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REALIZATIONS OF INNER AUTOMORPHISMS
OF ORDER 4 AND FIXED POINTS SUBGROUPS
BY THEM ON THE CONNECTED COMPACT
EXCEPTIONAL LIE GROUP Eg, PART 1

By

Toshikazu MIYASHITA

Abstract. The compact simply connected Riemannian 4-symmetric
spaces were classified by J. A. Jiménez as the type of Lie algebra.
Needless to say, these spaces as homogeneous manifolds are of the
form G/H, where G is a connected compact simple Lie group with
an automorphism % of oder 4 on G and H is a fixed points subgroup
G’ of G. In the present article, as Part I, for the connected compact
exceptional Lie group Eg, we give the explicit form of automorphism
g, of order 4 on Eg induced by the C-linear transformation o; of
248-dimensional vector space ¢S and determine the structure of the
group (Eg)”i. This amounts to the global realization of one of seven
cases with an automorphism of order 4 corresponding to the Lie

algebra ) = s0(6) @ s0(10).

1. Introduction

Let G be a Lie group and H a compact subgroup of G. A homogeneous
space G/H with G-invariant Riemannian metric ¢ is called a Riemannian 4-
symmetric space if there exists an automorphism % of order 4 on G such that
(G")y C H C G7, where G” and (G"), is the fixed points subgroup of G by 7
and its identity component, respectively.

Now, for the exceptional compact Lie group Eg, as in Table 1 below, there
exist seven cases of the compact simply connected Riemannian 4-symmetric
spaces ([2]). The compact simply connected Riemannian 4-symmetric spaces were
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classified by J. A. Jiménez as mentioned in abstract. Accordingly, our interest is
to realize the groupfication for the classification as Lie algebra. In a sense, at the
stage when its groupfication is completed, the author would like to say the final
completion of the classification.

Our results of groupfication corresponding to the Lie algebra I in Table 1 are

as follows.
Table 1

Case b y H=G’
1 s0(6) @ s0(10) gy, (Spin(6) x Spin(10))/Z4
2 iR ® su(8) wy  (U(1) x SU(8))/Z2
3 iR @ s0(14) Ky (UQ) x Spin(14))/Z4
4 su2) @IR®so0(12) &  (SU2) x U(1) x Spin(12))/(Z, x Z>)
5 iR@e7 54 (U(I)XE7)/ZZ
6 s1(2) @ su(8) &y (SU2) x SU(8))/Z,
7 su(Z)C—BiR(—Be(, d)4 (SU(Z) X U(l) XEé)/(Zz ><Z3)

The realizations of groupfication in Table 1 have already been completed as
original results by the author. In the present article, we state about the realization
of the group H of Case 1 beginning from Section 3, and hereafter as for Cases
2-7 we will announce as an article in order.

We use the same notations as in [6], [7], [8] or [9]. Finally, the author would
like to say that the features of this article are to give elementary proofs of the
isomorphism of groups using the homomorphism theorem except several proofs
and of the connectedness of groups as topological spaces.

2. Preliminaries

Let S(3,¢C) and J(3,C) be the exceptional C- and R-Jordan algebras,
respectively. In J(3,€€), the Jordan multiplication X o ¥, the inner product
(X,Y) and a cross multiplication X x Y, called the Freudenthal multiplication,
are defined by

(XY + YX), (X,Y)=tr(XoY),

N —

XoY =

XxY=2-(2Xo0Y —tr(X)Y — tr(Y)X + (tr(X) te(Y) — (X, Y))E),

N —
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respectively, where E is the 3 x 3 unit matrix. Moreover, we define the trilinear
form (X,Y,Z), the determinant det X by

(X,Y,Z)=(X,Y xZ), detX ==(X,X,X),

Q| —

respectively, and briefly denote J(3,E€€) and J(3,€) by 3¢ and 3, respectively.
In 5, we can also define the relational formulas above.

The connected complex Lie group F,C and the connected compact Lie group
F, are defined by

FE ={aelsoc(3)|e(X oY) =aX oaY}
= {ueIsoc(3) | det aX = det X, (aX,aY) = (X, Y)}
= {aeTs0c(3) | det aX = det X,aFE = E},
Fy={oeTsor(J)|a(X oY) =aX oaY},

respectively. Let 7 be the complex conjugation in J¢. Then we have Fy = (FO)"
(see [6, Section 2.4] in detail). Moreover, the Lie algebra f of the group F{ is
given by

i¢ = {0 e Homc(3) [0(X 0 Y) =0X o Y + X 00Y}.

We note the following as for the subalgebra bf of the Lie algebra T4C . The
subalgebra D4C is defined by

o = {0 il |0E =0,k = 1,2,3}.

Then the subalgebra b is isomorphic to the Lie algebra so(8, C) = so(€) by
the correspondence

& ox3 X 0 Dix3 Dyx;
g: 50(8, C) - D4Ca C](D]) :57 0 X3 52 X1 = D3X3 0 D1x1 s
X2 X1 é} Drx, Dix; 0

where D,, D; are elements of s0(8, C) uniquely determined by the Principle of
triality (D1x)y + x(D2y) = D3(Xp), x,y € € for D; € s0(8, C). From now on, we
identify D; € s0(8,C) with 6 = (Dy, Dy, D3) e df C ff.

Any element 0 of the Lie algebra ff can be uniquely expressed by
if ={D+ Ai(a1) + A>(ar) + As(a3) | D € 50(8, C), aq € €, k = 1,2,3},

where Ay (ay) is the C-linear mapping of 3¢ (see [9, Subsection 2.4] in detail).
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We define an R-linear transformation g of J by

<1 X3 X2 ¢ —X3e] erx;
!/ ! = R
X =0 X & x1|=|-%e ) —eixier |, Xe€3,
X X & e;xy  —erxiel €3
where the element e¢; is one of the basis of € = {ey =1,ey,e2,...,e7}z. Here-

after, a symbol ¢, means one of the basis of € or €. Then we have that
o} € Spin(8) C Fy C FF, (a})* =1, (d})* = 6, where an R-linear transformation
o:3— J is defined by

& X3 X &L o—x X
oX=0|Xx3 & ¥ |=|-% & x|, XeS
X2 X1 & X X1 &

Note that the R-linear transformation ¢ of J is naturally extended to the
C-linear transformation of J€. Hence o} induces the automorphisms &, of
order 4 on F : 6(2) = 0 ‘o), o € F4, and using inclusion Fy C FC, the R-linear
transformation o) of J is naturally extended to the C-linear transformation of
3€. Hence g induces the automorphisms &, of order 4 on F : 64(2) = o} 'oa},
e Ff.

The simply connected complex Lie group E6C is defined by

ES = {neTs0c(3€) | det aX = det X}
= {aelsoc(3°)| (aX,aY,0Z) = (X, Y,Z)}.

Then we have naturally the inclusion FC C ES, and it is well known that
(ES); = Ef (see [9, Definitions in Subsections 2.13, 3.1] in detail). Moreover, the
Lie algebra ef of the group ES is given by

e6C:{¢:6+T|5€f4C’T€(SC)O}’

where (3), = {X € 3| tr(X) = 0} and the C-linear mapping T of 3 is defined
by TX =ToX, X3 (see [9, Proposition 2.4.1, Theorem 3.2.1] in detail).
Let PE be the 56-dimensional Freudenthal C-vector space

PC=3°@3°@Ca@C,

in which the Freudenthal cross operation P x Q, P= (X, Y,&,n), 0= (Z, W,{,w)
e P, is defined as follows:
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¢:—%(Xv W+2ZvY)

A:—%QYX W —EZ —(X)
PxQ:=®(p,A4,B,v), 1

B:Z(2X><Z—17W—coY)

v:%((x, W)+ (Z,Y) = 3w+ {n)),

where X v W e ¢f is defined by

XvWw=X, W]+(Xo W—%(X, W)E>~7

here the C-linear mappings X, W of 3¢ are same ones as in EE.
The simply connected complex Lie group Ef is defined by

ES = {aeTsoc(B) |a(P x Q)a~! = aP x aQ}.
Moreover, the Lie algebra ¢§ of the group Ef is given by
e7C ={®(¢,A,B,v)|p € eéc,A,Be SCve C}.
For a e EE, the mapping & : PE — PC is defined by
a(X, Y, En) = (2X, 271 Y, &),

then we have a € Ef, and so o and & will be identified. The group Ef contains
E£ as a subgroup by

EE = (BS)j y(= {we (EF |l = 1,21 = 1}),

where the symbols 1, 1 are defined in Subsection 3.2. Hence we have the inclusion
FE C ES  EF. Using these inclusions, the C-linear transformation o} of 3¢ is
naturally extended to the C-linear transformation of P:

oy (X, Y, En) = (a,X,0,Y, &), (X, Y,En) e BE.

Hence we see g; € EX, and so o} induces the automorphisms 6, of order 4 on

E€ :6)(a) = 04 lao), e EF.
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Let ¢ be the 248-dimensional C-vector space
g=SOP@P@Ca®COHC.

We define a Lie bracket [R],Rz], R, = (d)l,Pl,Ql,rl,sl,tl), R, = ((Dz,Pz,QzJ‘z,
S2712)7 by
[Rlsz] = (@7Pa Q,V,S, l)v

D = [P, D3]+ P1 x Q2 — Py X Q)
P=® P, — Dy Py + 1Py — 1P+ 5102 — 50
Q=010 — D01 — 1+ 101+ 1Py — P

1 1
r= _g{PlaQZ} +§{P2,Q1} + 51t — $211

1
s = Z{P[,Pz} + 2r182 — 2r28;

1
t= _Z{Q17Q2} —2r1t, + 2t

Then the C-vector space e becomes a complex simple Lie algebra of type Eg.
We define a C-linear transformation A, of e8C by

(D, P, Q,1,5,1) = (AP, 2Q, AP, —1, —t, —5),

where a C-linear transformation A of B¢ on the right-hand side is defined by
MX, Y, En) =(Y,—X,n,—-&). As in 3, the complex conjugation in e§ is de-
noted by

(D, P,0,r,s,t) = (1P1,TP, 10, 11, TS5, T1).

The connected complex Lie group EC and the connected compact Lie group
FEg are defined by

EL = {aeTsoc(ef) | «[R, R = [xR,aR']},
Eg = {0 € EC | th0hot = o0} = (ES)™,
respectively. Moreover, the Lie algebra eg of the group Eg is given by
e = {(D,P,—TIP,r,s,—15) | D€ es, Pe I, reiR,se C}.
c

For o € Ef, the mapping a: e — ef is defined by

&(¢7Pa Q,}",S, t) = (OCCDOC_17O(P7O£Q5"7S7 t)>
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then we have a € E, and so o and & will be identified. The group ES contains
Ef as a subgroup by

Ef ={acEL |ae EF}
= (ESC)LI*,L(: {O‘ € (E8C) | ol = 17“1_ =1"al_ = 1*})7

where the symbols 1, 17, 1_ are defined in subsection 3.3. Hence we have the
inclusion Ef C E£. Using this inclusion, since the C-linear transformation o} of
P is naturally extended to the C-linear transformation of e:

O-A,t(éapv Qa r,s, t) = (0-4,171¢6430-!1Pa O'!‘Q, r,s, t)v (¢7P7 Qa r,s, [) € egcv

we have oy € EC, and so o) induces the automorphisms G, of order 4 on
EE :64(ax) = gy oo}, ae ES, and so is Es.

In the last of this section, we state two useful lemmas, the Principle of triality
on SO(8,C) as theorem and proposition related to its theorem.

LemMA 2.1. For Lie groups G, G', let a mapping ¢:G— G' be a
homomorphism of Lie groups. When G’ is connected, if Ker ¢ is discrete and
dim(g) = dim(g’), ¢ is surjection.

Proor. The proof is omitted (cf. [6, Lemma 0.6 (2)]). O

Lemma 2.2 (E. Cartan-Rasevskii). Let G be a simply connected Lie group
with a finite order automorphism o of G. Then G° is connected.

Proor. The proof is omitted (cf. [6, Lemma 0.7]). O

After this, using these lemmas without permission each times, we often prove
lemma, proposition or theorem.

THEOREM 2.3 (Principle of triality on SO(8, C)). For any a3 € SO(8, C), there
exist ay,0p € SO(8,C) such that

(1x)(02y) = a3(xy), x,ye€C.

Moreover, oy, oy are determined uniquely up to the sign for oz, that is, for os,
these oy, op have to be oy, oy or —oy, —ap.

Proor. The proof is omitted (cf. [9, Theorem 1.14.2]).
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PrOPOSITION 2.4. If oy,00,03 € O(8,C) satisfy the relational formula

(O(lX)(O(zy) = ot3(xy), X,y € (Sca

then oy, 0,03 € SO(8, C).
Proor. The proof is omitted (cf. [9, Proposition 1.14.4]).

3. Case 1. The Automorphism o) of Order 4 and the Group (Eg)“‘;

The main purpose of this section is to give the automorphism ¢, of order 4
on Eg explicitly and to determine the structure of the fixed points subgroup
(Eg)b_‘; by &, where the structure of the group (Eg)”‘; is as follows:

(Es)% = (Spin(6) x Spin(10))/Z,.

