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Almost periodic flows on 3–manifolds

KELLY DELP

A 3–manifold which supports a periodic flow is a Seifert fibered space. We define a
notion of almost periodic flow and give conditions under which a manifold supporting
an almost periodic flow is Seifert fibered. It is well-known that R3 does not support
fixed point free periodic flows, and our results include that R3 does not support
certain almost periodic flows.

37C55; 57M50

1 Introduction

A flow on a manifold M is a continuous action ˆW M �R!M of R on M . If the
action has no global fixed points we say ˆ is fixed point free. Differentiation of a C r

action yields a C r�1 vector field on M . Conversely, the integration of a vector field
generates a flow on the manifold. Let ˆt denote the time t homeomorphism of the
manifold ˆt .x/ D ˆ.x; t/. A flow is periodic if there exits a T > 0 such that ˆT

is the identity map on M . Three dimensional manifolds that support fixed point free
periodic flows are Seifert fibered; the orbits under the R–action are the fibers. The
following natural question arises, which is the motivating question for this paper.

Question 1 If a Riemannian 3–manifold M supports a “non-trivial” flow ˆ such
that ˆ1 is close to idM , is M Seifert fibered?

Given � > 0, any sufficiently small vector field will generate a flow ˆ such that
d
�
p; ˆ1.p/

�
< � for all p 2M . Therefore in all of our results we will require that

the flow ˆ satisfies some “nontriviality” condition.

1.1 Definitions and Results

We begin by recalling some definitions from Riemannian geometry.

Definition 1.1 Let 
 W Œa; b�!M be a geodesic segment. We say 
 is a min-geodesic
if 
 is a shortest path between 
 .a/ and 
 .b/.
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The metric ball B.xI r/D fy 2M jd.x;y/ < rg is convex if any two points in B.xI r/

are joined by a unique min-geodesic contained in B.xI r/. The largest r such that
B.xI r/ is convex is called the convexity radius at x . The convexity radius for a
manifold is defined by,

conv rad.M;g/D inf
p2M

conv rad.p/

and is positive if M is compact (see Petersen [6]).

In our first result, we assume that our almost periodic flow ˆ possesses a flow line that,
in some sense, has infinite order in �1.M /. Thus ˆ is “homotopically non-trivial”.
Of course all flow lines may be non-compact, so we refer the reader to Section 2 for
the definition of a closed up flow line.

Theorem 2.4 Suppose M is a closed, orientable, connected, irreducible, Riemannian
3–manifold and � < conv rad.M /=2. If M supports a flow ˆW M �R!M such that,

(1) dM

�
x; ˆ.x; 1/

�
< � for all x 2M

(2) for some x 2M , the closed up flow line �x has infinite order in �1.M /

then M is a Seifert fibered space.

Note that if the convexity radius of M is large, ˆ1 need not be that close to the identity
map on M . For the remainder of our results we replace the homotopy condition with
a geometric condition (part (2) of Definition 1.2).

Definition 1.2 Given K � 1 and � > 0, a flow on a manifold M is .K; �/–almost
periodic if for all x 2M :

(1) d
�
x; ˆ.x; 1/

�
< �

(2) d
�
x; ˆ.x; 1

2
/
�
>K�

It follows from a theorem of P A Smith [9] that S1 actions on Rn must have a fixed
point. We are able to show that R3 does not support certain almost periodic flows. We
give a specific example of one such result, and refer the reader to Section 4 for the
statements of the more general theorems. Recall a vector field X on R3 is C –lipschitz
if for all p; q 2 R3 ,

kXp �Xqk � Ckp� qk:

Now consider the class of flows that arise from integration of a C –lipschitz vector
field.
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Theorem 1.3 Let V be a C –lipschitz vector field on R3 and ˆ the corresponding
flow that arises from integration of V . Then ˆ is not .10eC ; �/–almost periodic for
any � > 0.

If a manifold supports one of Thurston’s eight geometric structures, it is covered by
R3 , S3 or S2 �R. In the latter two cases the manifold is Seifert fibered (see Scott
[7]). Therefore we consider the case when M is covered by R3 . Theorem 1.3 depends
on having a bound on the rate of growth of the length of a particular arc, which the
lipschitz condition provides. Using a more general version of this theorem, which is
stated in terms of the growth rate of an arc and does not assume the Euclidean metric
on R3 , we prove the following. See Section 4 for definitions.

Theorem 5.2 Let M be a closed, orientable, Riemannian 3–manifold with universal
cover homeomorphic to R3 , such that for all p2 zM , the exponential exppW Tp

zM! zM

is a diffeomorphism. Let 0<2� < conv rad.M /. If M supports a flow ˆW M�R!M

that satisfies

(1) for some p in M the min-geodesic between p and ˆ1.p/ has time-one growth
rate N , and

(2) ˆ is .10N; �/–almost periodic,

then M is Seifert fibered.

Remark There are several notions of almost periodic flow. We discuss the definition
given by Cartwright [1].

Definition 1.4 A subset E of R is dense relative to the number L if every interval of
length L contains an element of E .

Definition 1.5 A flow ˆ is almost periodic (in the sense of [1] but not this paper) if
for every � > 0, there exists an L> 0, such that for all x 2M , the set

E D f� 2 R j for all x 2M; d
�
x; ˆ.x; �/

�
< �g

is dense relative to L.

The above definition, used by Cartwright, is neither stronger nor weaker than the
definition used in this paper. Our definition is “coarser” than Definition 1.5, in that we
do not require that d.idM ; ˆ1/ < � for every � . Also, we do not require that the set
E D ft j d.idM .p/; ˆt .p// < � for all p 2M g be relatively dense in R, but merely
that ˆ1 is close to the identity map. However, Definition 1.5 does not imply condition
(2) of Definition 1.2.
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1.2 Outline

In Section 2 we prove Theorem 2.4, by showing that the subgroup generated by the
flow line of infinite order is central. Theorem 2.4 then follows from the Seifert fibered
space Theorem:

Theorem 1.6 (Casson [2], Gabai [4], Scott [8], Mess [5], Tukia [10], Waldhausen
[11]) If M is a compact, irreducible, orientable, connected 3–manifold, and �1.M /

contains an infinite cyclic normal subgroup, then M is Seifert fibered.

