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Some results on vector bundle monomorphisms

DACIBERG L GONÇALVES

ALICE K M LIBARDI

OZIRIDE MANZOLI NETO

In this paper we use the singularity method of Koschorke [2] to study the question
of how many different nonstable homotopy classes of monomorphisms of vector
bundles lie in a stable class and the percentage of stable monomorphisms which are
not homotopic to stabilized nonstable monomorphisms. Particular attention is paid
to tangent vector fields. This work complements some results of Koschorke [3; 4],
Libardi–Rossini [7] and Libardi–do Nascimento–Rossini [6].

57R90; 57R25

1 Introduction

For a< n let ˛a and ˇn be vector bundles of dimension a and n, respectively, over a
closed smooth connected n-dimensional manifold M . For simplicity they are denoted
by ˛ and ˇ , respectively. The following two related problems have been considered
by several authors. The first one is to know if there is a stable (resp. nonstable)
monomorphism between the vector bundles ˛ and ˇ . This is a quite general problem,
which has been extensively studied. In particular it includes the problem of the span of
a manifold (the maximal number of vector fields over a manifold which are linearly
independent over every point). Although we are not particularly concerned with this
problem here, we would like to point out the following relevant result by Koschorke
[4, Theorem 1] for the problem above. He gives a complete answer to the question of
existence of a stable (nonstable) monomorphism from ˛ to ˇ.˛˚ "l to ˇ˚ "l ; l > 0/

in the so-called metastable range n> 2a, in spite of the fact that it is not an easy task
to verify the conditions on which the answer is based, even for aD 1; 2: The second
problem is: whenever there is a stable (resp. nonstable) vector bundle monomorphism
from ˛ to ˇ , find how many stable (resp. nonstable) monomorphisms there are, and the
relation between them. In order to study this problem, we recall Koschorke [2, Theorem
4.14], that there is a bijection between the set of homotopy classes of monomorphisms
and the normal bordism group �a.M�P1Iˆ/ in the stable case (resp. �a.P .˛/Iˆ1/

in the nonstable case), for n> 2aC 1. Here P .˛/ is the projectification of the vector
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bundle ˛ , and ˆ D �˝ p�
1
.ˇ � ˛/� p�

1
�M ; ˆ1 D �˝ p�.ˇ � ˛/� p��M , which

we denote simply by �˝ .ˇ�˛/� �M , are virtual vector bundles over M �P1 and
P .˛/, respectively, where p1W M �P1!M and pW P .˛/!M are the projections.
The line bundle � in the case of ˆ is the pullback by p2 of the canonical line bundle
over P1 and in the case of ˆ1 denotes the canonical line bundle over P .˛/.

Then we have the stabilizing homomorphism

staW �a.P .˛/Iˆ1/ �!�a.M �P1Iˆ/;

where the cardinalities of the kernel and cokernel of this homomorphism measure,
respectively, the number of different homotopy classes of nonstable monomorphisms,
which stabilize to the same homotopy class of stable monomorphisms, and the per-
centage of stable monomorphisms which are not homotopic to (stabilized) nonstable
monomorphisms. The second problem has been studied by Koschorke [4] for the case
aD 2, n odd, by Libardi and Rossini [7], for the nonstable case aD 2, n even and
H1.M IZ/D 0 and by Libardi, Nascimento and Rossini [6], for the stable case, aD 2

and n odd.

In this paper we study the kernel and the cokernel of sta in the cases aD 1; n> 3 and
aD 2; n> 5 and even, which complements some results of [4; 7] and [6].

Throughout this paper we will make use of the auxiliary virtual vector bundle ˆ0 D

�˝p�
1
ˇ�p�

1
�M , which we denote simply by �˝ˇ��M , over M�P1 , �Dˇ�˛��M

and of its orientation line bundle �� over M .

We denote �W H�.X I zZ/!H�.X IZ2/ the modulo two reduction homomorphism of
the integral local coefficient zZ and we point out that for aD 1, P .˛/DM and the
virtual vector bundle ˆ1 over P .˛/DM becomes ˛˝ˇ� �M .

We state our main results.

Theorem 1.1 Let aD 1, n> 3 odd and suppose there is a monomorphism u0W ˛ ,!ˇ

over M . Then the cokernel coker st1 is isomorphic to Z2 and the kernel ker st1 is
either zero or isomorphic to Z2 .

The ker st1 is zero if one of the conditions below holds.

