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Equivariant collaring, tubular neighbourhood and gluing
theorems for proper Lie group actions

MARJA KANKAANRINTA

The purpose of this paper is to prove equivariant versions of some basic theorems
in differential topology for proper Lie group actions. In particular, we study how
to extend equivariant isotopies and then apply these results to obtain equivariant
smoothing and gluing theorems. We also study equivariant collars and tubular
neighbourhoods. When possible, we follow the ideas in the well-known book of
M W Hirsch. When necessary, we use results from the differential topology of Hilbert
spaces.
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1 Introduction

The aim of this paper is to prove equivariant versions of some basic theorems in
differential topology, for proper actions of not necessarily compact Lie groups. If a Lie
group G acts properly and smoothly on a smooth manifold M , then its action resembles
a smooth action of a compact Lie group. The reason for this is that the slice theorem,
which is one of the most important basic results in the theory of compact transformation
groups, also holds for proper actions. According to the slice theorem, if x 2M , then a
G –invariant neighbourhood of x is G –diffeomorphic to the twisted product G�Gx

Nx ,
where Gx denotes the isotropy subgroup at x and Nx D TxM=Tx.Gx/ is the normal
space to the orbit Gx at x . There are different ways to formulate the slice theorem.
The first variant is due to J L Koszul [7, p 139]. The version we refer to is due to
R S Palais [13, Proposition 2.2.2].

Our main results concern equivariant isotopies. Isotopies are basic constructions in
differential topology, and isotopy extension results have proved to be especially useful.
For example, in order to extend an embedding it is sufficient to prove that it is isotopic
to an extendable embedding. In this paper, we study how to extend equivariant isotopies
and apply these results to obtain an equivariant smoothing theorem (Theorem 9.4).
We also prove a uniqueness theorem for the equivariant diffeomorphism type of the
adjunction space M [f N , where M and N are proper smooth G –manifolds which
have been equivariantly glued together along their boundaries (Theorem 10.1).
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For the sake of background, let us mention another reason why equivariant isotopies
are important. It is natural to ask whether it is possible to classify G–spaces over a
given space. To prove a classifying result of this type, one needs to be able to lift
homotopies or isotopies from orbit spaces. For continuous actions, R S Palais’ covering
homotopy theorem [12] is a fundamental lifting result for homotopies of maps between
orbit spaces. Palais’ theorem was extended in a highly nontrivial way by G W Schwarz
to the smooth case [15]. Both results are stated for compact group actions, but they
also hold for proper actions of not necessarily compact Lie groups.

Some of the results in this paper concerning equivariant collars and tubular neighbour-
hoods may be known to the experts. We include them here in order to provide detailed
proofs for the literature. We hope that this paper will be of use in further study and
understanding of differential topology of smooth G –manifolds.

The paper is organized as follows: We first recall some basic properties of proper
smooth G–manifolds in Section 2. In Section 3 we prove an equivariant collaring
theorem (Theorem 3.5), ie we show that the boundary of a proper smooth G –manifold
M has an equivariant collar on M . We continue by proving an equivariant tubular
neighbourhood theorem for manifolds without boundary (Theorem 4.4). Section 6
shows some technical results concerning extensions of smooth equivariant maps. In
Section 7, we study equivariant collars and tubular neighbourhoods of neat submanifolds.
The results of Section 6 and Section 7 are needed in Section 9, where we prove an
equivariant smoothing theorem (Theorem 9.4). For that we also need results about
extending equivariant isotopies (Section 8). Finally, Section 10 deals with equivariant
gluing.

Most of the corresponding nonequivariant results can be found in a book of Hirsch [3].
Roughly, our results in Section 3 and Section 7 correspond to those in Section 4.6
in [3], and our results in Section 4 correspond to those in Section 4.5 in [3]. More-
over, the results in Section 8 and Section 9 are equivariant versions of the results in
[3, Section 8.1] and our results in Section 10 correspond to those in [3, Section 8.2].

In several of his proofs (for example the collaring theorem [3, Theorem 4.6.1]) Hirsch
uses a globalization theorem [3, Theorem 2.2.11] to obtain maps with required properties.
This approach does not generalize well to the equivariant setting, which is one reason
why some of our proofs differ from those of Hirsch. Unlike Hirsch we restrict our
attention to closed submanifolds. That’s why using the exponential map suits well
to our purposes. For example, we use the standard method, based on the use of the
exponential map, to construct G –invariant tubular neighbourhoods.

Another reason why some of the proofs in [3] need to be modified in the equivariant
case is that smooth manifolds can always be embedded in Euclidean spaces, while
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the corresponding equivariant results do not always hold even if the acting Lie group
is compact. Fortunately, proper smooth G–manifolds can be embedded in Hilbert
G –spaces. An equivariant tubular neighbourhood theorem for finite-dimensional closed
submanifolds of a Hilbert G –space is proved in Section 5.

2 Proper smooth G –manifolds

Let X be a Hausdorff space and let G be a Lie group acting continuously on X . Let
A and B be subsets of X . We denote by G.A;B/ the subset fg 2G j gA\B 6D∅g
of G . We call a subset A of X relatively compact if its closure xA is compact. The
interior of A is denoted by PA. Let f W X ! R be a continuous map. We denote the
support of f , ie the closure of the set fx 2X j f .x/ 6D 0g, by supp.f /.

Definition 2.1 The action of G on X is called proper, if for every two points x and y

in X there are neighbourhoods U and V of x and y , respectively, such that G.U;V /

is relatively compact.

The action of G on X is proper, if and only if the map G�X !X �X taking .g;x/
to .gx;x/ is proper.

Let a Lie group G act smoothly on a smooth (ie C1 ) manifold M . If the action map
G�M !M is smooth, we call M a smooth G –manifold. If the action is also proper,
we call M a proper smooth G –manifold.

All the manifolds are assumed to be finite-dimensional and to have only countably
many connected components. They are allowed to have a nonempty boundary unless
the contrary is mentioned.

We recall the notion of a smooth slice:

Definition 2.2 Let G be a Lie group and let M be a proper smooth G –manifold. Let
x 2M and let Gx denote the isotropy subgroup at x . A smooth submanifold S of
M is called a smooth slice at x if x 2 S , GS is open in M and there exists a smooth
G –equivariant map f W GS !G=Gx such that f �1.eGx/D S .

By Proposition 2.2.2 in [13], there exists a smooth slice at each point of a proper smooth
G –manifold.

Let F be a subset of M . If every point x 2M has a neighbourhood U such that
G.U;F / is relatively compact, we call F small.
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Definition 2.3 Let G be a Lie group and let M be a proper smooth G –manifold. If
F is small and GF DM , we call F a fundamental set for G in M . If, in addition,
F is closed in M , we call it a closed fundamental set. We call a closed fundamental
set F in M fat, if G PF DM .

By Lemma 3.6 in Illman and Kankaanrinta [4], a proper smooth G –manifold always
has a fat closed fundamental set.

We call a Euclidean space on which G acts linearly a linear G –space.

Lemma 2.4 Let G be a Lie group and let M be a proper smooth G–manifold. Let
f W M ! V be a smooth map into a linear G–space V. Assume the support of f is
small. Then

Av.f /W M ! V; x 7!

Z
G

gf .g�1x/dg;

where the integral is the left Haar integral over G , is a smooth G –equivariant map.

Proof It follows from Proposition 1.2.6 in Palais [13], that Av.f / is a well-defined
continuous G–equivariant map. Since the support of f is small, the smoothness
follows just like in the case where G is compact. For example, one can apply the proof
of Theorem 0.3.3 in Bredon [1] inductively, to prove the smoothness.

By a Hilbert space we mean a real vector space H with an inner product such that
relative to the metric induced by the inner product, H is a complete metric space. We
denote the group of orthogonal linear transformations of H by O.H/.

Definition 2.5 Let G be a Lie group and let H be a Hilbert space. If there exists a
representation %W G ! O.H/, such that the action G �H! H, .g; v/ 7! %.g/v , is
continuous, we call H a Hilbert G –space.

