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Extending Johnson’s and Morita’s homomorphisms to the
mapping class group

MATTHEW B DAY

We extend certain homomorphisms defined on the higher Torelli subgroups of the
mapping class group to crossed homomorphisms defined on the entire mapping class
group. In particular, for every k > 2, we construct a crossed homomorphism ¢
which extends Morita’s homomorphism 7 to the entire mapping class group. From
this crossed homomorphism we also obtain a crossed homomorphism extending the
k th Johnson homomorphism 7 to the mapping class group.

D Johnson and S Morita obtained their respective homomorphisms by considering the
action of the mapping class group on the nilpotent truncations of the surface group;
our approach is to mimic Morita’s construction topologically by using nilmanifolds
associated to these truncations. This allows us to take the ranges of these crossed
homomorphisms to be certain finite-dimensional real vector spaces associated to
these nilmanifolds.

57NO05; 57T15

1 Introduction

Let ¥ = X, 1 be a compact, connected, oriented smooth surface of genus g > 3 with
a single boundary component and a basepoint * on the boundary component. The
mapping class group Modg 1 of X is the group Diff(X, %) of diffeomorphisms of X
fixing 0% pointwise, modulo isotopies fixing 0% pointwise.

Let 7 = 7;(X, %) be the fundamental group of X, which is a free group on 2g
generators. The obvious action of Diff(X, d¥) on the based loops of ¥ induces an
action of Modg 1 on 7. Consider the lower central series of 7, given by 7© =7 and
g *+D = [, 7). The k th nilpotent truncation of  is the group Ty = /7 *~1 .
This is a nilpotent group of class (k — 1). Since the group 7% is characteristic in
m, the action of Modg 1 on m descends to an action on I'y for each k. So we have
a representation Modg 1 — Aut(I'y). The kth Torelli group 14 (k) is the kernel of
this representation. These groups have been studied by Johnson and others (see [12]).
Andreadakis defined analogues of these groups in Aut(sx) in [1].
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Let H = H{(X; Z) be the integral first homology group of the surface and let L
be the abelian group k=1 / 7% There is an exact sequence (see Morita [17, Propo-
sition 2.3]):

0 — Hom(H, Li+1) = Aut(T'g4+1) = Aut(IT'y) — 1

The image of /4 1 (k) under the representation Modg 1 — Aut(I'yy) lies in the image
of Hom(H, L 1) <= Aut(I'x+1). So by restriction, we have a homomorphism 74 1 (k)
for any k > 2:

Tg.1(k): g1 (k) — Hom(H. Lycy)
This is called the k th Johnson homomorphism. It was defined by Johnson in [11].

Consider the standard (bar) group cohomology chains Cy(7) of m. The action of
Modg,; on m induces an action on Cy (). The abelian group Cj(m) is the free
abelian group with generating set 77, so we have an element [{] € C;(r), where £ €
is the class of the boundary loop in ¥. We denote the normal closure of (£) in 7

by (€). Select a 2—chain C € C,(;r) such that dC = —[{] and the image of C in
C,(7r/ (L)) is a cycle representing the fundamental class of 7/ (£). For [¢] € Modyg 1,
the chain [¢]- C — C is in Z,(w) because [{] is fixed by [¢], and it is in B ()
because H; () = 0. Pick a chain D € C3(r) that bounds [¢]-C — C. Suppose further
that [¢] € I, 1(k). Then [¢] fixes the image of C in C3(I'x) and the image of D in
C3(Ty) is a cycle. The kth Morita homomorphism T, 1(k) is the map taking [¢] to

the homology class of this cycle:
Tg,1(k): Ig,1(k) — H3(T'k)

Morita proved that this is a well-defined homomorphism in [16, Theorem 3.1], where
he also proved that it refines 7g (k) (see Theorem 5.1 below). When the genus is
suppressed, we use the notation 7 for 7g ;(k) and Ty for Tg ; (k).

Since 7 is a free group, each I'j is a finitely generated, torsion-free nilpotent group,
and is therefore, by a theorem of Mal’cev, a lattice in a unique simply-connected
nilpotent Lie group Gy over the reals. Let X; = G/ 'y, the homogeneous space
of 'y, and let g; be the Lie algebra of G . The standard Lie algebra chain complex
C«(gr) on gy is a chain complex with chains C,(gx) equal to the exterior power A" gy
and a boundary determined by the Lie bracket. Note that the vector spaces Cy,(gy) are
finite-dimensional for every n and k. By a theorem of Nomizu [20], the homology
H.,.(gy) of this complex is isomorphic to H,(X};R). This is explained in Section 2
below.
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A crossed homomorphism from a group G to a G-module M isamap G - M
satisfying a product rule that is twisted by the action of G on M :

flegh)y=g-f(h)+ f(g)

This is the same thing as a group cohomology 1—cocycle in Z(G; M), so we may
speak of the cohomology class of a crossed homomorphism in H!(G; M).

The issue of extending Johnson’s homomorphisms is first addressed in Morita’s pa-
per [17], where he defines a crossed homomorphism extending 74,1(2). Later, Morita
constructed an extension of 7g 1(3) in [18], and Perron in [21] built an extension of
Tg,1(3) by different methods. Hain showed in [6, Section 14.6] that 7, { (k) extends to a
representation of Mod, | in a semi-direct product of a unipotent algebraic group over Q
with Sp,,(Q). We note that while semi-direct products and crossed homomorphisms
are related, the results of this paper do not appear to follow directly from Hain’s
results. Kawazumi constructed a different class of maps in [13] that extend the higher
Johnson homomorphisms to Aut(rr), and showed in [14] that these maps are not crossed
homomorphisms.

Main Theorem A Fix k > 2. There is an action of Modyg ; on the finite-dimensional
real vector space C;(g)/ B3(gr), and with respect to this action, there is a crossed
homomorphism

€x: Modg 1 — C3(gx)/B3(gk)

that extends the Morita homomorphism:

Tg.1(k)
Ip (k) — = Hy(Ty)

€k

MOng

C3(gx)/ B3 (gk)

The unlabeled map on the right is the composition:
H3(Ty) => H3(Xy:Z) — H3(Xy;R) => Hi(gx) < Ci(gx)/B3(ox)

We construct this crossed homomorphism in Section 3.2 below. The construction is a
generalization of a topological construction for 74 1(2) (see Johnson [11] or Hain [5])
and is similar to a different topological construction of 7g 1 (k) due to A Heap (see [8,
Theorem 4] and [8, Theorem 22]).

The projection I'y 1 — I'y induces G4 ; — G on Mal’cev completions, which then
induces gr4+1 — gr on Lie algebras. Let [z be the kernel of gz, ; — gx, and let

g,(clJ)rl denote the commutator subalgebra of gx ;. From Main Theorem A, we obtain
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Main Theorem B Fix k > 2. There is a Mod 4 | —equivariant map

= 1
d%: C3(g1)/ B3 (gk) — Ca(or+1)/ (@), Alies1)
such that the crossed homomorphism
d? o €x: Modg | — C2(9k+1)/(g§cl—|)-l Algt1)
extends the Johnson homomorphism:

..1(k)
Ig.1 (k) i Hom(H. Ly41)

d?o¢y

1
Modg, Calarr1)/ (85 ], Aletr)

The inclusion on the right is explained in the proof of the theorem.

