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A FORMULA FOR THE HURWITZ ZETA FUNCTION,
RIEMANN’S FUNCTIONAL EQUATION AND
CERTAIN INTEGRAL REPRESENTATIONS

By

Yasuyuki Kacni and Pavlos TZERMIAS

Abstract. There is a well-known formula for the Hurwitz zeta
function which implies the functional equation for the Riemann zeta
function. We give a new proof of that formula and recover certain
integral representations for the Hurwitz and Riemann zeta functions.

1. Introduction

The Riemann zeta function {(s) is the unique meromorphic function on C,
which, for Re(s) > 1, coincides with the infinite series

o0

e
n:ln

It is well-known ([7], [9], [14], [34], [36]) that {(s) is analytic on C\{l}, has
a simple pole at s =1 with residue 1 and is given by the formula ([7], Theorem
2.4)

78/2 1 1 (* $/2— (54
) = (g 5, oS 1) ),

2

where 9(x) is the Jacobi theta function given by the formula
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Riemann ([28]) proved that ((s) satisfies the following functional equation:

¢(s) = 2I°(1 — s) sin @) 2n)* (1 —s). (1)

One of the purposes of this paper is to give a new proof of the above functional
equation. It is known ([14], [22], [27], [37]) that Euler ([16]) had discovered a
version of Formula (1) for integer values of s, based on Abel summation for
divergent series and certain reflection formulas that he had discovered for the zeta
function, the gamma function and the Dirichlet beta function. Riemann gave two
complete proofs of the functional equation in [28]: one based on contour integrals
and one using the 3-function and its Mellin transform. Another proof is based on
the Riemann-Siegel formula ([14]). There are seven classical proofs of Formula
(1) in [36]. A particularly noteworthy proof along with important generalizations
was given in Tate’s thesis ([35]) on Fourier Analysis in number fields. Several
other proofs and generalizations obtained by various techniques exist in the
literature: making no claim whatsoever of providing a complete list of suitable
references, we confine ourselves to mentioning [23] for a proof using Lipschitz
summation, [29] for another proof using Mellin transforms, [2], [39] for a gener-
alization to Lerch zeta functions, [6] for a generalization to Dirichlet L-functions
and [8], [18] for a generalization to automorphic L-functions and multi-variable
settings.

We also recall that the Hurwitz zeta function {(s;x) is the unique meromor-
phic function of s which, for x > 0 and for Re(s) > 1 coincides with the infinite
series

n=0

It is well-known ([9], [14], [19], [34], [36]) that, for each fixed x > 0, the function
{(s;x) is analytic with respect to s on C\{1} and has a simple pole at s = 1 with
residue 1. Note that {(s;1) = {(s).

Moreover,

2k7rx +3 )

, p
2k7zlx @)

o
{(s;x) =2I(1 —s) Zsm
k=1

for 0 < x < 1 and Re(s) < 0. Note that, for x =1, Formula (2) becomes Formula

(1).
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In this paper we give a new proof of Formula (2) and thereby also a new
proof of Formula (1). In the process, we deduce certain integral representations
for the Hurwitz and Riemann zeta functions. The approach is based on calcula-
tions involving the Laplace-Mellin transforms of certain functions together with
an inductive argument involving the range of the variable x in Formula 2. An
effort has been made to keep the arguments as elementary and self-contained as
possible.
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2. Auxiliary results

In this section, we recall some results about improper Riemann integrals that
will be needed in the sequel. Since improper Riemann integrable functions are not
always Lebesgue integrable (e.g. Example 2, page 275 in [1]), we have chosen to
avoid the use of standard results of Lebesgue integration, like the Tonelli-Hobson
theorem (Theorem 15.8 in [1]), in justifying certain steps in our proofs. We have
opted instead to collect certain facts about improper Riemann integrals here,
giving appropriate references where needed.

The first fact that will be needed is a Fubini-type statement for improper
Riemann integrals which is a consequence of uniform convergence and seems to
be particularly useful in cases of absence of absolute integrability. It is a slight
restatement of a theorem given by Loya in [26]. We include it here for the sake
of completeness:

THEOREM 2.1. Let a,b e R and f(x,y) a continuous complex-valued function
on (a,0) x (b,o0) which satisfies the following three conditions:
(1) The improper Riemann integral

r S (x,p) dy

b
exists and converges uniformly for x in compact subintervals [c,d] of
(a7 OO):
(2) the improper Riemann integral

| 7w ax

a
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exists and converges uniformly for y in compact subintervals [c,d]| of
(b, ),

(3) there exists a real-valued function g(x) on (a, o) such that, for all compact
subintervals [c,d] of (b, ), we have

o0

Jd f(x,») dy‘ <g(x) and J g(x) dx exists.

c a

Then the improper iterated Riemann integrals

Jj J: f(x,y) dydx and J: J:C f(x,y) dxdy

exist and are equal.

