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On the isomorphism problem for
generalized Baumslag–Solitar groups

MATT CLAY

MAX FORESTER

Generalized Baumslag–Solitar groups (GBS groups) are groups that act on trees with
infinite cyclic edge and vertex stabilizers. Such an action is described by a labeled
graph (essentially, the quotient graph of groups). This paper addresses the problem
of determining whether two given labeled graphs define isomorphic groups; this is
the isomorphism problem for GBS groups. There are two main results and some
applications. First, we find necessary and sufficient conditions for a GBS group to
be represented by only finitely many reduced labeled graphs. These conditions can
be checked effectively from any labeled graph. Then we show that the isomorphism
problem is solvable for GBS groups whose labeled graphs have first Betti number at
most one.

20E08; 20F10, 20F28

1 Introduction

A generalized Baumslag–Solitar group (or GBS group) is a group that acts on a tree
with infinite cyclic edge and vertex stabilizers.1 The tree (together with the group
action) is called a GBS tree. A GBS tree can be described by a labeled graph, which is
a connected graph whose oriented edges are each labeled by a nonzero integer. This
information is enough to specify a graph of groups encoding the GBS tree.

A GBS group G may have many labeled graph descriptions. Even if one restricts
to reduced labeled graphs, which are in some sense the simplest ones, there may be
infinitely many distinct such graphs defining G . It can also happen that there is only
one reduced graph, or finitely many. In these latter cases, useful information about
Out.G/ can be obtained, as in Gilbert–Howie–Metaftsis–Raptis [8], Pettet [15] and
Levitt [13]. Other aspects of GBS groups have been studied by Kropholler, Whyte,
Levitt and others. See Kropholler [10; 11], Whyte [16], Clay [2] and Forester [6; 7] for
details on various algebraic and geometric properties of GBS groups.

1In this paper we will only consider finitely generated GBS groups, so finite generation will be added
to the definition; see Section 2.2.
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The variety of labeled graph descriptions of GBS groups is partly what makes them
interesting. For instance, they demonstrate the extent to which JSJ decompositions of
groups can fail to be unique. On the other hand, this variety can also be a source of
difficulty, such as when studying automorphisms. A given labeled graph need not be
invariant, for instance. Even the basic problem of recognizing a given GBS group from
one of its labeled graphs is not at all clear.

The isomorphism problem for GBS groups is the problem of determining algorithmically
whether two given labeled graphs define isomorphic GBS groups. This problem has
only been shown to be solvable in limited special cases. It is trivially solvable for
the rigid GBS groups, which are those having a unique reduced labeled graph. These
groups were characterized by Levitt [12] (see also Gilbert et al [8], Pettet [15] and
Forester [5]).

Levitt showed that the isomorphism problem is solvable in the case of GBS groups G

such that Out.G/ does not contain a nonabelian free group [13]. He also solved the
isomorphism problem for 2–generator GBS groups [14]. Both of these results rely on
having an explicit characterization of the class of groups being considered.

In [7] the second author solved the isomorphism problem for GBS groups whose
modular groups contain no integers other than ˙1. Equivalently (see Levitt [13]) these
are the GBS groups not containing any solvable Baumslag–Solitar group BS.1; n/ with
n> 1. It is worth recalling the main steps of the proof. First it was shown that any two
such graphs are related by slide moves, without leaving the set of reduced graphs. Then
it was shown that such a group is represented by only finitely many reduced labeled
graphs. Thus, this set can be searched and enumerated effectively, and membership is
decidable.

For the general isomorphism problem, it is useful to understand the space of reduced
labeled graphs related to a given one by sequences of slide moves. We want to know
whether this space is infinite, and whether it includes all reduced labeled graphs for
the given group. To this end, there is a property of edges that plays a key role: edges
can be mobile or nonmobile (see Definition 3.12). One of our main technical results is
Corollary 3.24, which shows that in any sequence of slide moves, the nonmobile edges
may be slid first and one at a time. From this we deduce information on the slide space
of a labeled graph, including our first main result:

Theorem 1.1 Let G be a GBS group other than BS.1; n/, represented by a reduced
labeled graph � . Then G has finite reduced labeled graph space if and only if � has
no mobile edges.
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We also show that mobility of edges can be tested algorithmically (Remark 3.13), so the
property of the theorem is decidable. (The case of BS.1; n/ is clear as well: the reduced
labeled graph is unique if n 6D �1, and BS.1;�1/ has two reduced labeled graphs.)
One consequence of Theorem 1.1 is Theorem 3.29, which solves the isomorphism
problem in the case where one labeled graph has no mobile edges.

Next we consider the case of GBS groups whose labeled graphs have first Betti number
one. (The Betti number zero case is covered by Forester [7].) The primary goal of the
rest of the paper is the following theorem:

Theorem 1.2 There is an algorithm which, given two labeled graphs, one of which has
first Betti number at most one, determines whether the two GBS groups are isomorphic.

These are two cases, which behave rather differently: the ascending case and the
nonascending case. In the ascending case, there is a structure theorem (Theorem 4.19)
which says that the group is uniquely determined by certain invariants, which can be
computed by putting the labeled graph into a normal form. These invariants are defined
and proved invariant with the aid of Theorem 1.1 of Clay–Forester [4], which shows
that any two reduced labeled graphs are related by slide, induction and A ˙1 –moves
between reduced labeled graphs (see Section 2.2 for the definitions of these moves).

The nonascending case is somewhat simpler, since any two reduced labeled graphs
representing the same group are related by slide moves. (In particular, one may keep
track of individual edges.) However, even though we can define normal forms, they are
much less rigid than in the ascending case. For instance, there is no canonical edge
with which to compare other edges, unlike ascending normal forms.

We show that given G , there are only finitely many reduced labeled graphs in normal
form, and these can be enumerated effectively. The solution to the isomorphism problem
is then similar to the case proved in [7].

Acknowledgements The second author is partially supported by NSF grant DMS-
0605137.

2 Preliminaries

2.1 Deformation spaces

A graph � is given by .V .�/;E.�/; o; t;x/ where V .�/ are the vertices, E.�/ are
the oriented edges, o; t W E.�/! V .�/ are the originating and terminal vertex maps
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and xW E.�/!E.�/ is a fixed point free involution, which reverses the orientations of
edges. An edge path 
 D .e0; : : : ; ek/ is a sequence of edges such that t.ei/D o.eiC1/

for i D 0; : : : ; k � 1. A loop is an edge e 2E.�/ such that o.e/D t.e/. A geometric
edge is a pair of the form fe; xeg.

Let G be a group. A G–tree is a simplicial tree T together with an action of G by
simplicial automorphisms, without inversions (that is, ge¤xe for all g 2G; e 2E.T /).
Two G –trees are considered equivalent if there is a G –equivariant isomorphism between
them. The quotient graph T=G has the structure of a graph of groups with a marking
(an identification of G with the fundamental group of the graph of groups).

Given a G–tree T , a subgroup H � G is elliptic if it fixes a point of T . There are
two moves one can perform on a G–tree without changing the elliptic subgroups,
called collapse and expansion moves; they correspond to the natural isomorphism
A�B B ŠA. The exact definition is as follows.

Definition 2.1 An edge e in a G –tree T is collapsible if GeDGo.e/ and its endpoints
are not in the same orbit. If one collapses fe; xeg and all of its translates to vertices, the
resulting G –tree is said to be obtained from T by a collapse move. The reverse of this
move is called an expansion move.

A G –tree is reduced if it does not admit a collapse move. An elementary deformation is
a finite sequence of collapse and expansion moves. Given a G –tree T , the deformation
space D of T is the set of all G –trees related to T by an elementary deformation. If
T is cocompact then D is equivalently the set of all G –trees having the same elliptic
subgroups as T , by Forester [5].

2.2 Generalized Baumslag–Solitar groups

A group G that acts on a tree with infinite cyclic stabilizers is called a generalized
Baumslag–Solitar group (or GBS group). In this paper, for simplicity, we also require G

to be finitely generated (this convention is not followed in [5; 6; 7]). The tree is called a
GBS tree. In the quotient graph of groups, every vertex and edge group is isomorphic to
Z, and each inclusion map Ge ,!Go.e/ is given by multiplication by a nonzero integer.
This data can be effectively represented in a labeled graph. Specifically, a labeled
graph is a pair .�; �/ where � is a finite connected graph and �W E.�/! Z�f0g is
a function, called the labeling. Given a choice of generators of Ge and Go.e/ , the map
Ge ,!Go.e/ is multiplication by �.e/. Replacing a generator of an edge group Ge by
its inverse interchanges the signs of �.e/ and �.xe/; replacing a generator of a vertex
group Gv by its inverse interchanges the signs of �.e/ for all edges e originating at v .
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These operations are called admissible sign changes. This is the only ambiguity in the
labels of a labeled graph. We will sometimes refer to .�; �/ simply as � .

A G–tree is elementary if there is a G–invariant point or line, and is nonelementary
otherwise. By Forester [6, Lemma 2.6], a GBS tree is elementary if and only if the
group is isomorphic to Z, Z�Z, or the Klein bottle group. Thus a GBS group not
isomorphic to one of these three groups is called a nonelementary GBS group.

In a nonelementary GBS group, the elliptic subgroups arising from any GBS tree are
characterized algebraically [6, Lemma 2.5]. Therefore, any two such G –trees lie in the
same deformation space. In particular, any two labeled graphs representing the same
nonelementary group are related by an elementary deformation. Whenever we speak
of a deformation space for a nonelementary GBS group, we will always be referring to
this canonical deformation space. For a description of this canonical deformation space
associated to the classical Baumslag–Solitar groups BS.p; q/, see Clay [2]. Unless
otherwise stated, all GBS groups considered here will be assumed to be nonelementary.

