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We can regard SM as a sutured manifold (not balanced, because it has no sutures).
The surface xRC and xR� are both connected and are diffeomorphic. We choose an
orientation-preserving diffeomorphism

hW xRC! xR�

and then define Z DZ.M; 
 / as the quotient space

Z D SM =� ;

where � is the identification defined by h. The two surfaces xR˙ give a single closed
surface

xR�Z:

We need to impose a side condition on the choice of T and h in order to proceed. We
require that there is a closed curve c in T such that f1g � c and f�1g � c become
nonseparating curves in xRC and xR� respectively; and we require further that h is
chosen so as to carry f1g � c to f�1g � c by the identity map on c .

Definition 2.1 We say that .Z; xR/ is an admissible closure of .M; 
 / if it arises in
this way, from some choice of T and h, satisfying the above conditions.

Remark In [7, Definition 4.2], there was an additional requirement that xR˙ should
have genus 2 or more. This was needed only in the context there of Seiberg–Witten
Floer homology, as explained in Section 7.6 of [7]. Furthermore, the notion of closure
in [7] did not require that h carry f1g�c to f�1g�c , hence the qualification “admissible”
in the present paper.

In an admissible closure, the curve c gives rise to a torus S1� c in Z which meets xR
transversely in a circle. Pick a point x on c . The closed curve S1 � fxg lies on the
torus S1 � c and meets xR in a single point. We write

w!Z

for a hermitian line bundle on Z whose first Chern class is dual to S1 � fxg. Since
c1.w/ has odd evaluation on the closed surface xR, the instanton homology group
I�.Z/w is well-defined. As in [7], we write

I�.Zj xR/w � I�.Z/w

for the simultaneous generalized eigenspace of the pair of operators

.�.y/; �. xR//

belonging to the eigenvalues .2; 2g� 2/, where g is the genus of xR. (See (2).)
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Definition 2.2 For a balanced sutured manifold .M; 
 /, the instanton Floer homology
group SHI.M; 
 / is defined to be I�.Zj xR/w , where .Z; xR/ is any admissible closure
of .M; 
 /.

It was shown in [7] that SHI.M; 
 / is well-defined, in the sense that any two choices
of T or h will lead to isomorphic versions of SHI.M; 
 /.

2.3 Relaxing the rules on T

As stated, the definition of SHI.M; 
 / requires that we form a closure .Z; xR/ using a
connected auxiliary surface T . We can relax this condition on T , with a little care,
and the extra freedom gained will be convenient in later arguments.

So let T be a possibly disconnected, oriented surface with boundary. The number
of boundary components of T needs to be equal to the number of sutures in .M; 
 /.
We then need to choose an orientation-reversing diffeomorphism between @T and
@RC.
 /, so as to be able to form a manifold SM as in (3), gluing Œ�1; 1�� @T to the
annuli A.
 /. We continue to write xRC , xR� for the “top” and “bottom” parts of the
boundary of @ SM , as at (4). Neither of these need be connected, although they have the
same Euler number. We shall impose the following conditions.

(1) On each connected component Ti of T , there is an oriented simple closed
curve ci such that the corresponding curves f1g � ci and f�1g � ci are both
nonseparating on xRC and xR� respectively.

(2) There exists a diffeomorphism hW xRC! xR� which carries f1g�ci to f�1g�ci

for all i , as oriented curves.

(3) There is a 1–cycle c0 on xRC which intersects each curve f1g � ci once.

We then choose any h satisfying (2) and use h to identify the top and bottom, so
forming a closed pair .Z; xR/ as before. The surface xR may have more than one
component (but no more than the number of components of T ). No component of xR
is a sphere, because each component contains a nonseparating curve. We may regard
T as a codimension-zero submanifold of xR via the inclusion of f1g �T in xRC .

For each component xRk of xR, we now choose one corresponding component Tik
of

T \ xRk . We take w!Z to be the complex line bundle with c1.w/ dual to the sum
of the circles S1 � fxkg � S1 � cik

. Thus c1.w/ evaluates to 1 on each component
xRk �

xR. We may then consider the instanton Floer homology group I�.Zj xR/w .

Lemma 2.3 Subject to the conditions we have imposed, the Floer homology group
I�.Zj xR/w is independent of the choices made. In particular, I�.Zj xR/w is isomorphic
to SHI.M; 
 /.
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Proof By a sequence of applications of the excision property of Floer homology [3;
7], we shall establish that I�.Zj xR/w is isomorphic to I�.Z

0j xR0/w0 , where the latter
arises from the same construction but with a connected surface T 0 . Thus I�.Z

0j xR0/w0

is isomorphic to SHI.M; 
 / by definition: its independence of the choices made is
proved in [7].