REMARK 2.2. The above integrals may be improper of mixed type, i.e. they
may also be improper at a or at b.

The following consequence of Theorem 2.1 will be important:

CoROLLARY 2.3. Let a>0, A>0 and 0 < Re(s) < 1. Then

Jm M du=7"""T(1 = s) cos (a)» + gs>

0 u
ProOOF.
J sin(i(u—a)) ,, _ cos(a/l)J sin() g, — sin(a/l)J cos(tu)
0 us o u o u’
= " cos(al) J MY dx — 25V sin(ad) J [k
o X' o X

The last two integrals appearing above are Mellin transforms (for the parameter
t =1—25) of the functions sin x and cos x and are known as generalized Fresnel
integrals. Their evaluations are well-known: they are listed in [5], pages 68 and 10,
proven in [9], page 92, using contour integration, and also proven (for real values
of s) in [26]. Taking also into account the reflection formula for the Gamma
function ([9], page 90), we get that, for 0 < Re(s) < 1, the above combination of
generalized Fresnel integrals equals
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257V cos(al)T(1 — 5) cos (gs) — 2*"Vsin(aA)T(1 = s) sin (gs>
15—1 T
=A"T( —s)cos a)erzs . O

The second fact that will be needed is a Dominated Convergence Theorem for
improper Riemann integrals (following from Theorem 25.21, page 359 in [4]).
Note that, in the presence of interesting counterexamples ([4], Exercises 25.U
and 25.T), special care is needed to ensure that the limit function is improper
Riemann integrable:

THEOREM 2.4. Let f,(x) be a sequence of complex-valued functions which
converges pointwise to a function f(x) on (a, ). Assume that the functions f,
and f are Riemann integrable over [c,d], for all compact subintervals [c,d] of
(a, ). Suppose also that there exists a real-valued function g(x) on (a, ) such
that

J g(x) dx exists and |f,(x)| < g(x), for all x > a and for all neN.

a

Then the functions f, and f are improper Riemann integrable on (a,o0)
and

lim JOC Ju(x) dx = Jw f(x) dx.

N
n—oo a a

ReEmARK 2.5. The above integrals may be improper of mixed type, i.e. they
may also be improper at the point a.

The third fact that will be needed is a Beppo Levi theorem for improper Riemann
integrals (following from Theorem 2.3.7 in [30], page 126; see also [1], Theorems
10.25 and 10.33):

THEOREM 2.6. Let f,(x) be a sequence of complex-valued functions such that
the series

> )
n=0
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converges pointwise to a function f(x) on (0,00). Assume that the functions f,
and f are improper Riemann integrable on (0,c00) and that the series

S [ ol

n=0 0
converges. Then

0

Jm F(x) dx = 2] Jalx) d.

0 0

3. Laplace-Mellin transforms and integral formulas

If p(x) is a piecewise continuous real-valued function on (0, o), its Laplace-
Mellin transform ¢,(s) is a mixture of its Mellin transform and its Laplace
transform. Specifically, for a > 0, define

0
) = | e ot dv
0
The region of convergence of ¢,(s) depends on the asymptotic behaviour of ¢(x)
near 0 and near oo. The general theory of the analytic properties of this trans-
form is fully presented in [21].
The remainder of this section is devoted to calculations involving the Laplace-
Mellin transform of the function ¢ : (0, 0) — R given by the formula

1

b
X2+ 22

p(x) =
where /e (0,00). We start with an easy lemma:
Lemma 3.1. Let b >0, reN and Re(s) < 1. Then

v s G s powy vy g

Jb (b - u)r r!bl"‘rl*.&‘

Proor. The claim is clearly true for »r =0. Assume that it is true for r.
Using integration by parts,

Jb (b _ u)r+1 e (b _ u)l‘+1ul—s

b b r
1 _
0 1 s + rt J (b u) di/b
0 ' -

0 us—l

u=0 1—s

and the claim follows by induction. O
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ProposiTION 3.2. Let a >0, 2> 0 and Re(s) > 0. Then

. Jw e X J _I'(s) JOO sin(Au) "

s)=1 e x = .
Pals) 0 x2+ 22 A Jo (a+u)

Proor. First note that, since ¢(x) is bounded near co and analytic near 0,
Lemma 1.3 in [21] implies that the Laplace-Mellin transform ¢,(s) converges for
Re(s) > 0. Now it is trivial to show that

o0
. A
J e ™ sin(iu) du = ———, for x> 0.
0 x2+ 2

Therefore,

0 xxfl 0 0

JVJ e ———dx= J eyl J e~ sin(Au) dudx.

