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Intrinsic linking and knotting of graphs in arbitrary
3–manifolds
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We prove that a graph is intrinsically linked in an arbitrary 3–manifold M if and only
if it is intrinsically linked in S3 . Also, assuming the Poincaré Conjecture, we prove
that a graph is intrinsically knotted in M if and only if it is intrinsically knotted in
S3 .

05C10, 57M25

1 Introduction

The study of intrinsic linking and knotting began in 1983 when Conway and Gordon
[1] showed that every embedding of K6 (the complete graph on six vertices) in S3

contains a non-trivial link, and every embedding of K7 in S3 contains a non-trivial
knot. Since the existence of such a non-trivial link or knot depends only on the graph
and not on the particular embedding of the graph in S3 , we say that K6 is intrinsically
linked and K7 is intrinsically knotted.

At roughly the same time as Conway and Gordon’s result, Sachs [12; 11] independently
proved that K6 and K3;3;1 are intrinsically linked, and used these two results to prove
that any graph with a minor in the Petersen family (Figure 1) is intrinsically linked.
Conversely, Sachs conjectured that any graph which is intrinsically linked contains a
minor in the Petersen family. In 1995, Robertson, Seymour and Thomas [10] proved
Sachs’ conjecture, and thus completely classified intrinsically linked graphs.

Examples of intrinsically knotted graphs other than K7 are now known, see Foisy [2],
Kohara and Suzuki [3] and Shimabara [13]. Furthermore, a result of Robertson and
Seymour [9] implies that there are only finitely many intrinsically knotted graphs that
are minor-minimal with respect to intrinsic knottedness. However, as of yet, intrinsically
knotted graphs have not been classified.
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K6
K3;3;1

Figure 1: The Petersen family of graphs

In this paper we consider the properties of intrinsic linking and knotting in arbitrary
3–manifolds. We show that these properties are truly intrinsic to a graph in the sense
that they do not depend on either the ambient 3–manifold or the particular embedding
of the graph in the 3–manifold. Our proof in the case of intrinsic knotting assumes the
Poincaré Conjecture.

We will use the following terminology. By a graph we shall mean a finite graph,
possibly with loops and repeated edges. Manifolds may have boundary and do not
have to be compact. All spaces are piecewise linear; in particular, we assume that the
image of an embedding of a graph in a 3–manifold is a piecewise linear subset of the
3–manifold. An embedding of a graph G in a 3–manifold M is unknotted if every
circuit in G bounds a disk in M ; otherwise, the embedding is knotted. An embedding
of a graph G in a 3–manifold M is unlinked if it is unknotted and every pair of disjoint
circuits in G bounds disjoint disks in M ; otherwise, the embedding is linked. A graph
is intrinsically linked in M if every embedding of the graph in M is linked; and a
graph is intrinsically knotted in M if every embedding of the graph in M is knotted.
(So by definition an intrinsically knotted graph must be intrinsically linked, but not
vice-versa.)

The main results of this paper are that a graph is intrinsically linked in an arbitrary
3–manifold if and only if it is intrinsically linked in S3 (Theorem 1); and (assuming
the Poincaré Conjecture) that a graph is intrinsically knotted in an arbitrary 3–manifold
if and only if it is intrinsically knotted in S3 (Theorem 2). We use Robertson, Seymour,
and Thomas’ classification of intrinsically linked graphs in S3 for our proof of Theorem
1. However, because there is no analogous classification of intrinsically knotted graphs
in S3 , we need to take a different approach to prove Theorem 2. In particular, the
proof of Theorem 2 uses Proposition 2 (every compact subset of a simply connected 3–
manifold is homeomorphic to a subset of S3 ), whose proof in turn relies on the Poincaré
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Conjecture. Our assumption of the Poincaré Conjecture seems reasonable, because
Perelman [7; 8] has announced a proof of Thurston’s Geometrization Conjecture, which
implies the Poincaré Conjecture [4]. (See also Morgan and Tian [5].)

We would like to thank Waseda University, in Tokyo, for hosting the International
Workshop on Knots and Links in a Spatial Graph, at which this paper was conceived.
We also thank the Japan Society for the Promotion of Science for providing funding
for the third author with a Grant-in-Aid for Scientific Research.