In a labeled graph, a loop e with label ˙1 is called an ascending loop. It is a strict
ascending loop if �.xe/ 6D ˙1. A loop e is a virtual ascending loop if �.e/ divides
�.xe/, and is a strict virtual ascending loop if, in addition, �.xe/ 6D ˙�.e/. A GBS
deformation space is ascending if it contains a GBS tree whose labeled graph has a
strict ascending loop. We also say that G is ascending. Otherwise the deformation
space (or the group) is called nonascending.

Now we define various moves between GBS trees, all of which are elementary de-
formations. The moves in Definition 2.2 are discussed more fully (in the general
setting of G–trees) in [7]. In particular, slides and inductions can be factored as an
expansion followed by a collapse. A general discussion of A ˙1 –moves can be found
in Clay–Forester [4].

In the diagrams below, each label �.e/ is pictured next to the endpoint o.e/. We begin
with the elementary moves, which look as follows (modulo admissible sign changes):
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Thus a GBS tree is reduced if and only if its labeled graph does not contain an edge
with distinct endpoints and label ˙1.
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Definition 2.2 A slide move between GBS trees takes one of the following two forms:
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An induction move between GBS trees is as follows:
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Both directions of the move are considered induction moves. This move decomposes
into an elementary deformation as follows:
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Definition 2.3 Next we discuss A ˙1 –moves, defined in [4]. An A �1 –move is an
induction followed by a collapse, with the following description. It is required that
k; ` 6D ˙1, and that the left hand vertex has no other edges incident to it.
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The induction move changes the label ` to 1, after which the edge is collapsed.

Note that before the move, the loop is a strict ascending loop, and after, the loop is not
ascending. Thus an A �1 –move removes an ascending loop, and its reverse, called an
A –move, adds one.

Remark 2.4 A ˙1 –moves preserve the property of being reduced. The same is not
always true of slide or induction moves, unless one is in a nonascending deformation
space. Also, an induction or A ˙1 –move can only occur in an ascending deformation
space.

Algebraic & Geometric Topology, Volume 8 (2008)



Generalized Baumslag–Solitar groups 2295

We will make extensive use of the following result, which is the main theorem of [4],
and its corollary.

Theorem 2.5 In a deformation space of cocompact G –trees, any two reduced trees are
related by a finite sequence of slides, inductions, and A ˙1 –moves, with all intermediate
trees reduced.

Corollary 2.6 In a nonascending deformation space of cocompact G –trees, any two
reduced trees are related by a finite sequence of slide moves, with all intermediate
trees reduced. Moreover, if e is an edge of T and a deformation from T to T 0 never
collapses e , then there is a sequence of slide moves from T to T 0 in which no edge
slides over e .

The first statement of the corollary follows immediately from the theorem, and has
previously appeared as Forester [7, Theorem 7.4] and Guirardel–Levitt [9, Theorem 7.2].
The second statement is proved in [4].

2.3 The modular homomorphism

Let G be a GBS group with labeled graph .�; �/. There are two versions of the modular
homomorphism G ! Q� , each with several descriptions; see Bass–Kulkarni [1],
Forester [7] and Kropholler [11]. In this paper, it turns out to be more convenient to use
the reciprocal of the usual definition, so we will include this modification here. This
makes it easier to keep track of slide moves; see for example Definition 3.2 and Remark
3.3. We will mostly work with the signed modular homomorphism qW G!Q� , defined
as the composition G!H1.�/!Q� where the second map is given by

(1) .e1; : : : ; ek/ 7!

kY
iD1

�.xei/

�.ei/
:

(The first map is given by first killing the normal closure of the elliptic elements to
obtain �1.�/, and then abelianizing.) Equivalently, fix a nontrivial elliptic element
a 2 G . Then every g 2 G satisfies a relation gar g�1 D as in G for some nonzero
integers r and s , and the assignment q.g/D s=r is a well defined homomorphism,
which agrees with the definition just given; see Kropholler [11] or Levitt [13].

The unsigned modular homomorphism is simply jqj, defined on H1.�/ by

.e1; : : : ; ek/ 7!

kY
iD1

j�.xei/j

j�.ei/j
:
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An equivalent definition is to choose any subgroup V of G commensurable with a
vertex group, and assign to each g 2G the positive rational number

ŒV g
W V \V g� = ŒV W V \V g�:

See Forester [7] for a proof that this function agrees with jq.g/j. We say that .�; �/ is
unimodular if jqj is trivial.

Finally, there is also an orientation homomorphism G ! f˙1g defined by g 7!

q.g/= jq.g/j. This homomorphism is also defined on H1.�/. The next result shows
that the GBS group associated to a labeled graph is determined by the orientation
homomorphism and the absolute value of the labeling. Hence it often suffices to
consider positive labeled graphs, ie labeled graphs .�; �/ such that �.e/ > 0 for all
e 2E.�/.

Lemma 2.7 Let � and �0 be labelings on a graph � such that j�j D j�0j. If their
orientation homomorphisms agree then .�; �/ and .�; �0/ differ by admissible sign
changes. In particular, the corresponding GBS groups are isomorphic.

Proof Let �W H1.�/!f˙1g be the orientation homomorphism of .�; �/ and .�; �0/.
Fix a maximal tree T � � . Then every edge e of � � T determines a generator
Œe� 2H1.�/.

By admissible sign changes, we can arrange that � and �0 agree, and are positive, on
the edges of T . Then for any edge e in � �T we have that �.Œe�/D 1 if and only if
�.e/ and �.xe/ have the same sign, if and only if �0.e/ and �0.xe/ have the same sign.
Thus � and �0 can be made to agree on e and xe by an admissible sign change affecting
e; xe only. In this way, � and �0 can be made to agree on all of � .

3 Labeled graph spaces

From now on we consider only GBS groups and their canonical deformation spaces.
Hence we will always refer to G instead of this deformation space.

Definition 3.1 For a GBS group G , we denote by RLG.G/ the set of reduced labeled
graphs representing G . Let RLGC.G/ be the set of positive reduced labeled graphs rep-
resenting G . Note that this latter set is nonempty only if the orientation homomorphism
is trivial.

Our goal in this section is to establish a criterion, which can be checked in terms
of any labeled graph in RLG.G/, that characterizes when RLG.G/ is finite. Notice
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that if G is ascending and G ¤ BS.1; n/, then jRLG.G/j D 1. If G D BS.1; n/ or
G D Z, then RLG.G/ consists of a single point (unless G D BS.1;�1/, in which
case jRLG.G/j D 2). Therefore, we are mainly concerned with determining when a
nonascending GBS group satisfies jRLG.G/j D1. However, we will need to prove a
more general statement, as we do not have an algorithm to determine whether a given
GBS group is ascending.

3.1 Monotone cycles and mobile edges

If .e0; : : : ; en/ is an edge path in � , we define q.e0; : : : ; en/ by formula (1). This is
also denoted q�.e0; : : : ; en/.

Definition 3.2 Let � be a labeled graph for G and e 2 E.�/. An edge path
.e0; : : : ; en/ is an e–edge path if

(a) ei ¤ e; xe for i D 0; : : : ; n;

(b) o.e/D o.e0/; and

(c) �.ei/ divides �.e/q.e0; : : : ; ei�1/ for i D 0; : : : ; n.

An e–edge path is an e–integer cycle if, in addition we have

(d) o.e0/D t.en/; and

(e) q.e0; : : : ; en/ 2 Z.

If jq.e0; : : : ; en/j ¤ 1 we say that the e–edge path or the e–integer cycle is strict.

Remark 3.3 The first three conditions are necessary and sufficient to be able to
slide e along .e0; : : : ; en/. The resulting label on the edge e is �.e/q.e0; : : : ; en/.
Hence e may slide repeatedly along an e–integer cycle. Also notice that any path
obtained by tightening an e–edge path (respectively, e–integer cycle) is an e–edge
path (respectively, e–integer cycle).

Definition 3.4 An edge path .e0; : : : ; en; e/ is a monotone cycle if .e0; : : : ; en/ is an
xe–edge path and q.e0; : : : ; en; e/ 2 Z. An edge e is a monotone cycle if e is a loop
and q.e/ 2 Z. A monotone cycle is strict if the modulus is not equal to ˙1.

Remark 3.5 Suppose .e0; : : : ; en; e/ is a monotone cycle. Since .e0; : : : ; en/ is an
xe–edge path, o.e0/D o.xe/D t.e/. Hence a monotone cycle is a cycle. Further, since
xe … .e0; : : : ; en; e/, it is a nontrivial cycle. Notice that in the definition of monotone
cycle, the final edge is distinguished. In particular, a cyclic reordering of the edges in a
monotone cycle may not be a monotone cycle.
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Lemma 3.6 If � has a strict monotone cycle, then G is ascending. Further, if � has
a strict monotone cycle, then � has an immersed strict monotone cycle.

Proof If � contains a strict monotone cycle which is a single edge e , then either e

is a strict ascending or strict virtual ascending loop. Therefore, after an A –move in
the second case, we see that G is ascending. Otherwise, suppose .e0; : : : ; en; e/ is a
strict monotone cycle in � . Then we can slide xe along .e0; : : : ; en/, turning e into a
loop. After the slide move, the modulus of the loop is a nontrivial integer, hence e is
either a strict ascending or strict virtual ascending loop. As before, this shows that G

is ascending.

For the second statement in the lemma, we must show that after tightening, a monotone
cycle is still a monotone cycle. This is clear since if .e0; : : : ; en; e/ is a monotone
cycle, then ei ¤ e; xe . Therefore, after tightening, the edge e remains in the cycle and
the only tightening occurs in the edge path .e0; : : : ; en/, which remains an xe–edge
path after tightening.

Example 3.7 The converse to the first statement of Lemma 3.6 does not hold in
general, though we shall prove it in a special case in Proposition 4.2. A counterexample
is given by the labeled graphs in Figure 1. The labeled graphs in this figure represent
the same GBS group; the labeled graph on the right is obtained by sliding e3 over
xe . The labeled graph on the left contains a strict monotone cycle, namely the cycle
.e1; e2; e3; e/. After sliding xe over .e1; e2; e3/, e is a virtual ascending loop with
labels �.e/D 6; �.xe/D 132.