Here, the spinor groups Spin(6) and Spin(10) above are respectively realized as
).k—o,1 and the subgroup (Eg)7*© of (Eg)%, where
the definitions or the details of (Fa)g, f, f,

€k

the subgroup (Fj) Ev B, By Fi(
o). k=01 and (Eg)?*® are shown
later.

Moreover, we would like to state about the group (Eg)“4’5°(6). The essential
part to prove the isomorphism as a group is to show the connectedness of the
group (Eg)”‘:'“((’). In order to obtain this end, we need to treat the complex case

as follows:

(F4C)E17E2,E3,F1(ek)<k:0,1 = Spin(6, C),
(EC)% =~ (SL(2, C) x Spin(6, C) x Spin(6, C))/Zs,
(ES)7=) ~ S1(2, C) x Spin(6, C),
(ES)7+* ) ~ Spin(10, C),
(ES)% = (Spin(6, C) x Spin(10, C))/Za,

and the connectedness of the group (ESC)”‘(’”(&C), the definitions or the details
of the group on the left-hand side in each row above are also shown later.

In this section, in order to study the subgroups of Eg as mentioned above,
since we need to have some knowledge of the their complexification G¢ of
G =F,,Es,E; or Eg, we state these as detailed as possible, however as for
insufficient parts, refer to [1], [5], [6], [7], [8] or [9].
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3.1. The Group (F4C)El’EZ’E%FI(Q)?,{:O?1

The aim of this section is to determine the structure of the group

(F) k. By, By, Fy(e) k0,1
(F4C)E|,E2,E3,F1(ek)-,kzo,l = {OC € F4C ‘ ok = E; i = 1727 37 ok (ek) =k (ek)7k = 07 1}

Now, we start to make some preparations.
We define groups (F )z, gz, and Spin(8,C) by

(F4C)E1A,E2.,E3 ={oe F4C |aE; = E;yi=1,2,3},

Spin(8, C) = {(a1, 00, 23) € SO(8, C)? | (01x) (2y) = a3(xp), x, y € €Y,
respectively. Then we have the following theorem.
THEOREM 3.1, The group (FS)g, g, g, is isomorphic to Spin(8, C) : (FX) g, g, p,
=~ Spin(8, C).
Proor. We define a mapping ¢ : Spin(8,C) — (F4C)E1,E2.E3 by

13Xz X2
— ~C
o((oa,00,3)) X = [ o3x3 & ouxy |, XeJT.
wxy WXT &
This homomorphism ¢ induces the isomorphism between (F)g g r and

Spin(8, C) (cf. [9, Theorem 2.7.1]). U

As necessary, we denote any element o€ (F)g g p by (o1,00,03)€
Spin(8, C), that is, o = (0,00, 03).
We define an R-linear transformation d; of € by

O1:e0 — eg, e —e7, e — e, i =23475 e — e e7— e,

basiswisely. Using matrix representation, the explicit form of ¢, is as follows:

0 1 0

0 01

1
1
51: 1 EM(S,R),
1

1 0 0
0 1 0
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where the blanks are 0. Then we easily see that J; € SO(8). The R-linear trans-
formation d; is naturally extended to the C-linear transformation of €€.

: c c .
We consider groups (F4 )El,EzAE3,F1(ek),k:O,1,2,374,57 (F4 )El,EZ,E3,F1(ek),k:2,3,475,6,7'

oF; =FE;,i=1,2,3

FC _ FC i iy It ]
Fa)e b b 012305 {“ =T |aFi(e) = Fi(er), k=0,1,2,3,4,5 }

Cc _ c ocE,»:Ei,i:I,2,3,
F)e e 23,0567 = {“ S i) = Fi(e), k=2,3,4,5,6,7 [

Hereafter, we often denote k = 0,1,2,3,4,5 by abbreviated form k =0,...,5,
and also often denote these groups above by abbreviated forms (F\°) Eis 3, Fi(0,..5)

.....

.....

ProoF. We define a mapping ¢ : (F4C)E1,z,3,1'"1(0~,~--,5) — (F4C)EL2V37F1(2“__77) by
p(2) =0,

where 0 = (01,02,03) € Spin(8) C Spin(8, C) = (F4C)E1,E2,E3 (Theorem 3.1), here
01 is defined above, and note that for this J; there exist d,,0;3 € SO(8) by the
Principle of triality on SO(8) (Theorem 2.3). From o,d € (F)g, g, p,. it is easy to
verify that ¢(a) € (FC)g, g, .-

Moreover, we have that

o(0)Fy(es) = (6 ad)Fi(eg) = (0 ') Fi(d1e6)
= (5_IO()F1(60) = 5_1F1<€()) = F1(51_1€0> = F1<€6).

Similarly, we have ¢(«)F)(e7) = Fi(e7), and it is clear that ¢(a)F)(ex) = Fi(ex),

k=2,3,4,5. Hence we have ¢(a) € (F4C)E1.2.3‘F1(2.,m,7)’ that is, ¢ is well-defined.

From the definition of the mapping ¢, it is clear that ¢ is bijection.
Therefore we have the required isomorphism

We define a mapping « : SO(8,C) — SO(8,C) by

K(o)x = ox, xe@C.



Realizations of inner automorphisms of order 4 on Eg 101

It is easily to verify that x is well-defined and a homomorphism, morecover we
see k2 =1 (cf. [9, Theorem 1.16.4]).

Let the complex unitary group U(1,C¢) = {0e C|00 =1}. Then we have
the following theorem.

THEOREM 3.3. The group (F4C)E12;‘F1(2.‘.. 7) is isomorphic to U(1,C):
- p 23 F 2
(F)g, 5 0.7 = U, C).

& x30 Oxy
¢(9)X = @ & 9x19 R XGSC.
Oxy, 0x0 &

Then ¢ is well-defined. Indeed, by using the relational formula Re(x(yz)) =
Re(y(zx)) = Re(z(xy)), x, p,z€ €€, we have that

det(¢(0)X) = 1285 + 2 Re((0x10)(0x2) (x3)0)) — &1(0x10)(0%10)
= &(0x2)(02x2) — &3(x30) (x30)
= &16& + 2 Re((0x10)(0(x2x3)0)) — &110x10]* — &0 — &31x30/
= &1685 42 Re(0(0x10)) (0(x2x3)) — &1 x| = &l — &3]3
= 168 + 2 Re(10)(0(x2x3)) — it = &alal? = &sls
= &6 + 2 Re((xax)(x10)0) — &ilxi P = &alnl® = &l
= &1&6E + 2 Re((xx3) (x1) — & x| = &lxal* = &fxs]
= £18:¢3 4 2 Re(xyxox3) — & x1 %) — ExnaXy — E3x3%3
=det X,

and it is clear that (¢(0)X,¢(0)Y) = (X,Y), X,Y €3 and ¢(O)E, = E;, i=
1,2,3. Hence we see that ¢(6) € (F4C)E1,2.3' Moreover, from e;a =ae;, i =2,...,7,
ae U(1,C%), we have that @(0)F(¢;) = Fi(e;), i=2,...,7, that is, ¢(0)e

is surjection. Let ae (F ) , . R, Here, set

(39, = {Fe(x) | xe €} = {X € 3| 2E 10 X =2E 20X =X}, k=123,
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where the indices are considered as mod 3. Then from oFE;, = Ei, k=1,2,3, we
have aX e (3¢), for X € (3°),, and so « induces C-isomorphisms

2 (39, — (39, o€ —¢C

satisfying the conditions oaFy(x) = Fj(ux), xe €, k=1,2,3.
Applying o on Fi(x) o Fi(y) = (x, ¥)(Ekt1 + Ekt2), that is, aFy(x) o aFy(y) =
(x, ¥)(Eg+1 + Exs2), on the other hand we have

0Fy(x) o aFy(y) = Fi(oex) o Fi(oy) = (oex, 0% ¥) (Exr1 + Egi2)-

Hence we have (owxx,oxy) = (x,»), X,y € €, that is, oy € 0(8,C), k=1,2,3.
Moreover, applying « on Fi(x)o Fy(y) = (1/2)F3(xy), we have (a1x)(02y) =
o3(Xy). Indeed, apply « on the left-hand side:

a(Fi(x) o Fa(p)) = aFi(x) o aFa(y) = Fi(oux) o Fa(ony) = %Fa((“lx)(azy))a

on the other hand, apply o on the right-hand side: «((1/2)F;(Xy)) =
(1/2)F5(a3(Xy)). Hence we have Fs((oqx)(cay)) = F3(o3(Xp)), that is, (a1x)(0ny)
= 13 (Xp)(= (rko3)(xy)).

Since oy, 02,03 € O(8, C) satisfy the relational formula (a1x)(c2y) = (rca3) (xp)

above, we see that oy, o,ka3 € SO(8,C) (Proposition 2.4). Hence we have
ar, 02,03 € SO(8, C). Indeed, in general if ae SO(8,C), so is xoe SO(8,C).
Hence, now since a3 holds the condition xo3 € SO(8,C), from x> =1 we have
o3 = k(raz) € SO(8,C). Moreover from oFj(e;) = Fi(e;) we have aje; = e,
i=2,...,7. Hence since we can confirm that «; induces C-isomorphism of
CC C €, there exists f e U(1,CC) such that a;x = Ox0, x € €. For this 0, by
the Principle of triality on SO(8,C) we can set ayx = Ox, ozx =x0, xe€C
(Theorem 2.3). The proof of surjection is completed. Finally, it is easy to obtain
that Ker ¢ = {1}.
Therefore we have the required isomorphism
(F4C)E|‘2‘3,F1(2 7 = U(l, co). ]

.....

From Proposition 3.2 and Theorem 3.3, we have the following proposition.

PROPOSITION 3.4. The group (Ff)g, 23 Fi(0,..5) IS isomorphic U(1,c):
(F4C)El_2,37F1(0 ..... 5) = U(l,ce).

In particular, the group (F{)g . p (0,...5) s connected.
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Proor. Since the group U(1,C C) is isomorphic to the general linear group
GL(1,C) as a Lie group, the group U(1,CC) is connected. Hence the group
(F)g,, .10, is connected. O

,,,,,

ok, =E;,i=1,2,3,
(F4C)E1_2‘3.,F1(0‘,.‘,4) = {“ € F4C l l }

O(F1(€k> = Fl(ek), k = 0, 1,2, 3,4

LemMMmA 3.5. The Lie algebra (ff)El_z‘glﬂ(O’“‘A) of the group (F4C)E1,z,3,F1(0~,-~,4)
is given by

(félC)El_“ﬁFl(O,mA) = {5 € f4c

OE;=0,i=1,2,3,
SFi(ex) =0,k =0,1,2,3,4

= {0 = ds¢Gs6 + ds7Gs7 + dg1Ge7 | dpy € C}.

In particular, dimc((‘ff)El‘zv%F1 (0“”74)) =3.

Proor. By doing simple computation, this lemma is proved easily (As for
Gy, i,j=15,6,7, see [9, Subsection 1.3]). O

We define a 3-dimensional C-vector subspace (VC)3 of 3¢ by

(Ve = {XGSC

El OX:07 (EZaX) = (E37X) :Oa
(Fi(ex), X)=0,k=0,1,2,3,4

= {X = F1(t) |t = tses + tees + t7e7, t € C}

with the norm (X, X) = 2(13 + 15 + 13). Obviously, the group (F ), ,, ro.. 4
acts on (V°)°.

homeomorphic to the complex sphere (S€)*: (F4C)El_2.3,Fl(0n~,4)/U(l7 C ~ (S9%
In particular, the group (F)p, . & (0,...4) s connected.

ProPOSITION 3.6.  The homogeneous space (F4C)E]_2_B_Fl(0’ 4>/U(1,CC) is

Proor. We define a 2-dimensional complex sphere (S€)? by
(S ={xe(V)’|(X,X) =2}

= {X :Fl([) |l‘: tses + l6€6+l7€7,[§ Jrl‘é +[% =1t € C}.
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Then the group (Ff) Ey > Fi(0,..4) acts on (SC)Z, obviously. We shall show that
this action is transitive. In order to prove this, it is sufficient to show that any
element Fi(7) € (S€)? can be transformed to F(es) € (S€)7.

Now, for a given X = F(1) € (S€)?, we choose sp € R, 0 < sy < 7 such that
tan so = Re(#5)/Re(ts) (if Re(ts) =0, let s = 7/2).

Operate gse(so) := exp(soGse) € ((F4C)El,2,3,F](o,...,4))o on X = Fi(r) (Lemma
3.5), then we have that

gs6(s0) X = gs6(s0)F1(7)
= Fi(((cos 50)ts + (sin s9)t6)es + ((cos so)te — (sin So)ts)es + t7€7)
= F (((COS So)ls + (sin S0)16)€5

+ i((cos so) Im(zg) — (sin so) Im(¢5))es + t7¢7)
= Fl(tél)es + irgeg + t7e7) =: X(l),

where tél) = (cos 50)t5 + (sin o)t € C, rg := (cos so) Im(#s) — (sin so) Im(¢5) € R.