Remark It is a fact of group cohomology theory (see Brown [2, chapter II1.5]) that
a crossed homomorphism on a subgroup may be extended to the entire group by
expanding the target module to a larger module, called a co-induced module. As
an abelian group, the co-induced module of H3(I'x) from Ig ;(k) to Modg ; is a
direct sum of copies of H3(I'y) indexed over the cosets of I, (k) in Modg ;. Our
approach finds a crossed homomorphism extending 7 ; (k) with range in a finite-
dimensional vector space, while the co-induced module approach would make the
range an infinite-rank Modg ;—module with no additional structure.

Remark As is common for crossed homomorphisms, the definitions of these crossed
homomorphisms involve an essential choice. Varying this choice changes their values
on mapping classes outside of /4 1 (k), but it does not change the cohomology classes

[ex] € H' (Mod, 1; C3(gx)/ B3 (gx))
and [d? o€l € H' (Modg,1: Ca(gr41)/ (81 Alis1))-

This is explained in Proposition 3.2 below.

As an application of Main Theorem A and Main Theorem B, we obtain the following
Corollary:
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Main Corollary A We have the following injections for all k > 2:

Modg 1 /1g.1(2k — 1) > (Modg 1 /14,1(k)) % (C3(gr)/ B3(gk))

by alg Rk—1)— (alg,l k), ex (@)
and  Modg,1 /g1 (k +1) <> (Modg,y /I¢,1 (k) % (Ca(gk+1)/ (@ 1, Ales1))
by alg (k4 1) > (g, (k), d? o e ()

The semi-direct products are taken with respect to actions of Mody /1, 1(k) that are
induced from the usual actions of Modg | on the respective vector spaces.

Section 2 develops the ideas from the theory of Nilpotent Lie groups that are relevant
to our construction. Section 3 contains the construction of €; and Section 4 completes
the proof of Main Theorem A. Main Theorem B and Main Corollary A are proven in
Section 5.
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2 Preliminaries about nilmanifolds

This section develops some ideas about nilmanifolds, including some consequences
of Mal’cev’s rigidity theory and some notions relating to the homology of compact
homogeneous spaces of nilpotent Lie groups.

The 3—dimensional Heisenberg group is a good example to keep in mind throughout
this section.

2.1 Homology of Lie algebras and nilpotent homogeneous spaces

One of the key ingredients in the construction of € is the homology of Lie algebras.
Koszul [15] is a classical reference for this theory; Weibel [23, chapter 7] is a modern
one. All vector spaces and Lie algebras in this paper are defined over the reals.
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Suppose that G is a Lie group with Lie algebra g. Let X = G/ I be the homogeneous
space of G with respect to a lattice I" in G. Let g* be the dual vector space to g,
ie the vector space of linear functionals on g. We use these to define the following
graded vector spaces:

C(@)=EPA"g. and C*(g)=EPA"g*
n n
The vector space Cx(g) has a degree-one boundary map d given by

2-1) I(VIA...AVy) =
Y DL VIAVIA L AVIA L AVIA LAV,

1<i<j<n
where Vi, ..., V, € g and where the caret (™) indicates omission.

By definition, we have an evaluation pairing between Cy,(g) and C"(g) for any . The
degree —1 differential d on C*(g) is defined by

da(V) = a(dV)
where « € C"(g) and V € Cy(g) for some 7.

It is a straightforward consequence of the Jacobi identity that the pair (C«(g), d) is a
chain complex and the pair (C*(g), d) is a cochain complex. A proof can be found in
Koszul [15].

We use left-propagation to connect Lie algebras to Lie groups and homogeneous
spaces. Let C*(G;R) and C*(X;R) be the De Rham cochain complexes on G and
X respectively.

Definition 2.1 For o € C*(g), define L(«) to be the unique differential form on G
that is invariant under the left action of G and restricts to « at the identity e. This
defines amap L: C*(g) - C*(G;R) called the left-propagation map.

For o € C*(g), the differential form L () descends to a form on X', so we also get a
left propagation map L: C*(g) — C*(X;R).
One can write down an explicit formula for the value of L(«) at a point g in G'; from

this we deduce that L is well-defined.

The following theorem of Nomizu is from [20].
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Theorem 2.1 (Nomizu) If X = G/ T is the homogeneous space of a connected,
simply-connected nilpotent Lie group G with respect to a lattice I' and g is the Lie
algebra of G, then the left-propagation map

L: C*(g) = C*(X;R)
induces an isomorphism
L. H*(g) = H*(X;R)
on cohomology groups.
The goal of this subsection is to construct an adjoint to the map Ls. Let Cy(X)

and C«(X;R) denote the piecewise-smooth singular homology chains of X with
coefficients in Z and R respectively.

Definition 2.2 For each n, the vector space Cy(g) is finite dimensional and is canoni-
cally identified with its double dual, (C"(g))*. We can therefore think of the transpose
to L as a map:
L*: (C*(X:R))* — C«(g)
Define
v: Cx (X R) — Ck(g)

to be the composition of L* with the map Cx(X;R) — (C*(X;R))* given by
Cr— (a |—>/ oz).
C

We can think of v as taking singular chains on X and smoothing them out into
left-invariant multi-vector fields.

Claim 2.1 The map v is a chain complex map.

Proof We only need to prove that v respects the boundary maps. The map L*
obviously respects the boundary, and the integration map respects the boundary by
Stokes’s theorem. O
Lemma 2.1 For each n, forevery o € C"(g) and C € C,(X;R), we have:

(2-2) 2 (u(C)) = /C L(@)

Proof This is immediate from the definition. O
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Lemma 2.2 Suppose we have a basis B for C,(g). This basis determines a dual
basis B* for C"(g) and a map ()*: B — B*. This gives us the following coordinate
formula for vy, :

w(@ =Y (/ Vv
VeB ¢
where C € Cy(X: R).
Proof This is also immediate from the definition. |

Corollary 2.1 Suppose X = G/ T is a compact homogeneous space of a connected,
simply-connected nilpotent Lie group G with respect to a discrete subgroup I" and g
is the Lie algebra of T". Then the map

v: Cx(X;R) = Ci(g)
induces an isomorphism
Ve: Hye(X;R) => Hy(g)

on homology groups.

Proof Fix an n. For « € Z"(g) and C € Z,(X;R), Equation (2-2) applies and
induces the following evaluation identity on homology and cohomology:

[a]([(O))]) = [L(][C])

This means that with respect to the evaluation pairings, v« is adjoint to Ls. The
hypotheses are the same as those for Theorem 2.1, so we have that L, is an isomorphism.
The adjoint of an isomorphism is an isomorphism, so v is also an isomorphism. O

2.2 Actions on nilmanifolds

The starting point of this subsection is Mal’cev rigidity theory, for which Raghu-
nathan [22, chapter II] is a good reference. Throughout this subsection, I' is finitely
generated, torsion-free nilpotent group. The existence statement of Theorem 2.2 follows
from [22, Theorem 2.18] and the uniqueness statement of Theorem 2.2 and Theorem
2.3 follow from [22, Theorem 2.11].