2 Intrinsically linked graphs

In this section, we prove that intrinsic linking is independent of the 3–manifold in which
a graph is embedded. We begin by showing (Lemma 1) that any unlinked embedding
of a graph G in a 3–manifold lifts to an unlinked embedding of G in the universal
cover. In the universal cover, the linking number can be used to analyze intrinsic linking
(Lemma 2), as in the proofs of Conway and Gordon [1] and Sachs [12; 11]. After we’ve
shown that K6 and K3;3;1 are intrinsically linked in any 3–manifold (Proposition 1),
we use the classification of intrinsically linked graphs in S3 , Robertson, Seymour, and
Thomas [10], to conclude that any graph that is intrinsically linked in S3 is intrinsically
linked in every 3–manifold (Theorem 1).

We call a circuit of length 3 in a graph a triangle and a circuit of length 4 a square.

Lemma 1 Any unlinked embedding of a graph G in a 3–manifold M lifts to an
unlinked embedding of G in the universal cover �M .

Proof Let f W G!M be an unlinked embedding. �1.G/ is generated by the circuits
of G (attached to a basepoint). Since f .G/ is unknotted, every cycle in f .G/ bounds
a disk in M . So f�.�1.G// is trivial in �1.M /.

Thus, an unlinked embedding of G into M lifts to an embedding of G in the universal
cover �M . Since the embedding into M is unlinked, cycles of G bound disks in M

and pairs of disjoint cycles of G bound disjoint disks in M . All of these disks in M

lift to disks in �M , so the embedding of the graph in �M is also unlinked.

Recall that if M is a 3–manifold with H1.M / D 0, then disjoint oriented loops J

and K in M have a well-defined linking number lk.J;K/, which is the algebraic
intersection number of J with any oriented surface bounded by K . Also, the linking
number is symmetric: lk.J;K/D lk.K;J /.

Algebraic & Geometric Topology, Volume 6 (2006)



1028 Erica Flapan, Hugh Howards, Don Lawrence and Blake Mellor

It will be convenient to have a notation for the linking number modulo 2: Define
!.J;K/D lk.J;K/ mod 2. Notice that !.J;K/ is defined for a pair of unoriented
loops. Since linking number is symmetric, so is !.J;K/. If J1 , . . . , Jn are loops in
an embedded graph such that in the list J1; : : : ;Jn every edge appears an even number
of times, and if K is another loop, disjoint from the Ji , then

P
!.Ji ;K/D 0 mod 2.

If G is a graph embedded in a simply connected 3–manifold, let

!.G/D
X

!.J;K/ mod 2;

where the sum is taken over all unordered pairs .J;K/ of disjoint circuits in G . Notice
that if !.G/¤ 0, then the embedding is linked (but the converse is not true).

Lemma 2 Let �M be a simply connected 3–manifold, and let H be an embedding
of K6 or K3;3;1 in �M . Let e be an edge of H , and let e0 be an arc in �M with the
same endpoints as e , but otherwise disjoint from H . Let H 0 be the graph .H �e/[e0 .
Then !.H 0/D !.H /.

Proof Let D D e[ e0 .

First consider the case that H is an embedding of K6 . We will count how many terms
in the sum defining !.H / change when e is replaced by e0 . Let K1 , K2 , K3 and K4

be the four triangles in H disjoint from e (hence also disjoint from e0 in H 0 ), and for
each i let Ji be the triangle complementary to Ki . The Ji all contain e . For each i ,
let J 0i D .Ji � e/[ e0 , and notice that

(1) !.J 0i ;Ki/D !.Ji ;Ki/C!.D;Ki/ mod 2:

Because each edge appears twice in the list K1;K2;K3;K4 , we have !.K1;D/C

!.K2;D/C !.K3;D/C !.K4;D/ D 0 mod 2. Thus, !.Ki ;D/ is nonzero for an
even number of i . It follows from Equation (1) that there are an even number of i such
that !.J 0i ;Ki/¤ !.Ji ;Ki/. Thus,

P4
iD1 !.J

0
i ;Ki/D

P4
iD1 !.Ji ;Ki/ mod 2, and

!.H 0/D
X

J;K�H 0

3e0…J ;K

!.J;K/C

4X
iD1

!.J 0i ;Ki/ mod 2

D

X
J;K�H

3e…J ;K

!.J;K/C

4X
iD1

!.Ji ;Ki/ mod 2

D !.H /
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Next consider the case that H is an embedding of K3;3;1 . Let x be the vertex of
valence six in H (and in H 0 ).