Let G be a Lie group and let M be a proper smooth G–manifold. By Theorem
0.1 in Kankaanrinta [6], there exists a smooth G–equivariant embedding of M as a
closed smooth submanifold of some Hilbert G –space H. The result in [6] is stated for
manifolds without boundary but that assumption is not used anywhere in the proof, so
the result also holds for manifolds with boundary. It follows [6, Theorem 0.2] that every
proper smooth G–manifold (with or without boundary) admits a complete smooth
G –invariant Riemannian metric.
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3 Proof of the collaring theorem

Several different proofs for the nonequivariant collaring theorem are known (see for
example Theorems 4.6.1 and 6.2.1 in Hirsch [3]). The proof of Theorem 4.6.1 in [3]
can be adapted to the equivariant case. Hence we continue by proving Proposition 3.1,
Proposition 3.2 and Proposition 3.4 whose nonequivariant versions are being used in
that proof.

Proposition 3.1 Let G be a Lie group and let M be a proper smooth G–manifold
with boundary @M . Then there exist an open G –invariant neighbourhood W of @M
in M and a smooth G –equivariant retraction r W W ! @M .

Proof Exactly the same as the proof of (a smooth version of ) Proposition 1.4 in
Illman and Kankaanrinta [5], but by using only inward pointing normal vectors.

Proposition 3.2 Let G be a Lie group and let M be a proper smooth G–manifold
with boundary @M . Then there exist an open G–invariant neighbourhood U of @M
in M and a smooth G –invariant map f W U ! Œ0;1/ having 0 as a regular value and
taking @M to 0.

Proof Let exp and TM denote the exponential map and the tangent bundle of M ,
respectively. Let T.@M /? denote the orthogonal complement of T.@M / in .TM /j@M
with respect to a smooth G–invariant Riemannian metric h ; i of M . Moreover, let
T.@M /?i denote the inward pointing normal vectors in T.@M /? . Then @M has an
open G–invariant neighbourhood U in M and the zero section of T.@M /?i has an
open G –invariant neighbourhood V such that the restriction expjW V !U is a smooth
G –equivariant diffeomorphism. The map

f W U ! Œ0;1/; x 7! hexpj�1.x/; expj�1.x/i
1
2

has the required properties.

Lemma 3.3 Let G be a Lie group and let M be a proper smooth G –manifold without
boundary. Assume G acts trivially on Œ0;1/ and diagonally on M � Œ0;1/. Let V be
a G –invariant neighbourhood of M �f0g in M � Œ0;1/. Then there exists a smooth
G –invariant map � W M ! .0;1/ such that .x;y/ 2 V , for every 0� y � �.x/.

Proof Let E be a fat closed fundamental set in M . Let ˛W M ! Œ0; 1� be a smooth
map whose support lies in PE . We can assume that ˛ is not identically zero on any
orbit of M . Let ˇW M ! .0;1/ be a smooth map such that .x;y/ 2 V , for every
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0 � y � ˇ.x/. Let g 2 G . Since V is G–invariant, it follows that .gx;y/ 2 V , for
every 0� y � ˇ.x/. Let � be the map

� W M ! .0;1/; x 7!

R
G ˛.g

�1x/ˇ.g�1x/dgR
G ˛.g

�1x/dg
:

By Lemma 2.4, � is a smooth G –invariant map. Let x 2M . Then �.x/� ˇ.z/, for
some z 2 supp.˛jGx/. It follows that � satisfies the required properties.

Proposition 3.4 Let G be a Lie group and let M be a proper smooth G–manifold
without boundary. Let G act trivially on Œ0;1/ and diagonally on M � Œ0;1/. Let
V be a G–invariant neighbourhood of M � f0g in M � Œ0;1/. Then there exists a
smooth G –equivariant embedding 'W M � Œ0;1/! V such that '.x; 0/D .x; 0/, for
every x 2M .

Proof Let � W M ! .0;1/ be as in Lemma 3.3 and let eW R! R be the exponential
map. Then

'W M � Œ0;1/! V; .x;y/ 7! .x; �.x/.1� e�y//;

is the required embedding.

Assume G is a Lie group and M is a proper smooth G –manifold with boundary @M .
Let G act trivially on the interval Œ0;1/. By an equivariant collar of @M on M we
mean a smooth G –equivariant embedding

f W @M � Œ0;1/!M

such that f .x; 0/D x , for every x 2 @M . An equivariant collaring theorem holds for
proper smooth actions:

Theorem 3.5 Let G be a Lie group and let M be a proper smooth G –manifold with
boundary @M . Then @M has an equivariant collar on M .

Proof Let the maps r and f be as in Proposition 3.1 and Proposition 3.2, respectively,
and let

hW W \U ! @M � Œ0;1/; x 7! .r.x/; f .x//:

Then h is a smooth G–equivariant map and h.x/D .x; 0/, for every x 2 @M . The
restriction of h to @M is a G –homeomorphism onto @M �f0g. Since h is submersive
(and therefore also immersive) at the boundary points, it is a local diffeomorphism on
some neighbourhood of the boundary @M . It now follows from Lemma 1.3 in [5], that
@M has an open G –invariant neighbourhood V in W \U such that hjW V !h.V / is a
G –equivariant diffeomorphism and h.V / is open in @M � Œ0;1/. By Proposition 3.4,

Algebraic & Geometric Topology, Volume 7 (2007)



Equivariant gluing theorem 7

there exists a smooth G –equivariant embedding 'W @M � Œ0;1/! h.V / which fixes
@M �f0g. Then the composed map h�1 ı' is an equivariant collar of @M on M .

Let TxM denote the tangent space of M at x . Then the normal space at x to the orbit
Gx is Nx D TxM=Tx.Gx/. The linear slice theorem for manifolds without boundary
says that if x 2M n @M , then a G –invariant neighbourhood of x is G –equivariantly
diffeomorphic to the twisted product G�Gx

Nx . This fact and the equivariant collaring
theorem now imply Corollary 3.6, which is a linear slice theorem for manifolds with
boundary:

Corollary 3.6 Let G be a Lie group and let M be a proper smooth G –manifold with
boundary @M . If x 2 @M , then a G –invariant neighbourhood of x is G –equivariantly
diffeomorphic to .G �Gx

xNx/� Œ0;1/, where xNx D Tx.@M /=Tx.Gx/.

Corollary 3.6 says that every proper smooth action of a Lie group on a smooth manifold
with boundary is locally linear (called locally smooth in Bredon [1]).

The action of a Lie group G on a topological manifold M with boundary is called lo-
cally linear, if every x 2M n@M has a neighbourhood G –equivariantly homeomorphic
to G�Gx

Vx and every x 2 @M has a neighbourhood which is G –equivariantly home-
omorphic to .G�Gx

Vx/� Œ0;1/, where Vx is a linear Gx –space. For compact G , a
topological version of the equivariant collaring theorem is known [1, Theorem V 1.5].
This theorem is proved for locally linear actions. The corresponding nonequivariant
result was proved by M Brown [2]. Since the covering homotopy theorem [12] of
R S Palais holds for proper actions, it is easy to verify that the proof of Bredon’s
theorem also works for proper locally linear actions. Thus we obtain a topological
version of the equivariant collaring theorem:

Theorem 3.7 Let G be a Lie group and let M be a topological manifold with
boundary @M . Assume G acts properly and locally linearly on M . Then there exists
a G –equivariant homeomorphism h of @M � Œ0;1/ onto a neighbourhood of @M in
M with h.x; 0/D x , for every x 2 @M .

4 G –invariant tubular neighbourhoods

Let G be a Lie group acting smoothly and properly on a smooth manifold M . Let
� D .p;E;M / be a smooth vector bundle over M . Assume G acts smoothly on E

and in such a way that the action is linear on the fibers. Moreover, assume the projection
pW E!M is equivariant. We then call � a smooth G –vector bundle over M .
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Definition 4.1 Let G be a Lie group and let M be a proper smooth G –manifold. Let
N be a closed smooth G–invariant submanifold of M . By a G–invariant tubular
neighbourhood of N in M we mean a pair .'; �/, where � D .p;E;N / is a smooth
G –vector bundle over N and 'W E!M is a smooth G –equivariant embedding onto
some open neighbourhood of N in M , such that the restriction of ' to the zero section
(identified with N ) of � is the inclusion of N in M .

