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An open-closed cobordism category with background space

ELIZABETH HANBURY

In this paper we introduce an open-closed cobordism category with maps to a back-
ground space. We identify the classifying space of this category for certain classes
of background space. The key ingredient is the homology stability of mapping class
groups with twisted coefficients.

55P47, 57M99, 57R50

1 Introduction

In the late seventies and early eighties, cobordism categories were used by Atiyah and
Segal to give an axiomatic description of field theories. Indeed, much of the motivation
to study cobordism categories and many of the indications of how we should do so
come from mathematical physics. Informally, the relationship between mathematical
physics and cobordism theory can be seen in the following: if we track the motion of a
collection of strings through time then the space they sweep out, their worldsheet, is
precisely a cobordism.

Cobordism categories have been studied in algebraic topology in connection with
mapping class groups and infinite loop space theory. The first work of this kind was
Tillmann’s result in [16] relating the classifying space of the 2–dimensional cobordism
category to the classifying space of the stable mapping class group. Then Galatius–
Madsen–Tillmann–Weiss [6] identified the classifying space of the d –dimensional
cobordism category for any d � 1, showing that it is homotopy equivalent to a familiar
infinite loop space. Together, these two results give a new proof of Madsen and Weiss’
generalization of the Mumford conjecture which allows the calculation of the rational
cohomology of the stable mapping class group.

The cobordism categories studied in those papers feature cobordisms between closed
manifolds. These pertain to closed field theories in physics. Also of interest are
open-closed field theories and, correspondingly, open-closed cobordisms ie cobordisms
between manifolds that may have boundary. Just as the worldsheet of a collection of
(closed) strings is an (ordinary) cobordism, so the worldsheet of a collection of open
and closed strings is an open-closed cobordism.
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834 Elizabeth Hanbury

The definition is as follows. An oriented open-closed cobordism between two oriented
.d�1/–manifolds M1 and M2 is an oriented d –dimensional manifold W such that:

(i) @W D .@inW t @outW /[ @fW .

(ii) There are diffeomorphisms @inW ŠM1 and @outW Š�M2 where �M2 means
M2 with the opposite orientation.

(iii) .@inW t @outW /\ @fW D @.@fW /D @.@inW t @outW /:

An example of an open-closed cobordism is given in Figure 1. We call @fW the
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Figure 1: An open-closed cobordism

free boundary of W and the closed components of @fW windows. The open-closed
cobordism in Figure 1 has one window. We think of the boundary of an open-closed
cobordism from M1 to M2 as the union of three pieces; M1 , M2 and the free boundary.
Note that in particular (ii) and (iii) imply that @fW is a cobordism from @M1 to @M2 .

Open-closed cobordism categories have recently been studied for example by Baas–
Cohen–Ramirez [1], Lauda–Pfeiffer [10] and Ramirez [14]. In this paper we study
a 2–dimensional open-closed cobordism category in which the 1–manifolds and the
cobordisms carry a map to a background space. More precisely, for a fixed background
space X and subspace N �X , we study the category CX ;N whose objects are oriented
1–manifolds S embedded in R1 and equipped with a map .S; @S/! .X;N / and
whose morphisms are oriented 2–dimensional open-closed cobordisms F embedded
in R1 � Œ0; 1� and equipped with a map .F; @f F /! .X;N /. There is a topology on
CX ;N which we give in Section 2.1.

In open-closed string theory the strings move in a background manifold M and there
is often a collection of submanifolds fNb �M gb2B specified. These are called the
D–branes and the movement of an open string is restricted by the requirement that its
endpoints must move within certain of the D–branes. The category CX ;N is intended
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to be a model of open and closed strings moving in X with the components of N as
the set of D–branes.

The operation of disjoint union gives an ill-defined multiplicative structure on CX ;N .
This structure is enough to ensure that BCX ;N is an infinite loop space as we show
in Section 2.3. The main result of this paper is to identify that infinite loop space in
the case that X is simply connected and N is discrete. For technical reasons, we are
forced to work with a modified version of CX ;N which we denote by zCb

X ;N .

In the recent preprint [7], Genauer studies cobordism categories of manifolds with
corners in a more general setting, dealing with higher dimensions and tangent structures
on the manifolds. The techniques used are very different to those here, and follow
Galatius–Madsen–Tillmann–Weiss [6]. One point of note is that [7] gives a calculation
of BC�;� which differs from our calculation of BzCb

�;� .

Summary of results We fix a space X , a subspace N and a basepoint � 2N . Our
techniques lead us to consider moduli spaces

S.F IX;N /� WDEDiffCoc.F /�DiffCoc .F /
Map.F; @f F IX;N /�

where F is a connected 2–dimensional open-closed cobordism with @outF D S1 ,
DiffCoc.F / is the group of orientation-preserving diffeomorphisms that fix @inF [@outF

pointwise and Map.F; @f F IX;N /� is the space of maps which carry @inF [ @outF

to the basepoint.

In Section 3.1 we show that the spaces S.F IX;N /� have good homology stability
properties. This is a consequence of the homology stability of mapping class groups
with twisted coefficients which was proved by Cohen–Madsen [3] and Ivanov [9]. We
actually require some extensions of the original stability theorems and we establish
these in Section 3.1.

We also consider stabilized versions of the spaces S.F IX;N /� . Let F1 be obtained
from F by gluing a torus with three holes to the outgoing boundary of F (here the
torus with three holes is thought of as an open-closed cobordism from S1 to itself). So
F1 is an open-closed cobordism with @inF1 D @inF , @outF

1 D @outF D S1 , and F1

has one more window and one greater genus than F . The inclusion F ! F1 induces
a map

S.F IX;N /�! S.F1
IX;N /�

given by extending diffeomorphisms by the identity and extending the maps to X

by c� , the constant map to the basepoint. Let F2 be obtained from F1 by gluing on
another torus with three holes and so on. Define S11 .F IX;N /� to be

hocolim .S.F IX;N /�! S.F1
IX;N /�! S.F2

IX;N /�! � � � /:
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Using the homology stability for the spaces S.F IX;N /� and a generalised group
completion theorem, we prove the following theorem in Section 3.2.

Theorem 1.1 Suppose that X is simply connected and N is discrete. For any con-
nected open-closed cobordism F with @outF D S1 there is a homology isomorphism

Z�Z�S11 .F IX;N /�!�BzCb
X ;N :

When F is an ordinary cobordism, ie @inF and @outF are closed and F has no
free boundary, the subspace N plays no role. In this case we will write the space
S.F IX;N /� simply as S.F IX /� . For such F we may also wish to stabilize with
respect to genus only. Let F Œ1� denote the surface obtained from F by gluing on a
torus with two holes and let F Œ2� be obtained from F Œ1� in the same fashion. Define

S1.F IX /� D hocolim .S.F IX /�! S.F Œ1�IX /�! S.F Œ2�IX /�! � � � /:

The spaces S.F IX /� and S1.F IX /� were defined and studied by Cohen–Madsen [3].

For any space Y let Q.Y / denote the infinite loop space colimk!1�
k†kY and let

YC denote the union of Y and a disjoint basepoint. Using the homology stability for
the spaces S.F IX;N /� and splitting techniques analogous to those in [2], in Section
3.3 we prove the following.