Theorem 2.2 (Mal’cev) There is a unique connected, simply-connected, nilpotent
Lie group G such that I' < G as a lattice. This Lie group is called the Mal’cev
completion of T".
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Theorem 2.3 (Mal’cev) Every map I' — I'’ of torsion-free, nilpotent groups extends
to a unique map of G — G’ of their Mal’cev completions. In particular, if T" = T", this
describes an injective homomorphism Aut(I") — Aut(G).

Let G be the Mal’cev completion of I" and consider the homogeneous space X =G/ .
This is a manifold with the coset of the identity [e] as a natural basepoint. Since torsion-
free nilpotent Lie groups are aspherical, the space X isa K(I',1).

Proposition 2.1 There is an action of Aut(I") on (X, [e]), such that the induced action
on the fundamental group is the usual action of Aut(I") on T".

Proof This follows immediately from Theorem 2.3. O

The action of Aut(I') on G induces an action on g by taking derivatives at the identity.
The actions on g and Cx(g) are denoted with push-forward notation (e.g. ¢« V). The
right actions on their duals are denoted with pull-back notation on the left (e.g. ¢* o).

Claim 2.2 The left-propagation map L: C*(g) — C*(X;R) is Aut(I")—equivariant.

Proof One can show by a computation that the map

C*(X:R) —g*
by o — oz|[e]
is equivariant. The claim then follows from the definition of L. O

Claim 2.3 The map v: C«(X;R) — Cy(g) is Aut(I") —equivariant.
Proof This is immediate from the fact that L is equivariant and Lemma 2.1. |
Proposition 2.2 There is an Aut(I")—equivariant map
s: T — C®((S!, %), (X, [e])
that is a section to the projection C*®((S1, %), (X, [e])) = m1(X) =T.
Here C®((S', %), (X, [e])) is the set of smooth, based loops of X .

Proof For y € ', let f(y): R — G be the one-parameter family in G such that
f(y)(1) = y. This exists and is unique by Theorem 2.3. The map f(y) descends
to a map s(y): (S', %) — (X,[e]). The map s(y) is obviously smooth, giving us
s: T = C®((S!, %), (X,[e])). Let p: I' — Aut(G) denote the action of Aut(I") on G.
If ¢ € Aut(I"), then p(¢)o f(y) is a one-parameter family with p(¢)o f(y)(1) =¢-y.
By uniqueness, p(¢)o f(y) = f(¢-y), so s is Aut(I")—equivariant. The fact that s is
a section to C®((S1, %), (X, [e])) — T follows immediately from Proposition 2.1. O
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3 The main construction

3.1 Preliminary definitions

Fixa k > 2. Since g is forever fixed and no comparisons to surfaces of other genera will
be made, we will drop it from the notation. We recall the definitions of the following
objects, which were mentioned in the introduction: the group Ty = /7 * =1 is the
class (k — 1) nilpotent truncation of the surface group 7, the Lie group Gy is the
Mal’cev completion of I'y, the Lie algebra g; is the tangent space at the identity of
G, and the space X} is the homogeneous space G/ Iy . Also recall that we have an
action of Mod on T'.

We obtain actions of Mod on Gy, g; and Xj via Mod — Aut(I'y), since Aut(I'y)
acts on these same objects by Theorem 2.3 and Proposition 2.1. The induced action of

Mod on C3(gy)/Bs(gr) gives it the module structure we use to prove Main Theorem
A.

To continue, we need to define a space of maps that relate ¥ and X} . As the first step,
we need to find an analogue of the boundary loop 0% in the space X .

Proposition 3.1 If p: m — I} is the canonical projection, and [0X] € 71 (X, *) is the
boundary loop class, then there is a smooth representative £;. of p«[0X] € w1 (X, [e])
that is pointwise fixed by the action of Mod on Xj, .

Proof By Proposition 2.2, we have a section s from 'y to the space of based smooth
loops in X%, such that the image of s is invariant under the action of Mod. Since the
boundary loop class [0X] is fixed by the action of Mod, so is its image p«[0X] in T'.
So if we let £; be s(p«[0X]), then £ is pointwise fixed. a

Let £; be as defined by Proposition 3.1. We also use the symbol £ to refer to the
image 4 (S'). Fix a piecewise-smooth map

i823 (82, *) - (Ek, [e])

that sends [0X] to [{] at the fundamental group level.

Definition 3.1 Define S to be the space of all piecewise-smooth maps ¥ — X} that
restrict to iy, on ¥ and induce the canonical projection & — 'y, on fundamental
groups. We topologize Sj by giving it the compact—open topology.

For ¢ € Diff(X,0X) and i € Sy, we define ¢ -i by the formula
(¢-1)(p) =¢- (¢~ (p)
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for p € X. Here Diff(X2, 0X) acts on X}, through its projection to Mod.

If F: ¥ x]0,1] — X is a homotopy through maps in Sj, we define ¢ - F by
(p-F)e=¢-F

for t €0, 1].

Claim 3.1 The action of Diff(X, dX) on Sy is well-defined.

Proof We only need to show that for i € Sy, and ¢ € Diff(X, 0X), we have ¢-i € Sy,
It follows from Proposition 2.1 that ¢ -7 induces the canonical projection on fundamental
groups, and it follows from Proposition 3.1 that (¢ -i)|gx = iyx. a

Lemma 3.1 The space S} is nonempty.

Proof Let i: ¥ — X} be a smooth map inducing the canonical projection on fun-
damental groups. Such a map exists because ¥ and X are both smooth, aspherical
manifolds.

Since h|yx and iyyx induce the same map on fundamental groups, we have a homotopy
F: 0Xx[0, 1] > X}, from iyx to h|gx . By standard approximation theory (for example,
see Hirsch [9]), we may assume F is smooth in the time direction and the fixed-time
maps are smooth for time not equal to 0.

By using a boundary collar in ¥ we can modify / to get a map in Si. Let N be a
tubular neighborhood of 9% in X. Let a: N — dX x [0, 1] be a diffeomorphism such
that a(x) = (x,0) for x € dX. Let 8: ¥ — N — X be a diffeomorphism such that
a(x) = (B(x),1) for x € IN —0X. Let i be defined by:

[ h(Bx) ifxeT—N
l(x)_{F(a(x)) ifxeN

The reader can easily verify that i € Sj. a
Lemma 3.2 The space Sy is contractible.

Proof Let T be the universal cover of ¥ and pick a basepoint * € S that projects to
x € 2. Let S; be

Sk ={I: = — Gy[T(%) = e and T is a lift of some i € Sy}

with the compact—open topology.
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Fixamap7 € §k- Define F: §k x[0,1] — §k by
F(7.0®) =7®FE7®)

where 7 € §k> t €[0,1], and X € 3. Here the exponent is given by the Lie group
logarithm and exponential maps.

Let p: m — I'y, denote the projection. Since the maps in Sy induce p on fundamental
groups, we have:

J(a-X) = p(a)](X)
forany 7 € gk, feX,andaer.

