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The number of small covers over cubes

SUYOUNG CHOI

In the present paper we find a bijection between the set of small covers over an n–cube
and the set of acyclic digraphs with n labeled nodes. Using this, we give formulas
of the number of small covers over an n–cube (generally, a product of simplices) up
to Davis–Januszkiewicz equivalence classes and Zn

2
–equivariant homeomorphism

classes. Moreover we prove that the number of acyclic digraphs with n unlabeled
nodes is an upper bound of the number of small covers over an n–cube up to
homeomorphism.

37F20, 57S10; 57N99

1 Introduction

Let P be a simple convex polytope of dimension n and let F.P /DfF1; : : : ;Fmg be the
set of facets of P . Consider �W F.P /!Zn

2
which satisfies the nonsingularity condition:

f�.Fi1
/; : : : ; �.Fin

/g is a basis of Zn
2

whenever the intersection Fi1
\ � � � \ Fin

is
nonempty. We call � a characteristic function. Let Z2.Fi/ be the subgroup of Zn

2

generated by �.Fi/.

Given a point p 2P , we denote by G.p/ the minimal face containing p in its relative
interior. Assume G.p/ D Fj1

\ � � � \Fjk
. Then Z2.G.p// D

Lk
iD1 Z2.Fji

/. Note
that Z2.G.p// is a k –dimensional subgroup of Zn

2
. Let M.�/ denote P � .Z2/

n=�,
where .p;g/ � .q; h/ if p D q and g�1h 2 Z2.G.p//. The free action of Zn

2
on

P �Zn
2

descends to an action on M.�/ with quotient P . It is easy to show that the
action is locally standard. On the other hand, Davis and Januszkiewicz introduced
the notion of what is called a small cover in [3]. A small cover is a smooth closed
manifold M n with a locally standard Zn

2
–action such that its orbit space is a simple

convex polytope. Thus M.�/ is a small cover over P .

Two small covers M1 and M2 are said to be weakly Zn
2

–equivariantly homeomorphic
(or simply weakly Zn

2
–homeomorphic) if there is an automorphism 'W Zn

2
! Zn

2

and a homeomorphism f W M1 ! M2 such that f .t � x/ D '.t/ � f .x/ for every
t 2 Zn

2
and x 2M1 . If ' is the identity, then M1 and M2 are Zn

2
–homeomorphic.

Following Davis and Januszkiewicz, two small covers M1 and M2 over P are said
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to be Davis–Januszkiewicz equivalent (or simply, D–J equivalent) if there is a weakly
Zn

2
–homeomorphism f W M1!M2 covering the identity on P .

Let cf.P / denote the set of all characteristic functions over P .

Theorem 1.1 [3] All small covers over P are given by fM.�/ j � 2 cf.P /g,
ie, for each small cover M over P , there is a characteristic function � with Zn

2
–

homeomorphism M.�/!M covering the identity on P .

There is a natural free left action of GL.n;Z2/ on cf.P / defined by the correspondence
� 7! � ı �. This action induces D–J equivalence on cf.P /. Hence the number of
D–J equivalence classes over P is jGL.n;Z2/ n cf.P /j. In recent years, numerous
studies have attempted to enumerate the number of equivalence classes of all small
covers over a specific polytope. In [5], Garrison and Scott used a computer program
to show that the number of D–J classes over a dodecahedron is 2165. Moreover
they calculated that the number of homeomorphism classes of all small covers over a
dodecahedron is 25. In [1], Cai, Chen and Lü calculated the number of D–J classes
and Z3

2
–equivariant homeomorphism classes over 3–dimensional prisms.

The arrangement of this paper is as follows. In Section 2 we study small covers over
cubes, prove some algebraic lemmas and use a combinatorial method to prove that the
number of small covers over an n–cube up to D–J equivalence is equal to the number of
acyclic digraphs with n labeled nodes. Moreover we give the formula of the number of
small covers over a product of simplices up to D–J equivalence. In Section 3, we obtain
a calculation formula of the number of equivariant homeomorphism classes of all small
covers over cubes. In Section 4, we show that the number of weakly homeomorphism
classes is less than or equal to the number of acyclic digraphs with n unlabeled nodes.