Associated to '.E/ is a particular smooth G–equivariant retraction r W '.E/! N .
We often refer to E , '.E/ or r W '.E/!N as a G –invariant tubular neighbourhood
of N in M .

The next lemma is proved for actions of compact Lie groups in [1, Theorem VI 2.1].

Lemma 4.2 Let G be a Lie group and let M be a proper smooth G–manifold. Let
� D .p;E;M / be a smooth G–vector bundle over M . Then there exists a smooth
positive definite G –invariant inner product on � .

Proof Let E ˚ E denote the Whitney sum and let pW E ˚ E ! M denote the
projection. Let F be a fat closed fundamental set in M . Then p�1.F / is a fat closed
fundamental set in E ˚E . Let ˛W M ! Œ0;1/ be a smooth map with support in
PF and such that ˛ is not identically zero on any orbit. Let h ; i be a smooth positive

definite inner product on � . (Such an inner product exists; see eg [1, Theorem VI 2.1].)
We define a new inner product f ; g on � by putting

fv;wgx D

Z
G

˛.g�1x/hg�1v;g�1wig�1xdg:

By Lemma 2.4, f ; g is smooth and G –invariant. Clearly, it is positive definite.

By a G–invariant partial tubular neighbourhood of a closed smooth G–invariant
submanifold N of a proper smooth G–manifold M we mean a triple .f; �;U /

where � D .p;E;N / is a smooth G–vector bundle over N , U is a G–invariant
neighbourhood of the zero section in E and f W U !M is a smooth G –equivariant
embedding such that the restriction f jN D idN and f .U / is open in M .

The following proposition shows that a G–invariant partial tubular neighbourhood
always contains a G–invariant tubular neighbourhood. The proof is just as in the
nonequivariant case [3, p 109].

Proposition 4.3 Let G be a Lie group and let M be a proper smooth G–manifold.
Let N be a closed smooth G–invariant submanifold of M . Assume .f; �;U / is a
G –invariant partial tubular neighbourhood of N in M . Then there exists a G –invariant
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tubular neighbourhood .s; �/ of N in M such that s equals f in a neighbourhood of
N .

Proof By Lemma 4.2, � has a smooth positive definite G–invariant inner product
h ; i. Let k k be the norm h ; i induces on the fibers in E . Let %W N ! .0;1/ be
a smooth G–invariant map such that if y 2 Ex and kyk � %.x/, then y 2 U . Let
�W Œ0;1/! Œ0; 1/ be a diffeomorphism which equals the identity near 0. We define

hW E!E; y 7!

(
%.p.y//�

�
kyk

%.p.y//

�
kyk�1y; if kyk 6D 0

y; otherwise:

Then h is a G –equivariant map, h.E/� U and h is the identity near the zero section.
It is left for the reader to verify that h is a smooth embedding. Let s D f ı h. Then
.s; �/ is a G –invariant tubular neighbourhood of N with the required properties.

Theorem 4.4 and Theorem 4.6 are equivariant versions of Theorems 4.5.2 and 4.5.3 in
[3], respectively. However, notice that Hirsch does not require N to be closed in M .
Equivariant versions for compact G can be found in [1, Theorems VI 2.2 and VI 2.6].

Theorem 4.4 Let G be a Lie group and let M be a proper smooth G –manifold. Let
N be a closed smooth G –invariant submanifold of M . Assume @M D @N D∅. Then
N has a G –invariant tubular neighbourhood in M .

Proof Like the proof of Proposition 1.4 in [5].

Let G be a Lie group and let M and N be proper smooth G–manifolds. By a G–
equivariant isotopy from M to N we mean a smooth map F W N � I !M such that
for each t 2 I the map

Ft W N !M; x 7! F.x; t/;

is a smooth G–equivariant embedding. We call the embeddings F0 and F1 G–
equivariantly isotopic (or G–isotopic). If A �M is such that Ft .x/ D F0.x/, for
all .x; t/ 2 A� I , then we call F a G–equivariant rel A isotopy. In the case when
N DM and each Ft is a diffeomorphism, we call F a G –equivariant diffeotopy (or
a G–diffeotopy). Notice that we do not require F0 to be the identity map of M as
Hirsch does when he defines a diffeotopy [3, p 178]. For an isotopy F we define a map

yF W N � I !M � I; .x; t/ 7! .F.x; t/; t/:

Definition 4.5 Let .fi ; �i D .pi ;Ei ;N //, i D 0; 1, be G –invariant tubular neighbour-
hoods of N in M . By a G –equivariant isotopy of G –invariant tubular neighbourhoods
from .f0; �0/ to .f1; �1/ we mean a G–equivariant rel N isotopy F W E0 � I !M

such that
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� F0 D f0 ,

� F1.E0/D f1.E1/,

� f �1
1
ıF1W E0!E1 is a vector bundle isomorphism �0! �1 ,

� yF .E0 � I/ is open in M � I .

Notice that the last condition is always true, if @M D∅. Notice also that F1 and f1

necessarily define the same retraction F1.E0/!N .

Theorem 4.6 Let G be a Lie group and let M be a proper smooth G –manifold. Let
N be a closed smooth G –invariant submanifold of M . Assume @M D @N D∅. Then
any two G –invariant tubular neighbourhoods of N in M are G –equivariantly isotopic.

Proof The proof is like that of Theorem 4.5.3 in [3]. The map H in Hirsch’s
proof becomes G–equivariant when .f0; �0/ and .f1; �1/ are G–invariant. Using
Lemma 4.2, it is also possible to make Hirsch’s maps h and G G –equivariant.

5 Tubular neighbourhoods in Hilbert G –spaces

In this section we prove an equivariant tubular neighbourhood theorem (Theorem 5.1)
for finite-dimensional closed submanifolds in Hilbert G –spaces. The result is needed
later, in Section 6 and Section 7.

For elements of infinite-dimensional differential geometry we refer to Lang [8]. Let
H be a Hilbert space. The exponential map of H defined by the trivial spray over H

is defined on an open O.H/–invariant subset of TH and it is O.H/–equivariant. We
obtain:

Theorem 5.1 Let G be a Lie group and let M be a proper smooth G –manifold with
@M D∅. Let f W M ! H be a closed smooth G –equivariant embedding in a Hilbert
G –space H. Then f .M / has a G –invariant tubular neighbourhood in H.

Proof The claim can be proved like Theorem IV.5.1 in [8], by using the exponential
map of H. Notice that we do not need partitions of unity, since in Lang’s proof they
are only used to construct a global spray. The trivial spray certainly is global.

Remark 5.2 Let W be a G–invariant tubular neighbourhood of f .M /. Since G

acts properly on f .M / and there exists an equivariant retraction r W W ! f .M /, it
follows that G acts properly also on W .
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6 Extending smooth G –equivariant maps

In this section we show how to extend certain kind of smooth equivariant maps equiv-
ariantly. Corollary 6.3 will be applied in Section 9.

Lemma 6.1 Let G be a Lie group and let M and N be proper smooth G –manifolds
without boundary. Let G act trivially on R and diagonally on M � R and N � R.
Assume f D .f1; f2/W M � .�1; 0�!N � .�1; 0� is a smooth G –equivariant map
such that f2.x; 0/D 0, for every x 2M . Then, for every x 2M , there exists a slice
Sx at x such that the restriction f j.GSx � .�1; 0�/ can be extended to a smooth
G –equivariant map fx W GSx � .�1; ax/!N �R, for some ax > 0.

Proof The map f can be extended to a smooth (nonequivariant) map hW U !N �R ,
where U is a sufficiently small neighbourhood of M � .�1; 0� in M � R. Let
x 2M and let S �N be a smooth slice at f1.x; 0/. Then S �R is a smooth slice
at f .x; 0/. Let r W W ! S be a Gx –invariant tubular neighbourhood of S in GS .
We can assume that S and W are relatively compact. Thus W has only finitely
many orbit types and, consequently, there exists a closed smooth Gx –equivariant
embedding eW W ! Rn.%/, where Rn.%/ is a linear Gx –space on which Gx acts via
some homomorphism %W Gx! O.n/ (see Mostow [10] or Palais [11]).