0 x2+ 2 0 0
Consider the complex-valued function

f(x,u) = e “x*le ™ sin(Au) on (0,00) x (0, 0).
We will check that it satisfies the hypotheses of Theorem 2.1. We have

” _ axgs1_ A OC _ T'(s) sin(/u)
Jo f(x,u) du=e“x FEaEE Jo f(x,u) dx_i(ajLu)“‘ )

Also, let I = [c,d] be a compact subinterval of (0, 00). Let o = Re(s). Choose a
positive integer n such that n > o+ 1. If y >z > 0, then
roplxo!

y
< J ef(aJru)xxafl dx < J B dx
: - ((@+u)x)

Jf f(x,u) dx

n!
(a+c)'(n—a)zm’

IA

Therefore, given & > 0, we can always find #(¢) large enough so that for all u e/
and for any y >z > #(¢) the inequality

<eé

Jy f(x,u) dx

holds. In other words, Cauchy’s criterion for uniform convergence ([4], page 352)
of the improper Riemann integral

JOC f(x,u) dx

0

on the interval [ is satisfied.
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Similarly, for y >z >0, we have

¥ v
v “x o n!

<e x| e du < e x| — du
Z . )

Jy S (x,u) du

z

n!
- (I’l _ 1)cn—a+lzn—l .

Therefore, given ¢ > 0, we can always find #(¢) large enough so that for all x e/
and for any y >z > #(¢) the inequality

<eé

Jyf(x7 u) du

z

holds. Again by Cauchy’s criterion for uniform convergence, it follows that the
improper Riemann integral

Jw f(x,u) du

0

converges uniformly on the interval .
Finally, if y >z >0, then

r f(x,u) du

z

_ efaxxafl

¥
J e sin(Au) du

z

—e(x sin(4y) + 4 cos(1y)) + e ¥ (x sin(4z) + A cos(Az))
x2 4+ A2

_ efuxxafl

e o] XFA e o1 X+ A
ax,.o 1 < 2e ax,.o 1

< 2e —_—
X2+ 42 yR

If g(x) =2 *x7! ‘A—t’l, then

Joo 2 (r(a+ ) +/1F(0)>.

0 L](X) dx = ? a°t! ac

Therefore, an application of Theorem 2.1 gives

0 xsfl 1 (% o
J o= ¥ - dx — ,J 9% s~ 1 J e~ sin(Au) dudx
0 x2 + A A 0 0

L(* . © _ [(s) [* sin(lu)
— - (a+u)x ,.s—1 _
/ljo sin(Au) Jo e x* dxdu - Jo atu) du. [
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PrROPOSITION 3.3. Let a>0, A >0 and 0 <Re(s) < 1. Then
0 1

oox5T
u(8) =1 e ——=dx
Pals) Jo X2+ 22

1" _
= M cos| al + Es
)\’273 2

S—l 0 (ai)mel
a1 Z $Y3—s)--2m—s)’

m=1

ProoOF. By Proposition 3.2, it suffices to prove that

I'(s) Jw sin(Au)

A Jo (a+u)
equals
T'(s)I'(1 - T T(s—1)& m y) 2m—1
(S))?(ﬂ‘ : C“(““ES) + c(zifu) (1) (2—s)(3(6i 5)“)-~-(2m—s)'

Let M be a positive real number. Since s is not an integer, repeated application
of integration by parts gives

M Sin(/lu) n—l ( l)mXZm—l
JO m (COS ;» Z S—l ) ..(S_zm)(a+u)32in>

m= 1

M

0

—_1)m 2m—2
sm lu ( ) 2 —2m+1
S —D(s=2)-(s=2m+ 1)(a+u)’™"

(—1)'1_1)»2”71 M cos(Ju)
(Sfl)(sf2)(S72n+l)J (a+u)s—2n+1 du.