We will show how to reduce the number of components of T by one. Following the
argument of [7, Section 7.4], we have an isomorphism

(5) I�.Zj xR/w Š I�.Zj xR/u;

where u!Z is the complex line bundle whose first Chern class is dual to the cycle
c0�Z . We shall suppose in the fist instance that at least one of ci or cj is nonseparating
in the corresponding component Ti or Tj . Since c1.u/ is odd on the 2–tori S1 � ci

and S1�cj , we can apply Floer’s excision theorem (see also [7, Theorem 7.7]): we cut
Z open along these two 2–tori and glue back to obtain a new pair .Z0j xR0/, carrying a
line bundle u0 , and we have

I�.Zj xR/u Š I�.Z
0
j xR0/u0 :

Reversing the construction that led to the isomorphism (5), we next have

I�.Z
0
j xR0/u0 Š I�.Z

0
j xR0/w0 ;

where the line bundle w0 is dual to a collection of circles S1 � fx0
k0g, one for each

component of xR0 . The pair .Z0; xR0/ is obtained from the sutured manifold .M; 
 /

by the same construction that led to .Z;R/, but with a surface T 0 having one fewer
components: the components Ti and Tj have been joined into one component by
cutting open along the circles ci and cj and regluing.

If both ci and cj are separating in Ti and Tj respectively, then the above argument
fails, because T 0 will have the same number of components as T . In this case, we can
alter Ti and ci to make a new T 0i and c0i , with c0i nonseparating in T 0i . For example,
we may replace Z by the disjoint union Z tZ� , where Z� is a product S1 � T� ,
with T� of genus 2. In the same manner as above, we can cut Z along S1 � ci and
cut Z� along S1 � c� , and then reglue, interchanging the boundary components. The
effect of this is to replace Ti be a surface T 0i of genus one larger. We can take c0i to be
a nonseparating curve on T� n c� .

2.4 Instanton homology for knots and links

Consider a link K in a closed oriented 3–manifold Y . Following Juhász [4], we can
associate to .Y;K/ a sutured manifold .M; 
 / by taking M to be the link complement
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and taking the sutures s.
 / to consist of two oppositely-oriented meridional curves
on each of the tori in @M . As in [7], where the case of knots was discussed, we take
Juhász’s prescription as a definition for the instanton knot (or link) homology of the
pair .Y;K/:

Definition 2.4 (cf [4]) We define the instanton homology of the link K � Y to be
the instanton Floer homology of the sutured manifold .M; 
 / obtained from the link
complement as above. Thus,

KHI.Y;K/D SHI.M; 
 /:

Although we are free to choose any admissible closure Z in constructing SHI.M; 
 /,
we can exploit the fact that we are dealing with a link complement to narrow our choices.
Let r be the number of components of the link K . Orient K and choose a longitudinal
oriented curve li � @M on the peripheral torus of each component Ki �K . Let Fr be
a genus–1 surface with r boundary components, ı1; : : : ; ır . Form a closed manifold
Z by attaching Fr �S1 to M along their boundaries:

(6) Z D .Y nN ı.K//[ .Fr �S1/:

The attaching is done so that the curve pi �S1 for pi 2 ıi is attached to the meridian
of Ki and ıi �fqg is attached to the chosen longitude li . We can view Z as a closure
of .M; 
 / in which the auxiliary surface T consists of r annuli,

T D T1[ � � � [Tr :

The two sutures of the product sutured manifold Œ�1; 1��Ti are attached to meridional
sutures on the components of @M corresponding to Ki and Ki�1 in some cyclic
ordering of the components. Viewed this way, the corresponding surface xR�Z is the
torus

xRD � �S1

where � � Fr is a closed curve representing a generator of the homology of the
closed genus–1 surface obtained by adding disks to Fr . Because xR is a torus, the
group I�.Zj xR/w can be more simply described as the generalized eigenspace of
�.y/ belonging to the eigenvalue 2, for which we temporarily introduce the notation
I�.Z/w;C2 . Thus we can write

KHI.Y;K/D I�.Z/w;C2 :

An important special case for us is when K � Y is null-homologous in Y with its
given orientation. In this case, we may choose a Seifert surface †, which we regard
as a properly embedded oriented surface in M with oriented boundary a union of
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longitudinal curves, one for each component of K . When a Seifert surface is given,
we have a uniquely preferred closure Z , obtained as above but using the longitudes
provided by @†. Let us fix a Seifert surface † and write � for its homology class
in H2.M; @M /. The preferred closure of the sutured link complement is entirely
determined by � .