(a1 ) w2.ˆ1/Œ�.H2.M I zZ�//�¤ 0;

(a2 ) w2.ˆ1/D 0 and n� 1.4/ and w1.˛/D w1.ˇ/;

(a3 ) w2.ˆ1/D 0 and n� 3.4/; w1.M /D 0 and .w1.˛/D 0 or w1.ˇ/D 0/.

The ker st1 ' Z2 if one of the conditions below holds.
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(b1 ) w2.ˆ1/D 0 and n� 1.4/ and w1.˛/¤ w1.ˇ/;

(b2 ) w2.ˆ1/D 0 and n� 3.4/ and w1.M /¤ 0.

Denote by jX j the cardinality of the set X and �0 D ˇ� �M a virtual vector bundle
over M . For jH1.M I zZ�0

/j finite, we define k D k.˛; ˇ/; such that jH1.M IZ2/j �

j ker st1 j D k � jH1.M I zZ�0
/j. Therefore j ker st1 j is determined by the number k . We

state the next result in terms of k .

Theorem 1.2 Let a D 1, n > 3 be even and suppose there is a monomorphism
u0W ˛ ,! ˇ over M .

Then, coker st1 D 0 if w1.ˇ/D w1.M / and coker st1 ' Z2 if w1.ˇ/¤ w1.M /.

(a) If jH1.M I zZ�0
/j is infinite, j ker st1 j is infinite.

(b) If jH1.M I zZ�0
/j is finite then j ker st1 j is determined by k as follows:

(b1 ) For w2.ˆ1/Œ�.H2.M I zZ�//�¤ 0, k D 1 if w1.ˇ/D w1.M / and k D 2 if
w1.ˇ/¤ w1.M /,

(b2 ) For w2.ˆ1/ D 0 and n � 0.4/, k D 2 if w1.ˇ/ D w1.M / and k D 4 if
w1.ˇ/¤ w1.M /,

(b3 ) For w2.ˆ1/D0 and n�2.4/, kD1 if w1.ˇ/Dw1.M / and .w1.M //2D

0 D w1.˛/, k D 2 if w1.ˇ/ ¤ w1.M / and w1.ˇ/w1.M / D 0 D w1.˛/,
k D 2 if w1.ˇ/D w1.M / and .w1.M //2 ¤ .w1.˛//

2 , k D 4 if w1.ˇ/¤

w1.M / and .w1.˛//
2 ¤ w1.ˇ/w1.M /.

In the special case of the tangent vector fields, ie, when ˛ is the trivial line bundle and
ˇ is the tangent bundle �M of M , the second Stiefel–Whitney class w2.ˆ1/ is zero.
Then we obtain the following consequences from the two theorems above.

For n odd, we have:

(a) coker st1 ' Z2 ,

(b1 ) if w1.M /D 0, then ker st1 D 0 and

(b2 ) if w1.M /¤ 0 then ker st1 ' Z2 .

For n even, we have:

(a) coker st1 D 0,

(b) if jH1.M IZM /j is infinite, where ZM is the Z-local system given by the
orientation of the manifold M , j ker st1 j is infinite, otherwise

(b1 ) k D 2 if n� 0.4/ or (n� 2.4/ and .w1.M //2 ¤ 0/ and
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(b2 ) k D 1 if n� 2.4/ and .w1.M //2 D 0.

Now let aD 2 and n even. Recall that the case n odd has been studied in [4].

Theorem 1.3 Let a D 2, n > 5 be even and suppose there is a monomorphism
u0 W ˛ ,! ˇ over M n . Assume that one of conditions below is valid.

w2.�0/Œ�.H2.M I zZ�0
//� ¤ 0 or .w1.ˇ/ ¤ 0 for n � 0.4/ and w1.M / ¤ 0 for n �

2.4//:

Let A be the subset of H1.M I zZ�0
/ given by

fz j 8y 2H 1.M IZ2/;y.�.z//D

.yw2.˛//�.c3/Cyw1.ˇ� �M /.c2/; c3 2H3.M I zZ�/; c2 2H2.M IZ2/g;

then

(a1 ) coker st2 ' Z2 if also w1.ˇ/¤ w1.M /,

(a2 ) coker st2 ' 0 if also w1.ˇ/D w1.M / and w2.˛/�.H2.M I zZ˛//D 0,

(a3 ) coker st2 ' Z if also w1.ˇ/D w1.M / and w2.˛/�.H2.M I zZ˛//¤ 0 and

(b) ker st2 'H1.M I zZ�0
/=A˚Z2; if also w2.ˆ/D 0:

Corollary 1.4 In the special case of tangent plane fields, ie when ˛ is the trivial
bundle, ˇ is the tangent bundle of M and w1.M / ¤ 0 then st2 is surjective and
ker st2 'H1.M IZ/˚Z2:

2 Preliminaries and notations

Given ˛a and ˇn vector bundles over M of dimension a and n, denoted by ˛

and ˇ , we will consider the virtual bundles ˆ D �˝ p�
1
.ˇ � ˛/ � p�

1
�M ; ˆ1 D

� ˝ p�.ˇ � ˛/ � p��M , which we denote simply by � ˝ .ˇ � ˛/ � �M , virtual
vector bundles over M �P1 and P .˛/, respectively, where p1W M �P1 !M ,
pW P .˛/!M are the projections. The line bundle � in the case of ˆ is the pullback by
p2 of the canonical line bundle over P1 and in the case of ˆ1 denotes the canonical
line bundle over P .˛/.

We recall that for aD 1, P .˛/DM and the virtual vector bundle ˆ1 over P .˛/DM

becomes ˛˝ˇ� �M . Throughout this paper we will make use of the auxiliary virtual
vector bundle � D ˇ � ˛ � �M and of its orientation line bundle �� over M . Let
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xDw1.�/ and ˆ0D �˝p�
1
ˇ�p�

1
�M , which we denote simply by �˝ˇ��M , over

M �P1 which we many times denote simply M1 .

For aD 1, we have

w1.ˆ/D .nC 1/xCw1.�/

w2.ˆ/D

8̂̂̂̂
<̂
ˆ̂̂:

x.w1.ˇ/Cw1.˛//Cw2.�/; n� 1.4/

xw1.M /Cw2.�/; n� 2.4/

x2Cx.w1.ˇ/Cw1.˛//Cw2.�/; n� 3.4/

x2Cxw1.M /Cw2.�/; n� 0.4/

w1.ˆ1/D nw1.˛/Cw1.ˇ/Cw1.M /

w2.ˆ1/D

8̂̂̂̂
<̂
ˆ̂̂:
w1.˛/w1.ˇ/C .w1.˛//

2Cw2.�/; n� 1.4/

w1.˛/w1.M /C .w1.˛//
2Cw2.�/; n� 0.4/

w1.˛/w1.ˇ/Cw2.�/; n� 3.4/

w1.˛/w1.M /Cw2.�/; n� 2.4/

w1.ˆ0/D nxCw1.ˇ� �M /:

For aD 2 and n even, we have

w1.ˆ/D w1.�/D w1.ˇ/Cw1.˛/Cw1.M /

w2.ˆ/D

(
x.w1.M /Cw1.�//Cw2.�/; if n� 2.4/

x2Cx.w1.M /Cw1.�//Cw2.�/ if n� 0.4/

w2.�/D w2.ˇ/Cw2.˛/Cw
2
1.˛/Cw1.ˇ/w1.˛/Cw2.M /Cw2

1.M /

Cw1.ˇ/w1.M /Cw1.˛/w1.M /:

Given a vector bundle �` , of dimension `, we denote �� D ƒ`� the corresponding
orientation line bundle. If �K is the tangent bundle of a smooth manifold K we also
write �K for ��K . If ˆ is a virtual vector bundle, �ˆ denotes the orientation line
bundle determined by w1.�ˆ/ D w1.ˆ/. For more details see Randall–Daccach [8,
Section III.6].

Let Z� (or Zw1.�/ ) denote the group Z if w1.�/D 0 or Z2 if w1.�/¤ 0, and let zZ�
(or zZw1.�/ ) denote the twisted integer coefficient system associated to the orientation
line bundle �� .

For a topological space X and a virtual bundle ˆDˆC�ˆ� over X , let S�k.X I �ˆ/

be the group of bordism classes ŒK;g; or �, where K is a smooth closed k dimensional
manifold, gW K!X is a continuous map and or W �K ! g�.�ˆ/ is an isomorphism.
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We also consider the map fk W �k.X Iˆ/!S�k.X I �ˆ/ which forgets the vector bundle
isomorphism �K ˚g�.ˆC/

'
�! g�.ˆ�/ and retains the orientation information.

If X is connected we have that �0.X I �/' Z� ' S�0.X I �� /.

