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Pullbacks of generalized universal coverings

HANSPETER FISCHER

It is known that there is a wide class of path-connected topological spaces X', which
are not semilocally simply-connected but have a generalized universal covering,
that is, a surjective map p: X — X which is characterized by the usual unique
lifting criterion and the fact that X is path-connected, locally path-connected and
simply-connected.

For a path-connected topological space ¥ and amap f: Y — X, we form the
pullback f*p: f *X — Y of such a generalized universal covermg p: X > X
and consider the followmg question: given a path-component Y of f* X, when
exactly is f™ply: Y — Y a generalized universal covering? We show that the
classical criterion, of fu: m1(Y) — m1(X) being injective, is too coarse a notion
to be sufficient in this context and present its appropriate (necessary and sufficient)
refinement.

55R65; 57M10, 54B99

1 Introduction and preliminaries

We call a continuous function p: X > X, from a path-connected, locally path-
connected and simply-connected topological space X onto a topological space X,
a generalized universal covering of X if for every path-connected and locally path-
connected topological space Z, for every continuous function g: (Z,z) — (X, x)
with g¢(71(Z,z)) = 1, and for every X in X with p(¥) = x, there exists a unique
continuous lift /: (Z,z) — (X, X) with poh =g.

A generalized universal covering of X, if it exists, is uniquely determined by these

properties. Its group of covering transformations Aut()? L x ) is isomorphic to
71(X, xo) and it acts freely and transitively on every fiber p~!({x}) with x € X.

The main result of Fischer and Zastrow [3] is that for a wide class of path-connected
spaces X, which are not necessarily semilocally simply-connected and not necessarily
locally path-connected, the generalized universal covering exists and can be built by the
following standard construction: Fix a base point xo € X and let P(X, x¢) denote the
set of all continuous paths «: [0, 1] — X such that «(0) = x¢. On P (X, xq), consider
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the equivalence relation given by o ~ f if and only if «(1) = B(1) and « is homotopic
to B within X, relative to their common endpoints. Let [«] denote the equlvalence
class of « and let X denote the set of all such equivalence classes. Define p: X > X
by p([e]) = a(1). For each [o] € X and each open subset U of X containing a(1),
let B([a], U) denote the set of all [B] € X for which there exists a continuous map
y:]0,1] = U such that y(0) = (1), y(1) = B(1) and [B] = [« - y]; where « -y
denotes the usual concatenation of the paths @ and y. Notice that B([¢], X) = Y
for all [«] € X and that if [B] € B(Ja],U), then B([B],U) = B([a], U). Moreover,
if U CV,then B([e], U) € B([a], V). It follows that the collection of all such sets
B([e], U) forms a basis for a topology on X , which one employs.

The lift & of g is given by h(w) = [« - (g o 7)] where X =[] and 7: [0,1] - Z is
any path from t(0) =z to t(1) = w.

The unique path lifting property of p: X — X makes it necessary for X to be
homotopically Hausdorff: for every x € X, the only element of (X, x) which can
be represented by arbitrarily small loops is the trivial element.

If X happens to be locally path-connected, then p: X > Xis open so that X /G is

homeomorphic to X', where G = Aut(X~ £ x ). (In case X is locally path-connected
and first countable, then the fact that a generalized universal covering of X must be an
open map can already be deduced from the path lifting property.)

If X is locally path-connected and semilocally simply-connected, then the generalized
universal covering agrees with the classical universal covering. However, while a
generalized universal covering is, in particular, a Serre fibration with unique path lifting,
it distinguishes itself from a classical covering most notably in that it need not be a
Hurewicz fibration.

Spaces which allow for a generalized universal covering, constructed in this manner,
include all path-connected 1-dimensional continua, all path-connected planar sets and
certain trees of manifolds, including certain Coxeter group boundaries.

We refer the reader to Fischer and Zastrow [3] for more information on generalized

universal coverings.