2.5 The decomposition into generalized eigenspaces

We continue to suppose that † is a Seifert surface for the null-homologous oriented
knot K�Y . We write .M; 
 / for the sutured link complement and Z for the preferred
closure.

The homology class � D Œ†� in H2.M; @M / extends to a class x� D Œx†� in H2.Z/:
the surface x† is formed from the Seifert surface † and Fr ,

x†D†[Fr :

The homology class x� determines an endomorphism

�.x�/W I�.Z/w;C2! I�.Z/w;C2 :

This endomorphism is traceless, a consequence of the relative Z=8 grading: there is an
endomorphism � of I�.Z/w given by multiplication by .

p
�1/s on the part of relative

grading s , and this � commutes with �.y/ and anticommutes with �.x�/. We write
this traceless endomorphism as

(7) �o.�/ 2 sl.KHI.Y;K//:

Our notation hides the fact that the construction depends (a priori) on the existence
of the preferred closure Z , so that KHI.Y;K/ can be canonically identified with
I�.Z/w;C2 .

It now follows from [7, Proposition 7.5] that the eigenvalues of �o.�/ are even
integers 2j in the range �2xgC 2 � 2j � 2xg� 2, where xg D g.†/C r is the genus
of x†. Thus:

Definition 2.5 For a null-homologous oriented link K � Y with a chosen Seifert
surface †, we write

KHI.Y;K; Œ†�; j /� KHI.Y;K/

for the generalized eigenspace of �o.Œ†�/ belonging to the eigenvalue 2j , so that

KHI.Y;K/D
g.†/�1CrM

jD�g.†/C1�r

KHI.Y;K; Œ†�; j /;
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where r is the number of components of K . If Y is a homology sphere, we may omit
Œ†� from the notation; and if Y is S3 then we simply write KHI.K; j /.

Remark The authors believe that, for a general sutured manifold .M; 
 /, one can
define a unique linear map

�o
W H2.M; @M /! sl.SHI.M; 
 //

characterized by the property that for any admissible closure .Z; xR/ and any x� in
H2.Z/ extending � 2H2.M; @M / we have

�o.�/D traceless part of �.x�/;

under a suitable identification of I�.Zj xR/w with SHI.M; 
 /. The authors will return
to this question in a future paper. For now, we are exploiting the existence of a preferred
closure Z so as to side-step the issue of whether �o would be well-defined, independent
of the choices made.

2.6 The mod 2 grading

If Y is a closed 3–manifold, then the instanton homology group I�.Y /w has a canonical
decomposition into parts of even and odd grading mod 2. For the purposes of this
paper, we normalize our conventions so that the two generators of I�.T

3/w DC2 are
in odd degree. As in [8, Section 25.4 ], the canonical mod 2 grading is then essentially
determined by the property that, for a cobordism W from a manifold Y� to YC , the
induced map on Floer homology has even or odd grading according to the parity of the
integer

(8) �.W /D
1

2

�
�.W /C �.W /C b1.YC/� b0.YC/� b1.Y�/C b0.Y�/

�
:

(In the case of connected manifolds YC and Y� , this formula reduces to the one that
appears in [8] for the monopole case. There is more than one way to extend the formula
to the case of disconnected manifolds, and we have simply chosen one.) By declaring
that the generators for T 3 are in odd degree, we ensure that the canonical mod 2

gradings behave as expected for disjoint unions of the 3–manifolds. Thus, if Y1 and
Y2 are the connected components of a 3–manifold Y and ˛1˝ ˛2 is a class on Y

obtained from ˛i on Yi , then gr.˛1˝˛2/ is gr.˛1/C gr.˛2/ in Z=2 as expected.

Since the Floer homology SHI.M; 
 / of a sutured manifold .M; 
 / is defined in terms
of I�.Z/w for an admissible closure Z , it is tempting to try to define a canonical
mod 2 grading on SHI.M; 
 / by carrying over the canonical mod 2 grading from Z .
This does not work, however, because the result will depend on the choice of closure.
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This is illustrated by the fact that the mapping torus of a Dehn twist on T 2 may have
Floer homology in even degree in the canonical mod 2 grading (depending on the sign
of the Dehn twist), despite the fact that both T 3 and this mapping torus can be viewed
as closures of the same sutured manifold.