For each n, the homomorphism

�� W �n.X Iˆ/!�n�`.X IˆC �/

is defined by considering

w D
�
W n g
�!X; hW �W ˚g�.ˆC/

'
�! g�.ˆ�/

�
in �n.X Iˆ/, Zn�` � W n (the zero set of a generic section of the vector bundle
g�.�/ over W n ), and the isomorphism �.Zn`;W n/' g�.�/jZn�` by the formula

�� .w/D
�
Zn�` gjZ

�!X; �Z ˚gj�.ˆCC �/
'
�! gj�.ˆ�/

�
:

The homomorphism �� and its weak analogue S�� W S�n.X I �ˆ/! S�n�`.X I �ˆC� /

and the homomorphism sta and its weak analogue SstaW S�a.P .˛/I �ˆ1
/! S�a.M �

P1I �ˆ/ fit into the long exact Gysin sequences (1) and (2) below:

� � � �!�j .M
1
Iˆ/

�jC1

�! �j�a.M
1
Iˆ0/

ı0
j

�!�j�1.P .˛/Iˆ1/(1)
sta
�!�j�1.M

1
Iˆ/ �! � � �

� � � �! S�j .M
1
I �ˆ/

x�jC1

�! S�j�a.M
1
I �ˆ0

/
xı0
j

�! S�j�1.P .˛/I �ˆ1
/(2)

Ssta
�! S�j�1.M

1
I �ˆ/ �! � � �

Here, x�2 D
S��˝˛ , xı0

2
and ı0

2
come from Gysin sequences and �2 D x�2 ıf

1
2

, where
f1

2
W �2.M �P1Iˆ/! S�2.M �P1I �ˆ/ is the forgetful map and M1 denote

M �P1 (see [4, Sections 1 and 2] for details).

The sequences above and other two singularity sequences defined in [2, Theorem 9.3],
for aD 2, fit together into the next commutative diagram, where we have exactness in
all sequences if the two “pinching conditions”, below, hold:

(i) �1.M �P1Iˆ0/' S�1.M �P1I �ˆ0
/

(ii) st1W �1.P .˛/�BO.2/IˆC �/
'
! �1.M �P1 �BO.2/IˆC �/ is an iso-

morphism.
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In the diagram, we have ˆ2 DˆC� where � is 
2˝ �
2
C �
2

� 
2 and 
2 denotes
the canonical plane bundle over BO.2/ (see [4, Theorem 3.1]). Also forg2D

Sst2ıf2D

f1
2
ı st2 , Z2 is in place of �0.M �P1�BO.2/Iˆ2/ (see [2, Section 9.2, Theorem

9.3]), Zˆ0
is in place of S�0.M �P1I �ˆ0

/ and M1 in the place of M �P1 .

�3.M
1Iˆ/

f1
3

""DDDDDDDDD

�3

((
S�1.M

1I �ˆ0
/

ı0
2

%%KKKKKKKKKKK

xı0
2

((
S�2.P .˛/I �ˆ1

/

Sst2

""DDDDDDDDD

�j2

$$
Z2

S�3.M
1I �ˆ/

�1
j3

%%JJJJJJJJJJJ

x�3

99tttttttttt
�2.P .˛/Iˆ1/

f2

<<yyyyyyyyy

st2

""EEEEEEEEEE
forg2 //_____ S�2.M

1I �ˆ/

�1
j2

CC��������

x�2

��88888888

S�3.P .˛/I �ˆ1
/

Sst3

<<zzzzzzzzz

�j3

77�1.M
1 �BO.2/Iˆ2/

ı2

99sssssssssss

ı1
2

66�2.M
1Iˆ/

f1
2

<<zzzzzzzzz

�2

99
Zˆ0

Figure 1: Diagram for (a=2)

For more details see [2, Section 9] and [4, Section 3].

We recall from [4, Proposition 3.3], that if a D 2 and n is even, the two pinching
conditions above are equivalent to each one of the conditions:

w2.ˇ� �M /Œ�.H2.M I zZˇ��M //�¤ 0

or �
w1.ˇ/¤ 0 if n� 0.4/

w1.M /¤ 0 if n� 2.4/:

For ˆD �˝ .ˇ�˛/� �M and �D ˇ�˛� �M ; as defined before, we have from [4,
Propositions 1.2 and 1.3], the following Proposition.

Proposition 2.1 For i 2 Z

S�i.M �P1I �ˆ/'

�
Ni.M / if a 6� n.2/
S�i.M I ��/˚Ni�1.M / if a� n.2/:
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3 Proofs of the theorems

We will study the kernel and cokernel of the stabilizing homomorphism

staW �a.P .˛/Iˆ1/ �!�a.M �P1Iˆ/:

We recall that

�0.M
1
Iˆ0/' S�0.M

1
I �ˆ0

/

'

(
Z if w1.ˆ0/D nxCw1.ˇ/Cw1.M /D 0

Z2 if w1.ˆ0/D nxCw1.ˇ/Cw1.M /¤ 0:

�0.P .˛/Iˆ1/' S�0.P .˛/I �ˆ1
/

'

(
Z if w1.ˆ1/D nw1.˛/Cw1.ˇ/Cw1.M /D 0

Z2 if w1.ˆ1/D nw1.˛/Cw1.ˇ/Cw1.M /¤ 0:

Let us consider also the following commutative diagram, for aD1, where the horizontal
sequences are defined in [2, Theorem 9.3] and the vertical sequences come from the
Gysin sequences (1) and (2), also for aD 1. We also recall that in this case P .˛/DM .