General assumptions Let (X, xg) be a path-connected topological space such that
p: X — X, as constructed above, is a generalized universal covering and let f: Y — X
be a continuous map from a path-connected topological space Y .
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Consider the pullback diagram

[fX — X

gl

f

Yy — X

where f*X = {(0.X) e Y xX | f(») = p(O)} C Y x X, f*p: [*X > Y is
given by f*p(y,X) =y and f: f*X - X is given by f(y,%) = X. (Recall that
f* X is uniquely characterized by its universal property: given any space Z and maps
g: Z—Y and h: Z—>X such that fog = poh, there is a unique map ¢: Z— *X

such that (f*p)oqg = g and foq_h)

The _pullback has the following easily verified but 1mportant classical property: If
p: X — X is a classical universal covering of X and if Y isa path-component of
f*X then f*p| Y — Y is a classical covering, where Y is simply-connected if
and only if fu: m, (Y) — 1 (X)) is injective; rendering the classical universal covering
of a locally path-connected Y as a so-called “fibered product” (see Spanier [4]).

We thank Professor Kazuhiro Kawamura for the following inspiring question, whose an-
swer, given in Theorem 4.3 below, enables the appropriate use of pullback constructions
in applications of the generalized theory, such as that found in Fischer [2].

Question Given the general assumptions stated above and a path-component Y of
S*X, when exactly is f*p|g: Y — Y a generalized universal covering?

Of course, the following two facts are always true.

Lemma 1.1 Any two path-components of f *X are homeomorphic and induce equiv-
alent maps f*plg: Y — Y.

Proof Let Y; and Y, be two path-components of f *X. Fix any (i, X;) € Y;.
Choose a path «: [0, 1] = Y from a(0)=y; to a(1)=y,. Let g ([0, 1],0)— (f,%l)
be the lift of f oa: ([0,1],0) — (X, f(y1)) with pog = foa. Put Z = g(1).
Then (e, g} [0, 1] /* X is apath from (y1.51) to (v2.2) and p(Z) = f(y2) = p(52).
Since p: X > Xisa generalized universal covering, there is a homeomorphism
h: X — X such that p = poh and h(") = X,, inducing a homeomorphism
(id, h)|f*X f*X — f*X. Since Y; and Y, are path-components of f*X, this

yields the desired homeomorphism (id, h)|Yl : Y; > Y, with f*p=f*po(id, h). O
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Remark 1.2 The number of path-components of ]""‘X~ is equal to the index of
fu(r1(Y)) in m(X), as a standard calculation shows: first note that, for a fixed
(y,X) € f*f, an explicit isomorphism W between Aut()? £ X) and 1 (X, f(p)) is
given by the formula W (&) =[pog], where g is any path in X from X to h(X). By the
above, this group acts transitively on the collection of path-components of f *X , where
the stabilizer of the path-component containing (y, X) corresponds to fi(71(Y, »)).

Lemma 1.3 The path-components of f *X are simply-connected if and only if
Sfu: w1 (Y) — w1 (X) is injective.

Proof Fix any (y,X) € /*X andlet Y be the path-component of f*X containing
(y,%). Put x = p(%). First suppose that ¥ is simply-connected. If [a] € (Y, »)
is such that fi(e]) = 1 € m1(X,x), then the lift g: ([0,1],0) — (X X) of
foa: ([0,1],0) = (X, x) is aloop. This yields a loop /& = («, g): [0, 1] > YCYxX
which projects to «. Since Y is simply-connected, [e] =1 € (Y, »).

Now suppose fy: 71(Y) — T (X) is injective and let A: ([0, 1],0) — (?, (y,X)) be
any loop. Then f4([h]) € 71 (X, X) = {1}, so that fe(((f*p)oh])=[fo(f*p)oh]=
[po fohl= pso fulh] =1 € m(X,x). Hence, [(f*p)oh]=1¢€ n1(Y,y). Any
nullhomotopy for ( f*p)oh in Y, fixing the endpoints, maps via f to a nullhomotopy
for fo(f*p)oh in X, from where it can be lifted to a nullhomotopy for f ohin X.
Combining these nullhomotopies for (f* p) ok and f o h, yields one for / in Y. O

In order to distill the essence from the above question, we now consider an example in
which the induced map f* ply: Y =Y differs from the generalized universal covering
of Y, although fiu: 7 (Y) — 71 (X) is injective.