Section 3 contains a technical algebraic topology result, which we use repeatedly in
Section 4 to prove our results about almost periodic flows on R3 . First we prove that
R3 does not support .1; �/–almost periodic flows with a compact flow line of period 1.
We then extend the proof to eliminate the hypothesis of a closed flow line.

In Section 5 we prove Theorem 5.2. If we assume M is covered by R3 , then �1.M /

is torsion free, and Theorem 2.4 reduces our question to the case when the closed
up flow lines are contractible. If M supports a .K; �/–almost periodic flow, where
� < conv rad.M /, and all flow lines contractible, the flow lifts to a .K; �/–almost
periodic flow on the universal cover. Using the results about almost periodic flows on
R3 , we show that this can not occur.

1.3 Acknowledgements

I would like to thank Daryl Cooper for his continuing guidance throughout the work on
these results. I would also like to thank Jason Manning for many useful conversations.

2 Almost periodic flows

Let M be a compact Riemannian 3–manifold that supports a flow ˆ and x a point in
M such that d

�
x; ˆ1.x/

�
< conv rad.M /. We define the closed up flow line starting

at x by flowing the point x for unit time to ˆ1.x/, and then moving back to x along
the shortest geodesic (which is unique by hypothesis). For two paths f;gW Œ0; 1�!X

such that f .1/D g.0/, we write f �g to denote the composition of paths.

Definition 2.1 Let �x W Œ0; 1�!M be the flowline for x restricted to the unit interval
and let �x W Œ0; 1�!M be the unique min-geodesic starting at ˆ.x; 1/ and terminating
at x . Then the closed up flow line of x is �x D �x ��x . See Figure 1.
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�x D �x ��x

B�.x/

x

�x

ˆ.x; 1/

Figure 1: closed up flowline

We use the following lemmas to prove Theorem 2.4. Lemma 2.2 is a a basic fact
from Riemannian geometry about the continuity of min-geodesics. For a proof see Do
Carmo [3, Theorem 3.7, Remark 3.8].

Lemma 2.2 Suppose ı < conv rad.M /. Let

U D f.x;y/ 2M �M W d.x;y/ < ıg:

Given p D .x;y/ 2 U , let 
pW Œ0; 1� ! M be the unique min-geodesic such that

p.0/D x and 
p.1/D y . Then the function F W U � Œ0; 1�!M defined by

F.p; t/D 
p.t/

is continuous.

Lemma 2.3 Let M be a closed, connected, Riemannian 3–manifold. Let � D
1
2

conv rad.M / and ˆ be a flow on M such that d.x; ˆ.x; 1//� � for all x in M . If
�x and �y are the closed up flow lines for x and y , then �x is freely homotopic to
�y .

Proof Let x;y 2M such that d.x;y/ < � . Let � W Œ0; 1�! B.xI �/ be a continuous
map such that �.0/D x and �.1/D y . Define the homotopy H W S1� Œ0; 1�!M by

H.s; t/D ��.t/.s/:

So for each t 2 Œ0; 1�, the map Ht W S
1 ! M is the closed up flow line of �.t/,

with H0 D �x and H1 D �y . We now show H is continuous. By definition we
have d

�
�.t/;x

�
� � , and the “almost periodicity” property of the flow ˆ implies

d
�
�.t/; ˆ

�
�.t/; 1

��
� � . Therefore

d
�
ˆ
�
�.t/; 1

�
;x
�
� d

�
ˆ
�
�.t/; 1

�
; �.t/

�
C d

�
�.t/;x

�
� 2�:
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B2�.x/

�x
x

�y y

ˆ.x;�/

ˆ.y;�/

ˆ.�; s/

�
ˆ.�; 1/

Figure 2

We have just shown that the image of ˆ1 ı � is contained in B.xI 2�/. See Figure 2.
Since � and ˆ are continuous, and the images of both � and ˆ.�; 1/ are contained in
the convex ball B2�.x/, Lemma 2.2 implies that H is continuous.

Therefore �x ' �y . To show that any two closed up flowlines are freely homotopic
we define an equivalence relation on M by x � y if �x is freely homotopic to �y .
These equivalence classes are open therefore M connected implies there is only one
equivalence class.

Theorem 2.4 Suppose M is a closed, orientable, connected, irreducible, Riemannian
3–manifold and � < conv rad.M /=2. If M supports a flow ˆW M �R!M such that,

(1) dM

�
x; ˆ.x; 1/

�
< � for all x 2M

(2) for some x 2M , the closed up flow line �x has infinite order in �1.M /

then M is a Seifert fibered space.

Proof Let x 2M such that �x has infinite order in �1.M /. By Lemma 2.3, all
closed up flow lines are freely homotopic, therefore the subgroup generated by �x is
central. To see this, let ˇW S1!M be a representative of an element of �1.M;x/.
Then we can slide �x along the path ˇ , through the closed up flow lines �ˇ.s/ , until
�x returns to itself. Therefore ˇ�xˇ

�1 D �x and h�xi is an infinite central cyclic
subgroup. By Theorem 1.6, the Seifert fibered space Theorem, the result follows.
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3 Reflector homotopies

In this section we prove a technical result which will be used in later proofs.

Definition 3.1 Let D be a 2–disk and X D R3 � R3 n�, where � denotes the
diagonal of R3 �R3 . Let gW X !X be the map that reflects about the diagonal, that
is g

�
.x;y/

�
D .y;x/, and let C be a simple closed g–invariant curve in X . We say

the map
J W .D; @D/� Œ0; 1�! .X;C /

is a reflector homotopy if J satisfies the following:

(1) J is a homotopy of maps of the pair .D; @D/! .X;C /.

(2) J1 D g ıJ0 , and therefore J0 ' g ıJ0 .

(3) Jt j@D is a degree one map.

As motivation for Theorem 3.2, recall that R3 �R3 n� is homotopy equivalent to S2 ,
and consider the following example.

Example Let D be a closed disk, S2 the unit sphere in R3 , and N the northern
hemisphere .z � 0/ of S2 . Let hW D!N be a homeomorphism, and aW S2! S2

the antipodal map. Then it is easy to see that hW .D; @D/! .S2; @N / is not homotopic
as a map of pairs to a ı h.

Theorem 3.2 Reflector homotopies do not exist.

Proof Assuming J exists, we will determine the induced maps .J0/� and .g ıJ0/�
between the relative homology groups H2.D; @DIZ2/ and H2.X;C IZ2/, and obtain
a contradiction.