We conclude from this that, without auxiliary choices, there is no canonical mod 2

grading on SHI.M; 
 / in general: only a relative grading. Nevertheless, in the special
case of an oriented null-homologous knot or link K in a closed 3–manifold Y , we can
fix a convention that gives an absolute mod 2 grading, once a Seifert surface † for K

is given. We simply take the preferred closure Z described above in Section 2.4, using
@† again to define the longitudes, so that KHI.Y;K/ is identified with I�.Z/w;C2 ,
and we use the canonical mod 2 grading from the latter.

With this convention, the unknot U has KHI.U / of rank 1, with a single generator in
odd grading mod 2.

3 The skein sequence

3.1 The long exact sequence

Let Y be any closed, oriented 3–manifold, and let KC , K� and K0 be any three
oriented knots or links in Y which are related by the standard skein moves: that is, all
three links coincide outside a ball B in Y , while inside the ball they are as shown in
Figure 1. There are two cases which occur here: the two strands of KC in B may
belong to the same component of the link, or to different components. In the first case
K0 has one more component than KC or K� , while in the second case it has one
fewer.

Theorem 3.1 (cf [3, Theorem 5]) Let KC , K� and K0 be oriented links in Y as
above. Then, in the case that K0 has one more component than KC and K� , there is
a long exact sequence relating the instanton homology groups of the three links:

(9) � � � ! KHI.Y;KC/! KHI.Y;K�/! KHI.Y;K0/! � � � :

In the case that K0 has fewer components that KC and K� , there is a long exact
sequence

(10) � � � ! KHI.Y;KC/! KHI.Y;K�/! KHI.Y;K0/˝V ˝2
! � � �

where V a 2–dimensional vector space arising as the instanton Floer homology of
the sutured manifold .M; 
 /, with M the solid torus S1 �D2 carrying four parallel
sutures S1 � fpig for four points pi on @D2 carrying alternating orientations.
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Proof Let � be a standard circle in the complement of KC which encircles the two
strands of KC with total linking number zero, as shown in Figure 2. Let Y� and Y0

KC

�

Figure 2: The knot KC , with a standard circle � around a crossing, with
linking number zero

be the 3–manifolds obtained from Y by �1–surgery and 0–surgery on � respectively.
Since � is disjoint from KC , a copy of KC lies in each, and we have new pairs
.Y�1;KC/ and .Y0;KC/. The pair .Y�1;KC/ can be identified with .Y;K�/.

MC M� M0

0

Figure 3: Sutured manifolds obtained from the knot complement, related by
a surgery exact triangle

Let .MC; 
C/, .M�; 
�/ and .M0; 
0/ be the sutured manifolds associated to the
links .Y;KC/, .Y;K�/ and .Y0;K0/ respectively: that is, MC , M� and M0 are the
link complements of KC � Y , K� � Y and K0 � Y0 respectively, and there are two
sutures on each boundary component. (See Figure 3.) The sutured manifolds .M�; 
�/
and .M0; 
0/ are obtained from .MC; 
C/ by �1–surgery and 0–surgery respectively
on the circle ��MC . If .Z; xR/ is any admissible closure of .MC; 
C/ then surgery
on ��Z yields admissible closures for the other two sutured manifolds. From Floer’s
surgery exact triangle [1], it follows that there is a long exact sequence

(11) � � � ! SHI.MC; 
C/! SHI.M�; 
�/! SHI.M0; 
0/! � � �

in which the maps are induced by surgery cobordisms between admissible closures of
the sutured manifolds.
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By definition, we have

SHI.MC; 
C/D KHI.Y;KC/

SHI.M�; 
�/D KHI.Y;K�/:

However, the situation for .M0; 
0/ is a little different. The manifold M0 is obtained

S
0

Figure 4: Decomposing M0 along a product annulus to obtain a link com-
plement in S3

by zero-surgery on the circle � in MC , as indicated in Figure 3. This sutured manifold
contains a product annulus S , consisting of the union of the twice-punctured disk
shown in Figure 4 and a disk D2 in the surgery solid-torus S1�D2 . As shown in the
figure, sutured-manifold decomposition along the annulus S gives a sutured manifold
.M 0

0
; 
 0

0
/ in which M 0

0
is the link complement of K0 � Y :

.M0; 
0/
S .M 0

0; 

0
0/:

By Proposition 6.7 of [7] (as adapted to the instanton homology setting in Section 7.5
of that paper), we therefore have an isomorphism

SHI.M0; 
0/Š SHI.M 0
0; 

0
0/:

We now have to separate cases according to the number of components of KC and K0 .
If the two strands of KC at the crossing belong to the same component, then every
component of @M 0

0
contains exactly two, oppositely-oriented sutures, and we therefore

have
SHI.M 0

0; 

0
0/D KHI.Y;K0/:

In this case, the sequence (11) becomes the sequence in the first case of the theorem.