Theorem 1.2 Suppose that X is simply connected and N is discrete. Let F be a
connected open-closed cobordism from some closed, oriented 1–manifold to S1 and
let xF be the ordinary cobordism obtained by gluing a disc to each window of F . Then
there is a homology isomorphism

Z�S11 .F IX;N /�! S1. xF IX /� �Q..BS1
�N /C/:

To state our main theorem we must first recall the definition of the spectrum MTSO.2/

studied in Galatius–Madsen–Tillmann–Weiss [6], Madsen–Tillmann [11] and Madsen–
Weiss [12]. Let GrCn .R

2/ be the Grassmannian of oriented 2–planes in Rn and n be
the canonical bundle over it. Let ?n denote the orthogonal complement of n , consist-
ing of pairs .U; v/ of an oriented 2–plane U in Rn and an n–vector v perpendicular to
it. The n–th space in the spectrum MTSO.2/ is the Thom space Th.?n /. There is a
natural inclusion GrC

2
.Rn/!GrC

2
.RnC1/ and we have that ?

nC1
jGrC

2
.Rn/Š 

?
n ˚ �

1

where �1 is a trivial line bundle. Thus we obtain a map

†MTSO.2/n D†Th.?n /' Th.?n ˚ �
1/! Th.nC1/DMTSO.2/nC1

and this completes the definition of MTSO.2/.
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It was shown in [3] that Z�S1. xF IX /� has the same homology as the infinite loop
space �1.MTSO.2/^XC/. In Section 3.5 we use this result together with Theorem
1.1 and Theorem 1.2 to prove our main theorem.

Theorem 1.3 When X is simply connected and N is discrete there is a weak homo-
topy equivalence

�BzCb
X ;N '�

1.MTSO.2/^XC/�Q..BS1
�N /C/:

The paper is organised as follows. In Section 2 we give the full definitions of the
open-closed cobordism categories and investigate their path-components. We also
prove that the classifying spaces carry an infinite loop space structure. In Section 3 we
prove Theorems 1.1, 1.2 and 1.3. Section 4 is an appendix containing the proofs of the
homology stability theorems from Section 3.

Acknowledgements This work is part of my PhD thesis, supervised by Ulrike Till-
mann. I’d like to thank her for her guidance throughout the project.

2 Definition and properties of the category

2.1 Definitions

In this section we give the full definition of CX ;N and define the modified category
zCb
X ;N .

Let Sm;n denote the union of m oriented circles and n oriented intervals and let
Emb .Sm;n;Rk/ denote the space of smooth embeddings, equipped with the Whitney
C1–topology. Set

Emb .Sm;n;R
1/ WD colimk!1 Emb .Sm;n;R

k/:

Let DiffC.Sm;n/ denote the group of orientation-preserving diffeomorphisms of Sm;n .
This group acts on the right of the embedding space by precomposition. It also acts
on the space Map .Sm;n; @Sm;nIX;N /. The object space of CX ;N is defined to be the
disjoint union of orbit spacesa

m;n�0

Emb .Sm;n;R
1/�DiffC.Sm;n/

Map .Sm;n; @Sm;nIX;N /:

We can think of an object as an embedded 1–manifold with a map to the background
space. We’ll often write objects in the category as DiffC–equivalences classes Œe; f �.

Algebraic & Geometric Topology, Volume 9 (2009)



838 Elizabeth Hanbury

When we have an object ˛ D Œe; f � and eW S !R1 and f W .S; @S/! .X;N / we
will say that S is the underlying 1–manifold of ˛ .

Next we move on to defining the morphism space in the category. We require our
cobordisms to have parametrized collars around their incoming and outgoing boundary.
Explicitly, this means that if F is a 2–dimensional open-closed cobordism, we assume
that F is equipped with parametrizations

cinW Œ0; 1/� @inF ! F and coutW .�1; 0�� @outF ! F:

If � 2 .0; 1/ and F is an open-closed cobordism, Diff�� .F / denotes the group of
orientation-preserving diffeomorphisms of F which preserve the decomposition of @F
and restrict to product maps on the �–collars. We define

Diff�.F / WD colim�!0 Diff�� .F /:

Let Emb�.F;Rn � Œ0; 1�/ denote the space of embeddings which embed the incoming
boundary in Rn � f0g, the outgoing boundary in Rn � f1g and embed the �–collars
perpendicular to these walls.

Define

Emb .F;R1 � Œ0; 1�/ WD colimn!1;�!0 Emb�.F;Rn
� Œ0; 1�/:

The morphism space of CX ;N is defined to bea
F

Emb .F;R1 � Œ0; 1�/�Diff�.F / Map .F; @f F IX;N /:

In this disjoint union there is one open-closed cobordism from each isomorphism class;
two open-closed cobordisms F;F 0 are isomorphic if there is an orientation-preserving
diffeomorphism � W F ! F 0 with �.@inF /D @inF 0 and �.@outF /D @outF

0 .

We can think of a morphism as an embedded open-closed cobordism equipped with a
map to the background space. We’ll write morphisms as Diff�–equivalence classes
Œh; ��. When we have a morphism mD Œh; �� and hW F!R�Œ0; 1� and �W .F; @f F /!

.X;N / we will say that F is the underlying open-closed cobordism of m.

Note that the assignment .X;N / 7! CX ;N defines a functor from the category of pairs
of spaces to the category of topological categories. This functor is homotopy invariant;
a homotopy equivalence of pairs .X;N /! .X 0;N 0/ induces a homotopy equivalence
BCX ;N ! BCX 0;N 0 .

Let us remark on two interesting choices of background space. In the case that N D∅,
there are no maps .S; @S/! .X;N / unless @S is empty. Thus the only objects in CX ;N
are closed 1–manifolds. Similarly the only cobordisms are those with no free boundary.
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In this case CX ;N is the same as the ordinary 2–dimensional oriented cobordism
category with background space, CC

2
.X /, as studied by Galatius–Madsen–Tillmann–

Weiss [6]. When X is contractible and N is discrete, a map .S; @S/! .X;N / is
the same thing as a labeling of the boundary points of S by points in N and a map
.F; @f F /! .X;N / is the same thing as a labeling of the components of @f F by
points in N . In this case, CX ;N is a model of the open-closed cobordism category with
labeling set N as studied by Baas–Cohen–Ramirez [1].

We’ll now move on to define the modified category zCb
X ;N . Let Cb

X ;N denote the sub-
category of CX ;N in which every component of every cobordism must have nonempty
outgoing boundary. In Cb

X ;N , any morphism to a circle must be connected. The category
zCb
X ;N will be an enriched version of Cb

X ;N ; its objects are like those of Cb
X ;N except

that they carry an extra piece of data and the morphisms must respect that data.

To explain this, let us first introduce a 1–dimensional cobordism category D . The
objects in D are compact oriented 0–dimensional manifolds. The morphisms in D are
equivalence classes of oriented 1–dimensional cobordisms. Two such cobordisms L1

and L2 are said to be equivalent if there is an orientation-preserving diffeomorphism
I.L1/! I.L2/, where I.Li/ denotes the union of the intervals in Li , that restricts
to the identity on the boundary. See Figure 2.

� 6�

Figure 2: Morphisms in the category D

There is a functor RW Cb
X ;N ! D given by sending an object with underlying 1–

manifold S to @S and a morphism with underlying open-closed cobordism F to the
equivalence class of @f F ; see Figure 3. zCb

X ;N is defined to be the Quillen over-category
R=∅. Thus the objects of zCb

X ;N are pairs .˛; l/ where ˛ is an object in Cb
X ;N and l is

a morphism in D from R.˛/! ∅. A morphism from .˛; l/ to .ˇ; k/ in zCb
X ;N is a

morphism mW ˛! ˇ in Cb
X ;N such that k ıR.m/D l .

If ˛ is an object in Cb
X ;N whose underlying 1–manifold is closed then there is only one

morphism in D from R.˛/D∅ to ∅; the equivalence class of the empty cobordism.
We will use ¿ to denote this morphism.

If ˇ is an object in Cb
X ;N whose underlying 1–manifold is a circle then any morphism

mW .˛; l/ ! .ˇ;¿/ in zCb
X ;N must be connected and satisfy ¿ ı R.m/ D l . If F

is the underlying cobordism of m this means that there is an orientation-preserving
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Figure 3: The functor R

diffeomorphism I.@f F /! I.l/ that restricts to the identity on the boundary. Thus
the isomorphism type of F is determined by only two invariants; the genus and the
number of windows (the remaining boundary structure being prescribed by l .) This
is the reason that we want to work with zCb

X ;N ; in Section 3.2 we need to have good
control over the space of morphisms from an arbitrary object to a circle.