Using X ' S2 , a long exact sequence shows H2.X;C IZ2/Š Z2˚Z2 . We choose
generators for the group H2.X;C IZ2/, and determine what the map g� does on these
generators. To do so, we will start with a subspace of X for which we know exactly
the behavior of g . Given r > 0, let P and E be the spaces

P D f..x;y; z/; .�x;�y;�z// 2 R3
�R3

j k.x;y; z/k D rg

E D f..x;y; 0/; .�x;�y; 0// 2 R3
�R3

j k.x;y; 0/k D rg

Then P is a 2–sphere with equator E , and P is contained in �?Df.x;�x/jx 2R3g.
Since C is a compact set we can choose r large enough so that C and E do not
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intersect. Since P ,! X is a homotopy equivalence this sphere is a generator for
H2.X IZ2/.

The quotient space P=E is the wedge of two spheres. Therefore H2.P;EIZ2/ Š

Z2˚Z2 , and the quotients of the northern(z � 0) and southern (z � 0) hemispheres
ŒN �; ŒS � 2H2.P;EIZ2/ are generators for the group. The map g restricted to the sets
P and E is the antipodal map. Therefore g�W H2.P;EIZ2/!H2.P;EIZ2/ is the
map that switches our generators ŒN � and ŒS �.

Since P is a generator for H2.X /, the inclusion map i W .P;E/! .X;E/ induces an
isomorphism i�W H2.P;EIZ2/!H2.X;EIZ2/. Also P and E are both g–invariant,
and therefore we have i ıg D g ı i on the subspaces where these maps are defined, so
the following diagram commutes.

H2.X;EIZ2/
g� // H2.X;EIZ2/

H2.P;EIZ2/

i�

OO

g� // H2.P;EIZ2/

i�

OO

We will now build an isomorphism between H2.X;EIZ2/ and H2.X;C IZ2/ which
commutes with the map g� . To simplify notation we will use g� to denote the map
induced by the restriction of g on the relative homology groups for the pairs of spaces
.X;E/; .X;C /; .P;E/ and the pair .X;Y / which will soon be defined.

Let X=�g be the quotient space where .p; q/�g .q;p/. Note that g is fixed point free
and the map X !X=�g is a 2–fold covering. Therefore X=�g'RP2 . Since C and
E are embedded g–invariant circles in X , the sets xC D C=�g and xE DE=�g are
circles that are doubled covered by C and E respectively. The loop that parameterizes
xC lifts to an arc of C , therefore xC must be the nontrivial element of �1.X=�g/.
Similarly for xE .

Recall the sphere P was chosen to be large enough so that C and E are disjoint,
therefore xC and xE are also disjoint. Since xC and xE represent the same element in the
fundamental group of �1.X=�g/, there is a homotopy f W S1 � I !X=�g between
them. The space X=�g is six dimensional, and xC and xE disjoint, so using a general
position argument we may assume f is an embedding with image an annulus in X=�g ,
with boundary components xC and xE . This annulus lifts to a g–invariant embedded
annulus Y in X . Therefore H1.Y IZ2/ D Z2 , and a long exact sequence argument
implies that H2.X;Y IZ2/D Z2˚Z2 . Since C generates H1.Y IZ2/D Z2 , we know
that the inclusion map iC W .X;C /! .X;Y / induces an isomorphism between the
relative homology groups. Since the annulus Y is g–invariant the following diagram
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commutes.
H2.X;C IZ2/

g� //

.iC /�
��

H2.X;C IZ2/

.iC /�
��

H2.X;Y IZ2/
g� // H2.X;Y IZ2/

Similarly E generates H1.Y IZ2/D Z2 and the inclusion map iE induces an isomor-
phism between relative homology groups and we get the commutative diagram

H2.X;Y IZ2/
g� //

.iE/
�1
�

��

H2.X;Y IZ2/

.iE/
�1
�

��
H2.X;EIZ2/

g� // H2.X;EIZ2/:

Putting all of the maps together, we have the following, where vertical arrows are
isomorphisms.

H2.X;C IZ2/
g� //

��

H2.X;C IZ2/

��
H2.X;Y IZ2/

g� //

��

H2.X;Y IZ2/

��
H2.X;EIZ2/

g� //

��

H2.X;EIZ2/

��
H2.P;EIZ2/

g� // H2.P;EIZ2/

Recall that the map g� switches the generators ŒN � and ŒS � of H2.P;EIZ2/. Let ‰ be
the isomorphism between H2.X;C IZ2/ and H2.P;EIZ2/ which is the composition
of the isomorphisms on the downward pointing arrows. Then yN WD ‰�1.ŒN �/ and
yS WD‰�1.ŒS �/ are generators for H2.X;C IZ2/. Since the above diagram commutes
we have proven the following claim.

Claim 1 g� switches yN and yS .

Recall that .J0/�W H2.D; @DIZ2/!H2.X;C IZ2/. Let ŒD� denote the generator of
H2.D; @DIZ2/ and suppose that .J0/�.ŒD�/D a yN C b yS . Then Claim 1 implies

.g ıJ0/�.ŒD�/D g� ı .J0/�.ŒD�/D a yS C b yN :

Since J0 ' g ı J0 as maps of the pairs .D; @D/! .X;C /, the induced maps on
relative homology groups .J0/� and .g ıJ0/� must be equal, and therefore aD b .
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Claim 2 If .J0/�.ŒD�/D a yS C b yN then aD b .

Now consider the exact sequence of the relative homology groups for the pair .X;C /.
In the following commutative diagram vertical arrows are isomorphisms.

H2.X IZ2/
j� //

��

H2.X;C IZ2/
@� //

��

H1.C IZ2/

��
Z2

// Z2˚Z2
// Z2

The map j� is induced by the inclusion map j W .X;∅/! .X;C /. Therefore j� maps
the nontrivial element of H2.X IZ2/ onto yN C yS . Since @� ı j� is trivial, this implies
@� sends yN C yS to 0. So @�. yS C yN /D @�. yS/C @�. yN /D 0 or

@�. yS/D�@�. yN /:

The long exact sequence shows y@�W H2.D; @DIZ2/!H1.@DIZ2/ is an isomorphism.
By naturality of the connecting homomorphism the following diagram commutes.