22

6 60

60 6

15

12

5

slide 6 606

22

6

15

12

5e

e3

e2

e1

Figure 1: Sliding e3 over xe results in a graph with no strict monotone cycles

We claim that the labeled graph on the right does not have any strict monotone cycles.
First, notice that none of the edges e1; xe1; e2; xe2 can slide. Also, since e is separating
(a fact that remains true after sliding e or xe ), no strict monotone cycle can end with e

or xe . Finally, notice that xe3 cannot slide. Hence, if there is a strict monotone cycle,
it must be of the form .˛; xe3/, where ˛ is an e3 –edge path. In particular, �.e3/q.˛/

must be divisible by �.xe3/D 22. However, the only place the prime number 11 appears
in the labeled graph is in the label �.xe3/, and since xe3 … ˛ , �.e3/q.˛/ is not divisible
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by 11 for any e3 –edge path ˛ . Therefore, the labeled graph on the right cannot contain
a strict monotone cycle.

Remark 3.8 In general, finding a monotone cycle requires a solution to the conjugacy
problem for GBS groups (see Lemma 3.14). This problem is not yet known to be
solvable.

Definition 3.9 Given � 2 RLG.G/ and e 2E.�/, we denote by S.�; e/� RLG.G/

the set of reduced labeled graphs obtained from � by a sequence of slides of e and xe .
S.�; e/ is then called the slide space of e (based at � ).

Proposition 3.10 Let � 2 RLG.G/ and e 2E.�/. Then jS.�; e/j D1 if and only if
� contains a strict e–integer cycle or a strict xe–integer cycle.

Proof By Remark 3.3, it is clear that if � contains a strict e–integer cycle or a strict
xe–integer cycle, then jS.�; e/j D1.

For the converse let �i be an infinite sequence of labeled graphs in S.�; e/. As the
number of edges in the graphs �i is constant, there is a subsequence such that �i D �

0

(as unlabeled graphs) for some fixed graph � 0 . Thus either j�i.e/j or j�i.xe/j is an
unbounded sequence of natural numbers. By interchanging e for xe and passing to a
subsequence if necessary, we can assume that j�i.e/j is a strictly increasing sequence
of natural numbers. Since slides of e commute with slides of xe , we can assume that
the labeled graphs �i are obtained from each other without sliding xe . There is a finite
number of primes appearing in the sequence fj�i.e/jg. Indeed, this list is contained in
the set of primes that appear on any labeled graph for G . Therefore, by the following
lemma, there are n; n0 such that �n.e/ divides �n0.e/. Let 
 be the e–edge path that
e slid along transforming � into �n and 
 0 the strict e–integer cycle that e slid along
transforming �n into �n0 . Then clearly 

 0x
 is a strict e–integer cycle in � .

Lemma 3.11 Let fmig be a strictly increasing sequence of natural numbers such that
only finitely many primes appear in the sequence. Then there are distinct indices n; n0

such that mn divides mn0 .

Proof We will prove this by induction on the number of primes appearing in the
sequence fmig. If there is only one prime appearing, then the lemma is obvious.

Suppose that N primes appear in the sequence fmig. To any element m in the sequence
we associate a point in ZN

>0
(ie, the first orthant of ZN ) by:

NY
jD1

p
kj

j 7! .k1; : : : ; kN /

Algebraic & Geometric Topology, Volume 8 (2008)



2300 Matt Clay and Max Forester

where
QN

jD1 p
kj

j is the prime decomposition of m. For any element mi in the sequence,
we denote the j –th coordinate in this assignment by .mi/j . If there is some element
mi such that .m1/j 6 .mi/j for all j , then m1 divides mi and the conclusion of the
lemma holds.

Otherwise, by passing to a subsequence, we can assume that .mi/j < .m1/j for some
fixed j and all i . By further passing to a subsequence we can assume that .mi/j DM

for all i . Then fmi=p
M
j g is a strictly increasing sequence of natural numbers in which

only N � 1 primes appear. Now apply induction to complete the proof.

Definition 3.12 Let � 2 RLG.G/. An edge e 2E.�/ is mobile if either

(a) there is a strict monotone cycle of the form .e0; : : : ; en; e/ or .e0; : : : ; en; xe/; or

(b) jS.�; e/j D1 (equivalently, by Proposition 3.10, � contains a strict e–integer
cycle or a strict xe–integer cycle).

An edge that is not mobile is called nonmobile. Note that mobility is a property of
geometric edges: e is mobile if and only xe is.

Remark 3.13 By Proposition 3.10 there is an algorithm to determine whether a given
edge e 2 E.�/ is mobile or not. Indeed, given an edge we can start making an
exhaustive search of S.�; e/. Either this space is finite or we find an strict e–integer
cycle or strict xe–integer cycle. In the latter case, e is mobile. If the slide space is finite,
we can search these graphs to see if e is a strict ascending or strict virtual ascending
loop in any of the graphs. An affirmative answer implies that e is mobile, a negative
answer implies that e is nonmobile.

Let T denote the Bass–Serre tree covering � .

Lemma 3.14 An edge e 2 E.�/ is mobile if and only if Gt
ze

¨ Gze for some t 2 G

and some lift ze 2E.T / of e .

Proof It is clear that if e or xe is the last edge of a strict monotone cycle, or there
is strict e–integer cycle or strict xe–integer cycle then there is a lift ze and a t 2 G

satisfying the conclusion of the lemma.

For the converse, given t and ze with Gt
ze

¨ Gze , we can replace t if needed to arrange
that there are no G–translates of ze along the edge path connecting ze to tze . Also we
can assume without loss of generality that o.ze/ separates ze from tze . Let z̨ be the path
in T from ze to tze , and let ˛ be its image in � .

If ze and tze are coherently oriented, then .˛; xe/ is a strict monotone cycle. Otherwise,
˛ is a strict e–integer cycle.
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Corollary 3.15 If �; � 0 2RLG.G/ are related by slide moves and e 2E.�/ is mobile,
then e is mobile in � 0 .

Proof This follows from Lemma 3.14 since edge stabilizers are unchanged by slide
moves.

Example 3.7 shows that both parts of the definition for mobility are needed. The edge
e is part of a strict monotone cycle .e1; e2; e3; e/ in the labeled graph on the left and
hence is mobile. In the labeled graph on the right, as noted in the example, there are
no strict monotone cycles, but there is a strict xe–integer cycle, so e is mobile.

Remark 3.16 The set of nonmobile edges is preserved by slides, inductions, and
A ˙1 –moves. To make sense of the third case, observe that even though an A ˙1 –
move changes the set of edges, the edges directly involved in the move are all mobile,
so each nonmobile edge is present before and after the move, and its status does not
change (by Lemma 3.14). In the case of an induction move, the loop is mobile before
and after, and mobility of other edges is not affected, again by Lemma 3.14. Therefore,
for any labeled graph space, we can compare nonmobile edges between any two labeled
graphs.

Lemma 3.17 In a labeled graph, a nonmobile edge cannot slide over a mobile edge.

Proof Suppose an edge f slides over a mobile edge e . Then there are lifts zf and ze
in the covering tree T such that zf slides over ze , and so G zf �Gze . Let nD ŒGze WG zf �.
By Lemma 3.14 there is a t 2G such that Gt

ze
¨ Gze . Let mD ŒGze WG

t
ze
�. Then

Gt
zf
�Gt

ze ¨ Gze;

and Gt
zf

is the unique subgroup of Gze of index mn. This implies that Gt
zf

is the
subgroup of G zf of index m, which is greater than 1, and so f is mobile.

3.2 Slide relations

In this subsection we will work out some methods to rearrange sequences of slide
moves. In particular, we will show that any sequence of slides can be rewritten so that
nonmobile edges slide before mobile edges, and individual nonmobile edges can be
slid one at a time. To simplify the discussion, we will only consider positive labeled
graphs. All slides in this section are between reduced trees (that is, the slides take place
“in RLGC.G/”).
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Notation 3.18 If � 2 RLG.G/, e 2E.�/ and A is an e–edge path, we will use the
notation e=A to denote the slide move of e over A. When we write a composition of
slides e=A �f=B we will always assume that f=B is a valid slide move after sliding e

over A. We have some obvious relations: e=A � e=A0 D e=AA0 and e= xA is the inverse
of e=A (here xA is the reverse of the path A).

Throughout the rest of the section, A denotes an e– or xe–edge path and B denotes
an f – or xf –edge path. Likewise for A0 , B0 , etc. We will use ˛ to denote an e or
xe–edge path not containing f or xf , and ˇ an f or xf –edge path not containing e or
xe .

The following proposition is our current goal.

Proposition 3.19 Suppose � 2 RLGC.G/ and e; f 2 E.�/ .e ¤ f; xf / where f is
nonmobile. Suppose e=A �f=B is valid slide sequence in RLGC.G/. Then:

e=A �f=B D f=B0 � xf =B00 � e=A0 � xe=A00

for some appropriate edge paths B0;B00;A0 and A00 .

We will establish this proposition by a careful analysis of how to commute individual
slide moves past one another. We begin by listing several basic relations.

Definition 3.20 In some of the slide relations below, renaming occurs. This does not
mean that the edges themselves are renamed. Rather, when the relation is used to
substitute some slide moves for others inside a larger sequence of moves, the moves in
the larger sequence occurring after the newly substituted moves need to be renamed, so
that they still refer to the same edges as before. For example, the instruction “rename
e 7! f , f 7! xe ” means that moves such as e=˛ , f=xe , e= xf occurring later in the
sequence should now be written as f=˛ , xe= xf , f=e . The reason for this should become
clear in the proof of the next lemma.