If the two strands of KC belong to different components, then the corresponding
boundary components of MC each carry two sutures. These two boundary components
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Figure 5: Removing some extra sutures using a decomposition along a
product annulus. The solid torus in the last step has four sutures.

become one boundary component in M 0
0

, and the decomposition along S introduces
two new sutures; so the resulting boundary component in M 0

0
carries six meridional

sutures, with alternating orientations. Thus .M 0
0
; 
 0

0
/ fails to be the sutured manifold

associated to the link K0 � Y , on account of having four additional sutures. As
shown in Figure 5 however, the number of sutures on a torus boundary component
can always be reduced by 2 (as long as there are at least four to start with) by using a
decomposition along a separating annulus. This decomposition results in a manifold
with one additional connected component, which is a solid torus with four longitudinal
sutures. This operation needs to be performed twice to reduce the number of sutures
in M 0

0
by four, so we obtain two copies of this solid torus. Denoting by V the Floer
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homology of this four-sutured solid-torus, we therefore have

SHI.M 0
0; 

0
0/D KHI.Y;K0/˝V ˝V

in this case. Thus the sequence (11) becomes the second long exact sequence in the
theorem.

At this point, all that remains is to show that V is 2–dimensional, as asserted in the
theorem. We will do this indirectly, by identifying V ˝V as a 4–dimensional vector
space. Let .M4; 
4/ be the sutured solid-torus with 4 longitudinal sutures, as described
above, so that SHI.M4; 
4/D V . Let .M; 
 / be two disjoint copies of .M4; 
4/, so
that

SHI.M; 
 /D V ˝V:

We can describe an admissible closure of .M; 
 / (with a disconnected T as in Section
2.3) by taking T to be four annuli: we attach Œ�1; 1��T to .M; 
 / to form SM so that
SM is †�S1 with † a four-punctured sphere. Thus @ SM consists of four tori, two

of which belong to xRC and two to xR� . The closure .Y; xR/ is obtained by gluing the
tori in pairs; and this can be done so that Y has the form †2 �S1 , where †2 is now
a closed surface of genus 2. The surface xR in †2 �S1 has the form 
 �S1 , where

 is a union of two disjoint closed curves in independent homology classes. The line
bundle w has c1.w/ dual to 
 0 , where 
 0 is a curve on †2 dual to one component
of 
 .

Thus we can identify V ˝V with the generalized eigenspace of �.y/ belonging to
the eigenvalue C2 in the Floer homology I�.†2 �S1/w ,

(12) V ˝V D I�.†2 �S1/w;C2;

where w is dual to a curve lying on †2 . Our next task is therefore to identify this
Floer homology group. This was done (in slightly different language) by Braam and
Donaldson [1, Proposition 1.15]. The main point is to identify the relevant representation
variety in B.Y /w , for which we quote:

Lemma 3.2 [1] For Y D †2 � S1 and w as above, the critical-point set of the
Chern–Simons functional in B.Y /w consists of two disjoint 2–tori. Furthermore, the
Chern–Simons functional is of Morse–Bott type along its critical locus.

To continue the calculation, following [1], it now follows from the lemma that the Floer
homology I�.†2 �S1/w has dimension at most 8 and that the even and odd parts of
this Floer group, with respect to the relative mod 2 grading, have equal dimension: each
at most 4. On the other hand, the group I�.†2�S1j†2/w is nonzero. So the general-
ized eigenspaces belonging to the eigenvalue-pairs ..�1/r 2; ir 2/, for r D 0; 1; 2; 3,
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are all nonzero. Indeed, each of these generalized eigenspaces is 1–dimensional, by
Proposition 7.9 of [7]. These four 1–dimensional generalized eigenspaces all belong
to the same relative mod 2 grading. It follows that I�.†2 �S1/w is 8–dimensional,
and can be identified as a vector space with the homology of the critical-point set.
The generalized eigenspace belonging to C2 for the operator �.y/ is therefore 4–
dimensional; and this is V ˝V . This completes the argument.

3.2 Tracking the mod 2 grading

Because we wish to examine the Euler characteristics, we need to know how the
canonical mod 2 grading behaves under the maps in Theorem 3.1. This is the content
of the next lemma.