ŒD� 2H2.D; @DIZ2/

.J0/�
��

y@� //

�

�� ��

H1.@DIZ2/

.J0j@D/�
��

H2.X;C IZ2/
@� // H1.C IZ2/

Property (3) of the reflector homotopy says that the map .J0/j@D is a degree one map
and therefore �.ŒD�/¤ 0. Since the diagram commutes this implies that

@� ı .J0/�.ŒD�/ D @�.a yS C b yN /

D a @�. yS/C b @�. yN /

D a @�. yS/� b @�. yS/

D .a� b/ @�. yS/

¤ 0

Therefore a ¤ b . However this contradicts Claim 2 and we have proven Theorem
3.2.

4 R3 does not support almost periodic flows

Before proving that R3 does not support .K; �/–almost periodic flows for sufficiently
large K , we prove Theorem 4.1, which has the additional hypothesis of a closed flow
line of period 1.
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Theorem 4.1 Let .M;g/ be a Riemannian manifold homeomorphic to R3 with
positive convexity radius. Let � D conv rad.M /. If ˆW M �R!M is a flow with a
closed flow line of period 1, then ˆ is not .1; �/–almost periodic.

Note that if M is equipped with the standard Euclidean metric, then M has infinite
convexity radius, and Theorem 4.1 is true for any � . We list, for easy reference, several
definitions which will be used throughout the remainder of the paper.

� D is a 2–disk.

� X DM �M n�, where � is the diagonal of M �M .

� The map gW X !X is reflection about the diagonal and is defined by

g
�
.x;y/

�
D .y;x/:

� The induced flow on X is ‰W X �R!X , where

‰t Dˆt �ˆt

� The standard embedding eW M !X is defined by

e.p/D
�
p; ˆ 1

2
.p/

�
:

Proof of Theorem 4.1 Assume ˆ is a .1; �/–almost periodic flow with a closed flow
line of period 1. Using ˆ we will construct a reflector homotopy, which contradicts
Theorem 3.2 and proves our result.

To construct the reflector homotopy, let p be a point in M whose orbit has period 1.
Identify S1 with the unit interval modulo the endpoints and define f W S1! R3 by
f .s/Dˆ.p; s/. Since R3 is contractible, we can extend f over the unit disk D so
that f is a null homotopy for the closed flow line ˆ.p;�/. For any point z in the
disk D , let the map h.z;�/W Œ0; 1�!M be the min-geodesic from ˆ1

�
f .z/

�
to f .z/.

Since d
�
f .z/; �1.f .z//

�
< � , the map hW D � Œ0; 1�!M is continuous by Lemma

2.2. We define the reflector homotopy J W D � Œ0; 1�!X by

J.z; t/D

(
‰t ı e ıf .z/ 0� t � 1

2�
ˆ 1

2
ıf .z/; h.z; 2t � 1/

�
1
2
� t � 1

During the first time interval the homotopy J uses ‰ to flow the map eıf to ‰ 1
2
ıeıf .

Note that,

J1.z/D
�
ˆ 1

2
ıf .z/; h.z; 1/

�
D
�
ˆ 1

2
ıf .z/; f .z/

�
D g ı e ıf .z/:
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homotopy

f

ˆ1ıfˆ 1
2
ıf

ˆt �ˆt

f

ˆ 1
2
ıf

ˆ 1
2
ıfJ1

J 1
2

J0

M�M

ˆ 1
2
� geodesic

Figure 3: The homotopy J

We see that when t 2 Œ1
2
; 1� the map J homotopes ‰ 1

2
ıe ıf to g ıe ıf along a short

geodesic. See Figure 3. We now verify that J is a reflector homotopy, by showing that
J satisfies properties 1–3 of Definition 3.1.

Let C D J0.@D/. We will show that C is g–invariant, but first we verify property 1,
that J is a homotopy of the pairs .D; @D/! .X;C /.

Claim 3 The image of the homotopy J does not intersect �, the diagonal of M �M .

Proof Let z 2D . For t 2 Œ0; 1
2
� we have J.z; t/D

�
ˆt ıf .z/; ˆtC 1

2
ıf .z/

�
. Property

2 of the almost periodic flow implies,

d
�
ˆt ıf .z/; ˆ 1

2
Ct ıf .z/

�
D d

�
ˆt ıf .z/; ˆ 1

2
.ˆt ıf .z//

�
> �:

Thus J.z; t/ …�. Now assume t 2 Œ1
2
; 1�. Since J 1

2
.z/D .ˆ 1

2
ıf .z/; ˆ1 ıf .z//, and

J1.z/D .ˆ 1
2
ıf .z/; f .z//, the first coordinate of the image of J is constant for this

time interval. The second coordinate of the image is the min-geodesic between ˆ1ıf .z/

and f .z/, which are a distance of less than � . That Jt .z/D
�
ˆ 1

2
.z/; h.z; 2t�1/

�
does

not belong to � is evident from Figure 4, and is verified by the following inequalities.

d
�
ˆ 1

2
ıf .z/; h.z; 2t � 1/

�
C d

�
h.z; 2t � 1/; f .z/

�
� d

�
ˆ 1

2
ıf .z/; f .z/

�
> �:
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Since h.z; 2t � 1/ lies on the min-geodesic between f .z/ and ˆ1 ı f .z/, which has
length less than � ,

d
�
h.z; 2t � 1/; f .z/

�
< �:

Therefore

d
�
ˆ 1

2
ıf .z/; h.z; 2t � 1/

�
� d

�
ˆ 1

2
ıf .z/; f .z/

�
� d

�
h.z; 2t � 1/; f .z/

�
> 0:

h.z; 2t � 1/

> �

ˆ1.f .z//

f .z/

ˆ 1
2
.f .z//

< �

Figure 4: Jt does not intersect �

Now we show that Jt .@D/ D C for all t 2 Œ0; 1�. Recall f was defined on @D by
f .s/Dˆ.p; s/. Therefore,

C D f
�
ˆs.p/; ˆsC 1

2
.p/

�
js 2 Œ0; 1�g:

Since the image of f is a closed flow line of period 1, the flow line

s 7!‰s ı e ıf .0/D
�
ˆ.p; s/; ˆ 1

2
.p; s/

�
is also closed. Therefore for t 2 Œ0; 1

2
�,

Jt .@D/D‰t ı e ıf .@D/D C:

Since f j@D is a closed flow line with period 1, the map J 1
2
D g ı e ı f on @D .