2.2 Path-components

When N has more than one path-component, the classifying space BzCb
X ;N is not

connected. In this section we will give a description of �0BzCb
X ;N in the case that X

is simply connected.

For an oriented 1–manifold S let @CS � @S denote the collection of points that are
positively oriented in the orientation induced from S , and @�S those that are negatively
oriented.

Definition 2.1 The weighted signature of an object .˛; l/D .Œe; f �; l/ in zCb
X ;N with

underlying 1–manifold S is the function b.˛;l/W �0N ! Z given by

b.˛;l/.Ni/D j@CS \f �1.Ni/j � j@�S \f �1.Ni/j:

This definition does not depend on the choice of representative .e; f / for ˛ .

Note that X
Ni2�0N

b.˛;l/.Ni/D j@CS j � j@�S j D 0;(i)

X
Ni2�0N

jb.˛;l/.Ni/j � j@CS jC j@�S j<1;(ii)
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and as a consequence of (i),X
Ni2�0N

jb.˛;l/.Ni/j is always even:(iii)

So each b.˛;l/ is an element of

BN WD

�
bW �0N ! Z

ˇ̌̌̌ X
Ni2�0N

b.Ni/D 0;
X

Ni2�0N

jb.Ni/j 2 2Z

�
:

Furthermore, every element of BN can occur as a weighted signature.

Lemma 2.2 If there is a morphism mW .˛; l/! .ˇ; k/ in zCb
X ;N then b.˛;l/ D b.ˇ;k/ .

Proof Let ˛ D Œe; f � and ˇ D Œze; zf � have underlying 1–manifolds S and zS re-
spectively. Suppose that mD Œh; �� has underlying open-closed cobordism F . The
path-components of @f F are either windows or intervals joining points of @CS [@� zS

to points of @�S [@C zS (see Figure 4 where points of @CS [@� zS are marked ˇ and
points of @�S [@C zS are marked �). If L is such an interval then �.L/�N is a path
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Figure 4: Joining oriented points

from �.@�L/ to �.@CL/. Hence if two points are joined by an interval in @f F , they
must map into the same path-component of N . Thus for each path-component Ni we
must have

j.@CS [ @� zS/\f
�1.Ni/j D j.@�S [ @C zS/\f

�1.Ni/j

which implies b.˛;l/ D b.ˇ;k/ .

Corollary 2.3 The category zCb
X ;N decomposes as the disjoint union

zCb
X ;N D

a
b2BN

zCb
X ;N .b/

where zCb
X ;N .b/ is the full-subcategory of zCb

X ;N whose objects are those with weighted
signature b .
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Proposition 2.4 �0BzCb
X ;N Š BN .

Proof Given Corollary 2.3 it suffices to show that each BzCb
X ;N .b/ is path-connected.

To do this it is enough to show that for every pair of objects .˛; l/ and .ˇ; k/ in zCb
X ;N .b/

there exists a third object .; j / and morphisms .˛; l/! .; j / and .ˇ; k/! .; j /.
The constructions below are illustrated in Figure 5.

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

id˛

ˇ

idˇ

˛

�˛

ˇ

˛

id˛

m

˛

�˛

ˇ

Figure 5: Morphisms ˛!  and ˇ! 

Let �˛ be the same as ˛ but with the underlying 1–manifold having the opposite
orientation and define .; j /D .˛[�˛[ˇ; l [�l [k/. Here we implicitly assume
that the embeddings of the objects have been shifted so as to be disjoint. The identity
morphism id˛ can be twisted around to give a morphism ∅! .˛[�˛; l [�l/ and if
we take the union of this twisted morphism with idˇ we obtain a morphism

.ˇ; k/! .˛[�˛[ˇ; l [�l [ k/D .; j /:

To construct a morphism .˛; l/ ! .; j / we first show that there is a morphism
mW ˛ ! ˇ in Cb

X ;N . Suppose that ˛ D Œe; f �, ˇ D Œze; zf � and that the underlying
1–manifolds are S , zS respectively. Since b.˛;l/ D b.ˇ;k/ it is possible to pair the
points of @CS [ @� zS with the points of @�S [ @C zS in such a way that two paired
points map into the same component of N . If we attach an oriented interval between
paired points, we obtain a cobordism S0 from @S to @ zS .

The closed 1–manifold S [ S0 [�
zS is the boundary of some connected, oriented

open-closed cobordism F from S to zS (with @f F D S0 ). Furthermore there is an
embedding hW F !R1 � Œ0; 1� with hj@inF D e and hj@outF D ze .
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Because of the way that S0 was constructed, the maps f W .S; @S/! .X;N / and
zf W . zS ; @ zS/! .X;N / can be extended over S0 to give a map xf W .@F;S0/! .X;N /.

Since X is simply connected, xf can be extended to a map �W .F; @f F /! .X;N /.
Now mD Œh; ��W ˛! ˇ is our required morphism.

Note that m does not necessarily give a morphism .˛; l/! .ˇ; k/ because we don’t
know that k ıR.m/D l . However, the morphism m[ id˛ from .˛ [ ˛/! .˛ [ˇ/

can be twisted around to give the required morphism

.˛; l/! .˛[�˛[ˇ; l [�l [ k/D .; j /:

Disjoint union in the category corresponds to addition of elements in BN . Thus we
have the following corollary.

Corollary 2.5 When X is simply connected, �0BzCb
X ;N is a group.

These methods can be adapted to show that �0BCX ;N is in bijective correspondence
with BN and that it’s a group.

2.3 Infinite loop space structure

Disjoint union gives a multiplication operation on zCb
X ;N and, although this is not

well-defined, it is enough to make BzCb
X ;N into a � –space in the sense of Segal [15].

In the case that X is simply connected, we also know that �0BzCb
X ;N is a group and

these two facts together with [15] imply that BzCb
X ;N is an infinite loop space. We will

now explain the � –space structure on BzCb
X ;N , closely following Madsen–Tillmann

[11, Theorem 2.3].

Let �op denote the category of finite based sets nD f0; 1; : : : ; ng and based maps. A
� –space is a functor F from �op to simplicial spaces satisfying:

(i) F.0/' �.

(ii) The map
Qn

iD1 pi W F.n/!F.1/�� � ��F.1/ is a homotopy equivalence where
pi W n! 1 sends i to 1 and j ¤ i to 0.

We now define a � –space N , with N .1/D N�zCb
X ;N , the nerve of the category zCb

X ;N .
Before we begin, let us introduce some notation; if mD Œh0; �0� ı � � � ı Œhq�1; �q�1� is
an element of Nq

zCb
X ;N , that is, a q–tuple of composable morphisms, we will use �0m

to denote the connected components of Im.h0 # � � � # hq�1/. If the target of m is the
object .˛; l/, then we will say that a labelling function �W �0m! f1; : : : ; ng is good
if l W R.˛/! ¿ joins two points of R.˛/ only if they come from elements of �0m

with the same label.
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Now let N .n/ be the simplicial space whose q–simplices are the pairs .m; �/ where
m 2 Nq

zCb
X ;N and �W �0m! f1; : : : ; ng is a good labeling function. Given sW n!m,

define s�W N .n/!N .m/ by s�.m; �/D . zm; s ı�/ where zm is obtained from m by
deleting any components that are labeled zero by s ı�.

Proposition 2.6 N is a � –space and hence, when X is simply connected, BzCb
X ;N is

an infinite loop space.