Moreover, we choose s; € R, 0 <s; <m such that tan s = Re(t7)/Re(t§1))
(if Re(1§") =0, let s = 7/2). Operate gsy(s1) := exp(s1Gs7) € (F ), . 0.t
on X’ (Lemma 3.5), then we have that

gs7(s1) XV = gs7(s1) Fy ((lgl)es + irges + t7e7)
= F(((cos sl)tg1> + (sin s1)#7)es + irges + ((cos s1)t7 — (sin sl)lgl))eﬂ
— F1(((cos s1)tt" + (sin s1)t7)es + irges
+i((cos s1) Im(z7) — (sin s1) Im(2{")))e7)
= F (t§2)es + irgeg + ir7e7) =: x®,

where l§2> :=(cos sl)tgl) + (sin s1)t7 € C, r7:= (cos s1) Im(#7) — (sin s1) Im(té”) ER.
Additionally, we choose s, € R, 0 < s, < 7 such that tan s, = r7/re (if r¢ =0,

,,,,,

3.5), then we have that
Y@ — Fi (12 ; ;
ge7(82) go1(82)Fi1 (15" es + irgeg + irre7)
= Fl(t§2>e5 + i((cos s2)re + (sin s2)r7)eq + i((cos s2)r7 — (sin s3)rg)e7)
= Fi(es +ireg) = X,

where rél) := (cos $;)r¢ + (sin $7)r7 € R.
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Here, note that it follows from X0 Fl(t5 €5+lré e) € (S€)? (& 1 ))24—
(irél>)2: 1), that is, (t§ ) =14 (rg )) , 5 lec, rél) € R that we have zé)e
R — {0} and 1<r6])/t5 <1.

So, we can choose s3 € R such that tan(is;) = irél) /tgz)(e iR). Indeed, be-
cause of tan(is3) = —i(1 —2/(e ™ +1))(—=1 <1—-2/(e7? +1) < 1), together
with —1 < r () / 1% <1, we can choose s3 € R. As in the first case above, operate
gse(is3) on X then we have that

gs6(is3) X @) = gsgliss) Fi (15 es + zré Jeg)

— Fy((cos(is3) ) + sin(is3) (irl")))es + (cos(iss) (irl") — sin(is3) 1 )eg)

— Fi((cos(is)t? + sin(iss) (irt"))es)

= Fi(1§es),
where t§3) = cos(iS3)t§2)+sin(iS3)(iré1 ) € C. Hence, from Fl(té es) e (SE)? we
have that t§3> =1 or t§3> = —1. In the latter case, again operate g¢s;(m) on

F\(—es), then we have that gs7(n)F(—es) = F) (es). This shows the transitivity of
action to (S€)* by the group (ES) a5 Fi(0,.,4) The isotropy subgroup of the

.....

group (F{)g,,, r..4 at Files) is the group (F) k20 R0.05 = U(1.CO)

4444444444

(Proposition 3.4). Thus we have the required homeomorphism

(F)g s 0.0/ UL €)= (S)°,
Therefore we see that the group (F\) Ey s Fi(0,..4) 1 connected. O

THEOREM 3.7. The group (F4C)E1,z,3.,F1(0,.~,4) is isomorphic to Spin(3, C):
(F)E, 5 10,2 = Spin(3,C).

ProOF. Let O(3,C) = O((VE)?) = {Belsoc((VE)) | (BX,pY) = (X, Y)}.

,,,,,

,,,,,

0(3,C) = 0((V°)?) by
pla) = oc|(VC)3.

Moreover since the mapping p is continuous and the group (FS) Eis s Fy (0, 4) is

.....

connected (Proposition 3.6), the mapping p induces a homomorphism

p: (F4C)E],2,3,F1(0,...‘4) — 8S0(3,C) = SO((VC>3)~
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It is not difficult to obtain that Ker p = {1,0} =~ Z,. Indeed, Let « € Ker p. Then,
since @€ (FO)g, ,, mo..a C (F)g, ,, = Spin(8,C), we can set o= (a1, ,0%3)
(Theorem 3.1). Moreover, from aFi(e;) = Fi(e;), i=0,...,4 and «f pep =1, we
have a;x = x for all x e €€, that is, o, = 1. Hence, from the pr1n01ple trlahty on
SO(8) (Theorem 2.3) we have that

=(1,1,1) or a=(1,-1,-1)=

that is, Ker p C {l1,6} and vice versa. Thus we obtain Ker p = {l,0} = Z,.
We shall show that p is surjection. From Lemma 3.5, we have that
dimc((ff )E, 35, F(0,...4) = 3 =dimc(s0(3,C)), and in addition to this, SO(3, C)
is connected and Ker p is discrete. Hence p is surjection. Thus we have the
isomorphism

(F4C)E1 23, F1(0, .., /ZZ = S0(3,C).

Therefore the group (F)g,,, g0 15 isomorphic to Spin(3,C) as the
universal covering group of SO(3,C), that is, (F)g, ,, r.. 4 = Spin(3,C).

]

Continuously, we shall construct Spin(4,C) in Ff.

Now, we consider a group (F\) ErasFi(0,.3)"

(FO) C € oE; = E;, i=1,2,3,
o
4 B2 03 T * | aFi(ex) = Filex), k=0,1,2,3
LemMA 3.8. The Lie algebra (¢ )Ey 5, Fi0,...3) of the group (EE V5 Fi(0,..3)
is given by
()5 25 m0..3 = {0€is [0E;=0,i=1,2,3,6F (ex) = 0,k =0,1,2,3}

_ 0 = dysGas + dasGag + da7Gar
+ ds¢Gse + ds7Gs7 + de71Ger

dk[ € C}.

Proor. By doing simple computation, this lemma is proved easily (Again,
as for Gy, i,j=4,5,6,7, see [9, Subsection 1.3]). O

In particular, dimc((ff)El_mFl<0M3)) = 6.
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We define a 4-dimensional C-vector subspace (VC)4 of 3¢ by

V)t = {XGSC

E10X—0 (Ez, ) (E3,X):O,
(Fi(ex),X)=0,k=0,1,2,3

= {X = F](l) | t = tye4 + tse5 + teeg + 17€7, 1) € C}

with the norm (X, X) = 2(¢f + 15 + 15 + #3). Obviously, the group (F )z, |, 1.3
acts on (V)"

PROPOSITION 3.9. The homogeneous space (FF )Ey » 5 Fr(0,..,3)/Spin(3, C) is

3/Spin(3,C) ~ (S€)°.

homeomorphzc to the complex sphere (S€)*: (F4 )Ey >3 Fy(0

PROOF. We define a 3-dimensional complex sphere (S€)° by
(S ={xe(@)*(x,x) =2}
={X = F1(1) |t = tyeq + tses + tees + tre7,6; + 2 + 12 + 13 = 1,1, € C}.

Then the group (F)g,,, r..3 acts on (S€)?, obviously. We shall show that
this action is transitive. In order to prove this, it is sufficient to show that any
element F(7) € (S€)° can be transformed to Fi(e4) € (S€)°.

Now, for a given X = Fi(1) e (S€)°, we choose soeR, 0<sy<n such
that tan s) = —Re(#)/Re(ts) (if Re(ss) =0, let so = 7/2). Operate gas(so) :=
exp(soGas) € ((F4C)E1_z_3,F1(0,...73))0 on X = Fi(¢f) (Lemma 3.8), then we have that

gas(s0) X = gas(s0)F1(7)
=F (((COS So)l4 + (sin So)t5)€4 + ((COS 5‘0)15 - (sin So)t4)€5 + teeq + t7€7)
= F1(i((cos so) Im(4) + (sin sp) Im(¢s))es

+ ((COS S())ls — (Sil’l So)l4)€5 + tee6 + l7€7)

=F (zril)&; + l‘g )65 + tgee + 1767) X(l),

where rftl) :=(cos sp) Im(#4) + (sin sp) Im(zs5) € R, tél) := (cos 50)ts — (sin so)t4 € C.
Moreover, we choose s € R, 0 <s; <z such that tan s; = —Re(#s)/Re(%)
(if Re(lﬁ) =0, let sy =x/2). Operate gs¢(s1) := exp(s;Gse) € ((F4 )E, ». A0, 3))

on X (Lemma 3.8), then we have that
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gs6(s1) XV = gaa(s1)Fy (iril>€4 + tgl)es + tees + t7€7)
=F (irftl)e4 + ((cos s1)ts + (sin s1)16)es
+ ((cos s1)te — (sin s1)t5)eg + t7e7)
= Fl(irf‘l)e4 + i((cos s1) Im(zs) + (sin s1) Im(%))es

+ ((cos s1)te — (sin s1)t5)eg + t7€7)

= Fl (irf‘l)e4 + irél)QS + tél>e6 + t7€7) = X(2>,

where r§1) := (cos s1) Im(#5) + (sin 51) Im(%) € R, tél) := (cos s1)tg — (sin s1)ts € C.
Additionally, we choose s € R, 0 < s, < 7 such that tan s, = —(rf‘l))/(rgl)) (if

ey

on X®, then we have that

gas(s2) X P = gus(s2) Fy (irz(;l)€4 + irgl)es + tél)% + t7e7)

= F(i((cos 5)r{" + (sin 5,)ri")es

+ i((cos sz)rél) — (sin sz)rfll))es + tél)% + t7e7)

= Fy(i((cos 5)ri" — (sin s,)r{")es + 1 eg + t7e7)

= Fl(t§2)€5 + té”es + tre7) =: X'e (SC)Z,
where t§2> := i((cos sz)rgl) — (sin sz)rfll)) €.
Since Spin(3,C) = (F)g,,, mo..4(C (F)g ,, m..3) acts transitively on

(S€)* (Proposition 3.6), there exists « € Spin(3, C) such that

aX' = Fi(es), X'e(S)°

945 (g)ﬂ (es) = Fi(es).

This shows the transitivity of action to (S€)? by the group (ES) Eiss,Fi(0,..,3) The

ey

Spin(3,C) (Theorem 3.7). Thus we have the required homeomorphism
(F4C)E.,2,3,F,(o,...,3)/SPi”(37 C) ~ (SC)3~

Therefore we see that the group (F)g . po..3 i connected. O



Realizations of inner automorphisms of order 4 on FEg 109

THEOREM 3.10. The group (F4C)El;z,3,F1(0~,A-»,3) is isomorphic to Spin(4,C):
(F4C)E1_2,3,F1 ©,..3) = Spin(4, C).

Proor. Since we can prove this theorem as in Theorem 3.7, this proof is
omitted. O

Continuously, we shall construct Spin(5,C) in F4C.
Now, we consider a group (F4C)E1_2_37F1(0,1’2):

oFi(ex) = Fi(ex),k=0,1,2

OCE,' = E,',i = 1,2,3,
(F4C)E1_2_37F1(0,172) = {O‘ € F4C }

LemMA 3.11.  The Lie algebra (ff)El‘z‘LF] (0,1,2) of the group (F4C)E1,2,3,F] (0,1,2)
is given by
(T4C)E1‘3,3,F1(0.,1,2) = {(5 € T4C ‘5El = Ovl: la2737(SF1(ek) = ka = 07 172}

_ 0 = d34 Gy + d35Gss + d36Gsg + d37G37 + dys Gas
+ das Gas + da7Ga7 + dss Gse + ds7Gs7 + de71Ger

dk/ € C}.

Proor. By doing simple computation, this lemma is proved easily (As for
Gy, i,j=3,4,5,6,7, see [9, Subsection 1.3]). O

In particular, dimc((’ff)El_mF1 0,1,2) = 10.

We define a 5-dimensional C-vector subspace (VC)5 of 3¢ by

Ve’ = {X e3¢

EIOX:Ov (EZaX) = (E37X) :07
(Fi(ex),X)=0,k=0,1,2

= {X = Fl(t) |t = t3e3 + taeq + tses + tee + t7e7, t € C}

with the norm (X,X)=2(3 41+ +1t}+13). Obviously, the group
5
(F4C)E1_2,3,F1(071,2) acts on (V©)°.

ProposITION 3.12.  The homogeneous space (Ff)ELMFl(O’1‘2)/Spin(4, C) is
homeomorphic to the complex sphere (S€)*: (F)E, 5.1 (0.1,2)/Spin(4, C) ~ (S)*.
In particular, the group (FS) Eias Fi(0,1,2) IS connected.
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Proor. We define a 4-dimensional complex sphere (S C)4 by

(S) ' ={xe(V)I(x.x)=2}

= {XZ Fl(l)

Then the group (F),,, g0.1.2) acts on (S€)*, obviously. We shall show that
this action is transitive. In order to prove this, it is sufficient to show that any
element F(7) € (S€)* can be transformed to Fi(e3) e (S€)*.