As we shall see, local path-connectivity of Y is the sticking point and is far from
guaranteed. Outside the classical context of locally nice spaces, the map f: YV — X
will have to satisfy a more rigid condition, the prototypical failure of which is exhibited
by the following example.

2 An example

Let Y be the space obtained from joining two copies of the Hawaiian Earring with an arc
between their distinguished points. Specifically, let ¥ € R? be givenby ¥ = HUAUH’,
where H={(x,») e R? | x2+ (y—1-1)2 = (1)2 n e N}, 4 ={0} x[-1, 1], and
H ={(x,y) eR* | x4+ (y+1+ %)2 = (%)z,n € N}. Let X be the quotient space
obtained from Y by identifying the arc A to a point and let f: Y — X denote the
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quotient map, so that X is the one-point union of H and H’. Put yy = (0,0) € Y and
let xo = f(yo).

We will show that p: X—>Xisa generalized universal covering, that the induced
homomorphism fi: 71(Y) — m1(X) is injective, and that Y is not locally path-
connected. Consequently, f™p|s: Y > Y isnota generalized universal covering.
Indeed, while the generalized universal covering space of Y exists and is contractible,
it will be shown that ¥ is not contractible.

Recall that for every 1-dimensional continuum Z, the natural homomorphism
m(Z,%) — 71(Z, ) to the first Cech homotopy group is injective by Eda and
Kawamura [1]. It therefore follows from Fischer and Zastrow [3] that p: X = Xis
a generalized universal covering and that both ¥ and X have generalized universal
covering spaces which are R—trees and hence contractible.

The injectivity of f4: 71(Y) — m1(X) can be deduced, for example, from that of
fx o @ in the following commutative diagram:

S
m1(Y, yo) —— 71 (X, x0)

d l

. e .
71(Y, yo) —— m1(X,Xo)

To this end, let [@] € 71(Y, yo) be such that fi(p([a])) = 1 € 71(X,x¢). Then
o([a]) =1 € m1(Y, yo), because identifying A to a point induces an isomorphism of
fundamental groups on every level of the canonical inverse sequences of approximating
polyhedra for Y and X. Because ¢ is injective, we have [o] = 1 € w1 (Y, o), as
desired.

Note that fu: w1 (Y) — m1(X) is not surjective, because those elements of 71 (X, xq)
which are represented by continuous loops that non-trivially alternate infinitely often
between the two copies of the Hawaiian Earring in X are not in the image of fx.
Therefore, by Remark 1.2, f *X is not path-connected. Let Xo € X be the > equivalence
class of the constant path at xq and let Y be the path-component of f *X containing

the point Yo = (y9, Xo).

We claim that Y is not locally path-connected. Assume otherwise and choose open
subsets V' € Y and U © X with yo € V' and xo € U, such that every point of
YN (V x B(Xg,U)) is joined to yo by a path in Yn ({0} x (—1,1)) x X) Choose
any non-trivial loop a2 ([0, 1], {0, 1}) = (Y. {yo}) with foa([0,1)) CU. Put f = foua,

=[] and F1 = (. %1). Then o # ¥, € B(%o.U). Let B: ([0.1],0) — (X, %o)
denote the lift of B: ([0, 1],0) — (X, xg) with po B = B. Then («, B) is a path in
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f*X from F to 7;. Hence 7, € Y N (V x B(Xy, U)). By choice of V and U, there
isapath g:[0,1] > /*X with /*pog([0,1]) € 4 from g(0) = F, to g(1) = 7.
Then po (fo g) = fo(f*p)og is the constant path at xo. So, by the unique path
lifting property of p: X — X, we have that f o g is the constant path at Xy. Hence
X1 = Xy, contrary to the above, and our claim follows.

Note that if we replace Y by HU A in the above discussion, then f *X becomes
path-connected, remains non-locally path-connected, but is contractible.