�2

��

x�2

��

//

�1.M�P1Iˆ0/

ı0
1

��

�1.M�P1Iˆ0/ S�1.M�P1I �ˆ0
/S�1.M�P1I �ˆ0
/

xı0
1

��

S�2.M�P1I �ˆ/ Z2
�1

j2

//

S�2.P .˛/I �ˆ1
/

S�2.M�P1I �ˆ/

Sst2
��

S�2.P .˛/I �ˆ1
/ Z2

�j2 // Z2

Z2

'

��
�1.M�P1Iˆ/

ı1
1

//
��

�1.P .˛/Iˆ1/
ı1 // �1.P .˛/Iˆ1/

�1.M�P1Iˆ/

st1

��
�1.M�P1Iˆ/

f1
1

//
��

S�1.M�P1I �ˆ0
/

f1 // S�1.M�P1I �ˆ0
/

�1.M�P1Iˆ/

Sst1
��

0//
��

0// 0

0

Zˆ0
Zˆ0xf1

0

//Zˆ0

�1

��

//

Zˆ0

x�1

��

Figure 2: Diagram for .aD 1/

Lemma 1 If �j2
and �1j2

are surjective or both null maps then ker st1 ' kerSst1 .
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If �j2
is the null map and �1j2

is a surjective map then ker st1 is an extension of kerSst1
by Z2 .

Proof The proof is obtained by diagram chasing in Figure 2 above.

Lemma 2 Let n be odd and w2.ˆ1/D 0 then for n� 1.4/; �1j2
D 0; if w1.ˇ�˛/D 0

and �1j2
is surjective if w1.ˇ�˛/¤ 0.

For n � 3.4/; �1j2
D 0; if w1.M / D 0 and .w1.˛/ D 0 or w1.ˇ/ D 0/ and �1j2

is
surjective if w1.M /¤ 0.

Proof Let wD ŒK2; .h1; h2/; xh� 2 S�2.M �P1I �ˆ/' S�2.M I ��/˚H1.M IZ2/'

H2.M I zZ�/˚H1.M IZ2/.

We observe that w corresponds to .ŒK2; h1; h�; h1�.ŒL
1�//, where L1 � K2 is the

zero set of a generic section of the pullback vector bundle h�
2
.�/ over K2 , and h is

equivalent to an isomorphism h�
2
.�/' �L˚ h�

1
.��/. Then w1.�/D w1.L/Cw1.�/

(see [4, Section 1.8]), for simplicity L1 and K2 are denoted by L and K , respectively.

It follows from [4, Section 0.18] that for all y 2H 1.M IZ2/;y.ŒL�/D yw1.�/.ŒK�/.

Using [2, Theorem 9.3], we have that

�1j2
.w/D .w1.�/w1.ˇ�˛/Cw2.�//.ŒK�/ if n� 1.4/

and �1j2
.w/D ..w1.�//

2
Cw1.�/.w1.ˇ�˛//Cw2.�//.ŒK�/ if n� 3.4/:

In the first case we have

�1j2
.w/D w1.ˇ�˛/.ŒL�/Cw2.�/.ŒK�/

and in the second case,

�1j2
.w/D .w1.�/Cw1.ˇ�˛//.ŒL�/Cw2.�/.ŒK�/

D .w1.L/Cw1.�/Cw1.ˇ�˛//.ŒL�/Cw2.�/.ŒK�/

D w1.M /.ŒL�/Cw2.�/.ŒK�/:

It follows that for s 2H2.M I zZ�/ and t 2H1.M IZ2/ we have

�1j2
.w/D w1.ˇ�˛/.t/Cw2.�/�.s/ if n� 1.4/

and �1j2
.w/D w1.M /.t/Cw2.�/�.s/ if n� 3.4/

The result follows by observing that if n� 1.4/; w2.ˆ1/Dw1.˛/w1.ˇ�˛/Cw2.�/

and if n� 3.4/; w2.ˆ1/D w1.˛/w1.ˇ/Cw2.�/.
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Proof of Theorem 1.1 Let n> 3 be odd and aD 1.