Now, for a given X = Fi(t) e (SC)4, we choose spe R, 0<sy<n such
that tan s) = —Re(#3)/Re(ts) (if Re(t4) =0, let sy =7/2). Operate gs4(so) :=
exp(soGaa) € ((F4C)E1_z_3.,F1(0,1.,2))0 on X = F(¢) (Lemma 3.11), then we have that

a+o+e++2=11eC

t = tze3z + tgeq + tses + tgeg + t7€7, }

934(50) X = g3a(s0) F1 (1)
= F1(((cos s0)t3 + (sin so)t4)e3
+ ((cos so)ta — (sin $9)13)eq + tses + toes + t7e7)
= Fi(i((cos so) Im(t3) + (sin sp) Im(#4))es
+ ((cos sp)t4 — (sin so)t3)eq + tses + tees + t7€7)
= F1(irgl>6’3 + 14(11)64 + tses + loes + tre7) =: X1,

where r§1) := (cos sp) Im(#3) + (sin sp) Im(z4) € R, tftl) := (cos 5p)t4 — (sin sp)t3 € C.

Moreover, we choose s; € R, 0 <s; <7 such that tans; = —Re(#4)/Re(s)

(if Re(ts) =0, let sy = n/2). Operate gas(s1) := exp(s;Gas) € ((F4C)E1.z.3,F1(0,1-,2))0
on X (Lemma 3.11), then we have that

g45(s1)X<1) = g45(sl)F1(ir§1>e3 + ti1>e4 + tses + toe + t7e7)
= Fl(ir§1>€3 + ((cos s1)t4 + (sin s1)t5)es
+ ((cos s1)ts — (sin s1)14)es + teeg + t7€7)
— Fi(ir{Yes + i((cos s1) Im(z4) + (sin s1) Im(z5))es
+ ((cos s1)ts — (sin s1)ts)es + tees + t7€7)
U] (1)

= Fl(ir§1>e3 +iry es + t5 es + teeg + tre7) = X,

where r{! = (cos s1) Im(#4) + (sin s1) Im(#5) € R, tél) :=(cos s1)ts — (sin s1)t4 € C.
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Additionally, we choose s, € R, 0 < 5, < 7 such that tan s, = —(rgl))/(riw) (if
ril) =0, let s, =7/2). Again, operate gss(s2) = exp(s2Gs4) € ((F4C)E1,z_3,F1(071A,2))0
on X@ (Lemma 3.11), then we have that

934(S2)X(2) = 934(S2)F1(i"§1)€3 + irf‘])€4 + lgl)es + tees + t7e7)

= Fy(i((cos $,)r{" + (sin 52)ri")es + i((cos s2)r{" — (sin 5,)r ey

+ tses + tses + tgeq + l7€7)

= F(i((cos Sz)r‘(‘l) — (sin Sz)rgl))€4 + tses + toeg + t7e7)

= F1(l§2)€4 + tses + tees + 1767) = X'e (SC)S,
where tf) :=i((cos sz)rf‘l) — (sin sz)rél)) eC.
Since Spin(4,C) = (F ), , s m0..3(C (FS)E 55 Fi(0,1,2) acts transitively on
(S€)* (Proposition 3.9), there exists o € Spin(4, C) such that

aX' = Fi(e), X'e(S)°.
Again, operate gs3s4(n/2) € ((F4C)El_2_3,Fl(o,1,2))o on Fj(es), then we have that

T

g4 <§> (Fi(es)) = Fi(es).

This shows the transitivity of action to (S€)* by the group (ES) Eias Fi(0.1,2)- The
isotropy subgroup of the group (F4C)E1,z,37F1(0~,1,2) at Fi(e3) is (F4C)E1,z,3,F1(0.,m,3) ~
Spin(4, C) (Theorem 3.10). Thus we have the required homeomorphism

(F4C)E]_2_3.F|(O, 172)/5191'”(4, C) ~ (SC)4-

Therefore we see that the group (F, ), . F(0,1,2) 18 connected. O

THEOREM 3.13. The group (F4C)E|‘z‘3,F](O.,1,2) is isomorphic to Spin(5,C):
(F4C)ELZ,3,F1 0,1,2) = Spin(S, C).

PrOOF. Since we can also prove this theorem as in Theorem 3.7, this proof
is omitted. |

Now, we determine the structure of the group (FC) Ey.Es, s, Fi(e), k=0,1 @S the
aim of this subsection.

Lemma 3.14. The Lie algebra (ff)El,Ez,E3,F1(ek)7k:0,l of the group

C . .
(Fi ) By, By, By, Fy(eg) k=0.1 18 given by



112 Toshikazu MIYASHITA

(ff)EhEz,Eg,Fl(é’k)‘/(:O‘l = {5 € T4C |5EI =0,i=1,2,3,0F (ek) =0,k =0, 1}
0 = d3Gr3 + drsGoa + drsGas + drs Gas
_ + dr1Gar + d34Gag + d3sG3s + d36Gs dyeC
+ d37G37 + dasGas + dis Gas + da7Gag
+ ds¢Gsg + ds7Gs7 + ds71Ger

In particular, dirnC((‘fé‘C)El’EZ,ELF1 (ek)_’k:O’l) =15.

Proor. By doing simple computation, this lemma is proved easily (As for
Gy, i,j=2,3,4,5,6,7, see [9, Section 1.3]). O

We define a 6-dimensional C-vector subspace (VC)6 of 3¢ by

(VC)6={X€3C

El OXZOa (E27X) = (E37X):O7
(Fl(ek)7X) :05 k:())l

={X = Fi(1) |t = hhes + 133 + taes + tses + tgeg + t7e7, 1 € C}

with  the norm (X, X) =2+ +4 + 2 +2+¢). The group
6 .
(F4C)E1,Ez,Ez,Fl(ek),k:O,1 acts on (V¢)° obviously.
PROPOSITION 3.15. The homogeneous space (F)g g . p, (e0). 0,1/ Spin(5, C)
is homeomorphic to the complex sphere (S€)°: (F4C)El,EZ,E3,F1(eA.),k:0,1/SPin(57C)
~ (S C)S.

In particular, the group (F{)g g g Fi(er) k=0,1 1S connected.

ex)
Proor. We define a 5-dimensional complex sphere (S C)S by

(5 ={Xe(V9)°|(x,X) =2}

= {X = Fi(1)

Then the group (FX)g 5 g mi(

1 = ey + tze3 + tyeyq + 1565 + tgee + t7€7,
GO+ +E+E+6=1,1eC '

e0),k—0,1 acts on (S ), obviously. We shall show
that this action is transitive. In order to prove this, it is sufficient to show that
any element Fi(7) € (S€)° can be transformed to Fi(e;) € (S€)°.

Now, for a given X = F(1) e (S€)°, we choose speR, 0<sy<n such
that tan s) = —Re(#:)/Re(t3) (if Re(s3) =0, let so = /2). Operate ga3(so) :=
exp(50G23) € (F) g, £y £y Fre) k-0.1)0 ON X = Fi(7) (Lemma 3.14), then we have
that
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923(50) X = g23(s0) F1(2)
= Fi(((cos s0)t2 + (sin so)t3)ez + ((cos so)t3 — (sin so)t2)es
+ tyeq + tses + tees + t7€7)
= F1(i((cos s0) Im(#;) + (sin sp) Im(#3))es

+ ((COS So)lg — (sin So)l2)€3 + laeq4 + t5e5 + e + l7€7)

=F (irél)ez + t§1)€3 + tgeyq + tses + toes + tre7) = XV,
where rél) := (cos 59) Im(#;) + (sin so) Im(#3) € R, tgl) :=(cos 50)t3 — (sin so)t, € C.
Moreover, we choose s; € R, 0 < s; < 7 such that tan s; = —Re(#3)/Re(#4) (if

Re(t4) =0, let 51 = m/2). Operate gs4(s;1) := exp(s1Gzq) € ((F4C)El7E2‘E3‘F1(€A>)7k:071)0
on X (Lemma 3.14), then we have that

gaa(s) XV = g34(S1)F1(iV£1)€2 + t§1)€3 + taeq + tses + toes + t7€7)
= Fl(irél)ez + ((cos s1)t3 + (sin s1)t4)e3
+ ((cos s1)ts — (sin 51)13)eq + tses + tees + t7€7)
= Fi(irlY ey + i((cos s1) Im(3) + (sin s1) Im(14))es
+ ((cos s1)ts — (sin s1)13)eq + tses + toes + t7e7)

= Fl(irél)ez + irgl)e@ + t‘(‘l)e4 + tses + tgeg + tre7) =: x®,

where rél) :=(cos 51) Im(#3) + (sin s1) Im(24) € R, tftl) :=(cos 51)t4 — (sin s1)t3 € C.

Additionally, we choose seR 0<s <n such that tans, =
—(ré”)/(r;l)) (if rél) =0, let 5o =n/2). Again, operate ¢g»;(s2) = exp(s2Ga) €

<<F4C)E1,E2,E3A,F1(ek),k:O,1)0 on X, then we have that

923(52))((2) = 923(s2)F1(ir§1)ez + i7§1)€3 + til)e4 + tses + toeg + t7e7)

= Fi(i((cos s2)r3" + (sin 52)r{")es + i((cos s2)ri" — (sin 52)r")es

+ taeq + tses + tges + tre7)

= F(i((cos Sz)rgl) — (sin sz)rél))@ + tgeq + tses + tgeg + t7€7)

=F (ir§2)63 + tyeq + tses + tgeg + 7e7) =: X' € (SC)4,

@) (1)

where ry;” = (cos s2)ry " — (sin sz)rél) €R.
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Since Spin(5, C) = (F ) g, , k0...2(C (F) gy £y £y Fy(e) k=0.1) ACts transitively
on (S€)* (Proposition 3.12), there exists a € Spin(5, C) such that
aX' = Fi(es), X' e(S*%

Again, operate g»3(n/2) € ((Ff)El‘Ez‘&’Fl(ek)?kZO’1)0 on Fj(e3), then we have that

g23 <72Z> Fi(e3) = Fi(ez).

This shows the transitivity of action to (S€)° by the group (F)g p p. p (e0) =0.1"
e0) k0,1 At F (e2) 1s Spin(5,C)
(Theorem 3.13). Thus we have the required homeomorphism

(F4C)E1,Ez,E3,F1(€k).k:0,I/Spin(57 C) ~ (SC)S-

Therefore we see that the group (F,%)z g, p.. A

The isotropy subgroup of the group (F) v B, Es, Fi(

e0) k0,1 18 connected. O
THEOREM 3.16. The group (F4C)El«,Ez-,ELFl(ek),k:O,1 is isomorphic to Spin(6, C)
(F4C)El=Ez‘Es‘F1(e;\,),k:O,1 =~ Spin(6, C).

ProOOF. This proof is proved by an argument similar to the proof in
Theorem 3.7, however we write as detailed as possible. Let 0(6,C) = O((V ©)°)
= {pelsoc((VE)) | (BX,BY) = (X, Y)}. We consider the restriction f§ = o (yreye
of ae(F)g g £ R k—01 tO (VE)S, then we have fe O(6,C). Hence we
define a homomorphism p: (FC)g, g g, ri(e).h-01 — O(6,C) = o((V ) by

pla) = “‘(VC)ﬁ-

Moreover since the mapping p is continuous and the group (F°)z g g g (e), k=0, 1
is connected (Proposition 3.15), the mapping p induces a homomorphism

p: (F4C)E|,Ez,Es,Fl(ek).,k:O,1 - 50(67 C) = SO((VC)6)'

It is easy to obtain that Ker p = {1,0} =~ Z,. Indeed, Let = € Ker p. Then, since
2 € (F) g b 5y e k0.1 © (F) g, gy 5y = Spin(8, C) (Theorem 3.1), we can set
o= (oy,00,03). In addition, from aF;(ex) = Fi(ex), k=0,1 and OC|(VC>6 =1, we
have oyx = x for all xe €€, that is, »; = 1. Hence we have that

o= (1,1,1) or a=(1,-1,-1)=og,

that is, Ker p C {1,6} and vice versa. Thus we obtain Ker p = {l,0}. We
shall prove that p 1is surjection. From Lemma 3.11, we have that
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dimc((ff)El,ELE}’F](U»)A’,(:O#1) = 15 = dim¢(s0(6, C)), and in addition to this, since
SO(6,C) is connected and Ker p is discrete, p is surjection. Thus we have the
isomorphism

(F4C)E|,E2,E3,F1 (ek),k:O,l/Zz = S0(6, C).

Therefore the group (F)g g, g, p (). k=01 15 isomorphic Spin(6,C) as the
universal covering group of SO(6, C), that is, (F4C)E1,EZ,ELFI(ek),k:O,l ~ Spin(6, C).
O

Here, we make a summary of the results as the low dimensional spinor
groups which were constructed in this section. It is as follows:

(F4C)E1,E2,E3.F| (ex), k=0,1 = Spin(6, C)
U

(F4C)E|,E2.E3.F| (ek),lc:O,l,Z = Spln(s’ C)

U

(F4C)E17E2,E3,F1(L’k),k=0,..w3 = Spln(4’ C)
U

(F4C)E17EzﬁE3,F1(ek),k:O,.4.74 = Spin(3, C)
U

ey

In the last of this subsection, we prove the following important lemma.

Lemma 3.17. The group (F4C)El,EZ,E37F1(C’A')7k:0A,1 =~ Spin(6, C) is the subgroup
of the group (FO)* ={ae Ff loj=aay}: Spin(6,C) = (F ), &, g k(o) k0.1
C (FS)%.