The homotopy F (7,1) obeys the same rule:
F(F.0(e-3) = J@)(7@) ™' 7@5)

= p@)J®TE) ™ pl@) p@)i(®)

= p@F(F.0)®)
Since F (7,1) is observes this rule, it descends to a continuous map F(j,?): ¥ — Xj.
Here j € Sy is the result of projecting 7 down to Sy. This notation is justified
since F(j,0) = j and F clearly varies continuously in j and ¢. Further, for each j,
(F(j,t))x = p on fundamental groups. One can easily see that F(7,?) is constant on

0% (with respect to ¢ and 7), so for all ¢ and j, we have that F(j,?)|yx is indeed
igs . So the map F is actually a map

F: Sg x[0,1]— Sk

and F(j,1) =i forany j. So F is a contraction for Sy. d

3.2 The main construction

Now we are ready to give the definition of the crossed homomorphism extending the
k th Johnson homomorphism.

At this point we fix a chain T € C5(X x [0, 1]) representing the fundamental class of
3 x [0, 1] relative to d(X x [0, 1]). This fundamental class is the one corresponding to
the orientation of X x [0, 1] induced from the orientation on X.

The map v: Cix(Xi; R) — Cx(g) is as defined in Definition 2.2.
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Definition 3.2 (The extension of the k th Morita homomorphism) For i € Sy, the
extended k th Morita map relative to i is the crossed homomorphism

€k,i: Mod — C3(gx)/ B3 (9k)
defined by (@] = [v((Fg)«T)]

where ¢ is any representative of [¢] and the map Fy: X x[0, 1] — X is any piecewise-
smooth homotopy from 7 to ¢ -i through maps in Sy .

The homotopy Fy exists by Lemma 3.2. Although ¢ ; depends on the choice of
i € Sy, we will suppress this and write €; when there is no confusion. We proceed by
proving that the value of ¢ is independent of the other choices in its definition, and
then by proving that it is, in fact, a crossed homomorphism. The other choices in the
definition are the choice of representative 7" of [X x [0, 1]], the choice of representative
¢ of [¢] and the choice of homotopy F.

Lemma 3.3 Suppose M is a surface, and f: M — X}, is piecewise-smooth. Then
for any chain C € C3(M), we have v( fxC) = 0. In particular, if N is a 3—manifold,
D € C5(N) and the piecewise-smooth map F: N — X} factors through f, then
v(F«D) =0.

Proof By the coordinate form in Lemma 2.2, the chain v( fiC) is a linear combination
of basis elements, where the coefficients are integrals of differential 3—forms over
fxC. Since f is piecewise-smooth, we may pull back these differential 3—forms to
M and compute the integrals there. Of course, every 3—form on M is degenerate, so
v(fxC) = 0. The lemma follows. |

Lemma 3.4 Suppose F: X x [0, 1] > X}, is a piecewise-smooth homotopy through
elements of Sj.. Then [v(F«T)] € C3(gx)/B3(gr) does not depend on the choice T
of representative of the fundamental class of ¥ x [0, 1] relative to its boundary. In
particular, the value of € ([¢]) does not depend on the choice of representative of the
fundamental class of ¥ x [0, 1] relative to its boundary.

Proof Let 7' and T’ represent the fundamental class of X x [0, 1] relative to its
boundary. Then d7 and 97" represent the same class in H,(d(X x [0, 1])). Pick a
class C € C3(3(X x [0, 1])) with 9C = 0T —dT’. Then the chain T — T’ —C is a
cycle in Z5(X x [0, 1]). Furthermore, since H3(X x [0, 1]) = H3(X) = 0, we know
T—-T —C € B;(Xx][0,1]).

The chain C is supported on (X x [0, 1]), so by Lemma 3.3:
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The claim follows from:

V(FxT) = v(FT") = v(F(T = T' = C)) € v(B3(Xy)) C B3(gk) =

Lemma 3.5 The value of € ([¢]) does not depend on the choice of homotopy Fg in
its definition, for a fixed choice of representative ¢ of [¢].

Proof Leti’=¢-i. Suppose that F, F’: ¥ x[0, 1]— X}, are two homotopies through
maps in Sy, both from i to i’. It follows from Lemma 3.2 that there is a homotopy
K: ¥ x[0,1]*> = X} through maps in S, from F to F’ relative to their endpoints.

We can pick a representative C € C4(Z x [0, 1]?) of the fundamental class of  x[0, 1]
relative to its boundary such that:

0K«C = FL.T +i',T — FxT —i,T + (i55)« (0T x [0, 1]?)

Here i, i’ and i 5 denote the constant homotopies and 97 x [0, 1]? is a representative
of the fundamental class of 9% x [0, 1]? relative to boundary. By Lemma 3.3:

V(L T) = (i, T) = v((iyz)«(@T x [0, 1]*)) = 0
Then we have
V(F,T)—v(F«T) = v(0K+C) = v (K4C)
which is in B3(gg). m|
Lemma 3.6 Let F and F’' be piecewise-smooth homotopies through maps in Sy,

such that Fy = Fy. Let F" be the concatenation of F with F'. Then F” is a
piecewise-smooth homotopy through maps in Sy, and we have:

[W(FD)] + [v(FT)] = [v(F,T)]

Proof It is obvious that F” is a piecewise-smooth homotopy through maps in Sy .

Choose arepresentative 7’ € C3(Xx][0, 1]) of the fundamental class relative to boundary,
such that:

F!T'= F,T +F,T
By Lemma 3.4, we have:

[W(F/T)] = [v(F,T")]

The lemma follows. O

Lemma 3.7 Suppose that F is a piecewise-smooth homotopy through maps in Sj
and ¢ € Diff(X, dX). Then:

[v((¢- F)«T)] = ¢ - [v(FsT)]
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Proof By the definitions of the actions, we have:

(¢ F)«T =¢- (Fep, ' T)

However, since ¢ is orientation preserving, ¢, ' T is also a representative of the
fundamental class of X x [0, 1] relative to the boundary. The lemma follows from
Lemma 3.4. |

Claim 3.2 The value of € ([¢]) does not depend on the choice of representative ¢ of

[¢].

Proof Suppose ¢, ¥ € Diff(XZ, dX) are isotopic. Then there is a smooth homotopy K
on X, relative to *, taking the identity map to ¢~ 1. Then i o K is a smooth homotopy
from i to ¢! -i through maps in Sj. Lemma 3.3 tells us v((i o K)+T) = 0.

Let Fy, be a piecewise-smooth homotopy from i to ¥ -i through maps in Sy, and let
F’ be the concatenation of i o K with ¢! - F,,. Then F’ is a piecewise-smooth
homotopy from i to ¢ -i, and by Lemma 3.6 and Lemma 3.7 we have:

[W(FT)] = [v((i o K)«T)] + [v((Fy)«T)]

Since v((i 0 K)«T) = 0, we get the same value for € ([¢]) using either representative.
O

Claim 3.3 The map ¢y, is a crossed homomorphism.