M

M=

0

+

The limit of the integral on the left-hand side as M — oo exists. We may
therefore substitute M by M) = 2nk/A and then take the limit as kK — oco. Since
cos(AMy) =1 and sin(AM}) =0, we have

JMk sin(/u)
o (a+u)’

B (=1)" -ty M cos(Au)
_(S—l)(s—Z)(s—2n—|—l)J (a_|_u)s72n+l du

n—1 " )VZm 1 1 1
+ (_1) (S— 1)(s—2)(S—2m) <(a+Mk)32m_as—2m>' (3)
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Note that for 2n > o+ 1, we have

(=112t Mi cos(iu) J
(s—1>(s—2)--~(s—2n+1)J (a+u)2!

- M|2n—l
T s—=1D(s—=2)---(s—2n+

My n—o—1
a+u)" du
1)|Jo ( )

- M|2"71(a+Mk)2"7”
T s—=D(s=2)---(s=2n+ 1)’

Let

|}V|2n71(a + Mk)ana

S T Ty P o Py

Clearly,

Jim 9 0,

n—oo n

hence the sequence d, also converges to 0. Letting n — oo in Formula (3), we

JMA' sin(u) 2 (=) 1 1
0 (a+u)s _m:1 (s_l)...(s_zm) (a_’_Mk)szm a372m

(_1)14’!12)7171
(s—1)--(s—2m)(a+ M)

get

_M8

0 m 1 2m—1
3 (-D)"2A . @)

ot (s—1)-- (s —2m)as—2m

By Lemma 3.1 for r =2m —1 and b =a+ M, Formula (4) gives

JMA' sin(lu) & J“Mk (—1)"(Ma + My —u))>! "

o (a+u)’ 0 us(2m — 1)!

m=1

i ( l)m;Zm 1
(s—1)---(s=2m)as—2m"

m:l

By uniform convergence of the Maclaurin series for sin x on compact intervals,
we get
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JM" sin(Au) J“*Mk sin(A(u —a — My)) "
o (atu) ™ u’
0 (71)171/12”171

a Z(sf 1) (s —2m)as—2m"

Since AMj = 2nk, we get

JMk sin(u) J“Mk sin(Au—a) , i (1)t

0 (Cl+1/l)s o 0 us u m:1(5_1>...(5_2m)as—2m'

Letting k& — oo, we get

Jx sin(/lu) du — Jm w du i (—l)m/IZWFI
0

o (a+u)’ us (s = 1) (s = 2m)as=2m’

Multiplying both sides by I'(s)/Z and using Proposition 3.2 and Corollary 2.3
completes the proof. 0

Recall the definition of Lommel’s functions of two variables ([5], page 372):

2—s+2m
ST
Vi(w,z) —008(2 +2—+ >+Z < > Jrs12m(2),

m=0

where J,(z) denote the Bessel functions of the first kind ([5], page 370):
zoo: ( )v+2k
— k'F (v+k+1)

A straightforward calculation shows that Proposition 3.3 can be restated in terms
of specific values of V(w,z). In other words, we have a new and elementary
proof of the following classical Proposition (listed in [5], page 138, and proven
n [38], page 548, Formula (4), via contour integration):

ProposITION 3.4. Let a >0, A >0 and 0 < Re(s) < 1. Then
0 s—1

po(s) = | e dx =12 V,(2a4,0).
o) = | ey = T a0)

REMARK 3.5. Not surprisingly, for |al| < 1, the infinite sum appearing on
the right-hand side of the equality in Proposition 3.3 can also be expressed in
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terms of confluent hypergeometric series, namely it equals

1F1(1;2 = s;—ial) — 1 Fi(1;2 — s;ial)
2i

ReEMARK 3.6. For Re(s) < 1, the infinite sum appearing on the right-hand
side of the equality in Proposition 3.3 also equals

dx.

s—1 [“sin(al — x)
(ak) ‘-SJ

0 x*
This follows by combining the Maclaurin series of sin x with the formula in
Lemma 3.1.

4. The Hurwitz zeta function in terms of a Laplace-Mellin transform

We first discuss some well-known facts about the partial fraction decom-
positions of some trigonometric functions. Consider the function

X 2
C(x) = CSCh(E) Zm, for x # 0.

Using a real version of the Poisson summation formula as in [1], page 334,
one obtains a partial fraction decomposition for the hyperbolic cotangent
function:

8

2
+ —xz’ for x # 0.