Now, h�1.W �R/ is open in M �R. Let Sx �M be a smooth slice at x , and let
Jx be an open interval containing 0. By choosing Sx and Jx to be sufficiently small,
we can assume that Sx �Jx � h�1.W �R/.

Let r 0W W 0! e.W / be a Gx –invariant tubular neighbourhood of e.W / in Rn.%/. Let
idW R! R be the identity map. Then

Hx D .e� id/ ı hjW Sx �Jx! Rn.%/�R

is a smooth map. Since Gx is compact, it follows that

Av.Hx/W Sx �Jx! Rn.%/�R; .y; t/ 7!

Z
Gx

gHx.g
�1y; t/dg;

is a smooth Gx –equivariant map. By shrinking Sx and Jx , if necessary, we can
assume that Av.Hx/.Sx �Jx/�W 0 �R. Then

zHx D .e
�1
� id/ ı .r 0 � id/ ıAv.Hx/W Sx �Jx!N �R

is a smooth Gx –equivariant map. Since Sx �Jx is a smooth slice at .x; 0/, the map

hx W GSx �Jx!N �R; .gy; t/ 7! g zHx.y; t/;
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is smooth and G –equivariant. Defining

fx W .GSx � .�1; 0�/[ .GSx �Jx/!N �R

by fx.y; t/D f .y; t/ if .y; t/ 2 GSx � .�1; 0� and fx.y; t/D hx.y; t/ if .y; t/ 2
GSx �Jx , yields a smooth G –equivariant map with the desired properties.

Theorem 6.2 Let G , M , N and f be as in Lemma 6.1. Then there exist a G–
invariant neighbourhood V of M � .�1; 0� in M �R and a smooth G–equivariant
map F W V !N �R extending f .

Proof We begin by covering M�f0g locally finitely by tubes GSx , where Sx�M�R

is a smooth slice at .x; 0/, x 2M . It is possible to do this in such a way that the
family fGSxg can be divided to finitely many subfamilies fGSxi

gi2 j̨
, 1 � j � n,

for some n 2 N, such that for all j , GSxi
\ GSxk

D ∅, if i; k 2 j̨ and i 6D k

[12, Theorem 1.8.2]. We denote

Oj D .M � .�1; 0//[
� [

i2 j̨

GSxi

�
;

for all j . By Lemma 6.1, f has a smooth G –equivariant extension to GSxi
, for every

i 2 j̨ . These extensions define a smooth G –equivariant extension of f ,

Fj W Oj !N �R:

Let ffj g
n
jD1

be a smooth G–invariant partition of unity subordinate to fOj g
n
jD1

[14, Theorem 4.2.4 (4)]. Let eW N !H be a closed smooth G –equivariant embedding
into a Hilbert G–space H and let r W W ! e.N / be a smooth G–invariant tubular
neighbourhood of e.N / in H. Let id denote the identity map of R. For all j , define
the map SFj by

SFj W

n[
jD1

Oj ! H�R; .y; t/ 7!

�
fj .y; t/.e� id/.Fj .y; t//; if .y; t/ 2Oj

0; otherwise:

We can assume that †j
SFj .y; t/ 2W �R, for all .y; t/. Let

F W

n[
jD1

Oj !N �R; .y; t/ 7! .e�1
� id/.r � id/.†n

jD1
SFj .y; t//:

Then F is a smooth G –equivariant map extending f .

Theorem 6.2 and Lemma 1.3 in [5] imply the following:
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Corollary 6.3 Let G be a Lie group and let M be a proper smooth G –manifold. Let
G act trivially on R and diagonally on M �R . Let f W M � .�1; 0�!M � .�1; 0�

be a smooth G–equivariant diffeomorphism. Then there exist a G–invariant neigh-
bourhood V of M � .�1; 0� in M �R and a smooth G –equivariant diffeomorphism
F W V ! F.V / extending f .

7 G –invariant collars and tubular neighbourhoods of closed
neat submanifolds

Let G be a Lie group and let M be a proper smooth G –manifold. Let N be a smooth
G –invariant submanifold of M . Following the terminology in [3], we call N a neat
submanifold of M , if @N D N \ @M and if N is covered by charts .';U / of M

such that N \ U D '�1.Rm/ where m D dim.N /. Thus N is neat if and only if
@N DN \ @M and for every x 2 @N , TxN is not a subspace of Tx.@M /.

Theorems 7.2, 7.3 and 7.4 are equivariant versions of Theorems 4.6.2, 4.6.3 and 4.6.4
in [3], respectively. Again, notice that in 4.6.3 and 4.6.4, Hirsch does not require the
submanifolds to be closed.

Lemma 7.1 Let G be a Lie group and let M be a proper smooth G–manifold. Let
N be a closed smooth neat G–invariant submanifold of M . Then there exist a G–
invariant neighbourhood U1 of @N in M and a smooth G–equivariant retraction
r1W U1! U1\ @M such that r1.x/ 2 @N for every x 2 U1\N .

Proof By the equivariant collaring theorem, @M has a neighbourhood in M which
is G –equivariantly diffeomorphic to @M � Œ0;1/. Let sW U ! @N be a G –invariant
tubular neighbourhood of @N in @M . Let eW U!H be a closed smooth G –equivariant
embedding in some Hilbert G –space H and let r 0W V ! e.U / be a G –invariant tubular
neighbourhood of e.U / in H. Moreover, let id denote the identity map of Œ0;1/ and
let e0 D e� idW U � Œ0;1/! H� Œ0;1/.

Fix a smooth G –invariant Riemannian metric on N . Let T.@N /?i denote the inward
pointing normal vectors in the orthogonal complement T.@N /? of T.@N / in .TN /j@N .
Let exp denote the restriction of the exponential map of N to T.@N /?i . Let 1?s.v/
denote the inward pointing unit vector in Ts.v/N=Ts.v/.@N /. Since T.@N /?i is trivial
[3, Theorem 4.4.2], the map f W O! U � Œ0;1/ defined by

.v; t/ 7! e�1
0 ı .r

0
� id/ ı

�
e0.v/C e0.exps.v/.t � 1

?
s.v///� e0.s.v//

�
is well-defined on some G –invariant neighbourhood O of @N in U � Œ0;1/. Then f
is a smooth G –equivariant map and its restriction to some G –invariant neighbourhood
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W of @N is a diffeomorphism onto f .W /. Moreover, we may assume that the
image f .@N � Œ0;1/ \W / D N \ f .W /. Denote the inverse of f jW by f �1 .
Let prW U � Œ0;1/! U be the projection. Then pr ı f �1W f .W /! U is a smooth
G –equivariant retraction such that pr ıf �1.x/ 2 @N for every x 2N \f .W /.

Theorem 7.2 Let G be a Lie group and let M be a proper smooth G–manifold.
Let N be a closed smooth neat G–invariant submanifold of M . Then @M has a
G –equivariant collar which restricts to a G –equivariant collar of @N in N .

Proof The proof is similar to the proof of Theorem 3.5, if we manage to choose
the maps r and ' in that proof in such a way that r W W ! @M maps N \W onto
@N and that '.x; t/ 2N � Œ0;1/ for every .x; t/ 2N � Œ0;1/. By choosing V , as
in Theorem 3.5, to be sufficiently small, we can then assume that the restricted map
hjW V \N ! h.V /\ .@N � Œ0;1// is a diffeomorphism. That ' has the required
property, follows immediately from its definition, see Proposition 3.4.

It remains to construct a smooth G –equivariant retraction r from an open G –invariant
neighbourhood W of @M to @M such that r.x/2 @N for every x 2N \W . First, let
U1 and r1 be as in Lemma 7.1. Next, let U2 be an open G –invariant subset in M such
that @M �U1[U2 and N \U2D∅. Choosing U2 to be sufficiently small and using
the collaring theorem, we obtain a smooth G –equivariant retraction r2W U2!@M\U2 .
Let ff1; f2g be a smooth G –invariant partition of unity such that supp.f1/� U1 and
supp.f2/� U2 . Let eW @M !H be a closed smooth G –equivariant embedding into a
Hilbert G –space H. For i D 1; 2, we define the map

xri W U1[U2! H; x 7!