Lemma 3.21 Suppose that f is nonmobile. Then the following relations are valid:
(a) e=˛ �f=ˇ D f=ˇ � e=˛

(b) e=˛ �f=e D f=x̨e � e=˛

(c) e=˛ �f=xe D f=xe˛ � e=˛

(d) e=f �f=ˇ D f=ˇ � e= f̌

(e) e=f �f=e D f=e

(f) e=f �f=xe D e=f � xe=f; then rename e 7! xf ; f 7! xe

(g) e= xf �f=ˇ D f=ˇ � e= xf x̌

(h) e= xf �f=e D xf =e; then rename e 7! f; f 7! xe

(i) e= xf �f=xe D e= xf
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where f; xf … ˛ and e; xe … ˇ . Furthermore, after substituting and renaming moves, f
still refers to a nonmobile edge.

Proof In the diagrams below, the heavy edge is f and the light edge is e . Note that
in cases (f) and (h), later references to these edges will be renamed. Since f slides
over e or xe in these cases, e must be nonmobile by Lemma 3.17. So it remains true
that f is nonmobile in later moves, after the renaming step.

Now consider the individual cases, recalling that ˛ and ˇ do not contain e , xe , f , or xf .
Case (a) is obvious. Case (b) is clear after noting that o.e/D o.˛/ and t.˛/D o.f /.
In case (c) we have o.˛/D o.e/ and t.e/D o.f / and the relation is clear. In case (d)
we have o.e/D o.f /D o.ˇ/ and the relation is clear.

For (e), shown below, f is a loop at o.e/. The labels �.e/; �.f / are of the form
ca; a since e slides over f . Then, since f slides over e , we must have cb j a (where
b D �. xf /), hence b j a. Since f is nonmobile, we then have b D a. Hence the first
slide may simply be omitted.

ca

a b

cb

a b
cb

b

For (f), shown below, e is a loop at o.f / and we have �.e/; �.f / of the form ca; a as
before. Since f slides over xe , we have b j a (where bD �.xe/) and the new label of f
becomes acd=b (where d D �. xf /). This integer is divisible by d , and so f is now
virtually ascending. Since f is nonmobile, we conclude that acd=b D d , so ac D b .
Since b j a, we now have c D 1 and aD b . The result of the two moves can now be
achieved by sliding e and xe over f . After this move, xf is in the position previously
occupied by e , so later references to e should be renamed as xf . Similarly, references
to f should be renamed to xe (e would work equally well in this case).

a d a d
d dca b b cd

b cd
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In case (g) we have o.e/D t.f / and o.f /D o.ˇ/ and the relation is clear. For (h)
we have o.e/ D t.f /, and �.e/; �. xf / of the form ba; a. After the first slide �.e/
becomes bc where c D �.f /, and since the second slide occurs we have that bc j c .
Hence bD 1 and we originally have �.e/D �. xf /. Now the same labeled graph results
by sliding xf over e . In later moves, e should be renamed as f , and f as xe , since f
and xe now occupy the previous positions of e and f .

Case (i) is shown below:

a b
ca d

a b

cb d

a b

The labels �.e/; �. xf / are of the form ca; a and �.e/ becomes cb after the first slide
(where b D �.f /). From the second slide we deduce that d D �.xe/ divides b . Now e

is virtually ascending, and it is nonmobile since f can slide over it. So cb D d and
the second slide may be omitted.

The next result is a straightforward application of the relations (a)–(d) of Lemma 3.21.
It will be used to establish a special case of Proposition 3.19, when either f; xf …A or
e; xe … B .

Lemma 3.22 Suppose that f is nonmobile. Then the following relations are valid:

(a) e= f̨ ˛0 �f=ˇ D f=ˇ � e=˛ f̌ ˛0

(b) e=˛ xf ˛0 �f=ˇ D f=ˇ � e=˛ xf x̌˛0

(c) e=˛ �f=ˇeˇ0 D f=ˇ x̨eˇ0 � e=˛

(d) e=˛ �f=ˇxeˇ0 D f=ˇxe˛ˇ0 � e=˛

Proof For (a) we write (justifying with relations from Lemma 3.21):

e= f̨ ˛0 �f=ˇ D e= f̨ �f=ˇ � e=˛0 by (a)

D e=˛ �f=ˇ � e= f̌ ˛0 by (d)

D f=ˇ � e=˛ f̌ ˛0 by (a).

The other relations are similar.
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The next relations will form the basis of the proof of Proposition 3.19.

Lemma 3.23 Suppose that f is nonmobile. Then the following relations are valid:

(a) e= f̨ ˛0 �f=ˇeˇ0 D f=x̨eˇ0 � e=˛ˇ

(b) e= f̨ ˛0 �f=ˇxeˇ0 D f=ˇ � xf =˛0 � e=˛ f̌ x̨0 � xe=fˇ0; rename e 7! xf ; f 7! xe

(c) e=˛ xf ˛0 �f=ˇxeˇ0 D f=˛0ˇ0 � e=˛ xf x̌0

(d) e=˛ xf ˛0 �f=ˇeˇ0 D f=˛0 � xf =x̨e � e=˛ � xe=ˇ0; rename e 7! f; f 7! xe

Proof The first three of these follow from straightforward computations, similar to
Lemma 3.22. Again we justify with relations from Lemma 3.21.

e= f̨ ˛0 �f=ˇeˇ0 D e=˛ �f=ˇ � e= f̌ �f=x̨0e � e=˛0 �f=ˇ0 by (a), (d), (b)

D f=ˇ � e=˛ˇ �f=x̨0 � e=x̨0f �f=eˇ0 � e=˛0 by (a), (d)

D f=ˇ x̨0 � e=˛ˇ �f=˛0e � e=x̨0 �f=ˇ0 � e=˛0 by (a), (e), (b)

D f=ˇ � e=˛ˇ �f=eˇ0 by (a) and
cancellation

D f=x̨eˇ0 � e=˛ˇ by (b), (a).

This proves (a). For (b) we have, using relations from Lemma 3.21:

e= f̨ ˛0 �f=ˇxeˇ0

D e= f̨ �f=ˇ � e=˛0 �f=xeˇ0

D f=ˇ � e=˛ f̌ �f=xe˛0ˇ0 � e=˛0 by (d), (c), (a)

D f=ˇ � e=˛ f̌ � xe=f � xe=˛0ˇ0 � xf =˛0; rename e 7! xf ; f 7! xe by (f)

D f=ˇ � e=˛ f̌ � xe=f � xf =˛0 � xe=˛0ˇ0; rename e 7! xf ; f 7! xe by (a)

D f=ˇ � e=˛ f̌ � xf =˛0 � xe=fˇ0; rename e 7! xf ; f 7! xe by (g) and
cancellation

D f=ˇ � xf =˛0 � e=˛ f̌ x̨0 � xe=fˇ0; rename e 7! xf ; f 7! xe by (g), (a).

Note that part of the third line has undergone renaming. The renaming instruction is still
needed for any subsequent moves. Next consider (c), using relations from Lemma 3.21:

e=˛ xf ˛0 �f=ˇxeˇ0 D e=˛ xf �f=ˇ � e=˛0 �f=xeˇ0

D f=ˇ � e=˛ xf x̌˛0 �f=xeˇ0 by (g), (a)

D f=ˇ � e=˛ xf x̌ �f=xe˛0ˇ0 � e=˛0 by (c), (a)

D f=ˇ � e=˛ xf �f=xe x̌˛0ˇ0 � e= x̌˛0 by (c), (a)

D f=ˇ � e=˛ �f= x̌ � e= xf ˇ �f=˛0ˇ0 � e= x̌˛0 by (i), (g)
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D e=˛ xf �f=˛0ˇ0 � e=˛ by (a) and
cancellation

D f=˛0ˇ0 � e=˛ xf x̌0 by (g), (a) and
cancellation.

Finally we prove (d). Notice that as ˛ xf ˛0 is an e–edge path o.˛0/D o.f / and after
sliding e we have that o.e/D t.˛0/. Also, since ˇeˇ0 is an f –edge path after sliding e ,
o.ˇ/D o.f /D o.˛0/ and t.ˇ/D o.e/D t.˛0/ Therefore, as neither ˛0 nor ˇ contain
e; xe , ˇ x̨0 is a cycle before sliding e . Since after sliding e over ˛ xf ˛0 we can slide f
over ˇe we have that ��.e/q�.˛; xf ; ˛0/ divides ��.f /q�.ˇ/. (Here � is the labeled
graph just before the slide moves under discussion.) In particular, after sliding f
along ˇ , we can slide it back along x̨0 . Finally, since ��.f / divides ��.e/q�.˛; xf /
which divides ��.f /q�.ˇ x̨0/, we have that q�.ˇ x̨

0/ is an integer. As f is nonmobile,
this integer must be 1 (recall that we are assuming that all labels are positive). Hence
f=ˇ D f=˛0 . Now it is easy to verify that (d) is a valid relation, using relations from
Lemma 3.21:

e=˛ xf ˛0 �f=˛0eˇ0

D e=˛ xf �f=˛0 � e=˛0 �f=eˇ0

D f=˛0 � e=˛ xf �f=eˇ0 by (g), (a) and cancellation

D f=˛0 � e=˛ � xf =e � xe=ˇ0; rename e 7! f; f 7! xe by (h)

D f=˛0 � xf =x̨e � e=˛ � xe=ˇ0; rename e 7! f; f 7! xe by (b).

This completes the proof.

We are now in a position to prove Proposition 3.19.

Proof of Proposition 3.19 To simplify the discussion we introduce a shorthand for
slide sequences. Slides of the form e=˛ or xe=˛ are denoted by E , and those of the form
e= f̨ ˛0 , e=˛ xf ˛0 , xe= f̨ ˛0 or xe=˛ xf ˛0 by EF . Likewise define the symbols F and
FE . Given a slide sequence, let m denote the number of slides of the form EF or FE .
Let n denote the number of transitions of the form EF FE after omitting the symbols
E;F . The complexity of the sequence is the pair .m; n/, ordered lexicographically.