Proor. We consider the following complex eigenspaces of o, in REE
(36),; = {X € 3] 04X = X}(C (39),)
= {X =§E +&E +GEs + Fi(x) | & e Cox e CCY,
(39 ={X €3N 04X = X} (= {A(x{)} @ (3)_,)

= {X = Fi(x{) 4 F(x2) + F3(x3)) | x{ € (CO)*" in €, x; e €€},
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where (Sc) (3 C)_J are the complex eigenspaces of the C-linear transformation
o in 3€.

Now, let o€ (F)g, £, £ Fi(e) k=0.1> and set X = Xi + Xz € (3¢ ), (SC)WA
= 3€. Then, noting that « e (FC )Er B, Ex. Fi(er) k=01 C (F)g, = (F, C) , we have

that
oyoX = ayo(X1 + Xa) = g0 X1 + a40X,
= 04 X1 + oy Fi (X)) + Fa(x2) + F3(x3))
= Xi + ajoF (x{") — (Fa(x}) + F3(x}))
= Xi + o, R (xi) — (Fa(x) + F3(x3))
=X — Fi(xit) — F(x}) — F3(x}),
on the other hand, we have that
agy X = ooy (X1 + Xo) = a(X) — X)) = X1 — oX>
= Xi — a(Fi(x{) + Fa(x2) + F3(x3))
= X) — aFy(x{) — (F(x}) + F3(x}))
=X\ — Fi(x{") — Fy(x}) — F5(x}).

Hence from the result of computation above, we see gjo = ooy, that is,
; ~ (FC C\0,
Spin(6,C) = (F )k, & £y Fi(e) k=01 C (F)7 4

3.2. The Groups (E7C)‘7‘1 and (E7C)”‘/*’5°<6’ )
The aim of this subsection is to show the connectedness of the group
(E7C)"4’5°<6’ ) after determining the structure of the group (E5 €y,
Now, we define subgroups (E€)% and (ES)?*®€) of EC respectively by
(Ef)% = {2 € Ef |ofa = oay},

(ES)7=O) = {4 e (EC)% | ®pa = adp for all D e so(6,C)},

where @p = (D,0,0,0) € e, Deso(6,C) = (T4C)E1,E2,E3,F1(ek),k:0,1' Hereafter, we
often denote D above by Dg.
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LemMA 3.18. We have the following
(1) The Lie algebra (e7c)”‘£ of the group (E7C)o‘; is given by

(€)% = {® e ef |0, = dal}

_(D2| O +A4 (a)
0 | D¢ ) +H(TEI+ 1B +13E3+ Fi(t))™,
Dy e50(2,C), Dgesn(6,C),ac CC, 1, e C,

T1+1+173=0,1 ECC,

& 0 0 m 0 0
A= 0 52 X1 s B = 0 M N ’
0 x1 & 0 »
ékEC,XlECC, ”kEC7 V1 ECC:

veC

In particular, dimc((eg)”‘;) =((1+15+2+24+2)+(3+2)x2+1=33.
(2) The Lie algebra (¢5)7+) of the group (ES)?#*®) is given by

(e7C) 0'4.50(6, C)

—{D e (e5)%|[@,Dp| =0 for all Deso(6,C)}

(D | 0 +4i(a)
0 0 +(T1E1 + 12 + 13E5 +F1(11))~,
Dy e50(2,C),ae C, 1 e C,

T14+17+173=0,1 ECC,
(g8 e

& 0 0 m 0 O
A = 0 62 X1 ) B = 0 ’72 N )
0 X & 0 vy m
ék € C,X] € CCa 7/1{ € Ca yl € CC7

veC
In particular, dime((e§)+* %)) = (1424 (242)+(3+2) x2+1=18.

Proor. By doing simple computation, this lemma is proved easily. O
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First, making some preparations, we shall determine the structure of the
group (E7C)”5. Hereafter, we often use the following notations in B<:

X =(X,0,0,0), Y=(0,Y,0,0), ¢£=(0,0,£,0), n=1(0,0,0,7),
Ei = (0,E,0,1), E.=(0,~E,0,1), E»+ Es=(Ex+E,0,0,0),
Ey = Ey = (E; — E3,0,0,0),  Fi(ex) = (Fi(ex),0,0,0), k=0,...,7.
We define C-linear transformations x, u of RBe by
k(X,Y,¢n) = (—aX,x1 Y, =& n),
WX, Y, En) = R2E xY +nyE,2E, x X +¢E,(E, Y),(EL X)),

respectively, where X = (E;, X)E| —4E; X (E; x X), Xefsc

. The explicit
forms of x, u are as follows:

& ox3 X no oy
K(X7 Y,é,f?):ff( X3 52 X1 ) Y3 My )N 757’7)
Xy X1 & ya Vi oms
& 0 0\ [(m 0 0
= ( 0 62 X1 |, 0 —H, —J) a_éaﬂ)a
0 x & 0 -y -
7 0 0 E 00
wX, Y. Em)=(10 ns =y |0 & —xi [.n,&).
0 -y m 0 —x &

By doing simple computation, we can easily confirm that xo) = gjx, uo) = oju.
We define a group ((E7C)K1H)EI’Eil,Ez-‘kELEz;Es,F](C‘k)-,k:()wl by

KoL = ¢, [oL = o,
O(El = El, OCELl = E,1
((E7C)K’#)El<E11<E2+E3,E2;E3,Fl(t’k)7k:0,l =4y%€ E7C w(Ey + E3) = E> + E,
O((Ez - E3) = E2 - E37
aF (ex) = F (ex), k=0,1

ProposiTioON 3.19. The group ((E7C)K’ﬂ)EhE‘,l7E2+E3,E2—'E3AF1(6’/\»),1<:0,1 is iso-
morphic 10 Spin(6, C): (EY™)i, i i, poes ooy ko1 = Spin(6, C).
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PrOOF.  Let a€ (Ef)“")g £\ miks ks Fy(er) k0,1 Lhen from (0, E1,0,1)
= (0,E;,0,1) and «(0,—E;,0,1)=(0,—E;,0,1), we have that «(0,E;,0,0) =
(0,E,,0,0) and «(0,0,0,1) =(0,0,0,1). Hence we see that o(E;,0,0,0)=
(E1,0,0,0) and (0,0,1,0) = (0,0,1,0). Indeed, it follows that

a(E1,0,0,0) = ap(0,0,0,1) = e (0,0,0,1) = u(0,0,0,1) = (£,,0,0,0),
O((0,0, 1,0) = OC,M(O,E],0,0) = ﬂOC(O,E],0,0) = /M(O,Elaoa 0) = (0303 130)
Thus from «1 = 1 and al =1, we see a € E6C, moreover from aF; = E;, i =1,2,3,

that is, «F = E, we see a e F,C. Note that suppose o € FC, o satisfies ko = ax,

op = por, automatically. Hence we have « e (FS )y g g Fi(ex),k—0,1> and vice versa.

e/()
Thus we have

C\ K, C
((E7 )K M)ElaE—laEZ‘;‘ESA,EZ;E%FI("/():](:O:1 = (F4 )E17E27E3~F1(3k)=k:0¢1.

Therefore, from Theorem 3.16 we have the required isomorphism
((E7C)K’”)El_E,I.Ezer?a-,Ez*ELFl (ex), k=0, 1 = Spin(6, C) |

In order to construct one more Spin(6, C) in EF, after this we shall construct
Spin(3, C), Spin(4,C) and Spin(5, C) stepwisely.

First, we shall construct one more Spin(3,C) C FS which is different from
Spin(3, C) constructed in Theorem 3.7.

Now, we consider a group (F)g, Filen) k=2,...7"
(F)E, Renhe...m = {0 € B [aEy = Ey,aFi(ex) = Fi(ex), k =2,...,7},
moreover define a 3-dimensional C-vector subspace (Vf)3 of 3¢ by

(VY ={XeJ|EloX =0,tr(X) =0, (Fi(er), X) =0,k =2,...,7}

00 0
=10 ¢ x ||¢eC,xeCC
0 x —¢

with the norm (X, X) = 2(¢% 4 %x). Obviously, the group (F4C)E1,F1(ek),k:2,...,7 acts
on (VE)>3.

LemMAa 3.20. The Lie algebra (fztc)El,Fl(ek),k:z ; of the group

(F4C)E17Fl(ck),k:Z,...J is given by
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¢ c
(f4 )E1¢F1<L’1\»),k:2,m77 = {5 efy

OE, =0,
5F1(€k)=0,k=2,...,7

={5=<D2 0)+A}<a>
0lo

7) =3

D, esn(2,C),ae CC}.

In particular, dimc((ff) E1 R () k=2

s

ProoOF. By doing simple computation, this lemma is proved easily. O

PrOPOSITION 3.21. The homogeneous space (Ff)g, Flek=2,..1/ UL, C ¢

.....

is homeomorphic to the complex sphere (S€)*: (F) g Re)hea,.. 7/ U0, CC) =~
(89)%.

In particular, the group (F)g Fi(ex)k=2,..,7 IS connected.

Proor. We define a 2-dimensional complex sphere (S_C)2 by

(89 ={X e (V)| (X, X) =2}

00 0
=0 ¢ x ||E+xx=1¢eCxeCC
0 x —¢

Then the group (Ff)g, 5 (e),k=2,..,7 Acts on (5€)?, obviously. We shall show that
this action is transitive. In order to prove this, it is sufficient to show that any
element X e (S€)* can be transformed to E, — E; € (S€)%. Here, we prepare
some element of (F )z (e0),k=2,..,7- For ae C€ such that aa # 0, we define a
C-linear transformation a(a) of 3, a(a)X(&,x) =: Y(n, y), by

m =<
’72252;53+52553 cos2v+@ sin 2v
n3:52+§3_52_§3 cos2v—w SinV,
2 2
_ . 2(a, .
ylle_wsmb—msmzv
2v v?
X3d .
Y2 = X3 COSV——— sInvy
v
ax; .
y3:X3COSV+_Slnv7
v

where ve C, v? =aa.
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Then we see o(a) = exp A(a) € ((F4C)E1,F1(ek)ﬁk:2ﬁ.“,7)0 (Lemma 3.20).
00 O
Now,let X =] 0 ¢ x |e(SE)? We choose a € C€ such that (a,x) =0

0 x ¢

.....

0 0 O
w@X =10 0 x|=X" X'x=1
0 x 0

Moreover, using this x’ above, operate «((7/4)x’) on X', then we have
oc(%x’)X’ — E, — Es.

This shows the transitivity of this action to (S€)* by the group (F ), f, () k=2, T+
The isotropy subgroup of (F,%)g, 5 (o) k=27 at E2 — Ej is the group

Thus we have the required homeomorphism
(FO) g Fiteny ke, 1/ U1, CC) = (S92

Therefore we see that the group (F,)z p, (e¢),k=2,...7 1S connected. O

TueoREM 3.22. The group (F)g, p(o) k=27 18 isomorphic to Spin(3, C):
(F4C)E1,F1(ek),k:2,..4,7 = Spin(3, C).

PrOOF. Let O(3,C) = O((VE)?) = {B e lsoc(VE)) | (BX,pY) = (X, Y)}.
We consider the restriction = af ¢ of a € (F4C)E17F1<ek)7k:2w_,7 to (V)°, then
we have fie O(3,C). Hence we define a homomorphism p: (F)g, f (o0 k=27
— 0(3,C) = O((V<)) by

Moreover since the mapping p is continuous and the group (F4C) Ev Fi(e0) k=2,...7
is connected (Proposition 3.21), the mapping p induces a homomorphism

p: (F4C)E1,F1(ek),k:2 ;7 —= 80(3,C) = SO((V—C)3)~
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It is not difficult to obtain that Ker p = {l,0} = Z,. Indeed, let « € Ker p =
{e (FO) g pie k.7 | pe) = 1}, that is, aef{oe (FS)p piea..l e
= 1}. It follows from oE; = E), oE = E that «(E, + E3) = E, + E3, moreover
since oc|<V93 =1, we also see «(E,— E3;) = E, — E5. Hence, since we have
oE| = E|, aEy = Ey, aE3 = E3, we see a € (F)p p p = Spin(8,C), and so set
o= (ar,00,03), ax € SO(8,C). Thus again from ofFi(ex) = Fi(ex),k=2,..,7 and
ac|<V§)3 =1, we have a; = 1. Hence from the Principle of triality on SO(8, C)
(Theorem 2.3), we see

ao=(L,,1)=1 or a=(l,-1,-1)=g,

that is, Ker p C {1,0} and vice versa. Thus we see Ker p = {1,0} =~ Z,. Finally,
we shall show that p is surjection. Since SO(3, C) is connected, Ker p is discrete

and dime (i) g, o) k2
tion. Thus we have that

7)) =3=dim¢(s0(3,C)) (Lemma 3.20), p is surjec-

(F4C)E1,F| (ek),k:2,“.,7/ZZ = S0(3,C).