2 Small covers over cubes and acyclic digraphs

2.1 Small covers over an n–cube

Recall that we may assign an .n�m/–matrix ƒ to an element � 2 cf.P / by ordering
the facets and choosing a basis for .Z2/

n . Let

ƒD .�.F1/ � � ��.Fm//D .A jB/;

where A is an n � n matrix and B is an n � .m � n/ matrix. Since there is a
1–1 correspondence between the D–J classes over P and GL.n;Z2/ n cf.P /, the
refined representative in its coset class is given by ƒ� .En jA

�1B/, where En is an
identity matrix of size n. Denote ƒ� DA�1B . We refer to ƒ as the refined form of
characteristic function � and call ƒ� its reduced submatrix.
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When P is an n–dimensional cube In , since the number of facets of In is 2n, ƒ is
an n� 2n matrix, ie, ƒ� is an n� n matrix. We shall additionally assume that the
facets Fj and FnCj do not intersect for 1� j � n. Then the nonsingularity condition
of � is equivalent to the following: every principal minor of ƒ� is 1. Let M.n/ be the
set of Z2 –matrices of size n all of whose principal minors are 1. Then we have the
following 1–1 correspondence:

fD–J classes over In
g $M.n/:

Given a permutation � of n elements, denote by P .�/ the corresponding n � n

permutation matrix, which has units in positions .�.i/; i/ for 1 � i � n, and zeros
otherwise. There is the symmetric group action on n� n matrices by conjugations
A 7! P .�/�1AP .�/. Now we give the technical lemma which first appeared in
Dobrinskaya [4]. But we cite it from Masuda and Panov [7, Lemma 3.3].

Lemma 2.1 [7] Let R be a commutative integral domain with an identity element 1,
and let A be an n� n matrix with entries in R. Suppose that every proper principal
minor of A is 1. If det A D 1, then A is conjugate to a unipotent upper triangular
matrix by a permutation matrix, and otherwise to a matrix of the form0BBBBB@

1 b1 0 � � � 0

0 1 b2 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � 1 bn�1

bn 0 � � � 0 1

1CCCCCA
where bi ¤ 0 for every i .

Theorem 2.2 The number of acyclic digraphs with n labeled nodes is equal to the
number of D–J equivalence classes of all small covers over In .

A “digraph” means a graph with at most one edge directed from a vertex i to a vertex j ,
for 1� i � n, 1� j � n. An “acyclic” means that there is no cycle of any length.

Proof Let G be a digraph with n labeled nodes. Let A.G/ be the vertex adjacency
matrix of G with Z2 entries. Set B.G/ WDEnCA.G/. Note that a conjugation action
at B.G/ can be regarded as relabelling nodes. It is obvious that G is acyclic if and only
if A.G/ would be a strictly upper triangular matrix by conjugation, ie, B.G/ would be
an upper triangular matrix with diagonal entries 1. Note that the determinant of B.G/

is 1. Let Gn be the set of acyclic digraphs with labeled n nodes. Define �W Gn!M.n/

by G 7!B.G/. We claim that it is indeed a bijection between Gn and M.n/. Let G
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be an acyclic digraph with n labeled nodes and let V be the node set of G . For any
subset V 0 of V , consider the induced subgraph G0 by V 0 . Then it is also an acyclic
digraph. If jV 0j D k , then B.G0/ is a k –rowed submatrix of B.G/. (A k –rowed
submatrix of n�n matrix B is a k�k submatrix of B whose entries bi;j have indices
i and j that are the elements of the same k –element subset of f1; : : : ; ng.) Thus the
determinant of B.G0/ is the principal minor of B.G/. Since det B.G0/D 1 for any
acyclic digraph G0 , hence B.G/ 2M.n/. Thus � is well-defined. And it is injective
since G 7!A.G/ is injective. Let B be an element of M.n/. Note that every diagonal
entry of B is 1. Then there is a digraph G such that B.G/DB . By Lemma 2.1, since
every principal minor of B is 1, B is conjugated to a unipotent upper triangular matrix.
This implies G is acyclic, so � is surjective.