In contrast, we now verify that Y is not contractible when ¥ = HU A U H’. First
observe that because Y is simply-connected by Lemma 1.3, we can associate to
each y € Y with ( f*p)(¥) = yo a well-defined word-length in the free product
71 (Y, yo) ~ w1 (H) * 1 (H") by choosing any path g: [0, 1] — Y from g(0) =73 to
g(1) =y and calculating the word-length of [( /™ p) o g] e m1(Y, yo). Now suppose,
to the contrary, that there is a homotopy H: ¥ x[0, 1]— Y such that H(¥,1) = 7 and
H(y,0)=7y, forall y Y. By compactness of [0, 1], there are open subsets V' C Y and
U C X with yg € V and x¢ € U such that ||(f*p)o H(Jo.t)—(f*p)o H(¥,1)|| < %
forall 7€ Y N(V x B(Xo,U)) and all 7 € [0, 1]. Since g(t) = H(¥,) can be used
to calculate the word-length for ¥ when (/™ p)(¥) = yo and since the length of the
arc A equals 2, the above inequality allows us to choose a positive integer m such that
for every y € Yn (V x B(Xy,U)) with (f*p)(¥) = yo, the word-length associated
to ¥ is less than or equal to m. On the other hand, by alternating between H and
H’, we may choose a loop a: ([0, 1],{0,1}) — (Y, {yo}) with f oa([0,1]) S U such
that the word-length of [a] € w1 (Y, yg) is equal to 2m. As above, let § = foa,
,B ([0, 1], O)—>(X Xo) be the lift of B, X; = [A] and y1 = (»0,X1). Then g = (a, /3)
is apathin f*X from J to 7 sothat 5; € Y N(V x B(Zo.U)), (f*p)(F1) = yo
and the word-length associated to 7 is equal to 2m; contradicting the choice of m.

Remark 2.1 The following is a variation of the above example with the same properties
but in which f: ¥ — X is inclusion, so that one can take f*X = p~1(Y), f*p =
Plp-1¢y) and f to be inclusion. Embed f: Y =HU AUH' < X =H x [0, 1] such
that f(H) CHx {0}, f(H) CHx {1}, f(A) ={(0,1)} x[0, 1] and such that f(H)
and f(H') occupy alternating cylinders of X .

3 Gradual m{—injectivity

We now refine the notion of | —injectivity appropriately. For ye V C W C Y and
f(V)C U C X, consider the following commutative diagram of homotopy groups
and sets, whose exact rows are induced by inclusions and restrictions, and whose
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vertical arrows are induced by the map f: (Y, V,y) — (X, U, f(»)) and inclusion
i (Y. V.y) = (Y. W.y).

nl(va) — HI(Y’y) — NI(Y7W7y) — No(W,y)

I l dl I

G-1) mV,y) —— ml,y) —— m.V.y) —— wo(V,y)

l l A l

uU f() —— mX. f(y) —— mX. U, f(»)) —— mU. f(»)

Definition We call the map f: Y — X gradually m—injective if for every y € Y
and every open subset W of Y with y € W there exist open subsets V and U
of Y and X, respectively, with y € V. C W and f(V) € U, such that the kernel
of fu: mi(Y,V,y) = m(X,U, f(»)) in diagram (3-1) is contained in the kernel of
iv: m(Y,V,y) > o (Y, W, y).

Remark 3.1 Let j: V<Y and k: U — X denote inclusions. If V is path-connected
and if it happens that

Ji N ka (i (U, £ (1)) € (i (V, ),

in the lower left square of diagram (3-1), then a quick diagram chase (not involving
the top row) implies that the kernel of f4: 71 (Y, V, y) = 71 (X, U, f(y)) is trivial.

Remark 3.2 If f4: 71(Y) — m1(X) is injective, then Y clearly inherits the property
of being homotopically Hausdorff from X .

The following two observations endorse our definition.

Lemma 3.3 Suppose X is semilocally simply-connected and Y is locally path-
connected. It fu: w1 (Y') — m1(X) is injective, then Y is homotopically Hausdorff and
f:Y — X is gradually | —injective.