Therefore the group (F4C)E1,F1( k=27 is isomorphic to Spin(3,C) as a

er)

ey

O

Next, we shall construct Spin(4,C) in EE.
Now, we consider subgroups ((E<)?) g, (ES)") g, mien) k2.7 Of E¢:

((EGC)”)EI ={0e Ef |ou = ag,0E = E1 }(= Spin(10, C)),
(E) e ke hen,r = {12 € (B) ) g, | aFi(ex) = Fi(ex),k =2,..., 7},

respectively, where as for ((EC)?)z = Spin(10,C), see [6, Proposition 3.6.4] in
detail, and the C-linear transformation ¢ defined in Section 2 induces the involu-
tive automorphism ¢ on E£, moreover define a 4-dimensional C-vector subspace
(V)* of 3¢ by

(V' ={X eI |4E, x (E1 x X) =X, Fi(e) x X =0,k =2,...,7}

0 0 0
=0 & x ||&eCxeCC cE”
0 x &

with the norm (—E}, X, X) = —&¢E& + x1x;1. The group ((EGC)‘T)EI,FI((,U’,(:2
on (VE)*, obviously.
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LemMA 3.23. The Lie algebra ((eg)g)EhFl(m’kzz ; of the group

((E6C)U)ElvF1(ek),k:ZWJ is given by

¢El:0a ¢Fl(ek):0,k:27"'a7

D, [0\ @ p s o)
=\/= +(E — Es) ateC reC

) =6

ap = o, }

((eg)U)El,Fl(ek),k:Z‘...j = {¢ € esc

In particular, dimc(((eg)“)EhF] () k2.

Proor. By doing simple computation, this lemma is proved easily. O

PrROPOSITION 3.24.  The homogeneous space ((E6C)”)E]’F1 (e).k=2,...7/5pin(3, C)

is homeomorphic to the complex sphere (S€)*: (EO) gy Fie) k=a,...2/SPin(3, C)

~ (S6)°.

.....

ProOOF. We define a 3-dimensional complex sphere (Sf)3 by

(S ={x e (V)| (-E0. X, X) =1}

0o 0 O
= 0 & xi ||-&&G+xix=1,6eCxeCCcEC
0 x &

The group ((ES)")g, pi) ka7 acts on (S)°. Indeed, for ae

(EO) )k R k=, C (ES)7)g,» it follows from [6, Lemma 3.6.2] that

.....

‘€ ((ES)")g, k() k2,7 Hence, for X e (S€)? we have that
4E| x (Ey x 0X) =407 E| x (aE; x aX) =4'a"'E} x "7 (E| x X)
ZO((4E] X (E] XX)) :O(X,

and

Fi(ex) x oX = aFy(e;) x aX = ‘0" (Fi(ex) x X) =0,

that is, «X e (V.S)*. Moreover, it is clear that (—Ej,aX,xX) = 1. Thus we see
aX € (S€)°. We shall show that this action is transitive. In order to prove
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this, it is sufficient to show that any element X € (Sf)3 can be transformed to
i(Ey + E3) € (S€)°. Then we prepare some elements of (EO) )k, Fien) k=2, .7

For 1€ C€ C €€ such that 17 # 0, we define a C-linear transformation ()

3, Bi(X (&, x) = Y(n,p), by

m =<

- t .
}72:52 f3+fz+f3 coshv+(’x1) sinh v

2 2 1

— t .
]73:7522§3+52‘2Ff3 Coshv+(7:€1) sinh v,
2(t,x1)t .
y1:x1+(éz )i sinh v +—(’ ) sinh? ©
2v 2
X3t
Y2 = X, cosh 2—}—73 smh%
> .

y3:x3cosh§+% s1nh§7

where v e C, v = tf, moreover define a C-linear transformation o3(c) of 3¢ by

&oxox & exy e ’%,
as(e)| X3 & x1 | = e?x3 e, X ,
X2 X1 & e xy Xy e &

where ce C. Then since we can express f,(f) =exp Fi(t)” and os(c) =
exp ¢(Ey — E3)~ for Fi(t)”, c¢(E; — E3)" € ((eg)J)EhFl(q) i—r 7 (Lemma 3.23),

,,,,,

ey

Now, let
0 0 0
X=10 & x |e(s9)’
0 x1 &
Operate some o € (((Eéc)”)El‘F1 (e).k=2,..7)0 on X, and so X can be transformed
0 0 O
to |0 ¢ x| |e(SE)?% that is,
0 x4 ¢
0 0 0
wX=[0 ¢ x| |e(s9%
0§ ¢

Indeed, we can confirm the existence of oy above as follows.
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Case (i) where x;x; # 0.

We choose some # = i(n/2)(e1x1/(x1>‘cl)l/2) e CC. Then since it is easy to
verify that

(lx)—in AN ) =i(Z ! (e1x1,x1)
0,A) = 2 \/ﬁ’ 1 - 2 Xl)z'l 1AL, A
7 1
=i|lz | — 1 =0
1(2) \/ﬁ(ela )(xlvxl) )
- tolp = i(ﬁ) e1x| i(z) e1X] _ _(ﬁ)z (€1x1)(€1x1)
2/ V/x1x1 \2/) V/x1X1 2 xl)_clz
2 o 2
_ E X1X1 _ E
a (2> X1%| <2) ’
operate o := f3;(#o) on X, and so we easily see that the #,-part and the #;-part

of apX are (& — &3)/2 and —(&, — &3)/2, respectively. Hence we can confirm the
form of opX as above.

Case (ii) where x;x; = 0.

Together with the condition of (S_C)3, we have &E&; = 1. Then set & =
ety 0, € R. Operate op3(—rp — i) on X, and so we easily see that the
n,-part and the n;-part of ap3(—ry — i6h)X are equal to 1, that is,

0 0 0
0(23(—}’2 — i@z)X = 0 1 X1 =: Xl.
0 x 1
Moreover, operate w3 (in/2) € ((EC)) g, p, (e0),k=2,...7))o on X1, then we have that
0 0 O
023 (ig)Xl = 0 i X1 € (Sf)z
0 x —i

Hence this case is reduced to Case (i).
Since  Spin(3, C) = (F{)g, ry(e).k=2....7(C (ES)")p, Fy(e) k—2,...7) acts transi-
tively on (S€)? (Proposition 3.21), there exists « € Spin(3,C) such that

OCX:EZ —E3.

Again, operate ap3(in/2) on E, — Es, then we have that

- (zg) (E, — E3) = i(E> + E3).
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This shows the transitivity of this action to (Sf)3 by the group
((Eéc)g)El,Fl(ek),k:2,“.,7' The isotropy subgroup of the group ((EGC)J)El,Fl(ek),k:Z,mJ

at i(Ex+Es) is Spin(3,C) = (FO) g, renher..7 = (ES) )b By Filen) =2, 7
(Theorem 3.22, Section 2). Thus we have the required homeomorphism

((E6C)J)El,Fl(ek)7k:27.“,7/Spm(3> C) = (S—C)3'

Therefore we see that the group ((EC)”)g, f (ex).k—2,..7 is connected. O

THEOREM 3.25.  The group ((E()C)”)El’Fl(ek)’k:zw7 is isomorphic to Spin(4,C):
((Esc)J)E,,Fl(ek>,k:2,...,7 = Spin(4, C).

PROOE. Let  0(4,C) = O((VEY) = {Belsoc(VE)Y) | (Er, BX,BY) = (Ei,
X,Y)}. We consider the restriction f= o cps of oce((EGC)C’)El’Fl(ek)’kzzw7
to (VC)* then we have fe O(4,C). Hence we define a homomorphism
P (E) s, e n,.7 — O4.C) = O((V)*) by

p(a) = ol ey

.....

is connected (Proposition 3.24), the mapping p induces a homomorphism
D: ((EGC)G)EI,F] (ex), k=2,...7 S0(4,C) = SO((V_C)4)~

It is not difficult to obtain that Ker p = {1,0} = Z,. Indeed, let o € Ker p. For
Er+ Es, Ey — Es € (VE)*, since a(Ey 4+ E3) = Ey + E3 and a(E; — E3) = E; — Es,

U(1,CC) such that o = ¢(0), where ¢ is defined in Theorem 3.3, then it follows
from oF (1) = Fi(1), Fi(1)e (VS)* that we have (0)> =1, that is, 0 =1 or
0 = —1. Thus we have that

a=¢(1)=1 or a=¢(-1)=o,

that is, Ker p C {l,0} and vice versa. Hence we obtain that Ker p = {1,0}.
Finally, we shall show that p is surjection. Since SO(4,C) is connected, Ker p
is discrete and dimc(((eg)”)EhFl(ek%kzzwﬂ) = 6 = dim¢(so(4, C)) (Lemma 3.23),
p is surjection. Thus we have that

(ES g, r, (o) k=2,..7/ Z2 = SO(4, C).
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.7 1s isomorphic to Spin(4, C) as the

Therefore the group ((EE)?) Ev.Fy(eg) k=2
universal double covering group of SO(4,C), that is, ((ES)?) B Fi(en) k=2, =
Spin(4, C). U

We define a group ((Ef)““)g £, #i(e).k=2...7 BY

KoL = O, J0L = O,
((E7C)K’ﬂ)E1,E,1,F] (ex) k=2,.,7 —  *€ E7C “l?l = Ej, OfE—l =E_
aFi(ex) = Fi(ex), k =2,....7

Then we have the following proposition.

.....

=~ Spin(4, C).

ProoF. Let ae (E)“")z i\ pie) k.. 7 From aEy=E; and oE | =
E_;, we have «l =1, and so as in the proof of Proposition 3.19, we have
ol = 1. Thus we see x € (ES); | = EC. Moreover, since we can confirm oE| = E|
from the condition above, we have we (ES)g, and from wo = o, together
with —o = exp(nix), we have (—o)a = a(—0), that is, oo = ag. Thus we have

xe ((Eéc)J)El,Fl(ek),k:Z,...J' _ ~
Conversely, let /36((EGC)”)El’Fl((,Mk:2 _____ ;. It is clear that PE, =E; and

PE_ = E_,. For C-linear transformation x; of SC ci X = (B, X)E| — 4E) x
(E; x X), we have k| = fx;. Indeed, note that suppose SE; = E;, we have
‘B7'E, = E| (see [6, Lemma 3.6.2]).

KIPX = (Ey,BX)E1 — 4E) x (Ey x fX)
= ("' Er.BE\)PE, — 4'f ' E x (BE x BX)
= ("B'B"Ey, E\)BE, — 4B "Ey x "B (Ey x X)
— (E1, pX)BE: — 4B(Ey x (E1 x fX))
= B((Er, X)E) — 4E; x (E; x X))
= priX,

that is, 18 = ;. Similarly, we can show x;’8~' = 8 'x;. Hence we have
that
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Kﬂ(X7 Y7é7’7) = K(ﬁX7 Iﬂ_laé77]) = <_K1ﬁX7K11ﬂ_l Y7 _5771)
= (_ﬁK1X7 tﬂ71’c] Y» _éan) = ﬁ(_K]XaKl Ya _57'])
=pr(X, Y, n),

that is, xf = fx. Additionally, we can show that uf = fu. Indeed, for
(X,Y,En) e BE, we do simple computation as follows:

HB(X, Y, &) = u(BX, 'Y &)

= B(0, B, By, 0)(BX, B Y, &)

= QE x 'B7'Y +3E\, 2E x fX +CEy, (B, "B Y), (E1, X))

— QB7E < 'B'Y +nBE2BE, x BX + E'B T Ey,
(BE\, '8 Y),('p~ E, X))

= (2B(Ex x Y) +npEy,2'B By x X) + &' Ey,
(B7'BELY), (B p Er X))

— (BQE\ x Y +1E)), '8 (2E, x X + EE)), (E, Y), (E1, X))

= B2E, x Y +nEy,2E; x X + ¢Ey, (Ey, Y), (Ey, X))

— BD(0, Ey, E1,0)(X, Y, & 7)

=pu(X, Y, <n),

that is, x4 = fu. Hence we have f € (Ef)"")z £, (o) k=2,..7- The proof of this

proposition is completed. [

Continuously, we shall construct Spin(5,C) in Ef.

KO = o, oL = oL,
((E7C)K”u)£‘17Fl(£’k>,k:2,...,7 =y*€ E7C aEl = El? ) )
oFi(ex) = Fi(ex), k=2,...,7

moreover define a 5-dimensional C-vector subspace (V' €)° of B by
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(V_C>5={Peﬂsc

kP=P,PxE =0,
PxFi(e)=0k=2,...,7

{(X,—?]E],O,i’])|4E1 X(E] ><X):X,XxFl(ek):O,k:Z,...,7,neC}

00 0\ /(=4 0 0
= ( 0 52 X1 3 0 00 7077/) X]GCC752753,77€C
0 X & 0 00

with the norm (P, P), = (1/2){uP, P} = —&& + x1%1 — %, here the alternative
inner product {P, O} is defined as follows: {P,Q} = (X, W)—(Z,Y) + ¢w — {y for
P=(X,Y,&n), Q= (Z,W,(,w). Obviously, the group ((EY)"")z 5 (e)hez. .7
acts on (VE)°.