We have that w1.ˆ0/D xCw1.ˇ� �M / and w1.ˆ1/D w1.�/:

Note that H1.M �P1/'H1.M /˚H1.P
1/'H1.M /˚Z2 and, if we call b the

generator of the Z2 factor, we have x.b/ ¤ 0, w1.ˇ/.b/ D 0 D w1.M /.b/ and so
we have w1.ˆ0/¤ 0, which gives us Zˆ0

' Z2 '
S�0.M �P1I �ˆ0

/ and from [4,
Proposition 2.1], Sst1 and Sst0 are injective. Therefore, x�1 is onto S�0.M �P1I �ˆ0

/'

Z2 , see Figure 2.

But xf1
0

is an isomorphism, so �1 is also onto Z2 ' �0.M � P1I �ˆ0
/. Then

coker st1 ' Z2 . It follows also from Diagram IV and the fact that Sst1 is injective that
ker st1 � im ı1 , the image of ı1 , which is zero or isomorphic to Z2 .

If w2.ˆ1/Œ�.H2.M I zZ�//� ¤ 0; �j2
is surjective. Therefore we can conclude that

�1.P .˛/Iˆ1/' S�1.P .˛/I �ˆ1
/'H1.M I zZ�/ and recalling that Sst1 is injective we

obtain in Diagram IV that st1 is also injective.

If w2.ˆ1/ D 0, �j2
is the null map, and then �1.P .˛/Iˆ1/ is an extension of

H1.M I zZ�/ by Z2 . The result follows from Lemmas 1 and 2 above.

Lemma 3 Let n> 3 be even and aD 1.

If w1.ˇ/Dw1.M /, Sst1 is surjective and H1.M IZ/ is an extension of H1.M IZ2/ by
kerSst1 . We have also that jH1.M IZ/j D j kerSst1j:jH1.M IZ2/j.

If w1.ˇ/ ¤ w1.M /, cokerSst1 ' Z2 and H1.M IZ2/ is an extension of Z2 by
H1.M I zZ�0

/ kerSst1: We have also 2:jH1.M ISZ�0
/j D j kerSst1j:jH1.M IZ2/j.

Proof Let us consider the long exact Gysin sequence (2).

If w1.ˇ/ D w1.M /; w1.ˆ0/ D 0 and so S�0.M � P1I �ˆ0
/ ' Z is a free abelian

group. Since n is even, S�1.M �P1I �ˆ/'H1.M IZ2/ is a torsion group so x�1 is
zero and then Sst1 is surjective. It follows that H1.M IZ/= kerSst1 'H1.M IZ2/.

If w1.M /¤w1.ˇ/; Sst0 is injective from [4, Proposition 2.1] and S�0.M�P1I �ˆ0
/'

Z2 . Therefore, Z2 ' cokerSst1 'H1.M IZ2/= ker x�1 , where ker x�1 'H1.M I zZ�0
/=

kerSst1 .

Proof of Theorem 1.2 Let n > 3 be even and a D 1. In this case we recall that
w1.ˆ0/Dw1.�0/Dw1.ˆ1/: If w1.ˇ/Dw1.M / it follows from Lemma 3 that Sst1 is
surjective. Therefore, by Figure 2, st1 is also surjective. If w1.ˇ/¤w1.M /; w1.ˆ0/¤

0 and so S�0.M �P1I �ˆ0
/' Z2 . We have again that Sst0 is injective and so x�1 is

onto Z2 '
S�0.M �P1I �ˆ0

/.
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Since f1
0

is an isomorphism, �1 is onto Z2'�0.M �P1Iˆ0/ and coker st1' Z2 .
If w2.ˆ1/Œ�.H2.M I zZ�//�¤0; �j2

and �1j2
are surjective maps, then, ker st1'kerSst1 .

We recall that if w2.ˆ1/D 0; the map �j2
D 0; and so �1.M Iˆ1/ is an extension of

H1.M I zZ�0
/ by Z2 .

With the condition w2.ˆ1/D0 we have that if n�2.4/ and w1.˛/D0Dw1.ˇ/w1.M /;

�1j2
.s; t/D .w1.M /w1.ˇ�˛/Cw2.�//.s/D 0 and so we have ker st1 ' kerSst1 . If

n� 0.4/ or n� 2.4/ and .w1.˛//
2 ¤w1.M /w1.ˇ/; �

1
j2

is surjective and ker st1 is
an extension of kerSst1 by Z2 .

Therefore, the results follow by remarking that if �1j2
is surjective, then

�1.M�P1Iˆ/'H1.M IZ2/

and if �1j2
D 0; then �1.M �P1Iˆ/ is an extension of H1.M IZ2/ by Z2 .