Proof (Following [11, Theorem 2.3]) Certainly (i) is satisfied since N .0/ is the nerve
of the category containing only the empty 1–manifold and the empty cobordism. To
check (ii), note that the map pi sends .m; �/ 2N .n/q to the union of the components
of m that are labeled i by �. Thus

Qn
iD1 pi carries N .n/q injectively onto the

complement .N .1/q � � � � �N .1/q/ �� where � is the fat diagonal of elements
..m1; �1/; : : : ; .mn; �n// such that mi\mj ¤∅ for some i ¤ j . The inclusion of the
complement of the fat diagonal into N .1/q � � � � �N .1/q is a homotopy equivalence;
this is a consequence of the fact that the embedding spaces are contractible; see
Madsen–Tillmann [11] for details. Thus

nY
iD1

pi W N .n/!N .1/� � � � �N .1/

is the product of a homeomorphism and a homotopy equivalence, and hence is itself a
homotopy equivalence.

These methods can be adapted to show that BCX ;N is also an infinite loop space.

3 The homotopy type of the category

In this section we prove the main theorem of the paper, namely, we identify the
homotopy type of BzCb

X ;N in the case that X is simply connected and N is discrete.
We work under these assumptions throughout although some of the methods apply
more generally.

3.1 Some requisite homology stability

In this section we establish the homology stability of the spaces S.F IX;N /� defined
in the introduction. As mentioned there, this is a consequence of the homology stability
of mapping class groups with twisted coefficients but we first need to establish some
extensions of the original stability results.
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We use Fg;n to denote a surface of genus g with n boundary components and �g;n D

�0.DiffC.Fg;n; @Fg;n// to denote the associated mapping class group. A special case
of stability with coefficients is the following.

Theorem 3.1 (Cohen–Madsen [3, Theorem 0.4]) Let X be a simply connected space
and � a basepoint in X . Then the homology groups

Hq.�g;nIHr .Map.Fg;n; @Fg;nIX;�///

are independent of g and n provided that g � 2qC r C 2.

In [3], Theorem 3.1 was used to prove homology stability for the spaces S.F IX /�
defined in the introduction.

In the results that follow, “cylinder” refers to the product of any 1–manifold with
an interval. We remind the reader that, with respect to the figures in this paper,
precomposing a cobordism F with another cobordism means gluing another cobordism
to the left of F .

Theorem 3.2 (Cohen–Madsen [3, Theorem 0.3]) Suppose that X is simply con-
nected. Let F be an ordinary, connected cobordism with @outF D S1 and let F # be a
connected cobordism obtained from F by precomposing with another ordinary cobor-
dism. Then the map S.F IX /�! S.F #IX /� induced by extending diffeomorphisms
by the identity and extending maps to X by c� induces an isomorphism

Hs.S.F IX /�/!Hs.S.F #
IX /�/

provided the genus of F is greater than 2sC 4.

The following three theorems contain the extensions of Theorem 3.1 that we’ll need.
The proofs are contained in the Appendix. The notation for the mapping spaces and dif-
feomorphism groups is as in the introduction. We use �oc.F / to denote �0.DiffCoc.F //

where F is an open-closed cobordism. The first theorem describes the situation where
the number of windows is fixed.

Theorem 3.3 Suppose that X is simply connected and N is discrete. Let F be
a connected open-closed cobordism with @outF D S1 and let F # be a connected
cobordism obtained from F by precomposing with another cobordism. If F and F #

have the same number of windows then the map

Hs.B�oc.F /;Hr .Map.F; @f F IX;N /�//

�!Hs.B�oc.F
#/;Hr .Map.F #; @f F #

IX;N /�//

is an isomorphism provided the genus of F is at least 2sC r C 2.
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The next two results tell us what happens when we increase the number of windows.

Theorem 3.4 Suppose that X is simply connected and N is a point. Let F be an open-
closed cobordism as in Theorem 3.3 and let F # be obtained from F by precomposing
with a cylinder with one window. Then the map

Hs.B�oc.F /;Hr .Map.F; @f F IX;N /�//

�!Hs.B�oc.F
#/;Hr .Map.F #; @f F #

IX;N /�//

is an isomorphism provided the genus of F is greater than 2sC r C 2 and the number
of windows is greater than 2sC 8.

When N is discrete but contains more than one point, the proof of Theorem 3.4 fails;
we do not know that adding an extra window induces an isomorphism on the homology

Hs.B�oc.F /;Hr .Map.F; @f F IX;N /�//:

Instead we find that in the limit, as the genus and number of windows tend to infinity,
we get a homology isomorphism.

The inclusion F ! F1 from the introduction induces a map �oc.F /! �oc.F
1/ by

extending diffeomorphisms by the identity. Let

�11 .F /D colim .�oc.F /! �oc.F
1/! �oc.F

2/! � � � /:

We also have a map

Map.F; @f F IX;N /�!Map.F1; @f F1
IX;N /�

given by extending maps by c� , the constant map to the basepoint. Define the stabilised
mapping space Map11.F; @f F IX;N /� to be

hocolim .Map.F; @f F IX;N /�!Map.F1; @f F1
IX;N /�! � � � /:

For each k there is an action of �oc.F
k/ on Map.Fk ; @f Fk IX;N /� and these actions

are compatible with the maps used to form the limits. Thus we have an action of �11 .F /
on Hs.Map11.F; @f F IX;N /�/ and we can form the homology group

Hr .B�
1
1 .F /IHs.Map11.F; @f F IX;N /�//:

If F # is obtained from F by precomposing with some other open-closed cobordism
then we get induced maps

�11 .F /! �11 .F
#/

Map11.F; @f F IX;N /�!Map11.F
#; @f F #

IX;N /�

and an induced map on the twisted homology.
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Theorem 3.5 Suppose that X is simply connected and N is discrete. Let F be as in
Theorem 3.3 and let F # be obtained from F by precomposing with a cylinder with one
window. Then the induced map

Hs.B�
1
1 .F /IHr .Map11.F; @f F IX;N /�//

�!Hs.B�
1
1 .F

#/IHr .Map11.F
#; @f F #

IX;N /�//

is an isomorphism for all s; r .

We’ll now use these theorems to prove homology stability properties for the spaces
S.F IX;N /� .

Corollary 3.6 (to Theorem 3.3) Suppose that X is simply connected and N is
discrete. Let F be as in Theorem 3.3 and let F # be a connected open-closed cobordism
obtained from F by precomposing with another cobordism. If F and F # have the
same number of windows then inclusion induces an isomorphism

Hs.S.F IX;N /�/!Hs.S.F #
IX;N /�/

provided the genus of F is greater than 2sC 4.

Proof Consider the following map of fibrations:

Map.F; @f F IX;N /� S.F IX;N /� BDiffCoc.F /

Map.F #; @f F #
IX;N /� S.F #

IX;N /� BDiffCoc.F
#/

//

��
� �
� �
� �
� �

//

��
� �
� �
� �
� �
�

��
� �
� �
� �
� �

// //

By the results of Earle–Eells [4] and Earle–Schatz [5], the components of the diffeo-
morphism groups are contractible except in a few low genus cases so BDiffCoc.F /'

B�oc.F /. There is an induced map of the Serre spectral sequences associated to these
fibrations and on the E2 –page it is the map

E2
p;q DHp.�oc.F /;Hq.Map.F; @f F IX;N /�//

�! zE2
p;q DHp.�oc.F

#/;Hq.Map.F #@f F #
IX;N /�//:

Theorem 3.3 tells us this map is an isomorphism when the genus of F is greater than
2pC qC 2 and the corollary follows by the Zeeman comparison theorem (see Ivanov
[9, Theorem 1.2], for the comparison theorem in precisely the form we are using).
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Corollary 3.7 (to Theorem 3.4) Suppose X is simply connected and N is a point.
Let F be as in Theorem 3.3 and let F # be obtained from F by precomposing with a
cylinder with one window then

Hs.S.F IX;N /�/!Hs.S.F #
IX;N /�/

is an isomorphism provided the genus of F is greater than 2sC 4 and the number of
windows is greater than 2sC 10.