Therefore the adjustment that happens during the second time interval occurs only
on the interior of the disk, hence the homotopy is constant on @D during the interval
Œ1
2
; 1�. We have shown that the image of ‰t .@D/ is C for t 2 Œ0; 1�, which completes

the verification of property 1.

To verify that the set C is g–invariant, let t D sC 1
2

. Since the flow line for p has
period 1 we have

g.ˆs.p/; ˆsC 1
2
.p//D .ˆsC 1

2
.p/; ˆs.p//

D .ˆt .p/; ˆt� 1
2
.p//

D .ˆt .p/; ˆtC 1
2
.p//:
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Since .ˆt .p/; ˆtC 1
2
.p// is in C , the set is g–invariant.

To verify property 2 of Definition 3.1, note that J0 D ‰0 ı e ı f D e ı f and
J1 D g ı e ıf D g ıJ0 . Therefore J0 ' g ıJ0:

Lastly, we note that since the map f j@D is a homeomorphism onto the closed flowline,
the map Jt j@D is also a homeomorphism, satisfying the third and final property of a
reflector homotopy.

4.1 Removing the hypothesis of a closed flow line

Let ˆ be a flow on a manifold M , and ˛W Œ0; 1�!M an arc. If we flow the arc ˛ for
time t , we denote the length of the resulting arc ˆt ı˛ by Lt .˛/.

Definition 4.2 Let M be a Riemannian manifold and ˆ a flow on M . Let ˛W Œa; b�!
M be a rectifiable arc. Then we define the time-one growth rate of ˛ by

N.˛/ WD
maxfLt .˛/ jt 2 Œ0; 1�g

L0.˛/
:

Note that if a min-geodesic ˛ has time-one growth rate N , then Lt .˛/�Nd.p; q/

for all t 2 Œ0; 1�.

In this section we show that if ˆ is a flow on M 3 'R3 (see hypothesis below) such
that for some point p 2M the min-geodesic ˛ between p and ˆ1.p/ has time-one
growth rate N D N.˛/, then ˆ is not .10N; �/–almost periodic, for all � > 0. But
first a few preliminaries.

Let TM denote the tangent bundle of a Riemannian manifold M . The exponential
map, expW TM !M , is defined as follows. Let t 7! 
 .t;p; v/ be the constant speed
geodesic in M such that 
 .0;p; v/D p and P
 .0;p; v/D v 2 Tp.M /. Then,

exp.p; v/D 
 .1;p; v/;

and expp D exp jTpM . See Do Carmo [3] for more details.

For a point x 2M �M let d.x; �/ denote the distance between x and �. That is,

d.x; �/DminfdM�M .x;y/ j y 2�g:

Lemma 4.3 Let M be a Riemannian manifold such that for all p2M , the exponential
map exppW TpM !M is a diffeomorphism. Then for any point .p; q/ 2M �M ,

d
�
.p; q/;�

�
D

p
2

2
d.p; q/:
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Proof Let p and q be points in M and let m be the midpoint of 
 , the unique
min-geodesic (which exists since expp is a diffeomorphism) between p and q . Then
.m;m/ is the point in � closest to .p; q/. To verify this, let x be an arbitrary point
in M , and let �� 1 be the ratio of the lengths d.p;x/ and d.q;x/. Without loss of
generality assume �D d.p;x/=d.q;x/. Then,

(1) dM�M

�
.x;x/; .p; q/

�
D

q
d2.p;x/C d2.q;x/D

p
�2C 1 d.q;x/:

A continuity argument implies there exists a point x0 on the image of 
 such that
d.p;x0/=d.q;x0/D�. Since x0 lies on the min-geodesic between p and q , d.q;x0/�

d.q;x/. Furthermore, when x0 Dm, we have �D 1, and dM�M

�
.x0;x0/; .p; q/

�
is

minimized. Equation (1) implies

dM�M

�
.p; q/; .m;m/

�
D
p

2 d.q;m/D
p

2
2

d.p; q/:

Theorem 4.4 Let .M;g/ be a Riemannian manifold homeomorphic to R3 , such that
for all p in M , the exponential map exppW TpM !M is a diffeomorphism. Let ˆ
be a .K; �/–almost periodic flow on M such that for some p in M the min-geodesic
between p and ˆ1.p/ has time-one growth rate N . Then K < 10N .

If ˆ is a flow generated by a C –lipschitz vector field, then a basic fact from differential
equations implies that every min-geodesic ˛W Œ0; 1�! R3 has a time-one growth rate
that is less than eC . Note that R3 with the standard Euclidean metric has infinite
convexity radius. Therefore Theorem 4.4 implies that a flow ˆ on R3 generated by a
C –Lipschitz vector field is not .10eC ; �/–almost periodic, for any � > 0.

The basic strategy of the proof is the same as in Theorem 4.1. We will use ˆ to construct
a reflector homotopy and then Theorem 3.2 gives us a contradiction. To define the
homotopy, we need a g–invariant circle in X . Unlike the previous case we can not
use a closed flow line with period one, since we do not assume one exists. Instead
we take a segment of a flow line for a period of Œ0; 1� and then close it up to obtain a
circle. Using the resulting curve C 0 we construct the homotopy J W D� Œ0; 1�!X , as
before. However, since C 0 is only approximately g–invariant, the homotopy J is no
longer a reflector homotopy. We shall show there is a g–invariant curve C close to the
curve C 0 . Then we take a larger disk DC containing D and extend J over DC so
that J j@DC�I maps onto C , and the extension of J is a reflector homotopy.

Proof of Theorem 4.4 Let ˆ be a flow on M and p a point in M such that the
min-geodesic between the points p and ˆ1.p/ has time-one growth rate N . Assume
ˆ is .K; �/–almost periodic where K D 10N . The previous construction of J began
with defining a null-homotopy for the closed flow line of period 1. In the absence of
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this hypothesis, we will construct a map f W S1!X such that the image of the map
lies on a closed-up flow line for the point p .