Case 1 e contains x . Then e is not in any square in H that has a complementary
disjoint triangle. Let K1 , K2 and K3 be the three squares in H disjoint from e , and
let J1 , J2 and J3 be the corresponding complementary triangles, all of which contain
e . As in the K6 case, let J 0i D .Ji � e/[ e0 for each i ; again we have Equation (1).
Every edge in the list K1;K2;K3 appears exactly twice, so !.K1;D/C!.K2;D/C

!.K3;D/D 0 mod 2. Thus, !.Ki ;D/ is nonzero for an even number of i ; and for
an even number of i , !.J 0i ;Ki/¤ !.Ji ;Ki/. The other pairs of circuits contributing
to !.H / do not involve e . As in the K6 case, it follows that !.H 0/D !.H /.

Case 2 e doesn’t contain x . Let J0 be the triangle containing e , and let K0 be the
complementary square. Let J1 through J4 be the four squares that contain e , but
not x (so that they have complementary triangles); and let K1 through K4 be the
complementary triangles. With J 0i defined as in the other cases, we again have Equation
(1). Every edge appears an even number of times in the list K0;K1;K2;K3;K4 , soP4

iD0 !.Ki ;D/D 0 mod 2, and !.Ki ;D/¤ 0 for an even number of i . As in the
other cases, it follows that for an even number of i , !.J 0i ;Ki/¤ !.Ji ;Ki/; and an
even number of the terms in the sum defining !.H / change when e is replaced by e0 ;
and !.H 0/D !.H /.

Proposition 1 K6 and K3;3;1 are intrinsically linked in any 3–manifold M .

Proof Let G be either K6 or K3;3;1 , and let f W G!M be an embedding. Suppose
for the sake of contradiction that f .G/ is unlinked. Let �M be the universal cover of
M . By Lemma 1, f lifts to an unlinked embedding zf W G! �M .

Let zG D zf .G/� �M , and let zH be a copy of G embedded in a ball in �M . Isotope zG
so that zH and zG have the same vertices, but do not otherwise intersect. Then zG can
be transformed into zH by changing one edge at a time – replace an edge of zG by the
corresponding edge of zH , once for every edge. By repeated applications of Lemma 2,
!. zG/D !. zH /. Since zH is inside a ball in �M , Conway and Gordon’s proof [1], and
Sachs’ proof [12; 11], that K6 and K3;3;1 are intrinsically linked in S3 , show that
!. zH /D 1.

Thus, !. zG/D 1, and there must be disjoint circuits J and K in zG that do not bound
disjoint disks in �M , contradicting that zf is an unlinked embedding. Thus, f .G/ is
linked in M .

Let G be a graph which contains a triangle �. Remove the three edges of � from
G . Add three new edges, connecting the three vertices of � to a new vertex. The
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resulting graph, G0 , is said to have been obtained from G by a “��Y move” (Figure
2). The seven graphs that can be obtained from K6 and K3;3;1 by ��Y moves are
the Petersen family of graphs (Figure 1).

If a graph G0 can be obtained from a graph G by repeatedly deleting edges and isolated
vertices of G , and/or contracting edges of G , then G0 is a minor of G .

a

b c

a

b c

v

Figure 2: A ��Y Move

The following facts were first proved, in the S3 case, by Motwani, Raghunathan and
Saran [6]. Here we generalize the proofs to any 3–manifold M .

Fact 1 If a graph G is intrinsically linked in M , and G0 is obtained from G by a
��Y move, then G0 is intrinsically linked in M .

Proof Suppose to the contrary that G0 has an unlinked embedding f W G0!M . Let
a, b , c and v be the embedded vertices of the Y illustrated in Figure 2. Let B denote
a regular neighborhood of the embedded Y such that a, b and c are on the boundary
of B , v is in the interior of B , and B is otherwise disjoint from f .G0/. Now add
edges ab , bc and ac in the boundary of B so that the resulting embedding of the K4

with vertices a, b , c , and v is panelled in B (ie, every cycle bounds a disk in the
complement of the graph). We now remove vertex v (and its incident edges) to get
an embedding h of G such that if e is any edge of G \G0 then h.e/D f .e/ and the
triangle abc is in @B .