1
coth(x) =— 5
YIS X (kn)

Although it is not necessary for our discussion, we mention that the well-known
formula, obtained by methods of contour integration, for the usual cotangent
function (see [17], page 188, or [31], page 391), combined with the equality
coth(z) =i cot(iz), gives a similar partial fraction decomposition for the hyper-
bolic cotangent function when x is complex.

Since for x e R\{0} we have

2 S v
csch(x) = coth <g> — coth(x) = <} + 4k;nﬁ(kﬂ)2> - <; +2 ;m)

1 X 1 e ok X
7;+2Z =—+2) (-1

X
S Y Y — -
k evenx2 + (kn)z k oddx2 + (kn)z X k=1 X2 + (kn)z
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it follows that

4x
:—+ —1)F , for x #0. 5
Z 2k7r) ®)

The following statement is well-known ([13], page 396). It has been generalized
for certain theta series in [21]. A similar generalization has been given by Coppo
and Candelpergher in [11]. We also refer the reader to the paper by Kolbig ([24])
for connections between the Hurwitz zeta function and Laplace-Mellin transforms
of logarithmic functions.

We give a proof of the statement below for the sake of completeness:

ProPOSITION 4.1.

Cu(s) = 21"(s)§<s;a +%), SJor Re(s) > 1 and a > 0.

Proor. Since C(x) ~ 2 as x — 0+, Lemma 1.3 of [21] implies that Ca(s)
converges for Re(s) > 1 and a > 0. Now, for x > 0, we have ¢ < 1, therefore

26’*/2 -

Z —(k+1/2)x

k=0

C(x) =

Hence,

Culs) = 2JOO ( ] xSIE(“”‘“/z)"') dx.
0 \k=0

Let ¢ = Re(s). For n >0, the functions
gn(x) — 2xsflef(a+n+1/2)x
are improper Riemann integrable on (0, c0) with
« 2T (s @ 2T (o
[ ac= 20 Mg wlar= 2D
0 (a+n+3) 0 (a+n+3)

and the series
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converges pointwise to the function x*~'e=**C(x) on (0, o0). Since
ZJ |gn(x)| dx = 2T (o )C(a;a+§> < o0,
n=0

the claim follows from Theorem 2.6.

REMARK 4.2. We also note that, by Formula (5),

Cyu(s :2J e X242 —XA dx.
) o( Z x2+ (2km)*

Now, for n > 1, the functions

e~ tl)(xS

1 2
=1 x? + (2km)

are Riemann integrable on every compact subinterval [c,d] of (0,00) and

the sequence f,(x) converges pointwise to the Riemann integrable function

e x"1C(x) on [c,d]. Also, for all x>0 and all n> 1, we have

1 y
‘fn(x)‘ Sefaxxaf2_~_2€7av 024]{2752 PR 2+E€7u.\xa.

Setting

we see that, since ¢ > 1 and a > 0, the improper Riemann integral j(;[ g(x

exists and equals

Fo—1) T(o+1)
a1 12q°+!

Therefore, by Theorem 2.4, we get

0

) dx
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Since T'(s) = (s— )I'(s — 1), it follows that
A 2I(s e

5. Proof of a special case of formula (2)

We first prove Formula (2) for < x <1 and —1 < Re(s) < 0. Setting x =
a+ (1/2), this is equivalent to showing that

1 - sin(2kna + % s
C(s,a+§>—2rl—s 1k2k—ls)
k:l m)

for 0 <a<1/2 and —1 < Re(s) < 0.
We will make use of the following well-known example in Fourier series
expansions ([1], page 337):

)

e 201 21+1 —
= kn u—1[ 1if T<H<T,l—1,2,

§;<_1>mwz{u ifo<u<! o

We know that for Re(s) >1 and a >0, Proposition 4.1 and Formula (6)
give

8

AT 1 _ 2 k[Tt
C(“V’“*z) G- Da 1 T2 ! i ®

At first glance, the left-hand side of Formula (8) is an analytic function on the
region given by Re(s) > 1, while the right-hand side is an analytic function on
the region given by Re(s) > —1. Given the fact that the Hurwitz zeta function
extends to a meromorphic function on C having a unique and simple pole at
s =1 with residue 1 and since

. 1 1
PB%(S —1 (s— l)as—'> = log(a),

it follows that Formula (8) is in fact an equality of analytic functions on the

region given by Re(s) > —1. Let us now also assume that Re(s) < 0. Then Prop-
osition 3.3 together with Remark 3.6 (with s replaced by s+ 1 and 1 replaced
by 2kn) imply that
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C(s;a—i—%)—mzi( 1)"% cos<2kna+2(s+l)>