Lemma 3.3 In the situation of Theorem 3.1, suppose that the link KC is null-homo-
logous (so that K� and K0 are null-homologous also). Let †C be a Seifert surface
for KC , and let †� and †0 be Seifert surfaces for the other two links, obtained
from †C by a modification in the neighborhood of the crossing. Equip the instanton
knot homology groups of these links with their canonical mod 2 gradings, as determined
by the preferred closures arising from these Seifert surfaces. Then in the first case
of the two cases of the theorem, the map from KHI.Y;K�/ to KHI.Y;K0/ in the
sequence (9) has odd degree, while the other two maps have even degree, with respect
to the canonical mod 2 grading.

In the second case, if we grade the 4–dimensional vector space V ˝ V by identify-
ing it with I�.†2 � S1/w;C2 as in (12), then the map from KHI.Y;K0/˝ V ˝2 to
KHI.Y;KC/ in (10) has odd degree, while the other two maps have even degree.

Proof We begin with the first case. Let ZC be the preferred closure of the sutured knot
complement .MC; 
C/ obtained from the knot KC , as defined by (6). In the notation
of the proof of Theorem 3.1, the curve � lies in ZC . Let us write Z� and Z0 for the
manifolds obtained from ZC by �1–surgery and 0–surgery on � respectively. It is a
straightforward observation that Z� and Z0 are respectively the preferred closures of
the sutured complements of the links K� and K0 . The surgery cobordism W from
ZC to Z� gives rise to the map from KHI.Y;KC/ to KHI.Y;K�/. This W has the
same homology as the cylinder Œ�1; 1��ZC blown up at a single point. The quantity
�.W / in (8) is therefore even, and it follows that the map

KHI.Y;KC/! KHI.Y;K�/

has even degree. The surgery cobordism W0 induces a map

(13) I�.Z�/w! I�.Z0/w
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which has odd degree, by another application of (8). This concludes the proof of the
first case.

In the second case of the theorem, we still have a long exact sequence

! I�.ZC/w! I�.Z�/w! I�.Z0/w!

in which the map I�.Z�/w! I�.Z0/w is odd and the other two are even. However, it
is no longer true that the manifold Z0 is the preferred closure of the sutured manifold
obtained from K0 . The manifold Z0 can be described as being obtained from the
complement of K0 by attaching Gr �S1 , where Gr is a surface of genus 2 with r

boundary components. Here r is the number of components of K0 , and the attaching
is done as before, so that the curves @Gr � fqg is attached to the longitudes and the
curves fpig �S1 are attached to the meridians. The preferred closure, on the other
hand, is defined using a surface Fr of genus 1, not genus 2. We write Z0

0
for the

preferred closure, and our remaining task is to compare the instanton Floer homologies
of Z0 and Z0

0
, with their canonical Z=2 gradings.

An application of Floer’s excision theorem provides an isomorphism

I�.Z0/w;C2! I�.Z
0
0/w;C2˝ I�.†2 �S1/w;C2

where (as before) the class w in the last term is dual to a nonseparating curve in the
genus–2 surface †2 . (See Figure 6 which depicts the excision cobordism from Gr�S1

Figure 6: The surfaces Gr and Fr t†2 , used in constructing Z0 and Z00 respectively

to .Fr t†2/�S1 , with the S1 factor suppressed.) The isomorphism is realized by
an explicit cobordism W , with �.W / odd, which accounts for the difference between
the first and second cases and concludes the proof.
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3.3 Tracking the eigenspace decomposition

The next lemma is similar in spirit to Lemma 3.3, but deals with eigenspace decompo-
sition rather than the mod 2 grading.

Lemma 3.4 In the situation of Theorem 3.1, suppose again that the links KC , K�
and K0 are null-homologous. Let †C be a Seifert surface for KC , and let †� and †0

be Seifert surfaces for the other two links, obtained from †C by a modification in the
neighborhood of the crossing. Then in the first case of the two cases of the theorem, the
maps in the long exact sequence (9) intertwine the three operators �o.Œ†C�/, �o.Œ†��/

and �o.Œ†0�/. In particular then, we have a long exact sequence

! KHI.Y;KC; Œ†C�; j /! KHI.Y;K�; Œ†��; j /! KHI.Y;K0; Œ†0�; j /!

for every j .