Proof The proof is analogous to that of Corollary 3.6.

Corollary 3.8 (to Theorem 3.5) Suppose that X is simply connected and N is
discrete. Let F be as in Theorem 3.3 and F # be obtained from F by precomposing
with a cylinder with one window. Then the map

Hs.S11 .F IX;N /�/!Hs.S11 .F #
IX;N /�/

is an isomorphism for all s .

Proof Again, this is analogous to the proof of Corollary 3.6.

3.2 A group completion argument

Given a contravariant functor F from a topological category C to the category Spaces
of topological spaces, we can consider the category F oC . The objects of F oC are pairs
.c;x/ with c 2Obj .C/ and x 2F.c/. The morphisms are pairs .m;y/ with mW a! b

a morphism in C and x 2 F.b/; the morphism .m;y/ has source .a;F.m/.x// and
target .b;x/. There is a natural projection functor F o C! C .

Theorem 3.9 (Galatius–Madsen–Tillmann–Weiss [6, Proposition 7.1]) Suppose that
the natural map Obj .F o C/! Obj .C/ is a Serre fibration and that B.F o C/ is con-
tractible. If every morphism mW a! b in C induces an isomorphism

F.m/�W H�.F.˛/IZ/!H�.F.ˇ/IZ/

then for each object c 2 C there is a map F.c/!�cBC that induces an isomorphism
in integral homology.

Here �cBC denotes the space of loops in BC based at c .

We now define a functor Mor1W zCb
X ;N ! Spaces and show that Theorem 3.9 applies

to it. Let ˇ0 D Œe0; c�� in Obj .Cb
X ;N / where e0W S

1 ! R2 ! R1 is the canonical
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embedding and c�W S
1!X is the map which is constant at the basepoint. Define a

contravariant functor Mor0W
zCb
X ;N ! Spaces by

Mor0..˛; l// WDMorzCb
X;N

..˛; l/; .ˇ0;¿//:

Note that .ˇ0;¿/ lies in the component zCb
X ;N .0/ of zCb

X ;N . For those objects .˛; l/ that
lie in some other component, we know from Section 2.2 that there are no morphisms
from .˛; l/ to .ˇ0;¿/ so Mor0..˛; l// is empty. For .˛; l/ in zCb

X ;N .0/ we have the
following proposition.

Proposition 3.10 Suppose X is simply connected and N is discrete. Let .˛; l/ be an
object in zCb

X ;N .0/ with underlying 1–manifold S . There is a homotopy equivalence

Mor0..˛; l//'
a
g�0

a
w�0

S.Fwg IX;N /�

where Fwg is a connected open-closed cobordism from S to S1 with w windows,
genus g and having the boundary structure prescribed by l (see Section 2.1).

Proof Let ˛ D Œe; f � with underlying 1–manifold S . For any open-closed cobor-
dism F from S to S1 let�

Emb.F IR1 � Œ0; 1�/�Map.F; @f F IX;N /
�
Œe[e0;f[c��

be the subspace of pairs .h; �/ such that Œhj@inF ; �j@inF �D Œe; f � and Œhj@outF ; �j@outF �D

Œe0; c��. Let �
Emb.F IR1 � Œ0; 1�/�Map.F; @f F IX;N /

�
e[e0;f[c�

be the subspace of pairs .h; �/ where .hj@inF ; �j@inF /D .e; f / and .hj@outF ; �j@outF /D

.e0; c�/.

We noted in Section 2.1 that the isomorphism type of the cobordism underlying a
morphism mW .˛; l/! .ˇ0;¿/ is completely determined by its genus and the number
of windows. So MorzCb

X;N
..˛; l/; .ˇ0;¿// is given bya

g;w�0

�
Emb.Fwg IR

1
� Œ0; 1�/�Map.Fwg ; @f Fwg IX;N /

�
Œe[e0;f[c��

=Diff�.Fwg /:

Using an argument entirely analogous to that of Madsen–Tillmann [11, Theorem 2.1],
it can be shown that the .g; w/ component is homotopy equivalent to�

Emb.Fwg IR
1
� Œ0; 1�/�Map.Fwg ; @f Fwg IX;N /

�
e[e0;f[c�

=DiffCoc.F
w
g /:
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Using the fact that the embedding space is contractible (by the Whitney embedding
theorems), this is homotopy equivalent to

EDiffCoc.F
w
g ;R

1
� Œ0; 1�/�DiffCoc .F

w
g /

Map.Fwg ; @f Fwg IX;N /f[c� :(1)

To complete the proof, we will display a homotopy equivalence

HW Map.F; @f F IX;N /f[c� !Map.F; @f F IX;N /c�[c� :

which induces a homotopy equivalence between the space in (1), and S.Fwg IX;N /� .

For ease of notation, write F D Fwg . To define H , we first assume that for each
non-window boundary component @iF of F , a closed collar

Œ0; 1�� @iF ,! F

has been specified, with f1g � @iF identified with @iF . Let � be an element of
Map.F; @f F IX;N /f[c� . Because N is discrete, f completely determines �j@i F

for every non-window boundary component of F . Since X is simply connected, each
�j@i F is null-homotopic, by a homotopy H i W S1 � I !X say. Define H as follows;
glue a cylinder to each of the boundary components @iF and let F 0 denote the surface
we obtain. Given  2Map.F; @f F IX;N /f[c� , define  0W F 0! X by setting  0

equal to  on F � F 0 and equal to H i on the cylinder glued on to @iF . Fix a
diffeomorphism d W F ! F 0 that is the identity on the complement of the open collars
.0; 1�� @iF and stretches the collars along the new cylinders. Set H. / WD  0 ı d .
This is a homotopy equivalence with homotopy inverse given by gluing on cylinders
and extending maps by the conjugate homotopies xH i .

The map H is not DiffCoc.F /–equivariant but we do have the following equivariance
property. Let eDiff

C

oc.F /� DiffCoc.F / denote the group of diffeomorphisms that restrict
to the identity on the closed collars. The map H is eDiff

C

oc.F /–equivariant and the
inclusion eDiff

C

oc.F / ,! DiffCoc.F / is a homotopy equivalence. Thus H induces a
homotopy equivalence from the space in (1) to S.Fwg IX;N /� , as required.

Let t W ˇ0! ˇ0 denote the morphism Œh0; c�� where h0W T
2� .3 discs/!R1� Œ0; 1�

is an embedding restricting to e0 on the incoming and outgoing boundary (the torus
with three holes being considered as a cobordism from the circle to itself) and c� again
represents the constant map. For an object .˛; l/ in zCb

X ;N define

Mor1..˛; l//D hocolim .Mor0..˛; l//
T
�!Mor0..˛; l//

T
�! � � � /

where the map T is given by composing with t . By Proposition 3.10 we have

(2) Mor1..˛; l//' Z�Z�S11 .F.˛;l/IX;N /�
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where F.˛;l/ is some open-closed cobordism to the circle having the boundary structure
prescribed by .˛; l/.

Precomposition with a morphism mW .˛; l/ ! .ˇ; k/ induces a continuous map
Mor0..ˇ; k// ! Mor0..˛; l// which commutes with T . Thus we obtain a map
Mor1..ˇ; k//! Mor1..˛; l// and we have that Mor1 is a contravariant functor
from zCb

X ;N to Spaces.

Proposition 3.11 Suppose that X is simply connected and that N is discrete. If
mW .˛; l/ ! .ˇ; k/ is a morphism in zCb

X ;N whose map to the background space is
constant at the basepoint then

Mor1.m/W Mor1..ˇ; k//!Mor1..˛; l//

is an isomorphism on integral homology.