-~ 2s (™ sin(2kna — x)
+3 (=1)F : J : dx
;( ) (an) 1—s x.erl

%  sin(2kna + % s)
(o3 (el

o0 272\ (27 sin(2k7r(a — —na))
+;s<;> Jo =1 knumz du. (9)

For k > 1, consider the function A on (0, 00) defined by

he(u) = { (—yk O ga) e <y < 0n
0 if u>2n

Also, for n > 1, let f, be the function on (0, c0) defined by

u) = ihk(u)
k=1

Since a < 1/2, we have 0<a— (ua)/(2n) < 1/2 for 0 < u < 2zn. Therefore,
by Formula (7), it follows that the sequence of functions (f,) converges to the
function f on (0,c0) given by

—atyea .
f(u) = lim f,(u) = { - if 0<u<2n
’“‘” 0 if u>2n

Clearly, the functions f, and f are integrable over all compact subintervals of
(0, 00). Also,

z”:( 1)* Sln<2kﬂ(a—%a))zkzn;sin<2kn(a—%a)+kn)

k=1
= Z sin(k(2na — ua + x)).
k=1

For 0 < u < 2z, we have 0 < 2na — ua + n < n, so, by a well-known summation
formula ([4], page 400), we have
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4 1
E “OY*sin( 2k _u - -
k:l( ) sm( ﬂ(a 2na)>’ = sin(na —4a+%)

1 1
~ cos(na —Ya) < cos(ra)

By Abel’s summation formula ([1], page 194), it follows that

1 1 z 1 1 1
= cos(ma) n+ 1 Zcos( )(%_k—kl)

1
cos(ra)’

" i sin(2kn(a — 4 a))

3oy il

k=1

Therefore, the inequality

1
7 cos(nma)ust!

[fn(u)] <

holds for all u € (0,2x). Obviously, it trivially holds for u > 2z also. Consider the
function given by

1 .
g(u):{mcow1 if 0<u<2n
0 if u>2n
Since 0 < Re(s+ 1) < 1, the integral
0
J g(u) du
0

exists. Therefore, by Theorem 2.4, Formula (9) gives

1 1
(s 3) - Gt

= (2kna +7% N
= 2009 (-0 O (V[ a

k=1 2 ﬂ)li‘v n—w a 0
* sin(2kma + % s) 2m\* [*

= 25T (— k—2+s<—>J f(u) du
k; 2kn)'™ a/ Jo )

_ (- i x sin(2kna 4_— Zs) ; (2_7z>3 S a ,
k=1 (2knm)! (27)s(1 —s)
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hence

1 * ) sin(2kma + Zs)
C(S;a+—) = —2s[(— A T3
2 Z k)

i sin(2kna + % s)

0
I'(l-y) —1 =,
k:l (2km)

for 0 <a<1/2 and —1 < Re(s) < 0.

6. Proof of the general case of formula (2)

The following duplication formula for the Hurwitz zeta function is well-
known ([9], page 77) and easy to prove:

C(s;x)—i—{(s;x—i—%) = 2°((s;2x), for x>0 and se C\{l1}. (10)

Also, the following formula is an easy consequence of absolute convergence:

i sin (2knx + %) N i sin(2kn(x +§) +3s)

k=1 (2k”)1ﬁ k=1 (2km)'
“_ sin(dkmx + %
:232w7 for x>0 and Re(s) < 0. (11)
k=1 (2km)

We now prove that, for a positive integer m, Formula (2) holds for 27" < x <
2= and for —1 < Re(s) < 0:

We use induction on m. For m =1, the claim has been proven in the
previous section. Assume that it holds for some m > 1. Let 2~ (") < x < 2-
and —1 < Re(s) < 0. Since 27 < 2x < 2=~ and 1/2 < x+ (1/2) < 1, the in-
duction hypothesis together with Formulas (10) and (11) show that Formula (2)
also holds for x.