In the second case of Theorem 3.1, the maps in the long exact sequence (10) intertwine
the operators �o.Œ†C�/ and �o.Œ†��/ on the first two terms with the operator

�o.Œ†0�/˝ 1C 1˝�.Œ†2�/

acting on
KHI.Y;K0/˝ I�.†2 �S1/w;C2 Š KHI.Y;K0/˝V ˝2:

Proof The operator �o.Œ†�/ on the knot homology groups is defined in terms of the
action of �.Œx†�/ for a corresponding closed surface x† in the preferred closure of the
link complement. The maps in the long exact sequences arise from cobordisms between
the preferred closures. The lemma follows from the fact that the corresponding closed
surfaces are homologous in these cobordisms.

3.4 Proof of the main theorem

For a null-homologous link K � Y with a chosen Seifert surface †, let us write

�.Y;K; Œ†�/D
X

j

�.KHI.Y;K; Œ†�; j //tj

D

X
j

�
dim KHI0.Y;K; Œ†�; j /� dim KHI1.Y;K; Œ†�; j /

�
tj

D str.t�
o.†/=2/;

where str denotes the alternating trace. If KC , K� and K0 are three skein-related links
with corresponding Seifert surfaces †C , †� and †0 , then Theorem 3.1, Lemma 3.3
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and Lemma 3.4 together tell us that we have the relation

�.Y;KC; Œ†C�/��.Y;K�; Œ†��/C�.Y;K0; Œ†0�/D 0

in the first case of Theorem 3.1, and

�.Y;KC; Œ†C�/��.Y;K�; Œ†��/��.Y;K0; Œ†0�/r.t/D 0

in the second case. Here r.t/ is the contribution from the term I�.†2 �S1/w;C2 , so
that

r.t/D str.t�.Œ†2�/=2/:

From the proof of Lemma 3.2 we can read off the eigenvalues of Œ†2�=2: they are 1,
0 and �1, and the ˙1 eigenspaces are each 1–dimensional. Thus

r.t/D˙.t � 2C t�1/:

To determine the sign of r.t/, we need to know the canonical Z=2 grading of (say) the
0–eigenspace of �.Œ†2�/ in I�.†2 �S1/w;C2 . The trivial 3–dimensional cobordism
from T 2 to T 2 can be decomposed as NC [N� , where NC is a cobordism from
T 2 to †2 and N� is a cobordism the other way. The 4–dimensional cobordisms
W ˙ D N˙ �S1 induce isomorphisms on the 0–eigenspace of �.ŒT 2�/D �.Œ†2�/;
and �.W ˙/ is odd. Since the generator for T 3 is in odd degree, we conclude that the
0–eigenspace of �.Œ†2�/ is in even degree, and that

r.t/D�.t � 2C t�1/

D�q.t/2

q.t/D .t1=2
� t�1=2/:where

We can roll the two case of Theorem 3.1 into one by defining the “normalized” Euler
characteristic as

(14) z�.Y;K; Œ†�/D q.t/1�r�.Y;K; Œ†�/

where r is the number of components of the link K . With this notation we have:

Proposition 3.5 For null-homologous skein-related links KC , K� and K0 with cor-
responding Seifert surface †C , †� and †0 , the normalized Euler characteristics (14)
satisfy

z�.Y;KC; Œ†C�/� z�.Y;K�; Œ†��/D .t
1=2
� t�1=2/ z�.Y;K0; Œ†0�/:

In the case of classical knots and links, we may write this simply as

z�.KC/� z�.K�/D .t
1=2
� t�1=2/ z�.K0/:
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This is the exactly the skein relation of the (single-variable) normalized Alexander
polynomial �. The latter is normalized so that �D 1 for the unknot, whereas our z�
is �1 for the unknot because the generator of its knot homology is in odd degree. We
therefore have:

Theorem 3.6 For any link K in S3 , we have

z�.K/D��K .t/;

where z�.K/ is the normalized Euler characteristic (14) and �K is the Alexander
polynomial of the link with Conway’s normalization.

In the case that K is a knot, we have z�.K/D�.K/, which is the case given in Theorem
1.1 in the introduction.

Remark The equality r.t/D�q.t/2 can be interpreted as arising from the isomor-
phism

I�.†2 �S1/w;C2 Š V ˝V;

with the additional observation that the isomorphism between these two is odd with
respect to the preferred Z=2 gradings.

4 Applications

4.1 Fibered knots

In [7], the authors adapted the argument of Ni [11] to establish a criterion for a knot K

in S3 to be a fibered knot: in particular, Corollary 7.19 of [7] states that K is fibered
if the following three conditions hold:

(1) The Alexander polynomial �K .T / is monic, in the sense that its leading coeffi-
cient is ˙1.