Proof In this case .˛; l/; .ˇ; k/ both lie in zCb
X ;N .0/ and we can think of Mor1.m/

as a map

Mor1.m/W Z�Z�S11 .F.ˇ;k/IX;N /�! Z�Z�S11 .F.˛;l/IX;N /�:

This is an isomorphism by Corollaries 3.6, 3.7 and 3.8.

For morphisms whose underlying map is nonconstant we must do a little more work.
This is because our stability theorems only tell us what happens when we precompose
with a cobordism and extend the maps to the background space by constant ones.

Proposition 3.12 When X is simply connected and N is discrete, every morphism
mW .˛; l/ ! .ˇ; k/ in zCb

X ;N becomes an isomorphism in integral homology after
applying Mor1 .

Proof If .˛; l/ and .ˇ; k/ are in some component of zCb
X ;N other than zCb

X ;N .0/ then
Mor1..˛; l// and Mor1..ˇ; k// are both empty so the conclusion of the proposition
holds. Assume that .˛; l/ and .ˇ; k/ are in zCb

X ;N .0/.

Using the fact that X is simply connected and N is discrete, we can decompose m as
m1 ım2 ı � � � ımk where for each i we have one of the following.

(a) mi D Œhi ; ci � where ci is constant at some point in N .

(b) The cobordism underlying mi is of the form S � I for some 1–manifold S .
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Those mi satisfying (a) induce homology isomorphisms on Mor1 by Proposition
3.11. Those mi D Œhi ;  i � satisfying (b) induce homotopy equivalences on Mor1
with homotopy inverse induced by xmi D Œhi ; x i � where x i.s; t/ D  i.s; 1� t/ for
.s; t/ 2 S � I .

Proposition 3.13 The projection map Obj .Mor1 o zCb
X ;N /! Obj .zCb

X ;N / is a Serre
fibration.

Proof Consider the following pullback square.

Obj .Mor0 o
zCb
X ;N / Mor .zCb

X ;N /

Obj .zCb
X ;N / Obj .zCb

X ;N /�Obj .zCb
X ;N /

//

�� ��

.source; target/

//

The right-hand map is given by restricting embeddings, and maps to the background
space, to the boundary and hence is a Serre fibration. Thus the left-hand map and also
Obj .Mor1 o zCb

X ;N /! Obj .zCb
X ;N / are Serre fibrations.

Lemma 3.14 B.Mor1 o zCb
X ;N / is contractible.

Proof B.Mor1ozCb
X ;N /'hocolim B.Mor1o

zCb
X ;N / but B.Mor1o

zCb
X ;N / is contractible

since Mor1 o
zCb
X ;N has a terminal object .ˇ0; idˇ0

/.

Theorem 3.15 When X is simply connected and N is discrete there is a homology
isomorphism

f W Z�Z�S11 .F.˛;l/IX;N /�!�BzCb
X ;N

for each .˛; l/ 2 Obj .zCb
X ;N .0//.

Proof By Proposition 3.12 and Proposition 3.13 and Lemma 3.14, the conditions of
Theorem 3.9 are satisfied and we can conclude that there is a homology isomorphism
Mor1..˛; l//!�BzCb

X ;N . The theorem now follows from Equation (2).

Note that we have omitted the basepoint of the loop space from the notation. Since
BzCb

X ;N is an infinite loop space, all of its path-components are homotopy equivalent
so it doesn’t matter where we base the loops.

Theorem 3.16 Let Cb;c
X ;N denote the full subcategory of zCb

X ;N whose objects are closed
1–manifolds. When X is simply connected and N is discrete, the inclusion functor
induces a weak homotopy equivalence

�BCb;c
X ;N !�BzCb

X ;N :
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Proof We could equally well apply the methods above to yield a homology isomor-
phism

f 0W Z�Z�S11 .F.˛;¿/IX;N /�!�BCb;c
X ;N

for each .˛;¿/2Obj .Cb;c
X ;N /�Obj .zCb

X ;N /. The map induced by the inclusion functor
fits into the following commutative diagram:

Z�Z�S11 .F.˛;¿/IX;N /� �BCb;c
X ;N

�BzCb
X ;N

))RRRRRRRRRRRRRRRRR

f 0

//
f

��

Since f and f 0 are homology isomorphisms, so is the vertical map and since its source
and target are both loop spaces, it is a weak homotopy equivalence.

3.3 A splitting

Theorem 3.17 Suppose that X is simply connected and N is discrete. Let F be a
connected open-closed cobordism from some closed, oriented 1–manifold to S1 and
let xF be the ordinary cobordism obtained by gluing a disc to each window of F (see
Figure 6). Then there is a homology isomorphism

gW Z�S11 .F IX;N /�! S1. xF IX /� �Q..BS1
�N /C/:

Proof Let F 0 be the ordinary cobordism that is homeomorphic to F as a surface and
has @outF

0 D S1 (see Figure 6).
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F xF F 0

Figure 6: The surfaces F , xF and F 0

Restriction to the windows yields a fibration

EDiffCoc.F /�DiffCoc .F /
Map.F; @f F IX;N /�

!EDiffC.@f F /�DiffC.@f F / Map.@f F IN /

with fibre EDiffCoc.F
0/�DiffCoc .F

0/ Map.F 0; @F IX;�/:

Algebraic & Geometric Topology, Volume 9 (2009)



854 Elizabeth Hanbury

Using the fact that DiffC.
`
w S1/'†w oS

1 we see that this fibration is (homotopy
equivalent to)

(3) S.F 0IX /�! S.F IX;N /�!E.†w oS
1/�†woS1 .LN /w:

There is a map from here to the trivial fibration

S. xF IX /�!S. xF IX /��E.†w oS
1/�†woS1 .LN /w!E.†w oS

1/�†woS1 .LN /w:

On the base space this map is the identity. On the total space the map into the first
factor is induced by the inclusion F ! xF ; we are able to extend diffeomorphisms
over the glued-in discs, at least up to homotopy, and we are able to extend maps
.F; @f F /! .X;N / over the glued-in discs because any such map must be constant on
each window (using the fact that N is discrete). The map into the second factor is given
by restriction to windows, as in the previous fibration. On the fibres, the map is given
by attaching discs to the extra boundary components and extending diffeomorphisms
by the identity and maps to X by c� , the constant map to the basepoint.

By Theorem 3.2 the map on the fibers is an isomorphism on Hs when the genus of F

is at least 2sC 4. Thus by the Zeeman comparison theorem we conclude that the map
of total spaces is an isomorphism on homology in the same range. Taking limits we
get a homology isomorphism

S11 .F IX;N /�! S1. xF IX /� � lim
w!1

E.†w oS
1/�†woS1 .LN /w:

To conclude, note that since N is discrete,

E.†w oS
1/�†woS1 .LN /w 'E†w �†w

.ES1
�S1 LN /w

'E†w �†w
.BS1

�N /w

and recall that by the group completion theorem and the Barratt–Priddy–Quillen theo-
rem, there is a homology isomorphism

Z� lim
w!1

E†w �†w
.BS1

�N /w!Q..BS1
�N /C/:

The following theorem is relevant.

Theorem 3.18 (Cohen–Madsen [3, Theorem 1]) Suppose that X is simply connected.
For any ordinary, connected cobordism xF there is a homology isomorphism

hW Z�S1. xF IX /� '�1.MTSO.2/^XC/:

Note that in the case of general N , we still have the fibration (3) but we don’t have a map
to the trivial fibration. Perhaps this fibration could be useful in studying S.F IX;N /�
for arbitrary N .
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3.4 Maps to infinite loop spaces

Let Cb;c
X ;N denote the full subcategory of zCb

X ;N whose objects are the closed 1–manifolds.
Theorem 3.16 states that when X is simply connected and N is discrete, the inclusion
functor induces a weak homotopy equivalence �BCb;c

X ;N !�BzCb
X ;N . We now give

two maps from �BCb;c
X ;N into infinite loop spaces.