We are given the sequence e=A � f=B , which decomposes into a slide sequence
consisting of E ’s and EF ’s, followed by F ’s and FE ’s. Our strategy is to apply slide
relations to reduce complexity, until nD 0. If nD 0 then we have a sequence in which
no EF appears before an FE . To complete the argument in this case, Lemma 3.21(a)
will transform any EF to FE ; Lemma 3.22((a),(b)) transforms any EF F to FEF ;
and Lemma 3.22((c),(d)) transforms any EFE to FEE . Using these relations, the
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sequence can be transformed to one consisting of F ’s and FE ’s followed by E ’s and
EF ’s. Lastly, since slides of e and xe (respectively, f and xf ) commute, the sequence
can be put into the desired form f=B0 � xf =B00 � e=A0 � xe=A00 .

Next we show how to reduce complexity if n> 0. We will be applying the relations of
Lemma 3.23, some of which involve renaming. When this occurs, the symbols EF and
FE , and the symbols E and F , will be exchanged throughout part of the sequence.
Notice that this in itself does not change m. Notice also that the relations in Lemma
3.23(a), Lemma 3.23(c) and Lemma 3.23(d) all reduce m.

There is one additional rewriting move which has not yet been discussed. The moves
EEF may be rewritten either as EF or as EF E , depending on whether the edge e

appears with the same orientation in the two moves. Similarly, FEF can be rewritten
as FE or FFE .

The procedure is first to push all F ’s to the beginning of the sequence and all E ’s to
the end, using this last observation and Lemmas Lemma 3.21(a) and Lemma 3.22. This
does not change complexity. Then apply relation Lemma 3.23(a), Lemma 3.23(c) or
Lemma 3.23(d), if possible, to one of the EF FE pairs, to reduce complexity. If none
of these apply, then every EF FE pair matches the left hand side of relation Lemma
3.23(b). Using this relation does not obviously reduce complexity, but we can proceed
as follows.

Starting with the rightmost EF FE pair, the slide sequence has the form

� � � .EF FE/.FE/
�.EF /

�.E/�

where � denotes zero or more copies of the symbol. Applying Lemma 3.23(b) to this
pair, the sequence becomes

� � � .FFEF EF /.EF /
�.FE/

�.F /�;

with no change to the symbols that are not shown. If the .EF /
� term in the original

sequence is empty then n decreases and m stays the same, and complexity has been
reduced. Otherwise the new sequence has the same complexity. If this occurs, apply
Lemma 3.23 to the newly created rightmost EF FE pair. If case (a), (c) or (d) applies,
complexity is reduced as before. If case (b) applies then we are in the situation just
discussed, with empty .EF /

� term, and n decreases. Thus, in all cases, complexity
has been reduced.

The corollary below follows directly, by repeated application of Proposition 3.19.

Corollary 3.24 Suppose �; � 0 are related by a sequence of slides in RLGC.G/ and
f 2E.�/ is nonmobile. Then there is a labeled graph �f 2 S.�; f / and a sequence of
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slides �f !� 0 in RLGC.G/ during which the edges f; xf remain stationary. Moreover,
if a geometric edge e; xe 2E.�/ was stationary in the original slide sequence, then the
sequence �f ! � 0 may be chosen to leave e; xe stationary as well.

3.3 Finiteness of RLG.G /

We can now prove Theorem 1.1, along with some applications. Here is a restatement
of the theorem.

Theorem 3.25 Let � 2 RLG.G/, where G 6D BS.1; n/. Then jRLG.G/j D1 if and
only if � has a mobile edge.

Proof Let GC be the GBS group represented by the labeled graph .�; j�j/. Changing
the signs of a labeling has no effect on divisibility relations, and hence has no effect
on slide moves or mobility of edges. Moreover, the absolute value map RLG.G/!

RLGC.GC/ is finite-to-one, so jRLG.G/j is finite if and only if jRLGC.GC/j is. Thus,
without loss of generality, we may assume that � is a positive labeled graph, and we
may work in RLGC.G/, where Corollary 3.24 is valid.

Suppose � has a mobile edge e . If there is a strict monotone cycle then G is ascending,
and since G 6D BS.1; n/, it follows that jRLG.G/j D 1. Otherwise jS.�; e/j D 1,
which implies that jRLG.G/j D1.

Next suppose that � has no mobile edges. In particular, G is nonascending. By
Corollary 2.6, RLGC.G/ is connected by slide moves. Let e1; e2; : : : ; ek be the
geometric edges of � . Given any � 0 2 RLGC.G/, Corollary 3.24 implies that there
is a sequence of labeled graphs � D �0; �1; : : : ; �k D � 0 such that � i is in the slide
space S.� i�1; ei/ for each i . Since no � i has a mobile edge, these slide spaces are
all finite, and therefore RLGC.G/ is finite.

Remark 3.26 Since we have an algorithm to determine whether a given labeled
graph has a mobile edge (Remark 3.13), the finiteness criterion above can be checked
algorithmically.

Example 3.27 Figure 2 shows a labeled graph with modulus a nontrivial integer. For
this reason, the finiteness theorem of Forester [7] does not apply. There is only one
possible slide move, and the only slide afterwards is its reverse. It follows that there
are no mobile edges, by Remark 3.13. Hence this GBS group has only finitely many
reduced labeled graphs representing it.
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Figure 2: A GBS group with finite labeled graph space and integral modulus

As a consequence of Theorem 1.1, we have the following theorem about the finiteness
properties of the group of outer automorphisms of a GBS group. The proof is exactly
as in Clay [3, Theorem 75] or Levitt [13, Theorem 1.5]. Recall that a group is of type
F1 if it is the fundamental group of an aspherical cell complex having finitely many
cells in each dimension.

Theorem 3.28 If a GBS group G is represented by a labeled graph that does not have
any mobile edges, then Out.G/ is of type F1 .

Another application concerns the isomorphism problem for GBS groups.

Theorem 3.29 There is an algorithm which, given two labeled graphs, one of which
does not have any mobile edges, determines whether the corresponding GBS groups
are isomorphic.

Proof Let �; � 0 be reduced labeled graphs with corresponding GBS groups G;G0 ,
where � has no mobile edges. Remark 3.16 implies that the deformation space of � is
nonascending. Hence, by Corollary 2.6, reduced trees in this deformation space are
connected by slide moves (between reduced trees). Since RLG.G/ is finite (Theorem
1.1), it can be enumerated effectively, by performing all possible slide sequences,
exactly as in the proof of [7, Corollary 8.3]. Then G and G0 are isomorphic if and
only if the labeled graph � 0 is found.

4 Betti number one graphs

Given a nonelementary GBS group G , all labeled graphs � 2 RLG.G/ have the same
first Betti number b.�/, since this is simply the rank of the quotient of G by the
subgroup generated by the elliptic elements. Alternatively, collapse and expansion
moves induce homotopy equivalences of the underlying graph. Thus we also denote
this number b.G/. In this section we will only consider GBS groups G such that
b.G/D 1. As before, all GBS groups in this section are assumed to be nonelementary.

Algebraic & Geometric Topology, Volume 8 (2008)



2310 Matt Clay and Max Forester

Remark 4.1 Suppose � 2 RLG.G/ with b.�/D 1. If there is a strict monotone cycle
in � , then there is one which is embedded. To see this, note first that there is one
which is immersed (by Lemma 3.6). Since b.�/ D 1, the cycle is a covering of an
embedded cycle. Then since the final edge in a monotone cycle appears only once, the
cycle itself must be embedded.

Hence, we can determine algorithmically whether a given labeled graph � with b.�/D

1 contains a strict monotone cycle.

Proposition 4.2 Suppose � 2 RLG.G/ and b.�/ D 1. If � has a strict monotone
cycle and � 0 2 RLG.G/ then � 0 also has a strict monotone cycle.

Proof By Theorem 2.5 we only need to consider the case when � and � 0 are related
by a slide, induction or A ˙1 –move. If � and � 0 are related by an induction move,
then both contain strict ascending loops and hence both contain strict monotone cycles.
Also, if � and � 0 are related by an A ˙1 –move, then one of the labeled graphs contains
a strict ascending loop and the other contains a strict virtual ascending loop, hence both
contain a strict monotone cycle.

Now assume that � has an embedded strict monotone cycle .e0; : : : ; en; e/ and that
� 0 is obtained by sliding an edge f over an edge f 0 in � . Since we can assume that
the strict monotone cycle is embedded, ei ¤ ej ; xej for any i ¤ j . We have several
cases to consider depending on the configuration of f; f 0 with respect to the monotone
cycle. In all cases, it suffices to find an edge that can be slid into a loop, since it will
have the same (integral) modulus as .e0; : : : ; en; e/ (because b.�/D 1).

Clearly if f; xf … .e0; : : : ; en; e/, then this strict monotone cycle is also a strict monotone
cycle in � 0 .

If f D ei and f 0 ¤ xe , then .e0; : : : ; ei�1; f
0; ei ; : : : ; en; e/ is a strict monotone cycle

in � 0 . Likewise, if f D xei and f 0 ¤ e then .e0; : : : ; ei ; xf
0; eiC1; : : : ; en; e/ is a strict

monotone cycle in � 0 .