�
fi.x/e.ri.x//; if x 2 Ui

0; otherwise:

By Theorem 5.1, there is a smooth G –invariant tubular neighbourhood xr W O! e.@M /

of e.@M / in H. When U1 and U2 are sufficiently small, ie such that xr1.x/Cxr2.x/2O ,
for every x 2 U1[U2 , the map

r W U1[U2! @M; x 7! e�1
ı xr .xr1.x/Cxr2.x// ;

is well-defined. Clearly, r then is a smooth G –equivariant retraction taking points of
N to @N .

In the following theorem we construct tubular neighbourhoods for neat submanifolds.
It is easy to see that the standard method based on the use of the exponential map does
not work here. Therefore, we follow the idea of Hirsch, although some of our technical
details are slightly different due to the fact that we need Hilbert spaces in situations
where Hirsch uses Euclidean ones.
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Theorem 7.3 Let G be a Lie group and let M be a proper smooth G –manifold. Let
N be a closed smooth neat G –invariant submanifold of M . Then N has a G –invariant
tubular neighbourhood in M .

Proof By Theorem 7.2, there exist a G–invariant neighbourhood V1 of @M in M

and a G –equivariant diffeomorphism

'W .V1; @M /�G .@M � Œ0; 1/; @M � f0g/

'jW V1\N �G @N � Œ0; 1/:such that

Let V2 be an open G –invariant subset in M such that M nV1�V2 . Let h1; h2W M!R

be a smooth G –invariant partition of unity with supp.h1/� V1 and supp.h2/� V2 .

Let e1W @M ! H1 and e2W V2! H2 be closed smooth G–equivariant embeddings
in some Hilbert G–spaces H1 and H2 , respectively. Let �W Œ0; 1/ ! Œ0;1/ be a
diffeomorphism and let id denote the identity map of @M . Then

ye1W @M � Œ0;1/! H1 � Œ0;1/; .x; t/ 7! .e1.x/; t/;

is a closed smooth G –equivariant embedding. Moreover, the maps

ze1 D ye1 ı .id��/ ı'W V1! H1 � Œ0;1/

ze2W V2! H2 � Œ0;1/; x 7! .e2.x/; 1/and

are closed smooth G –equivariant embeddings. For i D 1; 2, define

fi W M ! Hi � Œ0;1/; x 7!

�
hi.x/zei.x/; if x 2 Vi

0; otherwise:

Then the map

F W M ! R�R�H2 �H1 �RD H�R; x 7! .h1.x/; h2.x/; f1.x/Cf2.x// ;

is a closed smooth G–equivariant embedding in the Hilbert G–space H�R, where
HD R�R�H2�H1 . Thus F embeds M in H� Œ0;1/�H�R in such a way that
every vector of H�R which is normal to F.V1/ at a point of F.@M / or normal to
F.V1\N / at a point of F.@N /, is in H.

The image F.M / is a closed smooth neat G–invariant submanifold of the G–space
H� Œ0;1/. For x 2 F.M /, let Tx.F.M //? denote the orthogonal complement of
Tx.F.M // in H�R. Then T.F.M //? � F.M /�H�R. Thus

f W T.F.M //?! H�R; .x;y/ 7! xCy;

where x 2 F.M / and y 2 Tx.F.M //? , is a smooth G–equivariant map whose
restriction to the zero section is the identity. Moreover, dfx is a continuous bijection
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at points of F.M /. By the inverse function theorem [8, Theorem 1.5.2], f is a
local diffeomorphism on F.M /. It follows that f jW W ! f .W / � H� Œ0;1/ is a
G –equivariant diffeomorphism for some G –invariant neighbourhood W of F.M / in
T.F.M //? and f .W / is open in H�Œ0;1/. Hence we obtain a smooth G –equivariant
retraction r W f .W /!F.M /. Notice that we can’t apply Lemma 1.3 in [5] here, since
that lemma is stated for locally compact spaces only. Instead, the shrinking can be
done like, for example, in the end of the proof of Theorem IV.5.1 in [8].

We give M the G–invariant Riemannian metric induced from H � Œ0;1/. Let
� D .p;E;N / be the normal bundle of N in M . Thus

� � .TM /N � .T.H� Œ0;1///N D F.N /�H�R;

ie each fibre �x is contained in fF.x/g �H�R.

Let x2N . We define UxDf.F.x/;y/2�x jF.x/Cy2f .W /g. Then U D
S

x2N Ux

is an open G–invariant subset of E and the map sW U !M sending .F.x/;y/ to
F�1 ı r.F.x/C y/ provides a G–invariant partial tubular neighbourhood for N in
M . Applying Proposition 4.3 proves the theorem.

Theorem 7.4 Let G be a Lie group and let M be a proper smooth G –manifold. Let
N be a closed smooth neat G –invariant submanifold of M . Then every G –invariant
tubular neighbourhood of @N in @M is the intersection with @M of a G–invariant
tubular neighbourhood of N in M .

Proof We first consider the special case M DW � I , N D U � I , where U is a
closed smooth G –invariant submanifold of W and @U D @W D∅. Then

@M DW � f0g[W � f1g

@N D U � f0g[U � f1g:and

A G –invariant tubular neighbourhood of @N in @M is a pair of G –invariant tubular
neighbourhoods of U in W . Let these be E0 and E1 . By Theorem 4.6, there is a
G–equivariant isotopy of tubular neighbourhoods from E0 to E1 . We denote this
isotopy by F W E0 � I !W . The corresponding embedding

yF W E0 � I !W � I DM; .y; t/ 7! .F.y; t/; t/;

defines a G –invariant tubular neighbourhood for U � I DN in M , and this tubular
neighbourhood restricts to E0 and E1 in @M .

We next consider the general case. By Theorem 7.2, @M has a G –equivariant collar in
M which restricts to a G–equivariant collar of @N in N . We identify @M � Œ0;1/
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with a G –invariant neighbourhood OM of @M in M , so that @N �Œ0;1/ corresponds
to a G –invariant neighbourhood ON of @N in N . Let

M 0 D @M � Œ0; 1�; N 0 D @N � Œ0; 1�

M 00 D M n .@M � Œ0; 1//; N 00 D N n .@N � Œ0; 1//:

Then M DM 0[M 00 , M 0\M 00D @M �f1g, N DN 0[N 00 , N 0\N 00D @N �f1g.
Both M 00 and N 00 are smooth manifolds with boundary and N 00 is a neat submanifold
of M 00 .

Let E0 be a G–invariant tubular neighbourhood of @N � f0g in @M � f0g. By
Theorem 7.3, there is a G–invariant tubular neighbourhood E of N 00 in M 00 . Let
E1 D E \ .@M � f1g/ � @M � f1g. Then E0 and E1 form a G–invariant tubular
neighbourhood for @N � f0; 1g in @M � f0; 1g. By the special case, we can extend
E0[E1 to a G –invariant tubular neighbourhood E0 of N 0 in M 0 .

Let � W Œ0; 1�! Œ0; 1� be a smooth increasing surjection collapsing a neighbourhood of
1 to 1, and let id be the identity map of E0 . Taking the composed map F ı .id� �/,
we can assume that the isotopy from E0 to E1 , which defines E0 , is constant near 1.

Let sW Œ1;1/! Œ1;1/ be a smooth surjection which collapses a neighbourhood of 1

to 1 and increases on Œ11
2
;1/. We can assume that s equals 1 on Œ1; 11

2
� and that s

equals the identity map on Œ2;1/. Write N 00 D .@N � Œ1;1//[ .N nON /. Let

f D .id@N �s/[ id.N nON /W .@N � Œ1;1//[ .N nON /! .@N � Œ1;1//[ .N nON /:

The pullback of E by f defines a smooth G–vector bundle E00 over N 00 . The
G–vector bundles E0 and E00 fit together smoothly at @N � f1g, forming a smooth
G –vector bundle E0[E00 over N . Let pW E0[E00!N be the projection.