Furthermore, by the Weierstrass M-test, both series of functions

Zsm(2k711jc) and Z“cos(Zkzx)
= (2km) = (2kn)

are uniformly convergent for Re(s) < 0, hence the series

% sin(2kmx + 2 =g o
Z sin( nx:— Zs) ~ cos (z s) Z s1n(2k7113c) + sin (z S) Z co (2knx)
= (2kn) 2 )= (km) 2 7 (2km)'
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is a continuous function of x. Also, the obvious relation

0l(s; x)
ox

= —s{(s+1;x), for Re(s) > 1

is valid on C\{1} by analytic continuation and shows in particular that {(s; x)
is a continuous function of x. Therefore, for a positive integer m, Formula (2)
also holds for x =21 and for —1 < Re(s) < 0. Therefore, Formula (2) has
been proven for 0 < x <1 and for —1 < Re(s) < 0. Finally, by analytic con-
tinuation once again, we see that Formula (2) remains valid for 0 < x < 1 and for
Re(s) < 0, and this completes the proof.

7. Integral representations

The literature on integral expressions involving the zeta function and related
functions is vast. We refer the reader to [3] for a wealth of such information.
In this section, we deduce some expressions of this type.

Since, for k > 1, we have

TN\ 2x
L sm<2>e e T

Formula (5) gives
0 o0
C(x) — 2 2 J (=1)*e~*m sin <x u) du.
k=170 2

The sequence of functions (f,) on (0,00) defined by

n — n
g _ k —knu _: X _ . X 1 - (—e nu)
Sn(u) —2;:1(—1) e sm(zu) =-2 Sln(Eu)W
converge to the function f given by

flu)=-2 sin<§u) ﬁ.

The functions /" and f, are Riemann integrable over all compact subintervals of
(0,0) and we also have |f,(u)| <4/(14+e™) on (0,00). Since

© 4
J o
0 1+€Tm

exists, Theorem 2.4 applies and gives the following integral expression for C(x):



328 Yasuyuki KacHi and Pavlos TZERMIAS

COROLLARY 7.1.

C(x) = % + Jo | sin (%) (—1 + tanh <%>> du, for x> 0.

Note that this corrects a misprint in [5] (page 88, Table 2.9 of Fourier sine
transforms, entry (4)).

Applying the Laplace-Mellin transform to both sides of the equality in
Corollary 7.1 and using Proposition 4.1 gives

1 a'=s
C<S’a+§>_s—l
—;Jx — “’IJOC sin x —1 -+ tanh Eu dud.
=0 ), e "x . 2“ 3 udx,

for Re(s) > 1 and for a > 0. (12)

The integrand in the latter double integral is the function

—ax \-5s—1 Qi (XU
—2¢7x*~! sin ()
1+ e™

fxyu) = on (0,00) x (0, 00),

where Re(s) > 1 and a > 0. We will check that it satisfies the hypotheses of
Theorem 2.1. By Corollary 7.1, we have

Jm £ ) du = e~y <C(x) _ %) .

0 X

By considering the Fourier sine transform of e*x*~! ([5], page 72, Formula (7)),

we get
—5/2
J"“‘ _2T () ( a2 +u72> / sin(s arctan (£))

Of(x7u)dx: 1+e7m

Let I = [¢,d] be a compact subinterval of (0,00). Let ¢ = Re(s). Choose a posi-
tive integer n such that n > o+ 1. If y >z >0, then

y Y plxo-l
v ol nlx
e x"ldx < — dx
: - (ax)

Jy f(x,u) dx

z

1+ em™

n!

(n—a)arzr—o"
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Therefore, given & > 0, we can find 7(¢) large enough so that for all u el and
for any y >z > t(e) the inequality

<é&

Jy f(x,u) dx

-~

holds, i.e. Cauchy’s criterion for uniform convergence of the improper Riemann
integral

JOC f(x,u) dx

0
on the interval [ is satisfied.
Similarly, for y >z >0, we have
y 2d0—1
du < 2x°7! J e ™du<

B} e

z

Jy f(x,u) du

z

< 2670)()(?071 Jy 1
B 1_|_e7zu

Therefore, given ¢ > 0, we can find 7(¢) large enough so that for all x € I and for
any y >z > t(e) the inequality

<é

Jy f(x,u) du

z

holds, i.e. Cauchy’s criterion for uniform convergence of the improper Riemann
integral

JOC f(x,u) du

0

on the interval 7 is satisfied.
Finally, if y >z >0, then

Jy f(x,u) du

y
< 2e—axxo'—1 J

y
T3 o du < 2e @ xo! J e ™ du
z e z
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Therefore, Theorem 2.1 applies and Formula (12) becomes
1 alfs
C(“‘*z) -
_ ] Jm —1+ tanh( 2y Jx ey sin(Zu ) dvdu
- 2I0(s) Jo 2 0 2 ’

for Re(s) > 1 and for a > 0. (13)

Again by [5], page 72, Formula (7), the inside integral equals
u\ " u
I'(s) (a2 +Z) sin <s arctan (Z))’ for Re(s) > —1 and for a > 0.