Since the strict monotone cycle is embedded, the only possible configurations of f; f 0

where f 2 fei ; xeig and f 0 2 fe; xeg are when f D e0 and f 0 D xe or f D xen and
f 0 D e . In the first case .e1; : : : ; en; e0/ is a strict monotone cycle in � 0 . To see
this note that e0 can slide over xe and xe can slide over e0 , and hence appropriately
chosen lifts to the Bass–Serre tree carry the same stabilizer. Then since xe can slide
over the path .e0; : : : ; en/, we have that xe0 can slide over .e1; : : : ; en/, after which it
becomes a virtual ascending loop. In the second case, with f D xen and f 0 D e , the
path .e0; : : : ; en/ is a strict monotone cycle in � 0 for similar reasons.
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The remaining cases of interest are when f 2 fe; xeg. If f D e , then .e0; : : : ; en; f
0; e/

is a strict monotone cycle in � 0 , by the following reasoning. For any strict monotone
cycle .e0; : : : ; en; e/ we have that �.xe/q.e0; : : : ; en/ is an integer, since this is the
label on xe after sliding over .e0; : : : ; en/. Also, �.e/ divides this integer since the
modulus of the cycle is .�.xe/=�.e//q.e0; : : : ; en/. In our situation �.f / divides �.e/,
and hence also �.xe/q.e0; : : : ; en/. So in � 0 the edge xe can slide over .e0; : : : ; en/ and
then over f .

If f D xe , then . xf 0; e0; : : : ; en; e/ is a strict monotone cycle in � 0 , since xe can slide
back over xf 0 and then over .e0; : : : ; en/.

In the case b.�/D 1, we now have a converse to the first statement of Lemma 3.6.

Corollary 4.3 If � 2 RLG.G/ satisfies b.�/D 1 then G is ascending if and only if
� has an embedded strict monotone cycle.

Proof If G is ascending, then there is a labeled graph � 0 2 RLG.G/ that contains a
strict ascending loop (which is a strict monotone cycle). By Proposition 4.2, � also
contains a strict monotone cycle. The converse is given by Lemma 3.6.

Remark 4.4 Note that the latter condition can be checked effectively by Remark 4.1.
Thus, when b.�/D 1, we can check algorithmically whether G is ascending. There is
no known condition for checking whether a GBS group is ascending in general.

Definition 4.5 A mobile edge that is not an ascending loop or the reverse of an
ascending loop is called an s–mobile edge (s stands for “slide”). Note that if b.�/D 1

and e is an ascending loop, then sliding e or xe over another edge always results in a
graph that is not reduced. Hence s–mobile edges are the only mobile edges that can
slide over another edge while staying inside RLG.G/. Given � 2 RLG.G/, let s.�/

be number of geometric s–mobile edges. By the following lemma, this number may
also be denoted s.G/.

Lemma 4.6 If �; � 0 2 RLG.G/ and b.�/D 1 then s.�/D s.� 0/.

Proof As before, we just need to verify this when � and � 0 are related by a slide,
induction or A ˙1 –move. For slide moves, the number of mobile edges is invariant
(by Corollary 3.15) and so is the number of ascending loops.

For the other moves, note that at least one of � or � 0 must be a single strict ascending
loop with trees attached. The s–mobile edges are exactly those which can be slid to
and around the loop. The result can be verified easily from this description.
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4.1 The nonmobile subgraph

Since we are assuming that b.�/D 1 for any � 2 RLG.G/, the image q.G/�Q� is
generated by a single rational number q D q.
 /, where 
 is an (oriented) embedded
cycle in � . We may assume that jqj> 1.

Let �non � � be the nonmobile subgraph, obtained from � by discarding the mobile
edges and any vertices incident to a strict ascending loop. Note that �non may be
disconnected, and may have isolated vertices. Let �1; : : : ; �k be the simply connected
components of �non . There is at most one component of �non not in this list, and this
only happens when G is nonascending.

In both of the examples of Figure 3, the nonmobile subgraph consists of the two vertices
of valence one; all edges are mobile, and the middle vertex is deleted.

Each �i carries a subgroup Gi of G , well defined up to conjugacy. These subgroups
and their conjugates will be called nonmobile subgroups.

For each geometric mobile edge fe; xeg, one of its orientations will be designated as
preferred. If e 2 
 then e is preferred. Otherwise, if e; xe 62 
 , we say e is preferred if
e separates o.e/ from 
 . Since b.�/D 1, exactly one of e; xe will have this property.

Lemma 4.7 For each simply connected component �i � �non , there is a unique
preferred mobile edge ei such that o.ei/ 2 �i . Furthermore, every s–mobile edge is ei

or xei for some i . Hence �non has exactly s.G/ simply connected components.

Proof There are two cases depending on whether �i intersects 
 . If �i intersects 

(which can happen if 
 contains an s–mobile edge), then since �i is simply connected,
there is a (preferred) mobile edge ei 2 
 such that o.ei/ 2 �i . There is at most one
other geometric mobile edge in 
 that is incident to �i . Its preferred orientation must
meet �i in its terminal vertex, since the edges in 
 are oriented coherently. For any
other preferred mobile edge e0 incident to �i , we have that �i separates e0 from 
 ,
and so �i contains t.e0/, not o.e0/.

If �i does not intersect 
 , then since b.�/ D 1, there is a unique preferred mobile
edge incident to �i , separating �i from 
 .

For the second statement, let e be a preferred s–mobile edge. Then o.e/ is not the
vertex of an ascending loop, and so o.e/ 2 �non . If o.e/ 62 
 then o.e/ 2 �i for some i .
If o.e/ 2 
 then e 2 
 , and hence all components of �non are simply connected.
Thus o.e/ 2 �i for some i . In either case, since o.e/ 2 �i , it follows that e D ei by
uniqueness.
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We will be looking carefully at the subgraphs �i and how they sit inside � . For this
we need the following definitions.

Definition 4.8 A pointed labeled graph is a triple y� D .�; yv; y�/ where � is a labeled
graph, yv 2 V .�/, and y� is a nonzero integer. It is reduced if � is reduced and
y� 6D ˙1. Let bRLG.G/ be the set of reduced pointed labeled graphs .�; yv; y�/ such that
� 2 RLG.G/.

We define an equivalence relation on bRLG.G/ via the following procedure. Given
.�; yv; y�/, adjoin a new distinguished edge e to � with o.e/D yv and label �.e/D y�
(the label �.xe/ is irrelevant). Perform any elementary deformation of this graph in
which e is never collapsed. In particular, no edge slides over e . Now let yv0 D o.e/,
y�0 D �.e/, and delete e to obtain the labeled graph � 0 . If � 0 is reduced and y�0 6D ˙1,
we declare the pointed labeled graphs .�; yv; y�/ and .� 0; yv0; y�0/ to be equivalent.

As always, labeled graphs are considered modulo admissible sign changes, and this
applies to pointed labeled graphs as well. In particular, an admissible sign change
may be performed on the distinguished edge, and so .�; yv; y�/ is always equivalent to
.�; yv;�y�/. Alternatively, this equivalence can be seen by performing an admissible
sign change on every vertex and edge of � .

Given y� 2 bRLG.G/ let bRLG.y�/� bRLG.G/ be the equivalence class containing y� . It
is called the pointed labeled graph space of y� .

Remark 4.9 It is interesting to compare bRLG.y�/ with RLG.�/. For example, let
y� D .�; yv; y�/ where � is the labeled graph of Figure 2, yv is the upper left vertex, and
y�D 8. Then jbRLG.y�/j D1 even though jRLG.�/j<1, because the distinguished
edge can slide around the cycle in the counterclockwise direction, increasing y�. Indeed,
for any labeled graph � with a nontrivial integral modulus, there will be pointed labeled
graphs y� with jbRLG.y�/j D1, by similar reasoning. However, if � has no nontrivial
integral moduli, then we have the following result.

Proposition 4.10 Suppose G has no nontrivial integral moduli. Then

(a) jbRLG.y�/j<1 for every y� 2 bRLG.G/; and

(b) there is an algorithm which, given y�; y� 0 2 bRLG.G/, determines whether they
are in the same pointed labeled graph space.

Proof Given y� D .�; yv; y�/ let �0 be the reduced labeled graph obtained from �

by adjoining a new edge e and a new vertex t.e/, with o.e/ D yv , �.e/ D y�, and
�.xe/D 2. Let G0 be the new GBS group. This operation does not change the image
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of the modular homomorphism, so G0 has no nontrivial integral moduli. Now observe
that bRLG.y�/ embeds into RLG.G0/, by identifying the distinguished edge with e .
Conclusion (a) follows because RLG.G0/ is finite, by [7, Theorem 8.2].

For (b) one considers elementary deformations of �0 in which e is never collapsed.
By Corollary 2.6, if � 0

0
is related to �0 by such a deformation, then there is a sequence

of slide moves from �0 to � 0
0

in which no edge ever slides over e . Now, given y� and
y� 0 , start with �0 and perform all possible sequences of slide moves, never sliding an
edge over e . All labeled graphs thus obtained yield pointed labeled graphs in bRLG.y�/

(by recording o.e/ and �.e/ and deleting e ). Moreover every pointed labeled graph in
bRLG.y�/ will be found, since these slides take place in RLG.G0/, which is finite.

Definition 4.11 Recall that given � 2RLG.G/ with b.�/D 1, each simply connected
component �i of �non has a preferred mobile edge ei associated to it, with o.ei/ 2 �i .
Define y�i to be the pointed labeled graph .�i ; o.ei/; �.ei//. This data will also be
denoted .�i ; yvi ; y�i/. Note that y�i is reduced, because � is, and so y�i 2 bRLG.Gi/ for
each i .

Theorem 4.12 Suppose �; � 0 2 RLG.G/ and b.�/D 1. Then

(a) � and � 0 define the same nonmobile subgroups of G ; and

(b) for each nonmobile subgroup Gi , the corresponding pointed labeled graphs y�i

and y� 0i are equivalent in bRLG.Gi/.

Proof We may assume that � and � 0 are related by a slide, induction, or A –move.

First consider an induction move. Both labeled graphs have ascending loops, where
the move takes place, and note that every edge incident to an ascending loop is mobile.
Hence the nonmobile subgraphs and subgroups do not change, nor do the labels �.ei/

(since o.ei/ is not the vertex of the ascending loop).