Let D be the unit disk in the complex plane and identify @D D fe� isjs 2 Rg with the
unit interval Œ0; 2� modulo the endpoints. (Our choice for this parameterization of @D
makes later calculations less tedious.) Let 
pW Œ1; 2�!M be the min-geodesic with

p.1/Dˆ1.p/ and 
p.2/D p . Define f W @D!X by

f .s/D

�
ˆ.p; s/ 0� s � 1


p.s/ 1� s < 2

Since M is contractible we may extend the map f over the entire disk D . It is
important to note that f .@D/ is no longer invariant under the flow. Using f , define
J W D � Œ0; 1�!X as follows,

J.z; t/D

(
‰t ı e ıf .z/ 0� t � 1

2�
ˆ 1

2
ıf .z/; h.z; 2t � 1/

�
1
2
� t � 1

This is the same homotopy defined in Theorem 4.1, where h.z; t/ is the min-geodesic
starting at ˆ1.f .z// and terminating at f .z/. Recall Figure 3 if needed. Under the
new hypothesis, the image of J still does not intersect the diagonal of M �M . In
fact, since d.p; ˆ 1

2
.p// >K� , the image of J misses a neighborhood of the diagonal.

First we prove that the map g is approximately equal to ‰ 1
2

on the image of e . To
simplify notation, we use d , rather than dM�M to denote the induced path metric on
M �M .

ˆ.p; s/

p

ˆ.p; 1/


p.s/

0� s � 1

1� s � 2

Figure 5: The map f W S1!M

Claim 4 d
�
‰ 1

2
ı e.p/;g ı e.p/

�
< � for all p in M .

Proof of Claim 4 This follows immediately from the fact that ˆ is almost periodic.

d
�
‰ 1

2
ıe.p/;g ıe.p/

�
D d

�
.ˆ 1

2
.p/; ˆ1.p//; .ˆ 1

2
.p/;p/

�
D dM .ˆ1.p/;p/ < �

Algebraic & Geometric Topology, Volume 7 (2007)



Almost periodic flows on 3–manifolds 173

Claim 5 The image of J is contained in M �M nNı.�/ where ı D .
p

2
2

K� 1/�:

Proof of Claim 5 Let t 2 Œ0; 1
2
� and z 2D . Then

J.z; t/D‰t ı e ıf .z/D‰t

�
f .z/; ˆ 1

2
.f .z//

�
D
�
ˆt .f .z//; ˆtC 1

2
.f .z//

�
:

Property 2 of the flow implies dM

�
ˆt .f .z//; ˆtC 1

2
.f .z//

�
>K� . Therefore Lemma

4.3 implies,

d
�
J.z; t/;�

�
>
p

2
2

K�:

For t 2 Œ1
2
; 1� the map Jt .z/ is the min-geodesic between the points J 1

2
.z/ D ‰ 1

2
ı

e ı f .z/ and g ı e ı f .z/. By Claim 4, these points are less then � apart. Therefore
d
�
J.z; t/;J.z; 1

2
/
�
< � for t 2 Œ1

2
; 1�. Since d

�
J.z; 1

2
/;�/

�
>
p

2
2

K� , this implies the
claim.

Since the map f j@D is no longer invariant under the flow, for each t 2 Œ0; 1� the image
of Jt .@D/ is a different circle in X . However, we will show that Jt .@D/ is close to a
g–invariant circle C. Then we will extend our homotopy over a larger disk DC , such
that @DC maps to C .

Lemma 4.5 There exists a g–invariant circle C � X and a 1–parameter family of
maps cW Œ0; 2�=0�2� Œ0; 1

2
�! C such that c satisfies the following properties.

(1) c 1
2
D g ı c0

(2) d.c.s; t/;J j@D.s; t// < 4N�

(3) ct is a degree 1 map for all t 2 Œ0; 1
2
�.

See Section 4.2 for a proof. Let DC be the disk of radius 2 centered at the origin
of the complex plane. Then DC contains the unit disk D . We denote points in the
annulus ADDC nD by z D re� i s with 1� r � 2 and s 2 Œ0; 2�. Points in @D are
therefore denoted by e�i s . The extension of J over A will map the outer circle of @A
to the g–invariant circle C constructed in Lemma 4.5 for all t 2 Œ0; 1�.

For t 2 Œ0; 1
2
�, the map Jt W A!X maps each segment fre�i sjr 2 Œ1; 2�g to the unique

min-geodesic starting at the point Jt j@D.s/ and terminating at the point c.s; t/. See
Figure 6. Let v.s; t/D exp�1

�
J.e� i s; t/; c.s; t/

�
. Then v.s; t/ is an element of the

tangent space of M �M at the point J.e�i s; t/. We explicitly define J as follows.

(2) J.re�i s; t/D exp
�
J.e� i s; t/; .r � 1/v.s; t/

�
:
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� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�M�M

A DCD

Jt

Jt.D/

ct

Figure 6: Extending J

By hypothesis, for a point p 2 M the exponential map exppW Tp.M / ! M is a
diffeomorphism. This implies for .p; q/ 2M �M the map

exp.p;q/W T.p;q/.M �M /!M �M

is a diffeomorphism, and we conclude that J is continuous by Lemma 2.2.

For the second time interval, t 2 Œ1
2
; 1�, each segment fre�i sjr 2 Œ1; 2�g is mapped

by Jt to the min-geodesic between Jt j@D.s/ and c.s; 1
2
/D g ı c.s; 0/. The formula

is same as in (2), but with v.s; t/ D exp�1
�
J.e�i s; t/; c.s; 1

2
/
�
. Now that we have

defined J on all of DC , we verify that it is a reflector homotopy.

To satisfy property 1 of Definition 3.1, we show that Jt .D
C/�X , and also Jt .@D

C/�

C . Note that for all t in Œ0; 1� the image of Jt .@D
C/ is the set C constructed in Lemma

4.5. Claim 5 implies that Jt .D/ � X . Therefore we need only to show that Jt .A/

does not intersect �.

Claim 6 Jt .A/ is contained in a 5N� neighborhood of Jt .@D/.