Lemma 4 Let n> 5 be even, aD 2 and w1.ˇ/D w1.M /. Then x�2 D 0 if and only
if �2 D 0.

Proof Since �2 D x�2 ıf
1

2
, x�2 D 0 implies �2 D 0.

Let �2D0. In Figure 1, �0.M�P1�BO.2/Iˆ2/'Z2 (see Koschorke [2, Section 9.2,
Theorem 9.3]), S�0.M�P1I �ˆ0

/' Z and S�2.M�P1I �ˆ/=f
1

2
.�2.M�P1Iˆ//

is isomorphic to �1j2
.S�2.M�P1I �ˆ//.

Then, in case �1j2
D 0; f1

2
is surjective and since �2 D 0 we have Sst2 also surjective

and so x�2 D 0.

If �1j2
.S�2.M �P1I ��//' Z2; the image of f1

2
has index 2 and the image of Sst2

has index at most 2, and the result follows.

Proof of Theorem 1.3 Let n> 5 be even and aD 2.

We have w2.ˇ��M /�.H2.M I zZˇ��M //¤0 or w1.ˇ/¤0 if n�0.4/ and w1.M /¤0

if n� 2.4/ so the pinching conditions are valid and we can use Figure 1.

Let z D
�
K2

.g1;g2/

�! M�P1; xg
�
2 S�2.M�P1I �ˆ/'H2.M I zZ�/˚H1.M IZ2/. We

denote this isomorphism by ' and '.z/D .s; t/. Then

�.x�2.z//D w2.˛/�.s/Cw1.ˇ� �M /.t/:

Let us consider w1.ˇ/Dw1.M /. Then if w2.˛/�.H2.M I zZ�//D 0, x�2 D 0, and it
follows by Lemma 4 that �2D0 and then st2 is surjective. If w2.˛/�.H2.M I zZ�//¤0;

x�2 ¤ 0 and so coker st2 ' Z.
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If w1.ˇ/¤w1.M /, x�2 is onto Z2 by [4, Proposition 2.1] and so is �2 . If w2.ˆ/D 0

then f1
2

is surjective. Therefore coker st2 ' Z2 . If w2.ˆ/ ¤ 0; we have that �1j2

is onto Z2 . Since forg2 D f
1

2
ı st2; we have that coker forg2 ' Z2˚Z2 . If st2 is

surjective, forg2 and f1
2

have the same image and then the index of this image in
S�2.P

1 �M I �ˆ/ is 2, which is a contradiction. It follows that �2 ¤ 0 and again
coker st2 ' Z2 .

Let us now analyze ker st2 when w2.ˆ/D 0. We have that ı2 and ı1
2

are injective
(see footnote of [2, Theorem 9.3]). In the Figure 1 we see that �1j3

D 0, and then
f1

3
is surjective. As a consequence, im x�3 is equal to im �3; and then we have that

ker st2 'H1.M I zZˇ��M /˚Z2=x�3.ker �1j3
/, where ker �1j3

D S�3.M �P1I �ˆ/:

We compute now the image of S�3.M �P1I �ˆ/ by x�3: Let

w D
�
K3

.g1;g2/

�! M�P1I xg
�
2 S�3.M�P1I �ˆ/'H3.M I zZ�/˚N2.M /

'H3.M I zZ�/˚H2.M IZ2/˚Z2:

We remark that w corresponds to
��

K3
g1
�!M; xg

�
;
�
L2

g1jL2

�! M
��

, where L2 is the
zero set of a generic section of the vector bundle � over K , and

ŒL2
g1jL2

�! M �

corresponds to ..g1jL2/�.�.L
2//; ŒP2 c

�!M �/, where c is a constant map. Notice
that for all y 2H 1.M IZ2/;y.ŒP

2�/D 0 and y.Œ�.x�3.w//�/D .yw2.�˝˛
2//.ŒM �/

and the image of x�3�H1.M I zZˇ��M /. Therefore, ker st2'H1.M I zZˇ��M /=A˚Z2 ,
where

AD
˚
z j y.�.z//D .yw2.˛//�.c3/Cyw1.ˇ� �M /.c2/;

c3 2H3.M I zZ�/; c2 2H2.M IZ2/;8y 2H 1.M IZ2/
	
:

This completes the proof.

Proof of Corollary 1.4 Since w1.ˇ/ D w1.M / ¤ 0 and ˛ is the trivial bundle, it
follows from Theorem 1.3 that st2 is surjective.