Next suppose that � 0 is obtained from � by an A –move, exactly as pictured in
Definition 2.3. The virtually ascending loop in � with labels .k; k`m/ is ei for
some i . Then the vertex of the loop is yvi and y�i D k . After the A –move, the newly
created edge with labels .k; `/ becomes ei , and the subgraph �i is unchanged. It is
still the case that y�i D k , and yvi has not moved. All other subgraphs �j are also
unchanged. Hence Gi DG0i and y�i D

y� 0i for all i .

Now suppose that � 0 is obtained from � by sliding e over e0 . To prove (a) it suffices
to show that the simply connected components of �non contain the same edges and
vertices before and after the slide move. If e is mobile then �non does not change at all,
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and (a) holds. So assume that e is nonmobile, which implies that e0 is also nonmobile,
by Lemma 3.17. Now the slide move takes place entirely within �non , and induces a
homotopy equivalence �non ' �

0
non of underlying graphs. Thus the simply connected

components are preserved and (a) holds.

Now consider part (b). If e and e0 are nonmobile then the preferred mobile edges ei

do not change, nor do o.ei/ and �.ei/. Thus y�i and y� 0i are equivalent in bRLG.Gi/. If
e is mobile then it must be an s–mobile edge (cf Definition 4.5) and so e is ei or xei

for some i . If e D xei then o.ei/ and �.ei/ do not change, and y�i D
y� 0i for all i . Now

suppose that e D ei . If e0 is nonmobile and is in �i for some i then y�i and y� 0i are
equivalent in bRLG.Gi/. If e0 is nonmobile and not in any �i then y�i D

y� 0i for each i .

Lastly, suppose that e D ei and e0 is mobile. Note that o.e/ is not the vertex of an
ascending loop, since e is s–mobile and preferred. Hence e0 is also an s–mobile
edge. It is not preferred because no two preferred mobile edges have a common initial
vertex. Thus e0 D xej for some j 6D i . Note that before the slide, o.e/ D o.e0/ 2 �i

and t.e0/ 2 �j , and after the slide, o.e/ D t.e0/ 2 �j and o.e0/ 2 �i . Thus, by the
uniqueness property of Lemma 4.7, ei becomes ej and ej becomes xei . We also have
yvi D yv

0
i and y�i D

y� 0i for all i .

The only remaining issue is the labels y�i ; y�j and y�0i ; y�
0
j . We will show that �.e/D

˙�.e0/, which implies that y�i D˙
y�0i and y�j D˙

y�0j , completing the proof. There are
two cases.

If e0; xe0 62 
 , then since this is a mobile edge, the geometric edge fe0; xe0g can slide to
and around 
 in the positive direction. Since e0 separates t.e0/ from 
 , the endpoint
t.e0/ can never meet 
 after sliding fe0; xe0g. Hence it is e0 , and not xe0 , which slides to
and around 
 . Such a slide sequence includes a slide of e0 over e (whether e 2 
 or
e 62 
 ). Also, just before this particular slide, the label �.e0/ has not changed, since
o.e0/ has remained within a subtree of � until this point. Hence �.e/ divides �.e0/.
On the other hand, since e can slide over e0 , we have that �.e0/ divides �.e/.

If xe0D ej 2 
 then write 
 as .ei ; 
0; ej /. Note that jS.�; e0/j<1 since ��fe0; xe0g is
a tree. Hence e0 is part of a strict monotone cycle, which we may take to be embedded,
and must then be either .ei ; 
0; ej / or .x
0; xei ; xej /. The second case does not occur
since this cycle has modulus 1=q , which is not in Z�f˙1g. So xej D e0 can slide over
ei D e , and �.e/ divides �.e0/. But e can slide over e0 , and so �.e0/ divides �.e/.

Remark 4.13 It can be shown that conclusion (a) holds even without the assumption
that b.�/ D 1. More specifically, all three types of moves preserve the connected
components of the nonmobile subgraph. (Recall from Remark 3.16 that the set of
nonmobile edges is preserved by the three moves.)
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Definition 4.14 We may now define an invariant for nonelementary GBS groups G

with b.G/D 1. Choose � 2 RLG.G/ and let P.G/ be the collection of pointed labeled
graph spaces fbRLG.y�i/g indexed by the conjugacy classes of nonmobile subgroups of
G . By Theorem 4.12, P.G/ is independent of the choice of � .

Moreover P.G/ is computable: given labeled graphs representing G and G0 , one
may write down representatives for the collections P.G/ and P.G0/, and determine
algorithmically whether P.G/D P.G0/, by Proposition 4.10.

4.2 Ascending Betti number one GBS groups

Let G be an ascending GBS group with b.G/D 1. Recall that q.G/�Q� is generated
by q D q.
 / where 
 is an (oriented) embedded cycle. Since G is ascending, q 2 Z
and jqj > 1. Let F.q/�Q� be the subgroup generated by the integral factors of q .
We will define an invariant �.G/ 2 .Q�=hqi/s=F.q/, where s D s.G/ and F.q/ acts
diagonally on the group .Q�=hqi/s .

Given a labeled graph in � 2 RLG.G/, let �i and Gi be defined as in Section 4.1, and
let e1; : : : ; es be the preferred mobile edges defined by Lemma 4.7. Also choose a
mobile edge e 2 
 , called the reference edge. This edge may or may not be among the
edges ei , depending on whether the strict monotone cycle is an ascending loop. Based
on e , we will define an element �i 2Q�=hqi for each Gi , and the resulting s–tuple
will represent the invariant �.G/.

First we claim that there are lifts ze; ze1; : : : ; zes in the Bass–Serre tree of � such that
Gzei
�Gze for each i . Note that we are free to perform slide moves without affecting

this claim. If e is a strict virtually ascending loop, then all mobile edges in � can be
slid to be adjacent to e . Then lifts can be chosen so that t.zei/D o.ze/ for each i , which
implies that Gzei

�Gze . Otherwise, if e is not a virtually ascending loop, then it is part
of a strict monotone cycle, and it can be made into a virtually ascending loop by slide
moves. Now choose lifts as before.

We define �i D ŒGze WGzei
�. Note that a different choice of zei defines the same element

of Q�=hqi, because the two lifts are related by an element of G with modulus a power
of q . A different choice of ze also makes no difference, by transport of structure. Now
define �.�/ 2 .Q�=hqi/s=F.q/ to be the element represented by .�1; : : : ; �s/.

Lemma 4.15 The element �.�/ 2 .Q�=hqi/s=F.q/ is independent of the choice of
reference edge.

Proof Consider � 0.�/ defined using a reference edge e0 2 
 instead of e . We will
show that there are lifts ze; ze0 such that Gze0 � Gze and ŒGze W Gze0 � is a factor of q .
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Then the s–tuples .�1; : : : ; �s/; .� 01; : : : ; �
0
s/ 2 .Q

�=hqi/s differ by this factor, and are
equivalent in .Q�=hqi/s=F.q/.

Reversing orientations of e; e0 if necessary, the cycle 
 can be written as .˛; e; ˇ; e0/.
Both .˛; e; ˇ; e0/ and .ˇ; e0; ˛; e/ are strict monotone cycles, because e and e0 are
mobile. Now �.e/ divides q.˛/�.xe0/, as .˛; e; ˇ/ is an xe0–edge path. Similarly �.e0/
divides q.ˇ/�.xe/. Hence the modulus q can be written as the product of two integers:

q D
q.˛/�.xe0/

�.e/

q.ˇ/�.xe/

�.e0/
:

Lifting the path .e0; ˛; e/ to .ze0; z̨; ze/ we obtain ze and ze0 with Gze0 � Gze . Since
xe0 can slide over .˛; e/, we have ŒGze W Gze0 � D jq.˛/�.xe0/=�.e/j. Hence this index
divides q .

Next we show that �.�/ is an invariant of G , and hence may be denoted �.G/.

Proposition 4.16 For any two graphs �; � 0 2 RLG.G/ we have �.�/D �.� 0/.

Proof By Theorem 2.5, we may assume that � 0 is obtained from � by a slide,
induction, or A ˙1 –move. We consider the case of a slide move first.

Since b.�/D 1, the slide move does not create or remove strict ascending loops, and
so the set of s–mobile edges is unchanged. We may also choose a reference edge
e 2 � that remains on the embedded circuit in � 0 . Thus, the collection of edges
e; e1; : : : ; es and their lifts, used to define � , can be chosen to agree for � and � 0 . The
only change to be accounted for in passing from � to � 0 is that the correspondence
between s–mobile edges and conjugacy classes of nonmobile subgroups may change.
That is, the indexing of the entries of �.�/ may change.

Recall from the proof of Theorem 4.12 that if one s–mobile edge slides over another,
then their indices and preferred orientations may be exchanged. However, it was shown
that whenever this occurs, the labels of the two edges at their common vertex are the
same, up to sign. Thus, choosing adjacent lifts zei and zej , we have Gzei

D Gzej
, and

therefore �i D �j . It follows that �.�/D �.� 0/.

If � and � 0 differ by an induction move, then there are strict ascending loops e 2 �

and e0 2 � 0 along which the move occurs. These edges will be the reference edges
for � . The s–mobile edges for � and � 0 will be the same, with the same indexing,
since the move does not affect the nonmobile subgraph. Thus we may choose the same
lifts zei for � and for � 0 . We may also choose the lifts ze and ze0 so that Gze �Gze0 and
ŒGze0 WGze � is a factor m of q . (Even though ze and ze0 are in different trees, this can be
arranged.) Then �i.� 0/Dm�i.�/ for all i , and so �.� 0/D �.�/.
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Now suppose that � 0 is obtained from � by an A �1 –move, exactly as pictured in
Definition 2.3. In � , the edge with labels ` and k is an s–mobile edge, say e1 , with
initial vertex v on the right. The loop is the reference edge e . Choose a lift ze1 and
let zv be its initial vertex. The A �1 –move does not affect zv , and the loop e0

1
2 � 0 has

a lift ze0
1

with initial vertex zv , with the same stabilizer as ze1 . Note that e0
1

is indeed
the s–mobile edge in � 0 corresponding to G1 . The other nonmobile subgraphs and
s–mobile edges are unchanged. Thus, the stabilizers of lifts of s–mobile edges may be
chosen to agree for � and � 0 . What has changed, however, is the reference edge. The
reference edge for � 0 is e0

1
, whose lift ze0

1
has stabilizer Gze1

. The reference edge for
� is the loop e , which has a lift ze adjacent to ze1 , with Gze1

�Gze and ŒGze WGze1
�D `.