(2) The leading coefficient occurs in degree g , where g is the genus of the knot.

(3) The dimension of KHI.K;g/ is 1.

It follows from our Theorem 1.1 that the last of these three conditions implies the other
two. So we have:

Proposition 4.1 If K is a knot in S3 of genus g , then K is fibered if and only if the
dimension of KHI.K;g/ is 1.
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4.2 Counting representations

We describe some applications to representation varieties associated to classical knots
K � S3 . The instanton knot homology KHI.K/ is defined in terms of the preferred
closure Z DZ.K/ described at (6), and therefore involves the flat connections

R.Z/w � B.Z/w

in the space of connections B.Z/w : the quotient by the determinant–1 gauge group
of the space of all PU.2/ connections in P .Ew/, where Ew!Z is a U.2/ bundle
with det.E/Dw . If the space of these flat connections in B.Z/w is nondegenerate in
the Morse–Bott sense when regarded as the set of critical points of the Chern–Simons
functional, then we have

dim I�.Z/w � dim H�.R.Z/w/:

The generalized eigenspace I�.Z/w;C2�I�.Z/w has half the dimension of the total, so

dim KHI.K/�
1

2
dim H�.R.Z/w/:

As explained in [7], the representation variety R.Z/w is closely related to the space

R.K; i/D f �W �1.S
3
nK/! SU.2/ j �.m/D i g;

where m is a chosen meridian and

iD
�

i 0

0 �i

�
:

More particularly, there is a two-to-one covering map

(15) R.Z/w!R.K; i/:

The circle subgroup SU.2/i�SU.2/ which stabilizes i acts on R.K; i/ by conjugation.
There is a unique reducible element in R.K; i/ which is fixed by the circle action; the
remaining elements are irreducible and have stabilizer ˙1. The most nondegenerate
situation that can arise, therefore, is that R.K; i/ consists of a point (the reducible)
together with finitely many circles, each of which is Morse–Bott. In such a case, the
covering (15) is trivial. As in [6], the corresponding nondegeneracy condition at a flat
connection � can be interpreted as the condition that the map

H 1.S3
nKI g�/!H 1.mI g�/DR

is an isomorphism. Here g� is the local system on the knot complement with fiber su.2/,
associated to the representation � . We therefore have:
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Corollary 4.2 Suppose that the representation variety R.K; i/ associated to the com-
plement of a classical knot K � S3 consists of the reducible representation and n.K/

conjugacy classes of irreducibles, each of which is nondegenerate in the above sense.
Then

dim KHI.K/� 1C 2n.K/:

Proof Under the given hypotheses, the representation variety R.K; i/ is a union of
a single point and n.K/ circles. Its total Betti number is therefore 1C 2n.K/. The
representation variety R.Z/w is a trivial double cover (15), so the total Betti number
of R.Z/w is twice as large, 2C 4n.K/.

Combining this with Corollary 1.2, we obtain:

Corollary 4.3 Under the hypotheses of the previous corollary, we have

dX
jD�d

jaj j � 1C 2n.K/

where the aj are the coefficients of the Alexander polynomial.

Among all the irreducible elements of R.K; i/, we can distinguish the subset consisting
of those � whose image is binary dihedral: contained, that is, in the normalizer of a
circle subgroup whose infinitesimal generator J satisfies Ad.i/.J /D�J . If n0.K/

denotes the number of such irreducible binary dihedral representations, then one has

j det.K/j D 1C 2n0.K/:

(see Klassen [5]). On the other hand, the determinant det.K/ can also be computed as
the value of the Alexander polynomial at �1: the alternating sum of the coefficients.
Thus we have:

Corollary 4.4 Suppose that the Alexander polynomial of K fails to be alternating, in
the sense that ˇ̌̌̌

ˇ
dX

jD�d

.�1/j aj

ˇ̌̌̌
ˇ<

dX
jD�d

jaj j:

Then either R.K; i/ contains some representations that are not binary dihedral, or some
of the binary-dihedral representations are degenerate as points of this representation
variety.
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This last corollary is nicely illustrated by the torus knot T .4; 3/. This knot is the first
nonalternating knot in Rolfsen’s tables [14], where it appears as 819 . The Alexander
polynomial of 819 is not alternating in the sense of the corollary; and as the corollary
suggests, the representation variety R.819I i/ contains representations that are not
binary dihedral. Indeed, there are representations whose image is the binary octahedral
group in SU.2/.
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