Proof Let ¢,y €Diff(X, 0X). Let Fy, Fy, be piecewise-smooth homotopies through
maps in Sy from i to ¢-i and ¥ -i respectively. Let F’ be the concatenation of Fi
with ¢ - F,. Then F’ is a piecewise-smooth homotopy through maps in Sy from i to
¢ -i. By Lemma 3.6 and Lemma 3.7, we have:

[W(F.T)] = [v((Fp)« )]+ ¢ [v((Fy)«T)]

The claim follows immediately. |
The previous claim completes the proof that € is well-defined.

Proposition 3.2 The cohomology class

lex] = lex.,i] € H' (Mod. Cs(g)/B3(gk))

does not depend on the choice of i € S}, or on the choice of iyy in the definition of
St
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Proof First we show the independence from the choice of i € Si. Suppose i,i’ € Sy.
Let K be any smooth homotopy from i to i’ through maps in Sy . For ¢ € Diff(X, dX),
let F (; be a piecewise-smooth homotopy from i’ to ¢ - i’, through maps in Sy . Let
Fx be the concatenation of K with F q; and then with the homotopy ¢ - K travelled in
reverse.

This Fg is a piecewise-smooth homotopy from i to ¢ -i through maps in Sy . By the
definition of €, and Lemma 3.6 and Lemma 3.7:

€k,i([P]) = [v((Fg)«T)]
= [V(K« )]+ [v((Fy) * T)] = [v((¢ - K)«T)]
= €r,i([¢) — (8] [V (K T)] = [v(K«T)])
= ek,i([¢]) — Gv(K«T)D (9]

Since §[v(K+T)] € B'(Mod, C3(gx)/B3(gx)), we have shown that [e;] does not
depend on i if iyy is fixed.

Now suppose that igy, and i E,)E: 0% — £, are two different maps as in the definition
of S, and suppose that S; and S ,’C are the spaces of maps they respectively define.
Let i € S and let K: 9% x [0, 1] — £ be a homotopy relative to * from iyy to ij.
We can get an element i’ € S ]’C by extending i by K on a collar of the boundary of .
This is the same trick as in the proof of Lemma 3.1, so we omit the details.

For ¢ € Diff(X, 0X), let Fy be a piecewise-smooth homotopy through maps in Sk,
with Fy going from i to ¢-i. Let K: 0¥ x]0, 117 — £} be the constant homotopy from
K toitself. Let N be a tubular neighborhood of dX. Let F é) be a piecewise-smooth
homotopy from i’ to ¢-i’ through maps in Sy, such that F’ ‘;J| Nx[o,1] factors through K

and Fé)|ﬁx[o,1] factors through Fy. Let T' € C3(Zx[0, 1]) and C € C3 (3= x[0, 1]%)
be representatives for the respective fundamental classes relative to boundary such that:

(Fy)uT' = (FghT + K, C
By Lemma 3.3, we know v(K,C) = 0. Then we get the same value for € ([¢]) using

ipx and i as we get using iy, and i’. The proposition follows. O

3.3 The main construction restricted to the & th Torelli group

The goal of this section is to show that the main construction works nicely with
simplicial homology when we restrict to the & th Torelli group Z (k).

Let Cx be a representative of the fundamental class of X relative to dX. By abuse of
notation, let Cx, x{0} and Cx x {1} represent the images of Cy, under the identifications
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of ¥ with ¥ x {0} and ¥ x {1}. Similarly, let dCy x [0,1] and Cx x [0, 1] be
representatives of the fundamental classes of 0% x [0, 1] and X x [0, 1] relative to
boundaries, respectively, so that we have:

3(Cs x[0,1]) = dCs x[0, 1]+ Cx x {1} — Cx, x {0}

In this section Hy (X)) denotes the piecewise-smooth simplicial homology with integer
coefficients.

Definition 3.3 The ropological version of the k th Morita homomorphism is the map
€k Z(k) — H3(X)
given by: [@] = [(Fg)x(Cs x[0,1]) —isxDy]

Here i € Sy, ¢ is a representative of [¢], the map Fy: X x[0, 1] — X} is a piecewise-
smooth homotopy from i to ¢ -i through maps in S; and the chain Dy € C3(X)
bounds the chain

¢5 ' Cx — Cx + (proj; )« (9Cx x [0, 1])

where proj;: X x [0, 1] = 0% is the first coordinate projection.
Claim 3.4 The chain (Fg)«(Cx x[0, 1]) —ix Dy in Definition 3.3 exists and is a cycle.

Proof The chain Dy exists because its specified boundary is a cycle in Z,(X) and
H»(X) = 0. The claim then follows from this computation:

I((Fp)+Cx x[0,1]) = (F4)(dCx x[0, 1]+ Cx x {1} — Cx x {0})
= ix(proj; )« (3Cx x [0, 1]) + ix¢; ' Cx —ixCx
= 8Z*D¢ O

Lemma 3.8 Forany i € Sy, the maps vy o€y and € ;|7(x) are equal.

Proof Fix ¢ € Diff(X, 0X) with [¢] € Z(k). We have v(ixDy) = 0 by Lemma 3.3.
Then

Vs (€x,i (D) = [v((Fg)«(Cs x[0. 1]))] = € ([#])

where Fy is as in definition of € ;. a
Lemma 3.9 The map H3 (X)) — H3(Xg;R) is an injection.

Proof A theorem of Igusa and Orr [10, Theorem 5.9] states that H3(I'y) is torsion
free. The claim follows. a
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Claim 3.5 The map €;, is a well-defined homomorphism and does not depend on the
choices in its definition, including the choices of i € Sy and iyy, in the definition of
Sk .

Proof By Lemma 3.9 and Corollary 2.1, the map vs: H3(X;) — H3(gr) is an
injection. Then by Lemma 3.8, and the fact that €; is well-defined, we see that €y
does not depend on any of the choices except possibly i and iyy . The fact that v is
equivariant implies that €; is a crossed homomorphism, but the action of Z(k) on
C3(gr)/ B3 (gy) is trivial, making €; a homomorphism. By Proposition 3.2, varying
i or iyx, only changes € by adding a coboundary, but B (Z(k), C3(gx)/B3(gx)) is
trivial. |

Remark It is a difficult fact that third homology of X} is isomorphic to the 3—
dimensional relative (non-spin) bordism group £23(I'). In light of this fact, this €
can be identified with a homomorphism on Z(k) defined by Heap in [8]. We will not
pursue this connection in the current paper.

4 Equivalence of €; and Morita’s homomorphism

4.1 Morita’s homomorphism

We recall some ideas from group homology theory, for which Brown [2] is a reference.
Let G be a group and let Fix(G) and C«(G) denote the standard (bar) resolution
and standard group chains, respectively. Of course, Hx(G) = Hx(C«(G)). The G-
complex Fy(G) has a Z-basis of elements of the form (gg, ..., gx). This descends to
a basis for Cx(G) of elements of the form [(go, ..., gn)], Where the brackets denote
the co-invariance class. A homomorphism f from G to a group G’ induces a map
Jx: Fx(G) — Fx(G'), given by [(Yo, ..., Yn) > [(f (V0), - - ., [ (¥n))]. This gives the
action of Aut(G) on Fy(C), which induces the action on C,(G) and in turn induces
the usual action on Hx(G).