Observe that if K is any circuit in h.G/ other than the triangle abc , then K is isotopic
to a circuit in G0 . The triangle abc bounds a disk in B , and since f .G0/ is unknotted,
every circuit in f .G0/ bounds a disk in M . Thus h.G/ is unknotted. Also if J and
K are disjoint circuits in h.G/ neither of which is abc , then J [K is isotopic to a
pair of disjoint circuits J 0[K0 in f .G0/. Since f .G0/ is unlinked, J 0 and K0 bound
disjoint disks in M . Hence J and K also bound disjoint disks in M . Finally if K

is a circuit in h.G/ which is disjoint from abc , then K is contained in f .G0/. Since
f .G0/ is unknotted, K bounds a disk D in M . Furthermore, since B is a ball, we
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can isotope D to a disk which is disjoint from B . Now abc and K bound disjoint
disks in M . So h.G/ is unlinked, contradicting the hypothesis that G is intrinsically
linked in M . We conclude that G0 is also intrinsically linked in M .

Fact 2 If a graph G has an unlinked embedding in M , then so does every minor of
G .

Proof The proof is identical to the proof for S3 .

Theorem 1 Let G be a graph, and let M be a 3–manifold. The following are
equivalent:

(1) G is intrinsically linked in M ,

(2) G is intrinsically linked in S3 ,

(3) G has a minor in the Petersen family of graphs.

Proof Robertson, Seymour and Thomas [10] proved that (2) and (3) are equivalent.
We see as follows that (1) implies (2): Suppose there is an unlinked embedding of G

in S3 . Then the embedded graph and its system of disks in S3 are contained in a ball,
which embeds in M .

We will complete the proof by checking that (3) implies (1). K6 and K3;3;1 are
intrinsically linked in M by Proposition 1. Thus, by Fact 1, all the graphs in the
Petersen family are intrinsically linked in M . Therefore, if G has a minor in the
Petersen family, then it is intrinsically linked in M , by Fact 2.

3 Compact subsets of a simply connected space

In this section, we assume the Poincaré Conjecture, and present some known results
about 3–manifolds, which will be used in Section 4 to prove that intrinsic knotting is
independent of the 3–manifold (Theorem 2).

Fact 3 Assume that the Poincaré Conjecture is true. Let �M be a simply connected
3–manifold, and suppose that B � �M is a compact 3–manifold whose boundary is a
disjoint union of spheres. Then B is a ball with holes (possibly zero holes).

Proof By the Seifert–Van Kampen theorem, B itself is simply connected. Cap off
each boundary component of B with a ball, and the result is a closed simply connected
3–manifold. By the Poincaré Conjecture, this must be the 3–sphere.
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Fact 4 Let �M be a simply connected 3–manifold, and suppose that N � �M is a
compact 3–manifold whose boundary is nonempty and not a union of spheres. Then
there is a compression disk D in �M for a component of @N such that D\ @N D @D .

Proof Since @N is nonempty, and not a union of spheres, there is a boundary compo-
nent F with positive genus. Because �M is simply connected, F is not incompressible
in �M . Thus, F has a compression disk.

Among all compression disks for boundary components of N (intersecting @N trans-
versely), let D be one such that D\ @N consists of the fewest circles. Suppose, for
the sake of contradiction, that there is a circle of intersection in the interior of D . Let
c be a circle of intersection which is innermost in D , bounding a disk D0 in D . Either
c is nontrivial in �1.@N /, in which case D0 is itself a compression disk; or c is trivial,
bounding a disk on @N , which can be used to remove the circle c of intersection
from D \ @N . In either case, there is a compression disk for @N which has fewer
intersections with @N than D has, contradicting minimality. Thus, D\ @N D @D .

We are now ready to prove the main result of this section. Because its proof uses Fact
3, it relies on the Poincaré Conjecture.

Proposition 2 Assume that the Poincaré Conjecture is true. Then every compact
subset K of a simply connected 3–manifold �M is homeomorphic to a subset of S3 .

Proof We may assume without loss of generality that K is connected. Let N � �M be
a closed regular neighborhood of K in �M . Then N is a compact connected 3–manifold
with boundary. It suffices to show that N embeds in S3 .

Let g.S/ denote the genus of a connected closed orientable surface S . Define the
complexity c.S/ of a closed orientable surface S to be the sum of the squares of the
genera of the components Si of S , so c.S/D

P
Si

g.Si/
2 . Our proof will proceed

by induction on c.@N /. We make two observations about the complexity function.

(1) c.S/D 0 if and only if S is a union of spheres.

(2) If S 0 is obtained from S by surgery along a non-trivial simple closed curve 
 ,
then c.S 0/ < c.S/.