Acyclic digraphs were counted by Robinson in [9] and by Stanley in [11].

Theorem 2.3 [9; 11] Let Rn be the number of acyclic digraphs with n labeled nodes.
Then

Rn D

nX
kD1

.�1/kC1

�
n

k

�
2k.n�k/Rn�k :

Here are a few values of Rn :

n 0 1 2 3 4 5 6 7 � � �

Rn 1 1 3 25 543 29281 3781503 1138779265 � � �

Now consider A 2M.n/. Note that A is a Z2 –matrix. One may regard A as a real
matrix with entries in f0; 1g. We simply call it a .0; 1/–matrix. Then every principal
minor of A is an odd number.

Lemma 2.4 Let A be a .0; 1/–matrix all of whose principal minors are odd. Then
every principal minor of A is 1.

Proof We shall use an induction on n. When n D 1, it is obvious. Assume that
it holds for all matrices of size � n� 1. By the induction hypothesis, every proper
principal minor of A is +1. If det.A/ ¤ 1, then det.A/ D 1˙

Q
bi by Lemma 2.1.

However A is a .0; 1/–matrix and a conjugation action is a permutation of the rows
and columns of A, and hence bi ’s must be 1. Thus the determinant of A is even. This
is a contradiction. Thus det.A/D 1.

Corollary 2.5 The number of acyclic digraphs with n labeled nodes is equal to the
number of real .0; 1/–matrices all of whose principal minors are 1.

Proof This follows immediately from Lemma 2.4 and Theorem 2.2.
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Remark 2.6 We know that the number of acyclic digraphs with n labeled nodes
is equal to the number of .0; 1/–matrices whose eigenvalues are positive. It was
conjectured by Weisstein in 2001 and proved by McKay et al [8]. Thus it can be easily
checked that all eigenvalues of a .0; 1/–matrix are positive if and only if all of its
principal minors are 1.

Remark 2.7 We can define a quasitoric manifold with .S1/n –action as we did above.
In this case, the reduced submatrix ƒ� of a characteristic function is an integer matrix.
When P is an n–cube, ƒ� is an n � n matrix all of whose principal minors are
˙1. Especially, if every principal minor of �ƒ� is 1, then the quasitoric manifold is
equivalent to a Bott tower. We refer the reader to Masuda and Panov [7]. By Lemma
2.4, for a small cover over In with ƒ� , there is the Bott tower over In such that the
characteristic function whose reduced submatrix is �ƒ� as a .0; 1/–matrix.

2.2 Small covers over a product of simplices

The above processes can be extended to the case of a product of simplices. Let
P D

Ql
iD1�

ni with
Pl

iD1 ni D n, where �ni is the ni –simplex for i D 1; : : : ; l . Let
ff i

0
; : : : ; f i

ni
g be the set of facets of the simplex �ni . Thus the set of facets of P is

fF i
ki
j 0� ki � ni ; i D 1; : : : ; lg

where F i
ki
D�n1�� � ���ni�1�f i

ki
��niC1�� � ���nl . Thus there are nCl facets in P .

Then the reduced submatrix ƒ� of a characteristic function over P is an n� l matrix.
On the other hand, ƒ� can be viewed as an l�l matrix (vi;j ) whose entries in the j –th
row are vectors in Znj

2
. We shall call it a vector matrix. We refer the reader to Choi,

Masuda and Suh [2] for details. Let ƒk1 ���kl
be the l � l submatrix of ƒ whose j –th

row is the kj –th row of the vi;j . Then the nonsingularity condition for ƒ is equivalent
that every principal minor of ƒk1 ���kl

is 1 for any 1� k1 � n1; : : : ; 1� kl � nl .