Now consider the complex Cx (7). Since Mod injects in Aut(;r), we have Mod acting
on Ci(m). Let £ €  be the class of the positive boundary loop in X. Then clearly,
[€] € By () is fixed by the action of Mod. Let p: m — 'y, be the projection. The map
p and the induced map p«: Ci (1) — Cx(I'y) are both obviously Mod—equivariant.

As mentioned in the introduction, we have a homomorphism called the kth Morita
homomorphism. To reiterate, Morita’s homomorphism

T: Z(k) — H3(T'k)
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is defined by:

[¢] > [P« Dig)
Here the chain Dyg) € C3(7r) bounds [¢]-C —C, where C € C; () is a chain bounding
the element —[{] € By (;r) and projecting to a representative the fundamental class of

w/({l).
It makes sense to talk about the homology class of p.«Djg) when [¢] € T(k); because
Z(k) acts trivially on T';, we have:

dpx Dig) = px9D[g) = p«[@]- C — pxC =[¢]- pxC — p+C =0

For proofs that this definition does not depend on the choices involved and that it is a
homomorphism, we refer the reader to Morita’s paper [16, Theorem 3.1].

4.2 Equivalence of the homomorphisms
In this subsection we show:

Theorem 4.1 For each k > 2,
T = o€k
where f: H3(Xy) — H3(T';) is the canonical isomorphism.

In order to prove this, we find a chain equivalence between Cyx(Xy) and Cx(I'x) and
show that for each [¢] € Z(k), this equivalence maps a representative of € ([¢]) in
C3(X}) to a representative of Ty ([¢]) in C3(I'y).

We recall that a singular n—simplex A € C,(X) on a space X is a map from a
fixed n—simplex (considered as a space) to X. We denote the vertices of our fixed
n—simplex as vy, ..., Uy, so that the vertices of the n—simplex A are the points
A(vg),...,A(vy) € X.

Definition 4.1 Suppose the group G is the fundamental group of an aspherical space
X,and X — X the universal cover of X. Suppose A C X is a fundamental domain
for the G action on X .

Let ¢4t X — G to be the map sending X to the unique g € G with X € g- A. Let
f4: C«(X) = F«(G) be the G—complex map given by

Ja(A) = (ca(Ao)), - .., ca(A(vn))),

for A an n—simplex in X. Let fa: C«(X) — C«(G) be the chain complex map given
by o

J4(C) =[f4(C)],
for C € Cx(X), where C is alift of C to X.
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Lemma 4.1 The maps f;l and f4 are well-defined. Furthermore, both maps are
homotopy equivalences.

Proof We leave it to the reader to check ]7;4 is a G—complex map and that f4 isa
chain complex map. The map f4 does not depend on the choice of C because the
G —action is lost in passing to Cx«(G).

The set of n—simplices A € Cy (X ) such that A(vg) € A form a free ZG —basis
of C, (X ). Since X is contractible, the G —complex Cy (X ) is a free resolution of
Z. Since C*(X ) and F«(G) are both free resolutions of Z and fA preserves their
respective augmentation maps Coy (Y ) = Z and Cy(G) — Z, it follows from standard
theory (see Brown [2, chapter 1.7]) that ];;1 is a homotopy equivalence of G —complexes.
It immediately follows that f4 is a homotopy equivalence of chain complexes. |

Lemma 4.2 Given the setup of Definition 4.1, suppose that X € A is a basepoint
for X. Let x € X be the image of X under the covering projection. Suppose A; for
t €[0, 1] is a homotopy of a simplex of C«x(X) in X, subject to the condition that

As(vi) =x
for each vertex v;, for 0 <t < 1. Then f4(A;) is constant with respect to t.
Proof For any i € {1,...,n}, we have an element y; € 7{(X, x) = G equal to the
class of the edge of A; from vy to v;, considered as a loop in X'. Since A; and
Ay are homotopic relative to the vertices for all ¢ and t’, these elements y; do not
depend on 7. For each 7, let A; be the lift of A; to X with the A,(vo) = X. Then

As(vi) =y -X and ¢y (A ¢(v;)) = y; for all ¢. The lemma follows from the definition
of f4. O

Lemma 4.3 Suppose i € Sj. Let S be the universal cover of ¥. It is possible to find
a fundamental domain A for the action of w on X, and a fundamental domain B for

the action of I'y, on G}, such that the following diagram commutes:

Cu(D) —4 o)

Ji |

Cu(Xp) —L2- C(T)

Proof Let7: T — Gp bealiftof i. If yem and X € S, we have:

(y-X) = p(y)i(x)
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This follows from the definition of S . Since 7 observes this rule, it descends to a map
1 E/ ker p — Gy . Let B C Gy be a fundamental domain for the action of I'y on Gy.
Then 7~ (B) is a fundamental domain for the action of 'y on i/ ker p. Let A’ C b
be a fundamental domain for the action of ker p on S.Set A=A'NT! (B).

We claim that A is a fundamental domain for the action of 7 on . If X € &, then
there is a unique y € I'y with y7(X) € B. If ¥ € & is alift of y, then there is a unique
o € ker p with ayX € A. It follows that @y is the unique element of 7 sending X
into 4. Since X was arbitrary, this means that A is a fundamental domain.

Now we show that the diagram commutes. Pick X € . Let o = ¢4(X). Then
7(X) €T(a - A). We deduce that 7(X) € p(x)B, so cg(1(X)) = p(«). We have shown:

cpoT=pocy

It follows from Definition 4.1 that the diagram commutes. |

At this point, we fix a representative { € Z1(dX) C Z1(XZ) of the boundary loop in
3 and a class Cy € C5(X) with dCy = £. We demand that the simplices that are
summands of Cyx have all of their vertices equal to the basepoint * of X. The symbols
Cx x[0,1] and dCyx x [0, 1] have the same (abusive) meanings that they were given in
the preamble to Definition 3.3. We also fix a map iyy: 0% — X}, which determines
the space Sy, and we fix a map i € Sy as in Definition 3.3.

Lemma 4.4 Suppose [¢] € Z(k) and F is the chain

F = (Fg)+(Cx x[0.1]) € C3(X)

where Fy: ¥ x[0, 1] = X} is a piecewise-smooth homotopy from i to ¢ -i through
maps in Sy, as in Definition 3.3. Suppose B is a fundamental domain for the action of
I'y on Xj. Then fg(F) is a boundary.