We prove Observation (2) as follows. It is enough to consider the component S0

of S containing 
 . If 
 separates S0 , then S0 D S1#S2 , where S1 and S2 are
not spheres, and S 0 is the result of replacing S0 by S1 [ S2 in S . In this case,
c.S0/Dg.S0/

2D .g.S1/Cg.S2//
2D c.S1/Cc.S2/C2g.S1/g.S2/> c.S1/Cc.S2/,

Algebraic & Geometric Topology, Volume 6 (2006)



Intrinsic linking and knotting of graphs in arbitrary 3–manifolds 1033

since g.S1/ and g.S2/ are nonzero. On the other hand, if 
 does not separate S0 ,
then surgery along 
 reduces the genus of the surface. Then the square of the genus is
also smaller, and hence again c.S 0/ < c.S/.

If c.@N /D 0, then by Fact 3 N is a ball with holes, and so embeds in S3 , establishing
our base case. If c.@N / > 0, then by Fact 4 there is a compression disk D for @N
such that D\ @N D @D . There are three cases to consider.

Case 1 D \N D @D . Let N 0 D N [ nbd.D/. Since @N 0 is the result of surgery
on @N along a non-trivial simple closed curve, c.@N 0/ < c.@N /, so by induction N 0

embeds in S3 . Hence N embeds in S3 .

Case 2 D \N D D , and D separates N . Then cutting N along D (ie removing
D � .�1; 1/) yields two connected manifolds N1 and N2 , with c.@N1/ < c.@N / and
c.@N2/ < c.@N /. So N1 and N2 each embed in S3 . Consider two copies of S3 , one
containing N1 and the other containing N2 .

Let C1 be the component of S3�N1 whose boundary contains D � f1g, and C2 be
the component of S3�N2 whose boundary contains D � f�1g. Remove small balls
B1 and B2 from C1 and C2 , respectively. Then glue together the balls cl.S3�B1/

and cl.S3�B2/ along their boundaries. The result is a 3–sphere containing both N1

and N2 , in which D � f1g and D � f�1g lie in the boundary of the same component
of S3� .N1[N2/. So we can embed the arc f0g � .�1; 1/ (the core of D � .�1; 1/)
in S3 � .N1 [N2/, which means we can extend the embedding of N1 [N2 to an
embedding of N .

Case 3 D\N DD , but D does not separate N . Then cutting N along D yields a
new connected manifold N 0 with c.@N 0/ < c.@N /, so N 0 embeds in S3 . As in the
last case, we also need to embed the core 
 of D . Suppose for the sake of contradiction
that 
 has endpoints on two different boundary components F1 and F2 of N 0 . Let ˇ
be a properly embedded arc in N 0 connecting F1 and F2 . Then 
 [ˇ is a loop in �M
that intersects the closed surface F1 in exactly one point. But because H1. �M /D 0,
the algebraic intersection number of 
 [ˇ with F1 is zero. This is impossible since

 [ˇ meets F1 in a single point. Thus, both endpoints of 
 lie on the same boundary
component of N 0 , and so 
 can be embedded in S3�N 0 . So the embedding of N 0

can be extended to an embedding of N in S3 .

4 Intrinsically knotted graphs

In this section, we use Proposition 2 to prove that the property of a graph being
intrinsically knotted is independent of the 3–manifold it is embedded in. Notice that
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since Proposition 2 relies on the Poincaré Conjecture, so does the intrinsic knotting
result.

Theorem 2 Assume that the Poincaré Conjecture is true. Let M be a 3–manifold. A
graph is intrinsically knotted in M if and only if it is intrinsically knotted in S3 .

Proof Suppose that a graph G is not intrinsically knotted in S3 . Then it embeds in
S3 in such a way that every circuit bounds a disk embedded in S3 . The union of the
embedding of G with these disks is compact, hence is contained in a ball B in S3 .
Any embedding of B in M yields an unknotted embedding of G in M .

Conversely, suppose there is an unknotted embedding f W G !M . Let �M be the
universal cover of M . By using the same argument as in the proof of Lemma 1, we
can lift f to an unknotted embedding zf WG! �M . Let K be the union of zf .G/ with
the disks bounded by its circuits. Then K is compact, so by Proposition 2, there is an
embedding g WK! S3 . Now g ı zf .G/ is an embedding of G in S3 , in which every
circuit bounds a disk. Hence g ı zf .G/ is an unknotted embedding of G in S3 .

Remark The proof of Theorem 2 can also be used, almost verbatim, to show that
intrinsic linking is independent of the 3–manifold. Of course, this argument relies on
the Poincaré Conjecture; so the proof given in Section 2 is more elementary.
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