Therefore, the change of variables u = 2a tan 0 gives

1—s n/2
C(s; a+ ;) = Sa Tt aI*sJ (cos 0)** sin(s0)(tanh(az tan 6) — 1) d6),
- 0

for Re(s) > 1 and for a > 0. (14)

We claim that Formula (14) is valid more generally for s # | and for a > 0. By
analytic continuation of the Hurwitz zeta function on C\{l}, it suffices to show
that the integral in Formula (14) exists for all s € C. Let o = Re(s). The integrand
equals

—2(cos 0)*? sin(s0)
1 + e2antand ’

Its limit as @ — b exists for all 0 < b < /2, so it remains to show that

(cos 0) 2
im —————
0—(n/2)— 1+62nutan(9

exists. Setting 0 = (n/2) — x, the latter limit becomes

(sin x)* 2

m ———.
y—0+ 1 + g2macotx

We will show that the latter limit equals 0. Choose a positive integer n with the
property that ¢ —2 +n > 0. Then

s—2 -2

(Sin x) o—2+n

1 + eZna cot x

nl(sin x) n!  (sin x)
= (2racotx)"  (2ma)" (cos x)”




A formula for the Hurwitz zeta function 331

which tends to 0 as x — 04. We have therefore proved the following integral
expression for the Hurwitz zeta function:

CoRrROLLARY 7.2. For se€ C\{1} and for a >0, we have

I—s /2
C(s; a+ %) = Sa 1 + al_‘yj (cos 0)* % sin(s0)(tanh(ax tan 0) — 1) d6.
- 0

It turns out that the formula in Corollary 7.2 is equivalent to Formula (23), page
160 in the book [32] by Srivastava and Choi, where the latter formula is con-
sidered known and given without proof (but may have been derived using Plana’s
summation formula). It is not difficult to see that the formula in Corollary 7.2
and Formula (23) in [32] are linked via a change of variables and integration by
parts.

CoRrROLLARY 7.3. For Re(s) > 1 and for a >0, we have

n/2
C(s; a-+ %) = al“‘J (cos 0)* 2 sin(s0) tanh(ax tan 0) do.
0

Proor. Since

d((cos 0)* " cos((s — 1)0))

a0 = (1 — 5)(cos 0)" sin(s0),

it follows that

n/2 5 1 1 n/2 1
J (cos 0)* “ sin(s0) df = —— (cos 0)* " cos((s — 1)0)| = :
0 1—s 0 s—1
because Re(s) > 1. The claim now follows from Corollary 7.2. O

ReEMARK 7.4. The formulas in Corollaries 7.2 and 7.3 resemble similar for-
mulas attributed to Lindelof ([25] and also [3], Formula 25.11.29) and to Hermite
([15], Formula (1.5)), but, as far as the authors can tell, no obvious direct cor-
relation seems to exist.

If we set a =1/2 in Corollaries 7.2 and 7.3, we recover the following integral
expressions for the Riemann zeta function, which are due to Jensen ([20]) (see
also [32], Formula (41), page 171, and [3], Formula 25.5.12):
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CoOROLLARY 7.5. For se C\{1}, we have:

2571
s 1

{(s)

n/2
42571 J (cos 0)** sin(s0) <tanh (7; tan 6) - 1> do.

0

In particular, for Re(s) > 1, we have
n/2

=21

(cos 0)* 7 sin(s0) tanh (g tan 9) do.
0

For the special case s = n, where n is a positive integer with n > 2, comparison
of the imaginary parts of the two sides of the equality

n—1
. . -2 .
8210(1 + 6210)11—2 — § : (Z - 1)82/06
k=1

combined with Corollary 7.5 gives

COROLLARY 7.6. For each positive integer n with n > 2, we have

/2

L n—2 n
=2 in(2k0) tanh|( - tan 6 | d6.
{(n) ; (k B 1) Jo sin(2k6) tan (2 tan )

Other representations for {(n) in terms of trigonometric integrals have been given
by Srivastava, Glasser and Adamchik in [33] and by Cvijovi¢ and Klinowski in
[12]. We also refer the reader to [10] for representations of {(n) and {(n; x) which
do not involve trigonometric integrals.
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