Proof By definition, the chain Cy; is a sum of simplices whose vertices are all equal to
the basepoint * of 3. Since the homotopy Fy is a homotopy relative to the basepoint
*, the homotopy Fy ,(A) satisfies the conditions of Lemma 4.2, where A varies over
the summands of Cx. This means that fg(Fy,(Cyx)) is constant with respect to .
So since fp(F) is the image of a constant homotopy, it is a boundary. |

Lemma 4.5 Let A be a fundamental domain for the action of = on %. If ¢ is in
Diff(X, 0X) and [¢] is its image in Mod, we have:

fa(¢-Cs) =[9]- f4(Cx)
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Proof Again, we use the fact that the summands of Cy have all vertices equal to the
basepoint * of X. We restrict our attention to a single simplex A of Cx. We note that,
as in the proof of Lemma 4.2, the image of this simplex under f4 is the co-invariance
class of the n—tuple of elements of 7 specified by the edges of A (considered as loops)
from vg to v; for i =0,...,n. Since the action of ¢ on loops in X defines the action
of [¢] on 7, this proves the lemma. m|

Proof of Theorem 4.1 Let A and B be fundamental domains for the actions of &
on ¥ and 'y on Xj respectively, such that the conclusions of Lemma 4.3 hold. Let
¢ € Diff(X, 0X) be an element such that [¢] € Z(k). Let Dy € C3(X) be some chain
satisfying
0Dy = ¢ ' Cx — Cx + (proj ) «(3Cx x [0, 1)
where proj;: dX %[0, 1]— 9 is the first coordinate projection. Let Fyg: X x[0, 1] — X
be a piecewise-smooth homotopy from i to ¢ -i through Sy, and let
C¢ = (F¢)*(CZ X [0, 1]) — i*D¢

so that € ([¢]) = [Cy].
By Lemma 4.3, we have:

/B(Cp — (F)«(Cx x[0,1])) = — fp(ixDy)
= _P*fA(qu)

Lemma 4.5 allows us to compute df4(Dg):

df4(Dg) = f4(dDg)
= f4(¢-Cs —Cx)
=[¢]- f4(Cxs) — f4(Cx)

Then fB(Cy — (Fy)«(Cx x[0,1]) is px(=[@]- f4(Cs) + f4(Cx)) where — f4(Cx)
bounds the reverse boundary loop element — f4(£). This fits the definition of Ty, so
we have shown:

Tk ([9]) = [/B(Cyp — (F)+(Cx x[0. 1]))]
Then by Lemma 4.4, we are finished:

(9] = [/B(Cy)] 0

Final step in the proof of Main Theorem A By Lemma 3.9, we know that the map
Vs O fB_*l : H3(T'y) — C3(gr)/ B3(gr) is indeed an injection. By Lemma 3.8, we know
that € |7(k) = v« 0 €x and by Theorem 4.1, we know that fb_*l o Ty = €. This proves
the theorem. o
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5 Extending the higher Johnson homomorphisms

Recall from the introduction that L4 = a*&=1 / 7% We have:
-1 1> L1 > Ty > T — 1

By taking Mal’cev completions (see Theorem 2.3) we have an exact sequence of Lie
groups:

1> L1 ®R— Gy —> G — 1
Taking [ to be the Lie algebra of L;+1 ® R, we get the following exact sequence
of Lie algebras:

(5-2) 0—lgt1 = k41 > 0k —> 0

The Hochschild—Serre spectral sequence for the homology of this exact sequence has a
differential:

d?: Hs(gx) — Hy(gx, Hi(lgs1)) = 62 ® o

2 (g1 A e 1)/ @) Alkr)

(1)
k+1

G, = H®R. In short, one gets d? of a class [¢] in H3(gy) by picking a representative
¢ in Z3(gg), lifting ¢ to ¢ in C3(gg+1), and taking the boundary of the lift. This

Here g is the commutator subalgebra of gi 1, and g, = H ®R is the Lie algebra of

boundary is in gg41 A lg4+1 and is well-defined up to elements of g,(cl}rl Al

We start by extending this differential to a map on C3(gx)/ B3 (gx)-
Definition 5.1 The extended differential

d*: Cs(ax)/ B3 (010) = Cagkr1)/ (85 Alics1)
is defined by

d*([c]) = 07+ g{") |, Al

where [c] € C3(gr)/B3(gr), the chain ¢ € C3(gg) is a representative of [c], and the
chain ¢ € C3(gg41) is aliftof c.

Claim 5.1 The extended differential d? is well defined and extends the differential
1
d*: Hy(gx) = (81 A1)/ (850 A lesn)-

Proof The fact that d2 extends d? is immediate from the definitions.

To see that d2 is well-defined, we first show that it does not depend on the choice of
lift. Suppose ¢ € C3(gy) and that ¢ and ¢ are lifts of ¢ to C3(gg1). Then ¢ —¢ is
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in the ker(C3(gg+1) = C3(gx)). This kernel is easily seen to be gg41 A gk+1 Alg+1-
The formula for the boundary (Equation (2—1)) and the fact that [ ; is central in gz 41
indicate that image of this kernel under the boundary is in gf{l il A lg41. Therefore the
choice of lift is irrelevant.

To show that the choice of representative of the class [c] € C3(gr)/ B3 (gx) is irrelevant,
we show that the group of boundaries maps to zero. Take b € B3(gy). Pick a class
¢ € C4(gx) with dc = b. Pick a lift & € C4(gg41). Then b = 9 € C5(gy) is a lift of
b. Immediately, we get that 9b = 30Z = 0, which proves the claim. |
6]

k+1
gives us an induced action of Mod on C, (gk+1)/(g,(cl}r1 A1)

The subspace g Al is clearly invariant under the action of Mod on C,(gg). This

Lemma 5.1 The extended differential d? is Mod —equivariant.
Proof This is immediate from the definition. |

Let H* denote Hom(H, Z), the dual to H. Let D: H — H* denote the symplectic
duality map (this is the same as the Poincaré duality if we identify H* with H!(X)).
We have a map

D®id: HR L, — H* ® L, =~ Hom(H, Ly).
We also use d? to denote the differential
d*: Hy(Tx) > Hy (T, Hy(Lx41)) = H ® Lyt
of the spectral sequence of Equation (5-1).

The following is a theorem of Morita [16, Theorem 3.1].

Theorem 5.1 We have:
% =(D®id)od? oy

Let Ty 41 be the fiber of [e] with respect to the map X1 — X . This space is easily
seen to be a torus with fundamental group L. According to the theory of Section
2.1, we have a map v: Cx(Tj41;R) = Cx(lx) inducing an isomorphism on homology.

Lemma 5.2 There are homotopy equivalences

S Cu(Tx) = Cu(Xy)
and S CuLig1) = CouTieq1)

Algebraic € Geometric Topology, Volume 7 (2007)



Extending Johnson’s and Morita’s homomorphisms to the mapping class group 1321

such that the following diagram commutes:

d? ~
H3(Ty) —— H{(Tg, Hi (Lky1)) — H (') @ Hi(Lgy1)
\L(vOf)* \L(Uof)*‘x)(vof/)*
d? =~
Hi(gr) — Hi(gk, Hi(lg41)) —— Hi(gx) ® Hi(lg41)s

where the maps d? are the differentials from the Hochschild—Serre spectral sequences
for the exact sequences in Equation (5-1) and Equation (5-2), respectively.

Proof We note that since the extensions in Equation (5-1) and Equation (5-2) are
central, we can make the following identifications:

Hy (g Hi(lk41)) = Hi(gx) @ Hy(le41)
and Hy(Ty; Hi(Lgy1)) = Hi (Ty) ® Hi (Lg41)

Consider the double complex:

Cpg = Fp(Ty) ®r, (Fg(Tk1)ic41)

Here subscripts denote co-invariants and the boundary maps are induced from the usual
ones for the bar resolutions Fy(I'y) and Fyx(I'x41). This double complex gives rise
to the Hochschild—Serre spectral sequence for Equation (5-1). See Brown [2, chapter
VIL.6] for proof.