Lemma 3.27. The Lie algebra ((eg)’(‘”)}fl,Fl(ek),k:Z,.NJ of the group

((E7C)](7”)E1,Fl(ek),k:2,...,7 is given by

KD = Dk, u® = du,
((eg)lC./t)El,Fl(ek k=2,...,7 ¢(¢7A7 B, v) € e7C PE, =0,

) .

DF (ex) =0, k=2,...,7

e les)”,
PEI = ¢pFi(er) = 0,

A =By + &3E3 + Fi(a),
g eC,aeCC,

B = —2E1 x A
= -k — ok + F (a)

=S &(4,4,B,0) e ¢

In particular, dimC(((°7C)K’”)El,ﬁl(ek),kzzw,7) =6+ (1+1+2)=10.

PROOF. Suppose @ = P for @ eef, from —o = exp(nix) we see that
(—0)® = &(—0), that is, 0@ = ®o. Hence, we have ¢ € (ef)’. Moreover, from
u® = @y, the condition @E; = 0 is equivalent to the condition ®(E;,0,1,0) = 0.
Using these facts, by doing simple computation, we have the explicit form of the
Lie algebra ((¢)"")z fi(o).4=2,.7 abOVe. O

LemMa 3.28. For 0 # a € C, we define a mapping o;(a) : PE- P i=1,2,3
by
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sin sin
1 + (cos|a| — 1) p; —2mﬁE,~ 0 la E;
|4l |4l
2a 51|n||a| E; 1 + (cosla| — 1)p; —za s1|n|a| E; 0
a a
w(a) = inlal ;
sin|a
0 E; cos|q| 0
lal
—raME,- 0 0 cos|a|
lal
then we have w;(a) € E; C ES, where p; : 3 — 3 is the C-linear mapping defined
by
&ox3 X &1 Xz dnX
pi| X3 & x| =[daxs & dax |,
X2 X1 & Opxa OnX1 &3

where 0 is the Kronecker delta symble. The mappings oi(ay), ox(az), o(az),
(a; € C) are commutative for each other.

Proor. For @;(a) = &(0,aE;, —1aFE;,0) € ¢7, it follows from o;(a) = exp ®;(a)
that o;(a) € E; C Ef. The relation formula [®;(a;), ®;(a;)] = 0 implies that o;(a;)
and o;j(a;) are commutative (As for the Lie algebra e¢; of the compact Lie group
E;, see [9, Theorem 4.3.4] in detail). O

PROPOSITION 3.29.  The homogeneous space ((E7C)K,ﬂ)E1,F1 (e0),k=2,...7/Spin(4, C)
is homeomorphic to the complex sphere (S€)*: ((E7C)K’”)ElvFl(ek>’,(:27.“’7/Spin(4, Q)
~ (S_C)4.

PrOOF. We define a 4-dimensional complex sphere (Sf)4 by

(S ={Pe(VE)’|(P,P), =1}

00 0\ /(=4 0 0
=q([0 & x [, 0 000 -a&+tan -y =]
0 X & 0 0 0
The group ((ES)“")g fie)hen..; acts on (S)*  Indeed, for ae

(EF)"")g Fi(e).h=r,..7 and Pe (S€)*, from the following relational formulas:

,,,,,
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xoP = oaxP = oP,
aP x E; = oP x oEy = a(P x Ey)'a ' =0,

oaP x Fi(er) = oP x oF|(er) = a(P x Fi(ex))'a™ ! =0,
1 1 1
(aP,aP), = E{,uocP, aP} = E{a,uP, aP} = E{,uP, P} =1,

we have aP e (S€)*. We shall show that this action is transitive. In order to
prove this, it is sufficient to show that any element P e (Sf)4 can be transformed
to E~',1 = (0, —El,O, 1)

Now, for a given

0 0 0 7 00
P:( 0 62 X ) 0 0 0 707’7)E(S—C)47
0 x & 0 0 0

we choose aeR, 0<a<mn/2 such that tan2a=2Re(y)/Re(& +&) (if
Re(& 4+ &3) =0, let a=mn/4). Operate on3(a) := a(a)as(a) = exp(@(0,a(E, +
E3), —a(Ex + E3),0)) € (E7)"") &, (o) k=2,..7)0 o0 P (Lemmas 3.27, 3.28), then
the part (1/2) Re(&, + &;) sin 2a — Re(y) cos 2a of y-term in op3(a)P is equal to
0, that is,

(1/2) Re(&, + &) sin 2a — Re(y) cos 2a = 0.
Moreover, we choose b € R, 0 < b < 7/2 such that tan 2b = 2 Im(y)/Im(&, + &;)

(if Im(& + &) =0, let b =n/4), then -term of oy3(b)onz(a)P is equal to 0.
Hence we have that

s23(b)oa3(a)P =: P' e (S)*.

Since  Spin(4,C) = ((EGC)J)EI,FI(ek),k:Z 7(C ((E7C)K‘H)E1,Fl(ek) k=2

transitively on (S€)°, there exists f € Spin(4,C) such that

;) acts

yeeey

ﬂP/ = (I(Ez + E3)70,0,0> =: P’
Again, operate op3(—n/4) on P”, then we have that
A . . s
23 _Z P’ = (0, —lE1,0, l)(Z lE_l).

This shows the transitivity of this action to (Sf)4 by the group
(E7C)K’#)E“1.F1 (ex),k=2,..,7" The isotropy subgroup of the group ((E7C)K’ﬂ)El,Fl (ex),k=2,..7
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at iE_, is Spin(4, C) (Theorem 3.25, Proposition 3.26). Thus we have the required
homeomorphism

.....

Therefore we see that the group ((Ef)"")z f,(o).4-2,7 is connected. O
TuroREM 3.30.  The group ((Ef)"")z, p, (ex).k=2,...7 18 isomorphic to Spin(5, C):
((E7C)K7#)E~17F1(Ek),kzz,.mj = Spln(s’ C)

ProOE. Let O(5,C) = O((VE)’) = {pelsoc((VE)) | («P,aP), = (P, P),}.
We consider the restriction f=of ;s of we((Ef)"")z ) aen..7 1O

(VE)’, then we have feO(5C). Hence we define a homomorphism
P (ED)g, fy(ehn. — O5,C) = O(VE)*) by

pla) = OC‘(Vf)S'

Moreover since the mapping p is continuous and the group ((Ef)"")z 4 (o) 4=2...7
is connected (Proposition 3.29), the mapping p induces a homomorphism

P (ED))g, () kn,.n — SO(5,C) = SO((VE)).

It is not difficult to obtain that Ker p = {1,0} =~ Z,. Indeed, let « € Ker p. For
E | = (0,—E;,0,1) € (VC)S, since wE_| = E_4, together with «E; = E,, we have
that oEy = Ey and ol = 1. Hence we have that o€ (EX)™")g | o) ka7 =

((E6C)”)E1,F1(ek),k:2 ;. Moreover, for E; + E3, Ey ~ Ey € (VE)°, since a(E + E3)

= E» + E; and a(E, ~ E3) = E, =~ E3, we have that o e ((Eéc)U)El_JEZ’ELFI(ek)’k:2 ‘‘‘‘‘ ;
= (F) g 5. By (e ka7 = U1, C©). Hence there exists 0 € U(1,C) such that
o= ¢(0), where ¢ is defined in Theorem 3.3, and so since oF(l) = Fi(1),

Fi(1)e (VE)°, we have (0)> =1, that is, 0 =1 or 0 = —1. Thus we have that

a=¢(1)=1 or a=g¢(-1)=o,

that is, Ker p C {l,0} and vice versa. Hence we obtain that Ker p = {l,0}.
Finally, we shall show that p is surjection. Since SO(5, C) is connected, Ker p is

.....

p is surjection. Thus we have that

((E7C)KMU)EI,F1((’1\»),]{:2,“.,7/22 = SO(S’ C)

Therefore the group ((Ef)“")g # (o).4=2, .7 is isomorphic to Spin(5,C) as

)

the universal double covering group of SO(5,C), that is, ((EfX)"") E Fy () k=2

e),k=2,..,7

=~ Spin(5, C). L
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Continuously, we shall construct Spin(6,C) in Ef.

KoL = O, JOL = 0L,
ocFl(ek) Fl(ek) k=2,...,7(

moreover, define a 6-dimensional C-vector subspace (V_C)6 of B by

(VC)6={Peﬂsc

kP =P
PxFi(e)=0k=2,...,7

00 0\ /7 00
- ( 0 62 X1 3 0 00 707;7) xleccaé%ffﬂnhr]ec
0 x & 0 0 0

with the norm (P, P), = (1/2){uP, P} = —&:&3 + x1%1 +my.

Lemma 3.31. The Lie algebra ((e?)K’”)Fﬂek)’k:Z , of the group

.....

((eg)h ”)F. (ex),k=2,...,7

= {@(gb,A,B, v) € e7C

K® = Px, u® = dy,
@F](ek) ZO,kZZ,...,7

) Dy | 0\ +4,(a)
0 | 0/)+@E + 0B +1E+ Fi(h))”,

Dyesn(2,C),aeCC 1, eC,

= D(p,A,Bv)eeS| 1+13+13=0,1¢€CC,

A=gE +&Ey+ Fi(a),geC,ae Cc¢,

B=0E, +viE;+ Fi(b), v e C, be ce,
—-(3/2)n

In particular, dimc(((e$)" ”)El Fie0) k=2, D=(1+2+2+2)+4+4=15.

.....

ProoF. From [7, Section 4.6], we see that the explicit form of (e$)"* is
given by
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() = {D(¢, 4, B,v) € ¢§ | k® = DK, u® = D}

de(e)’,

A =gE, + &E; + Fi(a),
= D(p,4,B,v) € e§ | B=0:E, + v3E3 + Fi(b),
e, o€ C,a,beCC,

v=—(3/2)(¢E1, E1)

Since the result of direct computation of OF, (er) is as follows:
. %
®(¢7A7 37 V)Fl (ek) = (¢Fl (ek) - gFl(@k), 24 x Fl (ek)a Oa (B7 Fl (é’k))),
for @F|(e;) =0 we have that

#Fi(e) =3 Frles) = 0+ (1)

24 % Fi(e) =0---(2)
(B, Fi(ex)) =0---(3).

From the conditions (2) and (3), it is easy to verify that x, ye CC. As for the
condition (1), by doing direct computation, we obtain that

$F1(ex) —%Fl(ek)

=@+ T)Fi(ex) — gFl (er) ©Geiy,Te(39), tr(T)=0)

= OF(ex) + TFi(ex) — %Fl (ex)

— (D + A1 (a1))Fi(ex) + TFi(ex) — gFl (er) (Deso(8,C),are€)

= Fi(Dey) + (a1, ex)(Exs — E3)

1 1
+ <§TzF1 (ex) +§T3F1 (ex) + (11, ex)(Er + E3)> - gFl (ex)

= {(a1,ex) + (t1,ex) Y E» + {(ar,ex) — (t1,ex) } E3
1 %
+ Fi(Dey +§(12 +13)er — gek),

where T = 11E) + Ery + 13Es + Fi(th), e C, t1 € cC.
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Hence, from the condition (1), we see that

(alaek) + (Z],@k) = (alaek) - ([1,815) =0-- (4)
1
Dey, ~ 5T~ %ek =0---5)(t1+12+713=0),
moreover, for the condition (5), together with v = (—3/2)7;, we have De; =0,
k=2,...,7. Thus we have D e s0(2,C) C s0(8,C). From the condition (4), we
have ay,f € C€. Therefore we have the required the explicit form of the Lie

algebra ((¢5)"")f (o) k=2...7- =

LemMmA 3.32. For ve C, we define a mapping B(v) : P — R by

eME e'x3 e'm e e 'yz e

BOIX, Y. En)=(| X3 & x|, | eV m v |,e e e ).
e’xy X & e’y n

Then we have B(v) € (((E7C)](7M)F1(€k),k:2‘.,.,7)0'

Proor. From Lemma 3.31, for ve C we see that &((2/3)v(2E, —
(Ex + E3))7,0,0,=2v) € ((¢5)"")f, (¢ k—2...7- Hence we have that

p(v) = exp(P((2/3)v(2E| — (E» + E3))7,0,0,-2v)) € (((E7C>K’ﬂ)ﬁl (e),k=2,...7)0-

O

PrOPOSITION 3.33. The homogeneous space ((Ef)"")g o) k.. 2/Spin(5, C)
is homeomorphic to the complex sphere (S€)°: (ED)") (o) kr. .2/ SPIN(5, C) =~
(5€)°

In particular, the group ((E7C)K”u)F1(ek),k:Z,...,7 is connected.
ProOF. We define a 5-dimensional complex sphere (S€)° by
(SE) ={Pe(VE)*|(P,P), =1}

0 0 0 n 0
={o & x|, [o o
0 % & 0 0

70777) _6253 +X1Xf1 +771;7 =1

oS O O

As in the proof of Proposition 3.29, it is easy to verify that the group
((E7C)W)Fl(ek),k:zm
transitive. In order to prove this, it is sufficient to show that any P e (S€)° can
be transformed to E; e (S€)°.
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Now, for a given

0 0 0 m 0 0
P=(l0 & x|, 0o 0 of,0ne(s°,
0 x1 & 0O 0 O

first we shall show that there exists some o e ((E€)"*) Fi(ex),k=2,..,7 such that
aP e (SE)*.