Theorem 2.8 Let ]DJ
�Ql

iD1�
ni
�

denote the number of D–J equivalence classes
over

Ql
iD1�

ni . Then

]DJ
� lY

iD1

�ni

�
D

X
G2Gl

Y
vi2V .G/

.2ni � 1/outdeg.vi /;

where Gl is the set of acyclic digraphs with labeled l nodes and V .G/D fv1; : : : ; vlg

is the labeled vertex set of G .
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Proof Let ƒ� D .vi;j ) be the reduced submatrix of a characteristic function over P

with vi;j 2 Zni

2
. Denote by B.ƒ�/ WD .bi;j / the corresponding l � l matrix over Z2 ,

which has units in positions .i; j / if vi;j is nonzero, and zeros otherwise. Define
the map  from fGL.n;Z2/ n cf.P /g to Gl by ƒ� 7! G such that the adjacency
matrix of G is B.ƒ�/�El . By using similar arguments of the proof of Theorem 2.2,
we can prove that  is well-defined. Thus the number of characteristic functions isP

G2Gl
j �1.G/j. Let G be an element of Gl and ƒ� D .vi;j / be an l � l vector

matrix such with  .ƒ�/DG . Note that an directed edge from i to j in G is associated
to a nonzero vi;j and vi;j 2 Zni

2
. Note that B.ƒ�/ is conjugated to a unipotent upper

triangular matrix. Therefore the nonsingularity condition holds for arbitrary nonzero
vectors in nondiagonal entries, ie, we have 2ni �1 choices for each nonzero vector vi;j .
Thus j �1.G/j D

Q
e2E.G/.2

ni.e/�1/D
Q
vi2V .G/.2

ni �1/outdeg.vi / , where E.G/ is
the set of directed edges of G and i.e/ is the label of the initial vertex of e 2E.G/.

Example 2.9 l D 2: ]DJ.�n1 ��n2/D 1C .2n1 � 1/C .2n2 � 1/.

l D 3: Letting xi D 2ni � 1 for i D 1; 2; 3,

]DJ.�n1 ��n2 ��n3/

D 1C 2.x1Cx2Cx3/C .x1Cx2Cx3/
2
C .x1x2Cx2x3Cx3x1/

C .x1Cx2Cx3/.x
2
1 Cx2

2 Cx2
3/�x3

1 �x3
2 �x3

3 :

3 Counting Zn
2
–equivariant homeomorphism classes

Let P be a simple convex polytope of dimension n and let F.P / be the set of faces
of P . An automorphism of F.P / is a bijection from F.P / to itself which preserves the
poset structure of all faces of P . Let Aut.F.P // denote the group of automorphisms
of F.P /. One can define the right action of Aut.F.P // on cf.P / by ��h 7! � ıh,
where � 2 cf.P / and h 2Aut.F.P //. The following theorem is well-known. We refer
the reader to Lü and Masuda [6].

Theorem 3.1 Two small covers over an n–dimensional simple convex polytope P

are Zn
2

–equivariantly homeomorphic if and only if there is an element h 2 Aut.F.P //
such that �1 D �2 ı h, where �1 and �2 are characteristic functions of small covers.

Thus we are going to count the orbits of cf.In/ under the action of Aut.F.In//. The
Burnside’s formula is very useful in the enumeration of the number of orbits.

Lemma 3.2 (Burnside’s formula) Let G be a finite group acting on a finite set X .
Then the number of orbits of X under the G –action is equal to 1

jGj

P
g2G jX

gj; where
X g D fx 2X j gx D xg.
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Theorem 3.3 Let Qn be the number of Zn
2

–equivariant homeomorphism classes of
small covers over In and let Rk be the number of acyclic digraphs with k labeled
nodes. Then

Qn D

Pn
kD0

�
n
k

�
2k.n�k/Rk

2nn!
�

n�1Y
iD0

.2n
� 2i/:

Proof All elements of Aut.F.In// can be written in a simple form as follows:

� ��
e1

1
� � � � ��en

n ; ej 2 Z2

with a permutation � 2 Sn and reflections �1; : : : ; �n . Hence jAut.F.In//j D 2nn!.
Note that � is a permutation of the pairs of opposite facets and �i is the interchange of
i –th opposite facets for each i . For some gD��

e1

1
� � ��

en
n 2Aut.F.In//, let cf.In/g

denote the set of elements in cf.In/ fixed by g . First, we claim that if cf.In/g is
nonempty, then � D 1. Let � 2 cf.In/g and F.In/ D fF1; : : : ;F2ng be the set of
facets of In such that Fi\FnCi D∅ for all i D 1; : : : ; n. Note that the nonsingularity
condition implies the determinant of .�.F�.1// � � ��.F�.n/// is 1, where �.t/ is either
t or nC t . Thus there is no pair Fi ;Fj such that �.Fi/D �.Fj / and n − i � j . This
shows that �D 1. Now, we are going to enumerate jcf.In/gj when �D 1. We may
assume g D �1 � � ��k for some k . Let � be an element of cf.In/g and let ƒ be
an n� 2n matrix corresponding to �. Note that ƒ D .AjB/ D A � .Enjƒ�/, where
ƒ� DA�1B . Note that � is fixed by g if and only if the first k columns of A and B

are the same. Thus ƒ� is of the following form:�
Ek S

0 T

�
;

where Ek is an identity matrix of size k , T is an .n� k/� .n� k/ matrix and S is
a k � .n� k/ matrix. Note that ƒ� 2M.n/ if and only if T 2M.k/. This implies
jcf.In/gj D jGL.n;Z2/j � 2k.n�k/Rk . Note that jcf.In/gj is independent of choices
of k �i ’s. Thus by Burnside’s formula,

Qn D

Pn
kD0

�
n
k

�
2k.n�k/Rk

jAut.In/j
� jGL.n;Z2/j:

The theorem is proved with the well-known fact jGL.n;Z2/j D
Qn�1

iD0.2
n� 2i/.

Here are a few values of Qn :

n 0 1 2 3 4 5 � � �

Qn 1 1 6 259 87360 236240088 � � �
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4 Upper bounds of the numbers of homeomorphism classes

By Theorem 3.1, we have a one-to-one correspondence between the set of weakly
equivariant homeomorphism classes of small covers over simple polytope P and the
double coset class by GL.n;Z2/ and Aut.F.P // on cf.P /. Let Tn be the number of
weakly Zn

2
–equivariant homeomorphism classes of small covers over In . Then

Tn D jGL.n;Z2/ n cf.In/=Aut.F.In//j D jM.n/=Aut.F.In//j

where M.n/ is the set of Z2 –matrices of size n all of whose principal minors are 1.

Recall that Aut.F.In// consists of elements of the form � ��
e1

1
� � � � ��

en
n ; ej 2Z2 with

a permutation � 2 Sn and reflections �1 D � � � D �n . Consider the permutation group
Sn D fg 2 Aut.F.In//jg D ��0

1
� � ��0

ng as a subgroup of Aut.F.In//. Then Sn acts
on the set of facets of In by permutating the pairs of opposite facets. Let ƒ be an
n� 2n characteristic matrix. Then � 2 Sn acts as

ƒ 7!ƒ �

�
P .�/ 0

0 P .�/

�
:

Thus we have .Enjƒ�/ 7! .P .�/jƒ�P .�// � .EnjP .�/
�1ƒ�P .�//. This implies

that the action of Sn on M.n/ is the conjugation action. That action is a relabeling on
nodes of acyclic digraphs. Hence we have the following theorem and corollary:

Theorem 4.1 The number of weakly Zn
2

–equivariant homeomorphism classes of
small covers over In is less than or equal to the number of acyclic digraphs with n

unlabeled nodes.

Corollary 4.2 The number of homeomorphism classes of small covers over In is less
than or equal to the number of acyclic digraphs with n unlabeled nodes.

Acyclic digraphs with unlabeled nodes were counted by Robinson in [10].

Here are a few values of Tn :

n 0 1 2 3 4 5 6 7 � � �

Tn 1 1 2 6 31 302 5984 243668 � � �
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