Proof of Claim 6 First let t 2 Œ0; 1
2
�. On the annulus A, which we parameterized

by re�i s , the map Jt is the min-geodesic with respect to the radius r between the
maps Jt j@D and ct . Lemma 4.5 tells us these maps are distance less then 4N� apart.
Therefore

d
�
J.re�i s; t/;J.e� i s; t/

�
< d

�
c.s; t/;J.e�i s; t/

�
< 4N�:
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For t 2 Œ1
2
; 1� the map Jt is the min-geodesic with respect the the radius r between

the maps Jt j@D and g ı c0 . For z 2D , we have d
�
J.z; t/;J.z; 1

2
/
�
< � . (This was

noted in the proof of Claim 5.) Therefore, for e�i s 2 @D and re�i s 2A,

d
�
J.re�i s; t/;J.e�i s; t/

�
� d

�
g ı c.s; 0/;J.e�i s; t/

�
D d

�
c.s; 1

2
/;J.e� i s; t/

�
� d

�
c.s; 1

2
/;J.e�i s; 1

2
/
�
C d

�
J.e�i s; 1

2
/;J.e�i s; t/

�
� 4N�C � < 5N�

which proves the claim.

Claim 5 states that Jt .@D/ does not intersect a
�p

2
2

K�1
�

neighborhood of �. Since�p
2

2
K� 1

�
� > 5N� , Claim 6 implies Jt .A/ is contained in X .

To verify property 2, that J1 D g ı J0 , we again need only verify this for points in
A, since for z 2D , we have J1.z/D g ıJ0.z/. The segment S D fre�i sjr 2 Œ1; 2�g

is mapped by J0 to the min-geodesic from J0j@D.s/ to c.s; 0/. Call this geodesic �.
On S, the map J1 is the min-geodesic starting at J1j@D.s/D g ıJ0j@D.s/ and ending
at J1j@DC.s/D g ı c.s; 0/. Since g is an isometry, this is the geodesic g ı�.

Property 3, that Jt j@DC is a degree one map, follows immediately from Lemma 4.5.
Therefore, using ˆ we have constructed a reflector homotopy J . This contradicts
Theorem 3.2, and the result is proven.

4.2 Proof of Lemma 4.5

First we prove that on the image of e , the maps g and ‰ 1
2

are pointwise �–close, and

the identity map and ‰1 are within
p

2� .

Lemma 4.6 For any point p in M ,

d.g ı e.p/; ‰ 1
2
ı e.p// < � and d

�
e.p/; ‰1 ı e.p/

�
<
p

2�:

Proof

d
�
g ı e.p/; ‰ 1

2
ı e.p/

�
D d

�
.ˆ 1

2
.p/;p/; .ˆ 1

2
.p/; ˆ1.p/

�
D dM .p; ˆ1.p// < �:

Hence

d
�
e.p/; ‰1 ı e.p/

�
D d

�
.p; ˆ1.p//; .ˆ1.p/; ˆ 3

2
.p//

�
D

r
dM

�
p; ˆ1.p/

�2
C dM

�
ˆ 1

2
.p/; ˆ 3

2
.p/

�2
�
p

2�;
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which completes the proof.

Recall that in the proof of Theorem 4.1, where we assumed the flow line for a point p

had period 1, the g–invariant circle C was the set

C D e ıf .@D/D f
�
ˆs.p/; ˆsC 1

2
.p/

�
j s 2 Œ0; 1�g:

We note one other property of the map e ıf . For s 2 Œ1
2
; 1�,

e ıf .s/D g ı e ıf .s� 1
2
/:

This is easily verified from the definitions of the maps. Note this implies that g ı e ı

f .0/D e ıf .1
2
/.

Now we give a sketch of the proof of Lemma 4.5. Although f no longer maps to
a flow line with period 1, the bounds that were proven in Lemma 4.6 imply that for
s 2 Œ1

2
; 1�, the point e ıf .s/ is close to g ı e ıf .s� 1

2
/. So to construct a g–invariant

circle C , we define an arc ˛W Œ0; 1
2
�!M �M such that ˛.s/ is close to e ıf .s/, and

g ı˛.0/D ˛.1
2
/. Then for s 2 Œ0; 1�,

c0.s/D

�
˛.s/ s 2 Œ0; 1

2
�

g ı˛.s� 1
2
/ s 2 Œ1

2
; 1�

The image of c0 is a g–invariant circle in M �M , and c0.s/ is close to Jt j@D . For
s 2 Œ1; 2�, Jt j@D.s/D e ı 
p.s/, where 
p was the min-geodesic between ˆ1.p/ and
p . Since the time 1 growth rate of 
p is N , the image of e ı
p lies in a neighborhood
of c0.0/D c0.1/. Therefore for s 2 Œ1; 2� we define c0.s/ to be the constant map onto
c0.1/. By rotating the map c0 , we define the maps ct W Œ0; 2�=0�2! C so that ct .s/

is close to Jt j@D.s/.

Lemma 4.5 There exists a g–invariant circle C � X and a 1–parameter family of
maps cW Œ0; 2�=0�2� Œ0; 1

2
�! C such that c satisfies the following properties.

(1) c 1
2
D g ı c0

(2) d.c.s; t/;J j@D.s; t// < 4N�

(3) ct is a degree 1 map for all t 2 Œ0; 1
2
�.

Proof We construct the arc ˛W Œ0; 1
2
�!X , such that ˛.s/ is close to eıf .s/. Lemma

4.6 implies that ‰ 1
2
ı e ıf .0/D e ıf .1

2
/ is contained in B�

�
g ı e ıf .0/

�
. Therefore,

by continuity, there exists ı < 1
2

such that e ı f .s/ 2 B�
�
g ı e ı f .0/

�
whenever

Algebraic & Geometric Topology, Volume 7 (2007)



Almost periodic flows on 3–manifolds 177

ı � s � 1
2

. Let � W Œı; 1
2
�!X be the min-geodesic between e ıf .ı/ and g ı e ıf .0/.

Then

˛.s/D

�
e ıf .s/ 0� s � ı

�.s/ ı � s � 1
2

:

Note that ˛.1
2
/ D g ı ˛.0/. Also, both ˛.s/ and e ı f .s/ are contained in B�.g ı

e ıf .0// for s 2 Œı; 1
2
�, therefore d.˛.s/; e ıf .s// < 2� for all s 2 Œ0; 1

2
�: We define

cW Œ0; 2�=0�2� Œ0; 1
2
�!X by

c.s; t/D

8̂̂̂<̂
ˆ̂:
˛.sC t/ 0� s � 1

2
� t

g ı˛.sC t � 1
2
/ 1

2
� t � s � 1� t

˛.sC t � 1/ 1� t � s � 1

˛.t/ 1� s � 2

If at is the constant map from an interval onto ˛.t/, the map c0 is simply ˛ �.gı˛/ �a0 .
As t increases, ct is equal to ˛ � .g ı ˛/ � at composed with a rotation. Let C D

fc.s; 0/js 2 Œ0; 2�g. Then C is a g–invariant circle that is the image of ct for all t .
As defined, ct may not be a degree one map. If ˆ.p;R/ is compact with period less
than 1

2
, the degree of the map c0 will be greater than one. However, by perturbing ˛

arbitrarily small amount, we can make the map an embedding. Then ˛ � .g ı˛/ will be
an embedding, which implies c0 is a degree one map, since c0 ' ˛ � .g ı˛/:

c.0; t/D ˛.t/

e ıf
‰ 1

2
ı e ıf .0/

e ıf .0/

g ı e ıf .0/

‰t ı e ıf

g ı˛

Figure 7: close maps

We now verify that ct is close to Jt j@D D‰t ı e ı f . As c is piecewise defined, we
check each of the four intervals.