3.4.1 The map aW �BCb;c
X ;N!�1.MTSO.2/^XC/ There is a functor ˛W Cb;c

X ;N!

CC
2
.X / where CC

2
.X / is the ordinary 2–dimensional cobordism category with back-

ground space X , studied in [6]. These two categories have a common object set and ˛
is the identity on the objects.

Given a morphism Œh; �� in Cb;c
X ;N with underlying cobordism F , define ˛.Œh; ��/D

Œxh; x�� with underlying cobordism xF where xF is obtained from F by gluing discs over
the windows and xh, x� are obtained from h, � by extension over the discs. Since
the space Emb. xF ;R1 � Œ0; 1�/ is contractible, we can make a continuous choice of
extension xh. Also, because N is discrete, the map �W .F; @f F /! .X;N / must be
constant on each window so there is a canonical way to define the extension x� .

After applying �B , the functor ˛ yields the map a since �BCC
2
.X / is homotopy

equivalent to �1.MTSO.2/^XC/ by [6].

3.4.2 The map bW �BCb;c
X ;N ! Q..BS1 �N /C/ By the Barratt–Priddy–Quillen

theorem, the target space is homotopy equivalent to

�B
a
n�0

E†n �†n
.BS1

�N /n:

The n–th space here is homotopy equivalent to

EDiffC.qnS1/�DiffC.qnS1/ Map.qnS1;N /

using the facts that N is discrete and DiffC.qnS1/'†n oS
1 .

Thus to define the map bW �BCb;c
X ;N !Q..BS1 �N /C/ it suffices to give a functor

ˇW Cb;c
X ;N !

a
n�0

EDiffC.qnS1/�DiffC.qnS1/ Map.qnS1;N /:

Such a functor is given by sending every object in Cb;c
X ;N to the unique object in the

monoid and is given on the morphisms by

ˇ.Œh; ��/D Œhjwind; �jwind�

where jwind means restriction to the windows of the underlying open-closed cobordism.
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3.5 Proof of the main theorem

Theorem 3.19 When X is simply connected and N is discrete there is a weak
homotopy equivalence

�BzCb
X ;N '�

1.MTSO.2/^XC/�Q..BS1
�N /C/:

Proof Let F be any connected open-closed cobordism with @outF D S1 and let xF
denote the ordinary cobordism obtained by gluing discs over the windows of F . The
maps a; b; f 0;g; h from Sections 3.4, 3.2 and 3.3 fit into the following commutative
diagram:

Z�Z�S11 .F IX;N /� Z�S1. xF IX /� �Q..BS1
�N /C/

�BCb;c
X ;N �1.MTSO.2/^XC/�Q..BS1

�N /C/

��
� �
� �
� �
� �

f 0

//
g

��
� �
� �
� �
� �

h�id

//

a�b

Theorems 3.15, 3.17 and 3.18 tell us that the maps f 0 , g and h are homology iso-
morphisms. Thus a� b is a homology isomorphism and since the target and source
are loop spaces, it is a weak homotopy equivalence. Together with Theorem 3.16, this
proves the theorem.

Since BzCb
X ;N is an infinite loop space, its path-components are all homotopy equivalent.

Theorem 3.19 identifies �BzCb
X ;N and by delooping, we know the homotopy type of

any particular path-component of BzCb
X ;N . Since we also know �0BzCb

X ;N , we have
completely determined BzCb

X ;N .

We end by noting that as a special case of Theorem 3.19 we have reproved the main
result of Baas–Cohen–Ramirez [1]. In that paper the authors studied a 2–category
Soc

B
in which the objects are oriented 1–manifolds with their boundary points labeled

by elements of a set B , the morphisms are oriented open-closed cobordisms with
each free boundary component labeled by an element of B and the 2–morphisms
are diffeomorphisms of cobordisms which respect the labels. In the case that X is
contractible and N is discrete, zCb

X ;N is an embedded surface version of Soc
B

and
Theorem 3.19 agrees with the calculation of �BSoc

B
in [1].

4 Appendix: Homology stability proofs

In this section we will prove Theorems 3.3, 3.4 and 3.5. We will make use of the
following generalized form of the Serre spectral sequence.
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Theorem 4.1 (Moerdijk–Svensson [13]) Let F ! E ! B be a fibration and M

a �1.E/–module. There is an action of �1.B/ on H�.F;M / and a Serre spectral
sequence

E2
p;q DHp.B;Hq.F;M //V HpCq.E;M /:

The notation continues as in Section 3.1. We use Fk
g;r to denote the surface Fg;r with

k marked points.

Lemma 4.2 Suppose X is simply connected and N is discrete. Let F be a connected
open-closed cobordism of genus g , with w windows and a total of nCw boundary
components. There is an isomorphism of �g;nCw–modules

Hr .Map.F; @f F IX;N /�/Š
M
N w

Hr .Map.Fg;nCw; @Fg;nCwIX;�//

where the �g;nCw–action on the left-hand side is via the inclusion �g;nCw! �oc.F /.

Proof Because N is discrete, any f 2 Map.F; @f F IX;N /� must be constant on
each window and map the free boundary intervals to the basepoint so

Map.F; @f F IX;N /� DMap.Fwg;n; ptsIX;N /�

where the subscript � on the right-hand side means that @Fwg;n must map to the basepoint.
If f; f 0 lie in the same path-component of the mapping space Map.Fwg;n; ptsIX;N /�
then f .pi/D f

0.pi/ for all i where p1; : : : ;pw are the marked points of Fwg;n . Thus

Map.Fwg;n; ptsIX;N /� D
a

n2N w

Mapn.Fwg;n; ptsIX;N /�

where the superscript n means that we only allow those f that satisfy f .p1; : : : ;pw/D

n. Since X is path-connected, for all n 2Nw ,

Mapn.Fwg;n; ptsIX;N /� 'Map�.Fwg;n; ptsIX;N /�

DMap.Fg;nCw; @Fg;nCwIX;�/:

The identifications given are all �g;nCw–equivariant.

Proof of Theorem 3.3 Suppose that F has genus g , w windows and a total of nCw

boundary components. By considering the effect of a diffeomorphism on the windows
of F we obtain a map DiffCoc.F /!†w oDiffC.S1/'†w oS

1 . The kernel is the group
of orientation-preserving diffeomorphisms that fix @inF [ @outF , and the windows,
pointwise, call it Diff^.F /. Taking classifying spaces we obtain a fibration

BDiff^.F /! BDiffCoc.F /! B.†w oS
1/:
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Using the fact that the diffeomorphism groups have contractible components [4; 5], we
have a homotopy fibration

B�g;nCw! B�oc.F /! B.†w oS
1/:

The inclusion F ! F # induces a map from this fibration to

B�g#;n#Cw! B�oc.F
#/! B.†w oS

1/:

Consider the Serre spectral sequences for these fibrations, taken with twisted coefficients
in Hr .Map.F; @f F IX;N /�/ and Hr .Map.F #; @f F #IX;N /�/ respectively. There is
an induced map of spectral sequences and on the E2 –page it is of the form

E2
p;q DHp.B.†w oS

1/IHq.�g;nCw;Hr .Map.F; @f F IX;N /�///

! zE2
p;q DHp.B.†w oS

1/IHq.�g#;n#Cw;Hr .Map.F #; @f F #
IX;N /�///:

By Lemma 4.2, this is isomorphic to the map

Hp.B.†w oS
1/I
M
N w

Hq.�g;nCw;Hr .Map.Fg;nCw; @Fg;nCwIX;�////

!Hp.B.†w oS
1/I
M
N w

Hq.�g#;n#Cw;Hr .Map.Fg#;n#Cw; @Fg#;n#CwIX;�////

which, by Theorem 3.1, is an isomorphism for g � 2q C r C 2. The map on the
abutments is precisely the map in the statement of the theorem so applying the Zeeman
comparison theorem yields the result.