Let 'W E !M 00 and '0W E0!M 0 denote the smooth G–equivariant embeddings
defining the tubular neighbourhoods of N 00 in M 00 and N 0 in M 0 , respectively. If
y 2E and '.y/2 @M � Œ1;1/, we write '.y/D .'1.y/; '2.y//2 @M � Œ1;1/. Now
consider the function x'W E0[E”!M defined by:

y 7!

8<:
'0.y/; if p.y/ 2N 0

.'1.y/; '2.y/C t � s.t//; if p.y/D .x; t/ 2 @N � .1; 3�

'.y/; if p.y/ 2N 00 n .@N � Œ1; 3�/

This is a well-defined smooth G –equivariant map. Clearly, it’s restriction to the zero
section is a diffeomorphism onto N , and it is immersive at each point of the zero
section. Thus the restriction x'jU , where U is some open G –invariant neighbourhood
of the zero section, defines a G –invariant partial tubular neighbourhood of N in M .
We can assume that E0 np�1.@N � f1g/� U .
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The restriction x'jW U np�1.@N �f0g/!M n@M defines a G –invariant partial tubular
neighbourhood for N n @N in M n @M . Choosing the map %W N n @N ! .0;1/, as
in Proposition 4.3, in such a way that for .x; t/ 2 @N � .0; 1/, %.x; t/ only depends on
t and %.x; t/!1 when t ! 0, and applying Proposition 4.3, yields a G–invariant
tubular neighbourhood of N n @N in M n @M which fits together smoothly with E0 .
Thus the obtained G –invariant tubular neighbourhood of N in M extends E0 .

8 Extending equivariant isotopies

In this section we investigate equivariant isotopies. The results are equivariant versions
of the corresponding theorems in Hirsch [3, Section 8].

Let G be a Lie group and let M be a proper smooth G –manifold. Let X W M ! TM

be a smooth vector field. If Xgx.f ıg�1/DXx.f /, for every x 2M , g 2G and for
every smooth real valued map f defined on a neighbourhood of x in M , we call X

an invariant vector field. If X is an invariant vector field and � W I !M is an integral
curve of X at x 2M , then g ı � is an integral curve of X at gx 2M .

By a time-dependent vector field on M we mean a smooth map Y W M � I ! TM

such that Y.x; t/ D Y .x; t/ 2 TxM , for every x 2M . If @M 6D ∅, we also require
that Y .@M � I/� T.@M /. The vector field Y is called invariant, if the vector field
Y. ; t/W M ! TM is invariant, for every t 2 I . We say that a vector field Y has
bounded velocity, if M has a complete smooth Riemannian metric h ; i such that there
exists a constant K > 0 for which hY .x; t/;Y .x; t/i<K , for every .x; t/ 2M � I .

Theorem 8.1 and Theorem 8.2 are equivariant versions of Theorems 8.1.1 and 8.1.2 in
[3], respectively.

Theorem 8.1 Let G be a Lie group and let M be a proper smooth G –manifold. Let
Y be a time-dependent invariant vector field on M having bounded velocity. Then
there is a unique G –equivariant diffeotopy F W M � I !M such that

@F

@t
.x; t/D Y .F.x; t/; t/:

Moreover, F0 D idM .

Proof Let X W M � I ! T.M � I/ be the vector field X.x; t/ D .Y .x; t/; 1/. By
Theorem 8.1.1 in [3], Y generates a diffeotopy F . This diffeotopy is constructed in
such a way that, for each x 2M , the map I!M �I , t 7! .F.x; t/; t/, is an integral
curve of X at .x; 0/. Since Y is invariant, it follows that gF.x; t/D F.gx; t/, ie F

is a G –equivariant diffeotopy.
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Let Y W M � I ! TM be a time-dependent invariant vector field. By the support
supp.Y / �M of Y we mean the closure of fx 2M j Y .x; t/ 6D 0 for some t 2 Ig.
If supp.Y /=G is compact, then Y has bounded velocity with respect to any complete
smooth G –invariant Riemannian metric. As in the nonequivariant case, Theorem 8.1
implies:

Theorem 8.2 Let G be a Lie group and let M be a proper smooth G–manifold.
A time-dependent invariant vector field Y W M � I ! TM such that supp.Y /=G is
compact generates a G –equivariant isotopy. In particular, if G is compact, then every
time-dependent invariant vector field on a compact smooth G–manifold generates a
G –equivariant isotopy.

Let N be a submanifold of M . An isotopy F W N � I !M is said to have bounded
velocity if M has a complete smooth Riemannian metric such that the tangent vectors
to the curves t 7! F.x; t/ have bounded lengths. We call the closure of the set
fx 2 N j F.x; t/ 6D F.x; 0/ for some t 2 Ig the support supp.F / of the isotopy
F W N � I !M .

We next prove equivariant isotopy extension theorems, Theorem 8.3 and Theorem 8.6.
These results are equivariant versions of Theorems 8.1.7 and 8.1.6 in [3], respectively.

Theorem 8.3 Let G be a Lie group and let M be a proper smooth G –manifold. Let A

be a closed G –invariant subset of M and let U be an open G –invariant neighbourhood
of A in M . Let F W U � I !M be a G–equivariant isotopy of U having bounded
velocity, such that yF .U �I/ is open in M �I and F0 is the canonical inclusion. Then
there is a G–equivariant diffeotopy zF of M having bounded velocity, such that zF
agrees with F on a neighbourhood of A� I , supp. zF /� F.U � I/ and zF0 D idM .

Proof The tangent vectors to the curves

yFx W x � I !M � I; .x; t/ 7! .F.x; t/; t/;

for x 2 U , define a vector field Y on yF .U � I/, where Y.F.x; t/; t/ D .
@F
@t
.x; t/; 1/.

The horizontal part of Y is a vector field X W yF .U �I/!TM , .y; t/ 7!X.y; t/ 2TyM .
The vector field X is time-dependent and has bounded velocity. As yF .U � I/ is an
open G–invariant subset of M � I and since yF .A� I/� yF .U � I/ is a closed G–
invariant subset of M � I , there exists a smooth G –invariant map f W M � I ! Œ0; 1�

such that f .y; t/D 1 on a G –invariant neighbourhood V of yF .A� I/ in yF .U � I/

and supp.f /� yF .U � I/. The vector field

zX W M � I ! TM; .y; t/ 7!

�
f .y; t/X.y; t/; if .y; t/ 2 yF .U � I/

0; otherwise
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is time-dependent and invariant. Moreover, zX agrees with X on V .

Since X has bounded velocity, zX also has bounded velocity. By Theorem 8.1, zX
generates a G –equivariant diffeotopy zF W M � I !M where

@ zF

@t
.x; t/D zX . zF .x; t/; t/ and zF0 D idM :

Clearly, supp. zF / � F.U � I/. Since zX has bounded velocity, zF does too. If
.x; t/ 2 yF�1.V /, then

zX .F.x; t/; t/DX.F.x; t/; t/D
@F

@t
.x; t/;

and the uniqueness of the solutions implies that zF agrees with F on the G –invariant
neighbourhood yF�1.V / of A� I .

Let M be a connected smooth manifold and let d be a metric on M induced by a
complete smooth Riemannian metric. In the proof of the following lemma we will use
the well-known fact that every bounded subset of M is relatively compact. Thus a
subset of M is compact if and only if it is closed and bounded.

Lemma 8.4 Let G be a Lie group and let M and N be proper smooth G –manifolds,
with @M D ∅ D @N . Assume F W N � I ! M is a G–equivariant isotopy with
bounded velocity and such that the map F0 is a closed embedding. Then yF .N � I/ is
a closed smooth neat G –invariant submanifold of M � I .

Proof Clearly, yF is a smooth injective G –equivariant immersion. Since neatness is
also obvious, it remains to show that yF is a closed map.

We first assume that N has only finitely many connected components. Without loss of
generality we may assume that N and M are connected. Let d and d 0 be complete
metrics on N and M , respectively, induced by complete smooth Riemannian metrics
h ; i and h ; i0 . Assume F has bounded velocity with respect to h ; i0 .