Using Figure 1 we obtain that ker st2 'H1.M IZ/˚Z2=x�3.f
1

3
.�3.M �P1Iˆ///:

But under our hypothesis x�3 D 0, then ker st2 'H1.M IZ/˚Z2 .
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4 Examples

Example 1 Let p1;p2;p3 and q1; q2; q3 be arbitrary integers and consider the vector
bundles ˛2 D 
 0

1
˝ 
 0

2
˝ 
 0

3
and ˇ6 D 
1 � 
2 � 
3 over M 6 D S2

1
�S2

2
�S2

3
. Each

factor S2
i is identified with CP .1/; 
 0i and 
i are complex line bundles characterized

respectively by c1.

0
i /Dpi �g

i and by c1.
i/D qi �g
i ; where gi denotes the generator

of H 2.S2
i IZ/ and c1 is the first Chern class. Therefore, we have that

w2.˛/D p1�.g
1/Cp2�.g

2/Cp3�.g
3/;

w2.ˇ/D q1�.g
1/C q2�.g

2/C q3�.g
3/;

w2.M /D 0:

From [5, Proposition 4.3] we know that there is a non-stable monomorphism u0 W˛ ,!ˇ

in the following cases

(i) p1Cp2Cp3 D 0 and at least one of the qi ’s is zero and

(ii) p D p1Cp2Cp3 ¤ 0 and .q1�p/:.q2�p/:.q3�p/ is divisible by 4p .

Since w1.M /; w1.ˇ/ and w2.M / are all zero, to satisfy the pinching conditions we
need w2.ˇ/¤ 0, that is, at least one of the qi ’s is ¤ 0.

Different choices of the parameters give rise to different examples.

(1) If p D 0;pi � 0.2/, for some k; qk � 1.2/ and for some j ; qj D 0, we have
w2.˛/D 0 and w2.ˇ/¤ 0 and so st2 is surjective.

(2) If for some k;pk � 1.2/;pD 0, for some l; ql � 1.2/ and for some j ; qj D 0;

then w2.˛/¤ 0 and w2.ˇ/¤ 0 and so coker st2 ' Z.
Note that

w2.ˆ/D w2.�/D w2.˛/Cw2.ˇ/

D .p1Cq1/�.g
1/C.p2Cq2/�.g

2/C.p3Cq3/�.g
3/:

(3) If pi� qi.2/i D 1; 2 and 3;pD 0; qk D 0 for some k and for some l; ql � 1.2/;

then w2.˛/D w2.ˇ/ and so w2.ˆ/D 0 and ker st2 ' Z2 .

Example 2 Let M D P2 �S4 , and let ˛ and ˇ be trivial bundles over M . Since
w1.M /¤ 0, w1.M /¤ w1.ˇ/. In this case

w2.ˆ/D 0;

ker st2 'H1.P
2
�S4
IZˇ��M /˚Z2 ' Z2;

coker st2 ' Z2:
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Example 3 We consider some examples of the special case of tangent vector fields,
that is, when ˛ is the trivial line bundle and ˇ is the tangent bundle �M over a
n–dimensional manifold M with n> 3.

(1) M D S1�S2k . We have coker st1 ' Z2 , that is, half of the stable vector fields
over S1�S2k come from nonstable vector fields. Also, ker st1D 0; so we have
at most one nonstable vector field stabilizing to any stable one.

(2) M D S1�S4kC3 . In this case, we have infinitely many nonstable vector fields
and two stable ones. The homomorphism st1 is surjective, so, infinitely many
nonstable vector fields are associated to each of the two stable ones.

(3) M D P2kC1 � S2kC1 . In this case st1 is an isomorphism, so to any stable
vector field there is a unique nonstable one stabilizing to it.

(4) M D P2kC1 . In this case, w1.M /D 0 and coker st1 ' Z2 . We have 4 stable
and 4 nonstable vector fields. So only 2 stable ones come from nonstable ones
and there are two of them for each stable one.

Example 4 We give now an example where ˛ is a non trivial orientation line bundle
�M n over a manifold M n .n� 3/ and ˇ is �M n . We observe that if M n is orientable
�M n is trivial, a case already considered above. So, we are taking M n to be a
nonorientable manifold.

M DS1�P4k . Then H1.M IZ/'Z2 , (see Borsari–Gonçalves [1, Theorem 2.5]) and
st1 and Sst1 are injective. In the Diagram IV we get j�1.M Iˆ1/jDj�1.P .˛/Iˆ1/jD4

and j�1.M � P1Iˆ/j D 8; so coker st1 ' Z2 , that is, only half of the homotopy
classes of stable monomorphism contains unstable ones, and if so, each class contains
exactly one element.
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