Proof Let y € Y and an open subset W C Y with y € W be given. Choose an open
subset U € X such that f(y) € U and such that the inclusion induced homomorphism
ks: m (U, f(y)) — w1 (X, f(»)) is trivial. Then choose an open path-connected subset
VCY with ye VCW and f(V)C U. Now apply Remark 3.1 and Remark 3.2. O

Lemma 3.4 If Y is homotopically Hausdortf and if f:Y — X is gradually
my—injective, then fu: m1(Y) — w1 (X) is injective.
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Proof Let a be an element of the kernel of fu: 7 (Y, y) = w1 (X, f()). Let W,V
and U be as in the definition for gradually 7; —injective. A diagram chase reveals that
a is in the image of (W, y) — m1(Y, y). Since W can be chosen arbitrarily small
and since Y is homotopically Hausdorff, a is trivial. |

4 The main result

The chief difficulty in determining whether ™ p|s: Y >Yisa generalized universal
covering lies in checking the local path-connectivity of Y. The next two lemmas
characterize this property in terms of gradual sy —injectivity of f: Y — X.

Lemma 4.1 If f: Y — X is gradually my—injective, then the path-components of
f*X are locally path-connected.

Proof Let Y bea path-component of f X and let ( V. x) €Y. Say, X =[] e X . Let
N bean open subset of Y with (r,X)e N . Then (y,X) e Yﬂ(VxB([a] U))C N for
some open subsets V and U of Y and X, respectively. In particular, y € V and f(y)=
p(X) =a(l) € U. Choose an open subset W C V with y € W such that f(W) C U.
Since f:Y — X is gradually m;-injective, there are open subsets V/ C Y and
U'CX with ye V' CW and f (V') CU’ such that the kernel of fu: 7 (Y, V', y) —
71 (X, U’, f(y)) lies in the kernel of iy: 71 (Y, V', y) — 71(Y, W, y). Replacing U’
with U N U, if necessary, we may assume without loss of generality that U’ C U .
Then (y.X) € Y N (V' x B([a]. U’)) € Y N(V x B([a], U)).

We will show that every point of Yn (V' x B([a], U")) is joined to (y, X) by a path
in¥nN (V x B([a], U)). To this end, let (w,Zz) € Yn (V' x B([a], U")) be given. Say
z=[B] e X . Then f(w) = p((z)=pB(1). Since Y is path-connected, there is a path
g:0,1] — Y from g(0) = (y,X) to g(1) = (w,Z). Then fog [0,1] — X is a path
from fog(O) =X=[u]to fog(l) =Z=[B]and (f*p)og: [0,1]—Y isapath from
(f*p)og(0)=y to (f*p)og(l)=w.Puty =po fog=fo(f*p)og:[0,1]—>X.
Then y(0) = p(la]) = a(l) = f(») and y(1) = fo(f*p)og(l) = f(w). Since
p: X — X has the unique path lifting property, [f] = f o g(1) = [« - y]. Since
[Bl€e B([«], U"), there is a path §: [0, 1]— U’ such that [8] =[a-§]. Since [a-y]=[B]=
[x-6] € X, we see that y and § are homotopic in X', relative to their common endpoints.
This places [(f* p) o g] into the kernel of fu: 71 (Y, V', y) = 71 (X, U’, f(»)) and
hence into the kernel of iy: 71 (Y, V', y) — w1 (Y, W, »). Therefore, there is a path
&:[0,1] — W which is homotopic to (f*p) o g in Y, relative to their common
endpoints. Now let /2: ([0, 1],0) — (X, X) be the lift of f o&: ([0,1],0) = (U, /' (»)).
Then h(l) =[a- (fo&)l =[oa-(fo(f*p)og)l=lx-y]=[B]l =Z. Therefore,
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(£,1):[0,1] = (V x B([a],U)) is a path from (y,X) to (w,Z) which lies in Y,
because fo& = poh. |

Lemma 4.2 If the path-components of f*f are simply-connected and locally path-
connected, then f: Y — X is gradually 1 —injective.