Proof of Theorem 3.4 Let g; n; w be as above. As in the proof of Theorem 3.3 we
have a map of fibrations:

B�g;nCw B�oc.F / B.†w oS
1/

B�g;nCwC1 B�oc.F
#/ B.†wC1 oS

1/

//

��

//

�� ��

// //

(4)

Again we look at the twisted Serre spectral sequences associated to these fibrations
and the induced map between them. On the E2 –page this now takes the form

E2
p;q DHp.B.†w oS

1/IHq.�g;nCw;Hr .Map.F; @f F IX;N /�///

! zE2
p;q DHp.B.†wC1 oS

1/IHq.�g;nCwC1;Hr .Map.F #; @f F #
IX;N /�///:
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Since N is a point, the coefficient groups in these homology groups are the same as

Hq.�g;nCw;Hr .Map.Fg;nCw; @Fg;nCwIX;�///;

Hq.�g;nCwC1;Hr .Map.Fg;nCwC1; @Fg;nCwC1IX;�///

so by Theorem 3.1 the map of coefficients is an isomorphism when g � 2qC r C 2.
By the next lemma, the †w–action on these coefficients is trivial in this range. Thus,
in the stable range, the map on the E2 –page is of the form

Hp.B.†w oS
1/;G/!Hp.B.†wC1 oS

1/;G/

for a constant, untwisted coefficient group G . Since B.†w oS
1/'E†w�†w

.BS1/w

this is an isomorphism for w � 2pC 6; see Hanbury [8, Theorem 5]. An application
of the Zeeman comparison theorem completes the proof.

Lemma 4.3 For g � 2qC r C 2, the †w–action on

Hq.�g;nCw;Hr .Map.Fg;nCw; @Fg;nCwIX;�///

is trivial.

Proof The †w –action is induced by the first fibration in (4). Thus it is given by lifting
a permutation � 2†w to a mapping class �� 2 �oc.F / and then acting by conjugation
on �g;nCw and by left-multiplication on Hr .Map.Fg;nCw; @Fg;nCwIX;�//.

Think of F as F1#F2 where F1 has no windows and F2 is a cylinder with w windows.
Similarly, think of Fg;nCw as Fg;n#F0;wC2 . The inclusion �g;nCw!�oc.F / restricts
to an inclusion �g;n! �oc.F1/. By Theorem 3.1, there is an isomorphism

Hq.�g;n;Hr .Map.Fg;n; @Fg;nIX;�///

!Hq.�g;nCw;Hr .Map.Fg;nCw; @Fg;nCwIX;�///

so we can represent an arbitrary element of the latter group by z ˝ v from the bar
resolution

Bar.�g;n/˝�g;n
Hr .Map.Fg;n; @Fg;nIX;�//:

To calculate � � .z ˝ v/ choose �� 2 �oc.F2/ � �oc.F /. Since �� and the diffeo-
morphisms appearing in z have disjoint support, they commute. For similar reasons
�� � v D v so � � .z˝ v/D z˝ v .

Proof of Theorem 3.5 Suppose for simplicity that F itself has no windows so that
Fw has w windows and .F #/w has w C 1 windows (see the introduction for the
definition of Fw and the natural inclusion Fw ! FwC1 ). Suppose further that F
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has genus g and n boundary components. Thus Fw has genus gCw and a total
of nCw boundary components. Let �0; �1W †w oS

1! †wC1 oS
1 be defined by

�0.�; z/ D .�� �; 1� z/ and �1.�; z/ D .� � �; z � 1/ where � 2 †1 is the identity
permutation.

Taking the limit of diagram (4) over Fw; .F #/w we obtain the following diagram of
fibrations:

B�1;1 B�11 .F / hocolimw!1B.†w oS
1/

B�1;1C1 B�11 .F
#/ hocolimw!1B.†wC1 oS

1/

//

��

//

�� ��

// //

Consider the Serre spectral sequences associated to these two fibrations, with twisted
coefficients taken in

Hr .Map11.F; @f F IX;N /�/ and Hr .Map11.F
#; @f F #

IX;N /�/

respectively. There is an induced map between these spectral sequences and the map
on the abutments is precisely the one in the theorem. Thus, by the Zeeman comparison
theorem, it suffices to show that the map on the E2 –page is an isomorphism. The rest
of the proof is devoted to that task.

The E2
p;q –terms are

Hp.hocolim B.†w oS
1/IHq.B�1;1IHr .Map11.F; @f F IX;N /�///;

Hp.hocolim B.†wC1 oS
1/IHq.B�1;1C1/IHr .Map11.F

#; @f F #IX;N /�///:

Since limits and group homology commute these are isomorphic to the limits, as
w!1, of

Hp.B.†w oS
1/IHq.�gCw;nCwIHr .Map.Fw; @f FwIX;N /�///;

Hp.B.†wC1 oS
1/IHq.�gCw;nCwC1IHr .Map..F #/w; @f .F

#/wIX;N /�///:

It will be important for us to keep track of the maps used to form limits. The maps
used here are induced by B�1 on the spaces and by Fw ,! FwC1 on the coefficients.

The map between the E2 –terms can be realised by finite-level maps

(5) Hp.B.†w oS
1/IHq.�gCw;nCwIHr .Map.Fw; @f FwIX;N /�///

!Hp.B.†wC1 oS
1/IHq.�gCw;nCwC1IHr .Map..F #/w; @f .F

#/wIX;N /�///:

These are induced on the spaces by B�0 and on the coefficients by Fw ,! .F #/w .
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By Lemma 4.2, the group in (5) is isomorphic to

Hp

�
B.†w oS

1/I
M

n2N w

Hq.�gCw;nCwIHr .Map.FgCw;nCw; @FgCw;nCwIX;�///

�
:

By Lemma 4.3 we know that the †w–action on each of these summands is trivial
provided the genus is sufficiently large. Furthermore, by Theorem 3.1 we know that
Hq.�gCw;nCwIHr .Map.FgCw;nCw; @FgCw;nCwIX;�/// is independent of g; n and
w for large gCw . We conclude that for sufficiently large w , the group in (5) is of the
form

Hp

�
B.†w oS

1/I
M
N w

A

�
where A is an abelian group with trivial †w–action and the action of †w on the
coefficients is induced by the permutation action on Nw .

Let �0W
L

N w A!
L

N wC1 A be the map induced by z�0W N
w!NwC1 with z�0.n/D

��n. Similarly we have �1W
L

N w A!
L

N wC1 A induced by z�1 with z�1.n/Dn��.

E2
p;q Š lim

w!1
Hp.B.†w oS

1/I
M
N w

A/;Now,

zE2
p;q Š lim

w!1
Hp.B.†wC1 oS

1/I
M

N wC1

A/:

and the maps used to form these limits are Hp.B�1; �1/. Under these identifications,
the map between the E2 –pages is induced by the finite-level maps Hp.B�0; �0/.

Let � 2†wC1 be the block permutation sending .1; 2; : : : ; wC1/ to .2; : : : ; wC1; 1/.
Let c.�;1/W †wC1 oS

1!†wC1 oS
1 denote conjugation by .�; 1/ and

�� W
M

N wC1

A!
M

N wC1

A

be given by the action of � . Then c.�;1/ ı�0 D �1 and �� ı �0 D �1 so

Hp.Bc.�;1/; �� / ıHp.B�0; �0/DHp.B�1; �1/:

It is a fundamental property of group cohomology that Hp.Bc.�;1/; �� / is the trivial
map. Thus Hp.B�0; �0/ is the same as Hp.B�1; �1/ and hence it is trivial in the
limit since Hp.B�1; �1/ is used to form that limit. We conclude that the map on the
E2 –page is an isomorphism.
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