Let A be a closed subset of N � I and let .xn; tn/ be a point in A, for every n 2N.
Assume yF .xn; tn/D .F.xn; tn/; tn/! .y; t/ 2M � I . Assume first that .xn/ has no
convergent subsequence. Let z 2N . We can now assume that d.xn; z/!1. Since
F0 is a proper map, it follows that also d 0.F.xn; 0/;F.z; 0//!1. It follows that
d 0.F.xn; 0/;y/!1. Since F has bounded velocity, the paths F.fxng � I/ have
bounded lengths. This yields a contradiction with the fact that F.xn; tn/! y . Thus
we may assume that a subsequence of .xn; tn/ converges to a point .x; t/ 2A, and it
follows that .y; t/D yF .x; t/ 2 yF .A/. Thus yF .A/ is closed in M � I .
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Assume then that N is allowed to have countably many connected components. Passing
to a subsequence, if necessary, we may assume that each xn is in a different connected
component of N . Then .F.xn; 0// has no convergent subsequence. Again, this
contradicts the assumption that F.xn; tn/ ! y . It follows that yF .A/ is closed in
M � I and yF is a closed map.

Notice that in Lemma 8.5 and in Theorem 8.6, M � I strictly speaking is a manifold
with corners (see Mather [9]), if @M 6D∅.

Lemma 8.5 Let G be a Lie group and let M be a proper smooth G–manifold.
Let N be a closed smooth G–invariant submanifold of M with @N D ∅. Assume
F W N � I !M is a G–equivariant isotopy with bounded velocity such that either
F.N � I/ � @M or F.N � I/ �M n @M . Assume F0 is the canonical inclusion.
Then yF .N � I/ has a G –invariant tubular neighbourhood in M � I .

Proof Let us first assume that F.N � I/�M n @M . By Lemma 8.4, yF .N � I/ is a
closed smooth neat G –invariant submanifold of .M n @M /� I . (In fact, one can see,
as in the proof of Lemma 8.4, that yF .N � I/ is closed in M � I .) The claim follows
from Theorem 7.3.

If F.N � I/� @M , then yF .N � I/ is a closed smooth neat G –invariant submanifold
of @M � I . By Theorem 7.3, there exists a G–invariant tubular neighbourhood
r W U ! yF .N �I/ of yF .N �I/ in @M �I . Let prW U � Œ0;1/!U be the projection.
Then r ı prW U � Œ0;1/ ! yF .N � I/ is a G–invariant tubular neighbourhood of
yF .N � I/ D yF .N � I/ � f0g in @M � I � Œ0;1/ D @M � Œ0;1/ � I . Using the

equivariant collaring theorem yields a G –invariant tubular neighbourhood for yF .N �I/

in M � I .

Theorem 8.6 Let G be a Lie group and let M be a proper smooth G –manifold. Let N

be a closed smooth G –invariant submanifold of M with @N D∅. Let F W N �I!M

be a G–equivariant isotopy having bounded velocity with respect to some complete
smooth G –invariant Riemannian metric, and such that F0 is the canonical inclusion. If
either F.N � I/� @M or F.N � I/�M n @M , then F extends to a G –equivariant
diffeotopy of M which has bounded velocity.

Proof The tangent vectors to the curves

yFx W x � I !M � I; .x; t/ 7! .F.x; t/; t/;

define a vector field Y on yF .N �I/, where Y.F.x;t/; t/D .
@F
@t
.x; t/; 1/. The horizontal

part of Y is a vector field

X W yF .N � I/! TM; .y; t/ 7!X.y; t/ 2 TyM:
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By Lemma 8.5, there is a G–invariant tubular neighbourhood r W U ! yF .N � I/ of
yF .N � I/ in M � I . Let f W M � I ! Œ0; 1� be a smooth G–invariant map such

that f j yF .N � I/D 1 and supp.f /� U . Let h ; i be a complete smooth G –invariant
Riemannian metric on M such that F has bounded velocity with respect to h ; i. Let
h ; i0 be a complete smooth G –invariant Riemannian metric on M�I . Denote the differ-
ential of r at p 2 U by drp . Then the restriction drpjW dr�1

p .0/?! Tr.p/
yF .N � I/

is an isomorphism, where dr�1
p .0/? denotes the orthogonal complement of dr�1

p .0/

in TpU and 0 is the origin in Tr.p/
yF .N � I/. Notice that @F

@t
.x; t/ lies in TF.x; t/M ,

for every .x; t/ 2 N � I , and that .@F
@t
.x; t/; 1/ lies in T.F.x;t/; t/ yF .N � I/. Thus

.Xr.p/; 1/ 2 Tr.p/
yF .N � I/. Let prW TU ! TM be the projection. We obtain a

smooth invariant vector field

zX W U ! TM; p 7! pr.dr�1
p .Xr.p/; 1/; 0/:

Since zX is invariant and the restriction zX j yF .N � I/ has bounded velocity, also zX
has bounded velocity when U is sufficiently small. Define

yX W M � I ! TM; .y; t/ 7!

�
f .y; t/ zX .y; t/; if .y; t/ 2 U

0; otherwise:

Then yX is a time-dependent invariant vector field extending X . Since zX has bounded
velocity, it follows that also yX has bounded velocity. The G–equivariant diffeotopy
generated by yX (Theorem 8.1) is the required diffeotopy.

Theorem 8.6 implies the following result, which is an equivariant version of Theorem
8.1.5 in [3]:

Theorem 8.7 Let G be a Lie group and let N and M be proper smooth G –manifolds.
Let P be a closed smooth G –invariant submanifold of N such that P=G is compact
and @P D∅. Let f0; f1W P !M n @M be smooth G –equivariant embeddings which
are G–equivariantly isotopic in M n @M . If f0 extends to a smooth G–equivariant
embedding N !M , then so does f1 .

Proof Let F W P � I !M n @M be a G –equivariant isotopy such that F0 D f0 and
F1D f1 . Let id be the identity map of I . Then F ı.f �1

0
� id/W f0.P /�I!M n@M

is a G –equivariant isotopy from the inclusion i W f0.P /!M n @M to f1 ı f
�1

0
. Let

h ; i be a complete smooth G –invariant Riemannian metric on M . Since f0.P /=G is
compact, it follows that the isotopy F ı.f �1

0
�id/ has bounded velocity. It now follows

from Theorem 8.6, that F ı .f �1
0
� id/ extends to a G–equivariant diffeotopy H of

M . Thus H1W M !M is a smooth G–equivariant diffeomorphism such that the
restriction H1jf0.P /Df1ıf

�1
0

. Therefore, if hW N !M is a smooth G –equivariant
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embedding extending f0 , then H1ıh is a smooth G –equivariant embedding extending
f1 .

9 A G –equivariant smoothing theorem

Let G be a Lie group and let M be a proper smooth G –manifold with boundary @M .
Let fi W @M � Œ0;1/! Ui �M , i D 0; 1, be G –equivariant collars of @M .

Definition 9.1 The collars f0 and f1 are said to have G –equivariantly isotopic @M –
germs, if there exist an open G –invariant neighbourhood V of @M in U0\U1 and a
G –equivariant isotopy F W V � I !M such that

� Ft .x/D x , for every x 2 @M ,

� F0 equals the inclusion i W V !M ,

� F1 D f1 ıf
�1

0
jV ,

� yF .V � I/ is open in M � I .

Theorem 9.2 Let G be a Lie group and let M be a proper smooth G–manifold
with boundary @M . Then any two G–equivariant collars of @M in M have G–
equivariantly isotopic @M –germs.

Proof Let fi W @M � Œ0;1/! Ui �M , i D 1; 2, be G–equivariant collars of M .
It follows easily, by applying Theorem 4.6, that there exists a G –equivariant rel @M
isotopy F W @M � Œ0;1/�I !M satisfying the conditions of Definition 4.5 for these
collars. Let V DU0\U1 . Then F ı.f �1

0
jV �idI /W V �I!M is a G –equivariant rel

@M isotopy satisfying the first two conditions and the last condition of Definition 9.1. It
is left for the reader to find a G –equivariant map H W @M�Œ0;1/�I!@M�Œ0;1/�I

such that F ıH ı .f �1
0
jV � idI / satisfies all the conditions of Definition 9.1.