Proof Let y € Y and an open subset W C Y with y € W be given. Choose any path
a: [0,1]— X from a(O) =Xxg to a(l)= f(y). Put X =[&]. Then f(y)=a(l)= p(X)
so that (y, X)e f*X. Let Y be the path-component of f * X which contains ( V, x)
Since ¥ N (W x B([a], X)) is an open subset of Y containing (y, X), and since Y is
assumed to be locally path-connected, there are open subsets V' € Y and U C X with
yeV CW and f(V)C U such that every point of ¥ N (V x B([ae], U)) is joined to
(y,X) by apathin ¥ N (W x B([a], X)).

Let [y] be an element of the kernel of fu: m((Y,V,y) — m1(X,U, f(»)) and put
w = y(1) € V. Then there is a path f: [0,1] — U such that B is homotopic to
f oy in X, relative to their common endpoints 8(0) = f(y) and B(1) = f(w). Put
Z =[a-B]. Then (w,%) € V x B([a],U). Let g: ([0, 1],0) — (X, %) be the lift of
foy:([0,1],0) = (X, f(»)). Then (y,g): [0,1] = f*X is a path from (y,%) to
(w,[a-(foy))) = (w,[e-B]) = (w,Z). Therefore, (w,Z) € Y N(V x B[], U)). By
choice of V and U , there is a path 4: [0, 1] — ?ﬂ(WXB([O[], X)) from h(0) =(y, X)
to h(1) = (w,Z). Put § = (f*p)oh. Then §: [0, 1] = W is a path from §(0) = y to
8(1) = w. Since po(f~oh) = fo(f*p)oh= fo and foh(O) =X =[], it follows
from the unique path lifting property of p: X — X that f oh(l)=[a-(f0d)]. On
the other hand, ]7 oh(l) =Z =[a-B]. Hence f o4 is homotopic to § and therefore
also homotopic to f oy in X, relative to their common endpoints. By Lemma 1.3,
fu: w1 (Y) = m1(X) is injective so that we can conclude that § is homotopic to y
in Y, relative to their common endpoints. Since § lies in W, this places [y] into the
kernel of ix: w1 (Y, V,y) = w1 (Y, W, y), as desired. |

Here is the main result.

Theorem 4.3 Let Y be a path-component of f*X. Then f*plg: Y > Y is
a generalized universal covering if and only if Y is homotopically Hausdorff and
f:Y — X is gradually m| —injective.

Proof First assume that /™ p|g: Y >Yisa generalized universal covering. Since Y
is simply-connected, fu: 71(Y) — m(X) is injective by Lemma 1.1 and
Lemma 1.3. Then Y is homotopically Hausdorff by Remark 3.2. Since Y is also
locally path-connected, f: Y — X is gradually m|—injective by Lemma 4.2.
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Now assume that Y is homotopically Hausdorff and that f: ¥ — X is gradually
my—injective. Then fu: m1(Y) — m1(X) is injective by Lemma 3.4. Hence, Y is
simply-connected by Lemma 1.3 and locally path-connected by Lemma 4.1. Surjec-
tivity of the map f*pls: Y — Y follows from the surjectivity of p: X — X and
Lemma 1.1. Finally, the required lifting criterion follows easily: Let Z be a path-
connected and locally path-connected topological space and let g: (Z,z) — (Y, y) be a
continuous function with gu(;r1(Z,z))=1. Let ¥ in Y be such that f*p(¥)=y. Put
X = f(f) and x = f(y). Then y = (»,X). Since fog: (Z,z)— (X, x) is such that
(fog)u(m(Z,z)) =1, there is a unique lift ¢: (Z,z) — (f,)?) with pog= fog.
Then h = (g,q9): (Z,z) —> ()7, y) is a lift with (f* p) o h = g. Observe that any lift
W:(Z,z) —> (Y,7) with (f*p)oh’ = g yields a lift foh': (Z,z) — (X,X) with
pofol=fo(f*p)oh’ = fog. By uniqueness of ¢, we obtain f o/’ = q. Thus,
W=((/*p)oh’ . [oh')=(g.9)=h. o
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