Let Ug; be the universal enveloping algebra of gz . We consider a second double
complex:

qu = (ng X Apgk) ®ng ((ng-‘rl ® Aq9k+1)rk+1)

Again, subscripts denote co-invariants. The boundary maps here are induced from the
usual ones for the Chevalley—Eilenberg complexes Ugr ® APgy and Uggry1 ® A9gy.
We note that the co-invariants of the Chevalley—Eilenberg complex are the standard
Lie algebra chain complex with the usual boundary. See Weibel [23, chapter 7.7] for
definitions. This double complex gives rise to the Hochschild—Serre spectral sequence
for Equation (5-2). See Weibel [23, chapter 7.5] for proof.

Now let /iy: Cx(T'y) — C«(Xj) be a homotopy equivalence (these exist by standard
theory; see the proof to Lemma 4.1). We also demand that /x|c,(c, 4;) hasits
image in C« (7} 41). We define a map

Jpa: Cpg = Dpq
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by its action on a Z-basis for Cpg:

Jpa: (Vo V) ® (V(;» cees V;)]
= [(1 & U(hk([l/o, RN Vp]))) ® (1 X v(hk—‘,—l([)/(l), RN yq/])))]
Here the square brackets denote the equivalence class represented by that element after
taking co-invariants. The map fi« is well-defined because we pass to co-invariants
before plugging into /1y and /1. We note that fis is a map of double complexes
because /1, and v are chain maps and because the Chevalley—Eilenberg complex

boundary map induces the usual Lie algebra chain boundary map. This means that fi
induces a map of spectral sequences and therefore:

d*o f32() = f121 od?*: H3(T'x) — Hi(gr) @ Hy(Ig41)
One can easily show that

(ohg)x = fro: H3(Ty) — H3(gk)

and that:
(vohy)x @ (ohktilc, (ciyn)* = S Hi(Te) ® Hy (Lrt1) = Hi(g) ® Hy (g 41)
This proves the lemma. a

Proof of Main Theorem B First of all, we know from Lemma 5.1 that the map
d? o ¢y is in fact a crossed homomorphism, since it is the composition of a crossed
homomorphism and an equivariant map.

Let the map Hom(H, L 41) — C; (gk+1)/(g§€1}rl A lg41) be the following long com-
position of the maps. First is the symplectic duality isomorphism:

D' ®id: Hom(H, Li41) => H® Ly,
Second is this isomorphism to a product of homology groups:
HQ® Ly => Hi(Xp) ® Hi(T41)
Then we have this injection, from Lemma 3.9:
Hy(Xi) @ Hi(Ti41) = Hi(Xi; R) ® Hi (T 413 R)

This is followed by the dual Nomizu map on each part, which is an isomorphism by
Corollary 2.1:

Vs @ st Hy (Xgs R) @ Hy (Tiey1:R) => Hi(gx) ® Hy (k1)
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Tk

Hom(H, Ly 1)
lD_I(X)id

H® Ly

d2
Hi(gr) — Hi(gx) ® Hi(lg41)

Figure 1: The diagram relating ¢ o€ and 7.

This is then isomorphic to the following vector space:

) 1
Hi(gr) ® Hi(lg+1) = (@k+1 A [k+1)/(9;({}rl Alk+1)

This vector space then injects in our desired target:

(@k+1 Akt 1)/ @1, Alkern) = Ca(grs1)/ (85, Ales)

Now consider the diagram in Figure 1. The top quadrilateral commutes by Theorem 5.1,
the side triangle commutes by Main Theorem A and the lower right square commutes
by Lemma 5.2. By Lemma 3.8 we know that € takes values in H3(I'y). Since we
can see that d o € restricts to d? o€ on Z(k), the above commuting diagram proves
the theorem. O

For the proof of Main Corollary A, we need the following result of A Heap.
Theorem 5.2 (Heap [8, Corollary 23]) The kernel of Ty, is Z(2k —1).

Proof of Main Corollary A Since Z(k) acts trivially on I';, and the other actions
under consideration are induced from this action, we see that Z(k) is in the kernel
of the actions of Mod on C3(gy)/ B3 (gx) and Cz(gkﬂ)/(g;{lll A lg+1). This means

that the semi-direct products in the statement of the corollary are well-defined. The
map

Mod — (Mod/Z(k)) x (C3(gk)/ B3(gr))
by a > (aZ(k), ex(a))
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is a homomorphism because the actions in the definitions of ¢; and the semi-direct
product match. The kernel of this map is the kernel of 7z : if & maps to the trivial
element, it must be in Z(k), on which ¢ is equal to T;. Since the kernel of T is
Z(2k — 1), the first map in the statement of the theorem is the induced map and is a
well-defined injection. The proof that the second map is a well-defined injection is
similar. |

6 Final remarks

Many questions arise concerning the best possible range for a crossed homomorphism
extending a Johnson or Morita homomorphism to the mapping class group. In the cases
that have been computed explicitly, by Morita in [17], and by Perron in [21], there
are crossed homomorphisms extending 7, 1(2) and 7¢ ;(3), with ranges in the finite
rank abelian groups %Hom(H , L) and %Hom(H , L3), respectively. Although it is
conceivable that the methods in this paper could be modified to give similar results for
Ty for arbitrary k, there are two difficulties to be overcome:

e the use of integration in these methods, and the choice of i: ¥ — X} would
have to be carefully managed to ensure well-controlled, rational coefficients, and

e one can easily prove from the definitions that d o €j is a refinement of d?o €f—1-
This indicates that no choice of i will make ¢ take values in H3(gy) for k > 2.
In order to restrict the range of € from Cs3(gx)/B3(gr) to H3(g), we will
need to correct €; by a cocycle that projects to €;_; but restricts to the zero
map on Z(k). It is not at all clear whether such a cocycle should exist for k£ > 3.

There is an advantage to the use of integration in these methods; namely, that it leads
to connections between algebraic invariants such as the Morita homomorphism and
differential geometric invariants such as flux. In particular, we have used these methods
to prove a pair of theorems connecting the extended flux homomorphism to €, on a
surface with an area form. We hope to present these results in a future paper. Of course,
there may be further connections between such differential invariants and € for higher
k.

We note that the methods of this paper also work for the mapping class group of a
closed surface X¢ « with a basepoint. The nilmanifolds analogous to the X} in this
case are the higher Albanese manifolds of a Riemann surface, and each naturally has
the structure of a C—manifold. This is due to R Hain and S Zucker; see Hain [3,
Definition 1.4] and [3, Remarks 1.5], or Hain and Zucker [7, Section 5]. There may be
a version of € over a closed surface that takes advantage of this additional structure.
In the case k = 2, Hain gives a construction in [4] that seems to be related.
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Finally, one can interpret a cocycle on the mapping class group as a topological cocycle

in an appropriate local coefficient system on the moduli space of surfaces. R Penner
and S Morita do this for Morita’s extension of 7, in [19], but their methods do not
seem to give a good interpretation for the cocycles presented in this paper. It seems
natural to ask how one would develop the objects of this paper from such a perspective.
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