Theorem 9.3 Let G be a Lie group and let M be a proper smooth G –manifold with
boundary @M . Let U be an open G–invariant neighbourhood of @M in M . Let
F be a G–equivariant isotopy of @M –germs of two G–equivariant collars of @M .
Then there exists a G –equivariant diffeotopy zF of M having support in U and such
that zF j.V � I/D F j.V � I/, for some G –invariant neighbourhood V of @M in M .
Moreover, zF0 equals the identity map of M .

Proof Let h ; iW TM ˚ TM ! R be a complete smooth G–invariant Riemannian
metric of M . The G –equivariant isotopy F is defined on U0 � I , where U0 is some
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G–invariant neighbourhood of @M in M . We may assume that F.U0 � I/� U .
The isotopy F keeps @M pointwise fixed. Consequently, F has bounded velocity
in some G–invariant neighbourhood V0 of @M . By Theorem 8.3, there exists a
G–diffeotopy zF of M , which agrees with F on V � I , where V � V0 is some
G –invariant neighbourhood of @M , whose support is in F.V0� I/�U and such that
zF0 D idM .

Let G be a Lie group and let M and N be proper smooth G–manifolds. Let A0

and A1 be G–invariant subsets of M and let M DA0[A1 . Assume fi W Ai!N ,
i D 0; 1, are G–equivariant maps such that f0.x/D f1.x/, for every x 2 A0 \A1 .
We then define the G–equivariant map f0 [ f1W M !N by .f0 [ f1/.x/D f0.x/

when x 2A0 and .f0[f1/.x/D f1.x/ when x 2A1 .

The following result is an equivariant version of Theorem 8.1.9 in [3]:

Theorem 9.4 Let G be a Lie group. For i D 0; 1, let Wi be a proper smooth G–
manifold with dimension n and without boundary. Assume that each Wi is the union
of two closed n–dimensional G –invariant submanifolds Mi and Ni such that

Mi \Ni D @Mi D @Ni D Vi :

Let hW W0 ! W1 be a G–equivariant homeomorphism which maps M0 and N0

diffeomorphically onto M1 and N1 , respectively. Then there exists a G–equivariant
diffeomorphism f W W0 ! W1 such that we have f .M0/ DM1 , f .N0/ D N1 and
f jV0 D hjV0 . Moreover, f can be chosen to coincide with h outside a given G–
invariant neighbourhood Q of V0 .

Proof By Theorem 4.4, there exist G –invariant tubular neighbourhoods �i of Vi in
Wi , i D 0; 1. Then �0 defines a G –equivariant collar f0W V0� Œ0;1/!M0 , denoted
by �0jM0 . Similarly, we denote the G–equivariant collar f1W V1 � Œ0;1/!M1 by
�1jM1 . This collar then induces another G –equivariant collar for V0 in M0 ,

h�1
ıf1 ı .h� id/W V0 � Œ0;1/!M0;

which we denote by h�1.�1jM1/.

By Theorem 9.2, the collars �0jM0 and h�1.�1jM1/ have G–equivariantly isotopic
@M –germs, ie there exists a G–equivariant isotopy H W U0 � I ! M0 such that
Ht .x/ D x , for every x 2 V0 , H0 equals the inclusion i W U0 ! M0 , H1 is the
composition h�1 ıf1 ı .h� id/ ıf �1

0
jU0 and yH .U0 � I/ is open in M0 � I . Here,

U0 � f0.V0 � Œ0;1//\ h�1
ıf1 ı .h� id/.V0 � Œ0;1//
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is an open G–invariant neighbourhood of V0 in M0 . By Theorem 9.3, there exists
a G–equivariant diffeotopy zH of M0 having support in M0 \ Q and such that
zH j.V � I/ D H j.V � I/, for some G–invariant neighbourhood V of V0 in M0

and zH0 D idM0
. But then zF D h ı zH W M0 � I !M1 is a G–equivariant isotopy,

zF0 D hjM0 , zF1jV0 D hjV0 and zF1j.M0 nQ/D hj.M0 nQ/. Moreover, zF1.�0jM0/

and �1jM1 have the same V1 –germs, ie there exists a neighbourhood V 0 of V1 in
V1 � Œ0;1/ such that zF1 ıf0 ı .h

�1 � id/jV 0 D f1jV
0 . We denote zF1 by f 0 .

Similarly, we can isotop hjN0W N0!N1 equivariantly to a G –equivariant diffeomor-
phism f 00W N0 ! N1 such that f 00 equals h on V0 and on N0 nQ and the collar
f 00.�0jN0/ has the same V1 –germ as �1jN1 . The map f D f 0 [ f 00W W0!W1 is
the required G –equivariant diffeomorphism.

Remark 9.5 Using Corollary 6.3 and Proposition 4.3, it is possible to choose the
tubular neighbourhood �1 in such a way that the collars �1jM1 and h.�0jM0/ have
the same V1 –germs. Thus we can make f to equal h on M0 (or on N0 ).

10 Equivariant gluing

Let G be a Lie group and let M and N be proper smooth G –manifolds with boundary.
Assume f W @M ! @N is a G –equivariant diffeomorphism. Then the adjunction space
W DM [f N is a topological manifold on which G acts properly and continuously.

We identify M and N with their images in W . Let @M D @N DV . Using equivariant
collars of V in M and N , we obtain a G–equivariant homeomorphism of a G–
invariant neighbourhood U of V in W onto V �R which takes x 2 V to .x; 0/, and
which maps U \M and U \N diffeomorphically onto V � Œ0;1/ and V � .�1; 0�,
respectively. This homeomorphism induces a differential structure on U . Collation of
differential structures [3, p 13] of U , M and N gives a differential structure for W .
By Theorem 9.4, the G –diffeomorphism type of W obtained by equivariant gluing is
unique. Using Remark 9.5, we obtain the following result (an equivariant version of
Theorem 8.2.1 in [3]):

Theorem 10.1 Let G be a Lie group and let M and N be proper smooth G–
manifolds with boundary. Let f W @M ! @N be a G–equivariant diffeomorphism.
Let ˛ and ˇ be two differential structures on W DM [f N which both induce the
original structures on M and N . Then there is a G–equivariant diffeomorphism
hW W˛!Wˇ such that hjM D idM .

The following is an equivariant version of Theorem 8.2.2 in [3]:
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Theorem 10.2 Let G be a Lie group and let M0 , M1 and N be proper smooth
G–manifolds with boundary. Let fi W @Mi ! @N , i D 0; 1, be G–equivariant diffeo-
morphisms. Suppose that the G –equivariant diffeomorphism f �1

1
ıf0W @M0! @M1

extends to a G–equivariant diffeomorphism hW M0 ! M1 . Then M0 [f0
N �G

M1[f1
N .

Proof Define the map between adjuction spaces

 W M0[f0
N !M1[f1

N

by  jM0D h and  jN D idN . Then  is a G –equivariant homeomorphism mapping
M0 and N diffeomorphically onto M1 and N , respectively. The claim now follows
from Theorem 9.4.

The following result is an equivariant version of Theorem 8.2.3 in [3]:

Theorem 10.3 Let G be a Lie group and let M and N be proper smooth G–
manifolds with boundary. Let fi W @M ! @N , i D 0; 1, be G–equivariantly isotopic
G –equivariant diffeomorphisms. Then M [f0

N �G M [f1
N .

Proof Let F W @M �I! @N be a G –equivariant isotopy with F0D f0 and F1D f1 .
We may assume that F is a constant isotopy near 1. Then H D f �1

1
ıF W @M�I!@M

is a G–equivariant isotopy with H0 D f
�1

1
ıf0 and Ht D H1 D id@M , when t is

near 1. By the equivariant collaring theorem, we can identify @M � I with a G–
invariant neighbourhood O of @M in M . The map yH W @M � I ! @M � I defines a
G –equivariant diffeomorphism hW O! h.O/. Let id be the identity map of M nO .
Then h[idW M DO[.M nO/!h.O/[.M nO/ is a G –equivariant diffeomorphism
extending f �1

1
ıf0 . By Theorem 10.2, M [f0

N �G .h.O/[ .M nO//[f1
N . The

claim follows, since .h.O/[ .M nO//[f1
N �G M [f1

N .
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