Now �i.�
0/D `�i.�/ for all i , and �.� 0/D �.�/, since ` divides q .

Next we define normal forms for the labeled graphs under discussion.

Definition 4.17 Suppose � is a reduced labeled graph with first Betti number one,
in an ascending deformation space. We say that � is in normal form if it has a strict
ascending loop, every mobile edge is adjacent to this loop, and every label (except
possibly the label q on the loop) is positive. Note that if � is in normal form, then the
s–mobile edges are exactly the edges adjacent to the loop, and �.G/ is represented by
the s–tuple .�.xe1/; : : : ; �.xes//.

Every � with b.�/ D 1 in an ascending deformation space can be put into normal
form, as follows. First, there is a strict monotone cycle, which can be made into a strict
virtually ascending loop by slide moves. If necessary, this can be made into a strict
ascending loop by an A –move. Then all s–mobile edges can be slid to be adjacent
to the loop. Lastly, since b.�/D 1, the labels (other than q ) can be made positive by
admissible sign changes.

Example 4.18 Figure 3 shows two reduced labeled graphs in normal form representing
groups G , G0 . In both cases the invariant � is the equivalence class of the pair
.1; 1/ 2 .Q�=h2i/2 . The invariant P.G/ is represented by a pair of pointed labeled
graphs, each consisting of a single vertex, with distinguished labels 2 and 2. On the
other hand, P.G0/ is represented by two vertices with distinguished labels 2 and 4.
Thus, we conclude that G and G0 are not isomorphic. Note that, simple as they
are, these two groups are not covered by any of the previously known results on the
isomorphism problem (including Theorem 3.29).

Theorem 4.19 Let G , G0 be ascending Betti number one GBS groups such that
s.G/ D s.G0/ and q.G/ D q.G0/. Then G and G0 are isomorphic if and only if
their nonmobile subgroups are isomorphic, and under this correspondence between
conjugacy classes of nonmobile subgroups, we have �.G/D �.G0/ and P.G/D P.G0/.
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Figure 3: Two nonisomorphic GBS groups

Proof Let .�; �/ and .� 0; �0/ be reduced labeled graphs in normal form representing
G and G0 respectively. The “only if” direction was proved in Theorem 4.12 and
Proposition 4.16. For the other direction we will show that � and � 0 are related by a
deformation (considered as unmarked labeled graphs), which implies that G ŠG0 .

Let G1; : : : ;Gs be the common nonmobile subgroups of G and G0 , and let �i and � 0i
be the corresponding components of �non and � 0non . Then since P.G/D P.G0/, the
pointed labeled graphs y�i and y� 0i are equivalent in bRLG.Gi/. Hence, using the mobile
edge ei as the distinguished edge for y�i , there is a deformation of � , supported in
y�i [ ei , making y�i isomorphic to y� 0i as pointed labeled graphs. Thus, we may now
assume that y�i and y� 0i agree for all i .

Since the graphs are in normal form, the only possible difference between � and � 0 is
in the labels �.xei/ and �0.xei/. Since �.G/D �.G0/, the s–tuples .�.xe1/; : : : ; �.xes//

and .�0.xe1/; : : : ; �
0.xes// are equivalent in .Q�=hqi/s=F.q/. By performing induction

moves, the s–tuples can be made equivalent in .Q�=hqi/s . Now �.xei/ and �0.xei/

differ by a factor of a power of q . By slide moves of xei over the ascending loop or its
reverse, these labels can be made to agree for all i .

4.3 Nonascending Betti number one GBS groups

Let G be a nonascending GBS group with b.G/ D 1. Suppose also that G is not
unimodular, and that the modular group q.G/ is generated by an integer q . (Otherwise,
we are in the situation covered by [7], or alternatively, Theorem 3.29.) For now, we
will also assume that q is positive. Let the unique embedded cycle 
 � � be oriented
so that q.
 /D q > 1.

An edge has infinite slide space if and only if it can slide to 
 and around it at least
once in the positive direction. If it can slide once all the way around, then it can do so
infinitely many times, since its label is multiplied by q each time. No edge can slide
infinitely many times around in the negative direction, since no integer is infinitely
divisible by q .
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Since there are no strict monotone cycles, 
 does not contain any mobile edges, and
hence is contained in a component �0 of �non . This is the unique component of �non

that is not simply connected.

Definition 4.20 Let � be a reduced labeled graph with b.�/D 1 in a nonascending,
nonunimodular deformation space, with modulus a positive integer. Let 
 � � be the
unique embedded cycle, oriented so that q.
 / > 1. We say that � is in normal form if
its labeling is positive and every mobile edge is adjacent to 
 , and cannot slide along

 in the negative direction. Clearly, any � can be put into normal form, by sliding the
mobile edges to and along x
 as far as they will go.

Theorem 4.21 Let G be a nonascending, nonunimodular GBS group with b.G/D 1

and q.G/ generated by q 2 Z>0 . Then RLG.G/ contains only finitely many labeled
graphs in normal form, and these can be enumerated effectively from any � 2 RLG.G/.

Proof Suppose � 0 2 RLG.G/ is in normal form. Let f1; : : : ; fk represent the geo-
metric nonmobile edges of � . By Corollary 3.24 there are sequences of slide moves

� D �0
! �1

! � � � ! �k
! � 0

such that the moves � i�1 ! � i are slides of fi ; xfi only, and the moves �k ! � 0

are slides of mobile edges only. Thus we have � i 2 S.� i�1; fi/ for each i , and since
each slide space S.� i�1; fi/ is finite, there are only finitely many possibilities for the
labeled graph �k . These graphs can be found effectively by searching the slide spaces
S.� i�1; fi/. It now suffices to consider the case when � D �k , ie when � and � 0 are
related by slide moves of mobile edges only.

The only ambiguity now in determining � 0 is in the positioning and labels of the mobile
edges, since the nonmobile subgraphs of � and � 0 agree. Note that every mobile
edge joins �0 to another component �i (since � is in normal form). Let Gi be the
nonmobile subgroup corresponding to �i .

Fix a vertex v 2 
 and a lift zv in the Bass–Serre tree for � . Every mobile edge xei

may be slid (in the positive direction) along 
 to v , after which the label on xei is
ni D ŒGzv WGzv \ .Gi/

g� for some g 2G . Modulo q , this index is independent of g , so
Œni � 2Q�=hqi depends only on � and the choice of v .

We claim that in fact, ni itself depends only on the choice of v . Namely, no other
representative qmni of Œni � (m 2 Z) has the property that an edge e0 at v with label
qmni can slide around 
 in the positive direction but not in the negative direction. To
see this, slide the edge with smaller label jmj times forward, so the two labels will
agree. But then the other edge could have been slid around 
 in the negative direction.
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Now, once ni is known, the edge xei can be slid back to its original position in normal
form. This position and the resulting label on xei are determined by ni . Hence, for any
labeled graph in normal form obtained from � by sliding mobile edges only, the labels
and initial endpoints of xei are uniquely determined.

It remains to determine the initial vertices o.ei/ and labels �0.ei/ in � 0 . The pointed
labeled graphs y�i and y� 0i have the same underlying labeled graphs, and are equivalent in
P.Gi/. Thus, all possible initial vertices yv0i D o.ei/ and labels y�0i D �

0.ei/ are obtained
by sliding the initial endpoint of ei within �i , by Corollary 2.6. Since �i is simply
connected, this slide space is finite and can be searched effectively (cf Proposition
4.10).

We can now prove Theorem 1.2. Recall that this theorem solves the isomorphism
problem in the case where one of the labeled graphs has first Betti number at most one.

Proof of Theorem 1.2 Let � and � 0 be labeled graphs defining GBS groups G and
G0 , where b.�/6 1. If q.G/ is not generated by an integer then the algorithm of [7,
Corollary 8.3] determines whether G ŠG0 . Hence we may assume that b.�/D 1 and
q.G/ is generated by q 2 Z with jqj > 1. We may also assume that b.� 0/D 1 and
q.G0/D q.G/, since otherwise G 6ŠG0 . Moveover, we may assume that q is positive,
by Lemma 2.7, since the orientation homomorphisms of � and � 0 agree.

Now make both graphs reduced by performing collapse moves, and check whether �
and � 0 are ascending (cf Remark 4.4). If one is ascending and the other is not, the
groups are not isomorphic. If both are ascending, then put both into normal form and
verify that s.�/D s.� 0/ (if not, then G 6Š G0 ). Then identify the subgraphs �i , � 0i
and consider permutations � 2 Ss . For each permutation, check whether Gi ŠG0

�.i/

for all i (these GBS groups are unimodular, so they can be compared). If so, call �
an admissible permutation and then re-index the components of � 0non using � , so that
Gi ŠG0i for all i . Evaluate and compare the invariants �.G/; �.G0/ and P.G/;P.G0/,
using Proposition 4.10. By Theorem 4.19, G and G0 are isomorphic if these invariants
agree. If the invariants disagree for every admissible permutation, then G 6Š G0 , again
by Theorem 4.19.

If both graphs are nonascending, then put them into normal form. Using Theorem 4.21,
enumerate from � all labeled graphs in RLG.G/ in normal form. Then G ŠG0 if and
only if � 0 is on this list.
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