Case 1 Let 0� s � 1
2
� t , or t � sC t � 1

2
. Then

d
�
‰t ı e ıf .s/; ˛.sC t/

�
D d.e ıf .sC t/; ˛.sC t/

�
< 2�:

This follows immediately from the definition of ˛ .
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Case 2 Let 1
2
� t � s � 1� t , or 1

2
� sC t � 1. Then

d
�
‰t ı e ıf .s/;g ı˛.sC t � 1

2
/
�
D d

�
e ıf .sC t/;g ı˛.sC t � 1

2
/
�

D d
�
‰1

2

ı e ıf .sC t � 1
2
/;g ı˛.sC t � 1

2
/
�

� d
�
‰1

2

ı e ıf .sC t � 1
2
/;g ı e ıf .sC t � 1

2
/
�

C d
�
g ı e ıf .sC t � 1

2
/;g ı˛.sC t � 1

2
/
�

< �C 2�:

The last inequality follows from the fact that g is an isometry, and Lemma 4.6, that
‰1

2

� g on the image of e .

Case 3 Let 1� t � s � 1, or 1� sC t � 1C t . Then

d
�
‰t ı e ıf .s/; ˛.sC t � 1/

�
D d

�
‰1 ı e ıf .sC t � 1/; ˛.sC t � 1/

�
� d

�
‰1 ı e ıf .sC t � 1/; e ıf .sC t � 1/

�
C d

�
e ıf .sC t � 1/; ˛.sC t � 1/

�
�
p

2�C 2�:

The last inequality follows from the second conclusion of Lemma 4.6, that  1 � id on
the image of e .

Case 4 Let 1� s � 2.

On the interval Œ1; 2�, the map f is the min-geodesic between the points p and ˆ.p; 1/.
Therefore for s 2 Œ1; 2�, we have d.p; f .s// < � . Since the time-one growth rate of
this geodesic is N , this implies d

�
ˆ.p; t/; ˆ.f .s/; t/

�
<N� for t 2 Œ0; 1�. Therefore

d
�
‰t ı e ıf .s/; ˛.t/

�
� d

�
‰t ı e ıf .s/; e ıf .t/

�
C
�
e ıf .t/; ˛.t/

�
� d

�
‰t ı e ıf .s/; ‰t ı e ıf .0/

�
C 2�

D d
��
ˆt .f .s//; ˆtC 1

2
.f .s//

�
;
�
ˆt .p/; ˆtC 1

2
.p/

��
C 2�

�
p

2N�C 2� < 4N�:

This completes the proof.

Algebraic & Geometric Topology, Volume 7 (2007)



Almost periodic flows on 3–manifolds 179

5 Almost periodic flows and Seifert fibered spaces

Theorem 5.1 Let M be a closed, orientable, Riemannian 3–manifold whose universal
cover is homeomorphic to R3 . Let 0 < 2� < conv rad.M /. If M supports a .1; �/–
almost periodic flow ˆW M �R!M with a closed flowline of period 1, then M is
Seifert fibered.

Proof Let p be a point in M such that �D ˆ.p;R/ is compact and has period 1.
Since M is covered by R3 its fundamental group is torsion free. If � has infinite
order in �1.M /, then by Theorem 2.4 the manifold M is Seifert fibered. This leaves
the case that � is contractible. Closed up flow lines are freely homotopic, by Lemma
2.3, hence all closed up flow lines are homotopic to � and contractible. Therefore the
lifted flow ẑ on the universal cover zM with the lifted metric is .1; �/–almost periodic.
Since the universal cover zM is homeomorphic to R3 , this contradicts Theorem 4.1,
hence the case when � is contractible can not occur.

Theorem 5.2 Let M be a closed, orientable, Riemannian 3–manifold with universal
cover homeomorphic to R3 , such that for all p2 zM , the exponential exppW Tp

zM! zM

is a diffeomorphism. Let 0<2� < conv rad.M /. If M supports a flow ˆW M�R!M

that satisfies

(1) for some p in M the min-geodesic between p and ˆ1.p/ has time-one growth
rate N , and

(2) ˆ is .10N; �/–almost periodic,

then M is Seifert fibered.

Proof Let p be the point in M such that the min-geodesic 
 between p and ˆ1.p/

has time-one growth rate N . Let �p the closed up flow line for p . As before, Theorem
2.4 implies we need only consider the case when �p is trivial in �1.M /.

The lifted flow ẑ on the universal cover zM with the lifted metric is .10N; �/–almost
periodic. Let zp be a lift of p . Then z
 , the lift of 
 , is the min-geodesic between zp
and ẑ1.p/ which also has a time-one growth rate of N under the flow ẑ . Therefore
ẑ satisfies the hypothesis of Theorem 4.4 and we get a contradiction for this case.

Corollary 5.3 Let M be a closed, orientable, connected, Riemannian 3–manifold
with non-positive sectional curvature. If M supports a flow ˆ such that for some p in
M the min-geodesic between p and ˆ1.p/ has time-one growth rate N , then ˆ is
not .10N; �/–almost periodic.

Algebraic & Geometric Topology, Volume 7 (2007)



180 Kelly Delp

This Corollary follows immediately from Hadamard’s Theorem (see Do Carmo [3] for
a proof).

Theorem 5.4 (Hadamard) Let M n be a complete Riemannian manifold, simply
connected, with all sectional curvature K < 0. Then M is diffeomorphic to Rn ; more
precisely exppW TpM !M is a diffeomorphism.
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