Case (i) where n; # 0, 5 # 0.

We choose v e C such that —e=2"y; = >, and operate f(v) of Lemma 3.32
on P, then we have (v)P e (S€)*.

Case (ii) where 7, =0, n #0, & #0.

Operate o = exp ®(0, E3,0,0) € ((Ef)") 4, ).4=2...7)0 o0 P (Lemma 3.31),

then we have that
oP = (éZEZ + (53 + 77)E3 + Fl (xl)a éZElaoa 77)

Hence this case is reduced to Case (i).

Case (iii) where 7, =0, n #0, & #0.

As in Case (ii), operate o = exp @(0, E»,0,0) € (((E7C)K”‘)Fl(m’k:zwj)0 on P
(Lemma 3.31), then we have that

aP = ((& +n)Ey + &E3 + Fi(x1),&E1,0,7).

Hence this case is also reduced to Case (i).

Case (iv) where n, =& =& =0, 5 #0.

For some 7€ R, operate o = exp @(0,1Fi(x1),0,0) € (((E7)"") £ (00 k=2...7)0
on P = (Fi(x),0,0,7) (Lemma 3.31), then we have that

oP = ((1+ m)Fi(x1), = (2 + 20) (e, x1) En, 0,) - ((ver,x1) = 1)
= ((1 + l’7)Fl (X]), _(2t + lzn)E1a0777)'

Hence this case is also reduced to Case (i) for some ¢ e R.
Case (v) where #; #0, n =0, & #0.
Operate o = exp ®(0,0, £,0) € (EF)"")f, (o). 52
then we have that

7)o on P (Lemma 3.31),

aP = (&Er + EE3 + Fi(x),m E,0,&).

Hence this case is also reduced to Case (i).
Case (vi) where 1, #0, =0, & #0.
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,,,,,

(Lemma 3.31), then we have that
oP = (éZEZ + 53E3 + Fl (xl)arllEh(L 53)

Hence this case is also reduced to Case (i).

Case (vii) where 7, #0, n =0, £, =& =0.

For some ¢ e R, operate o = exp &(0,0,1F(x),0) e (((E7C)""”)Fl(ek%k:z‘_ﬂ)0
on P = (Fi(x1),n,E1,0,0) (Lemma 3.31), then we have that

aP = ((1 = ) Fi(x1),m E1, 0, (2 — 2y (x1,x1))) (31, 31) = 1)
= (1= ) Fi(x1),m E1, 0, 21 = £217y)).

Hence this case is also reduced to Case (i) for some 7€ R.

Case (viii) where 7, =# =0.

Then we see that Pe (S€)° c (S

From above since

acts transitively on (S€)* (Proposition 3.29), there exists & € Spin(5, C) such that
d(aP) = (0, —iEy,0,i) (= iE_y).
Again, operate fi(—in/4) of Lemma 3.32 on J(aP), then we have that

/)’(iZ) (0(aP)) = (0, Ey,0, 1) (= Ey).

This shows the transitivity of this action to (Sf)5 by the group
((157C)K’#)Fl (ex), k=2,...,7" The isotropy subgroup of the group ((E7C)K"ﬂ)Fl(ek)7k:2w..,7

at E, is Spin(5,C) (Theorem 3.30).
Thus we have the required homeomorphism

((E7C)K’ﬂ)F, (ex), k=2, ... 7/Spin(5, C) ~ (S_C)5~

Therefore we see that the group ((Ef)"*) () =2, 7 is connected. O

3

THEOREM 3.34. The group ((E7C)K’”)Fl(q)’k:2 ““““ 5 is isomorphic to Spin(6, C):
((E7C)K’“)Fl(e,\.),kzzw.,7 = Spin(6, C).

ProoF. Let O(6,C) = O((VC)®) = {pelsoc((VE)°) | («P,xP), = (P, P),}.
4 to (V)®, then

We consider the restriction 8 = al ;s of 2 € ((ED)™) (00 k2,
we have € O(6,C). Hence we define a homomorphism p : ((E7C)""")F~l(Ek)k:zw7
— 0(6,C) = O((V€)°) by
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Moreover since the mapping p is continuous and the group ((EX)"*) Fi(e) k=2,..7
is connected (Proposition 3.33), the mapping p induces a homomorphism

p: ((E7C)K’ﬂ)F‘, (ex), k=2
It is not difficult to obtain that Ker p = {1,6} = Z,. Indeed, let « € Ker p.
For E; = (0,E,0,1), E_; = (0,—E;,0,1)e (VC)°, since oE; =E, and
«E_ = E_;, we have that «F, = E, and ol =1. Hence we have that
xe ((E7C)K"ﬂ)5'1,1,Fl(ek)‘k:2.,...,7 = ((EGC)J)El‘Fl(ek)‘k:Z‘...J' Moreover, for E, + Ej,
Ey =~ E3e (VE)S, since a(E; + E3) = E —F Ez and o(E; ~ E3) = E; ~ E3, we

;— 80(6,C) = SO((V)").

..........

Hence there exists 0e U(1,C°) such that o = ¢(6), where ¢ is defined in
Theorem 3.3, and so since oF; (1) = Fi(1), Fi(1) € (V)®, we have (9)> = 1, that
is, =1 or § = —1. Thus since we see

a=¢(1)=1 or a=g¢(-1)=o,

we have that Ker p C {1,5} and vice versa. Hence we obtain that Ker p = {1,0}.
Finally, we shall show that p is surjection. Since SO(6,C) is connected, Ker p
is discrete and dimd((e?)’“‘”)mm k—2...7) = 15 =dim¢(s0(6,C)) (Lemma 3.31),

.....

p is surjection. Thus we have that

((Ex)"™* >FM ke..7/Z2 = SO(6,C).

Spin(6, C). O

Here, as in previous section, we make a summary of the results as the low
dimensional spinor groups which were constructed in this section.

((E7C)K’ﬂ)F1(ek),kzz,.uj = Spin(6, C)
U

yeeey

(F4 )El Es, Es, Fi(ex),k=2,...7 = = Spin(2,C) = U(1, CC)

AAAAA
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Together with the results of previous section, we have had two sequences as
for the low dimensional spinor groups.

After this, by using two Spin(6,C), we determine the structure of the

groups ((E7C)K"”)“‘;, (Ef)”‘;, and we shall prove the connectedness of the group
(E7C)(74‘SD(6, C)-

First, we determine the structure of the group ((E7C)K’”)”4
LEMMA 3.35. The Lie algebra ((¢€)")% of the group ((E€)“")% is given by

()"

{@(qﬁ,A,B,v) € ef

/ - /
0,® = Do,

K® = DK, ud = <15,u,}

[ D2| O +4(a)

B < 0 D6> +H(TE) + 12y + 13E5 + Fi (1)),
Dy e50(2,C), Dges0(6,C), ac CC, 1€ C,

=P A, By)eeS| 1 +n+13=01¢eCC,

A=&FE +eE;+F(a),geC,ac c¢,

B=0E, +v3E3+ Fi(b), v, € C,be cC,
v=—(3/2)t;

In particular, dimc(((eg)K’”)”‘i) =((1+15+2+2+2)+((2+2)x2=230.

Proor. By doing simple computation, we can obtain the result above.
O

PROPOSITION 3.36. The group ((E€)“")% is isomorphic to (Spin(6,C) x
Spin(6,C))/Z>, Z> ={(1,1),(a,0)}: ((EF)"")% = (Spin(6, C) x Spin(6, C))/Z,.

ProoF. Let

: ~ C ~ C\ K,
Spin(6, C) = (F4 )EI,EZ,E3‘F1(ek),k:0.1 = ((E7 ) ﬂ)El,E,l,EZ+E3,EZ;E3,F1(e,c),kzo.1

(Theorem 3.34). Then we define a mapping Prpi.a) : Spin(6, C) x Spin(6,C) —
((ES)™")% by

(px,,u,ai(ﬂl 7ﬂ2) = ﬂlﬁZ'
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First, we have to prove that the mapping ¢, na is well-defined. It follows
from Ler,nma 3.17 and, Proposition 3.19 that Spin(6,C) = (F4C)El~,E27E3~F1<C’I;),k:0,1
C(FS)™ C ((Ef)™*)%, and since Spin(6,C) = ((E7)"")g (o) 4=2.7 and
((E€)"")% are connected, in order to prove Spin(6,C) = (ED)") o0y ke, 7
C (ES)“*)%, it is sufficient to show that the Lie algebra spin(6,C) =~
((5)" )£, (¢0).k=2,..7 is the subalgebra of the Lie algebra (€))% However,
from Lemmas 3.31, 3.35, it is clear. Hence the mapping ¢, o is well-defined.

Next, we shall show that the mapping ¢, wa, is a homomorphism. Since
Spin(6,C) = (F) g, g, £, (k0.1 and Spin(6, C) = ((EF)™")5,(0) k=27 are
connected, in order to prove that the mapping ¢, o, is a homomorphism, it is
sufficient to show that &; commutes with @,, that is, [@;,d,] =0 for @, e
spin(6, C) = (ff)El.Ez.E3,F', (k0,1 and @5 € spin(6, C) = ((e5)" )5, (ex),k=2,...,7*
However, it is also clear from Lemmas 3.14, 3.31.

We determine the Ker g, po)- From the definition of kernel, we have that

Ker g”/c,y,cg( = {(/’)17/’)2) € Spin(67 C) X Spin(6, C) | (p;«,,u,a‘;(ﬂlvﬁ” = 1}
= {(B1,) € Spin(6, C) x Spin(6,C) | B; = ;' }.

Then, from the condition f, =4,', we see f,Fi(ex) =, Filex) = Fi(ex),
k=2,...,7, that is, pB,Fi(ex)=Fi(ex). Moreover, since f, € Spin(6,C) =
(Ff)El7E2,E3’Fl(ek)’k:0’1, we see that f8,Fi(x) = Fi(x) for all xe €. Here, from
B e (F“C)E]?EZ:E3 ~ Spin(8, C), B, can be expressed by f, = (J1,0,03) € SO(8, C)**
such that (9,x)(d2y) = 03(Xp), x,y€ €, and so we have that d;x = x for all
xe €€, Hence we have 6; = 1, and so we see that

pi=1L,1H)=1 or B =(,-1,-1)=0.

Hence it follows from the condition f; = f; ! that pr=1 or p, =g, that is,
Ker ¢, .0 C {(1,1),(g,0)} and vice versa. Thus we obtain that Ker ¢, o, =
{(1,1),(0,0)} = Z,. Finally, we shall shon that ¢, , ., is surjection. Singe
Ker ¢, ,,,, is discrete, the group ((E€)™")% is connected because of (Ef)""
=~ Spin(12,C) (see [7, Proposition 4.6.10]) and dimc(((eg)'{’”)”‘:) =30=
dimc¢(s0(6, C) @ s0(6,C)) (Lemma 3.35), Do) 18 surjection.

Therefore we have the required isomorphism

((ES)"")% = (Spin(6, C) x Spin(6, C))/Z,. 0

We determine the structure of the group (E7C)”4 as one of aims of this
subsection.
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LemMa 3.37. The group (E7C)‘T4/ contains a subgroup
W(SL(2,C)) = {(4) € E7 | 4 € SL(2, O)}

which is isomorphic to the special linear group SL(2,C) ={Ae M(2,C)|det 4 =1}.
Here, for A€ SL(2,C), a mapping y(A) : B¢ — BE is defined by

& X3 X nmo oy »m

YA X3 & x| | 7 om o LG
X2 X1 & Y2 V1 M3
&oxy X noovs o

= (x5 & x|.[ B 7 »y|.&n),
o %G oy

()= G=G) (2)=+(2) (2)-(2)
GG G)=G) (=)

Proor. The action of ®($(v),akE;,bE;,v) e (¢£)% (Lemma 3.18) (f(v) =
(2/3)v(2E| — (E> + E3))~,a,b,ve C) on P is as follows:

wWN W~

@(¢(V),aE1,bE1,v)(X, Y7é7’7) = (X/7 Yl?él7’7/)7

OGO ©O-600
B-G)E) -G )
-G ) ()-(9-0)

Therefore, for A4 exp(z “ )e SL(2, C)((Z “ )esI(Z, C)), we have
—v

that
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THEOREM 3.38.  We have that (ES)% = (SL(2, C) x Spin(6, C) x Spin(6, C))/
Z,, Z,={(E,1,1),(E,0,0),(-E,04,—0;),(—E, g0}, —00})}.

Proor. Let SL(2,C)={A4e M(2,C)|det A =1} and two Spin(6,C) as in
1+ SL(2, C) x Spin(6, C) x

a

Proposition 3.36. Then we define a mapping PEC,
Spin(6, C) — (ES)% by

¢E7F,05(Aa/))17/’)2) = y(A)B1B,-

From Lemma 3.37 and Proposition 3.36, it is clear that the mapping PEC o
is well-defined. It is to verify that PEC o is a homomorphism. Indeed, note
that B, f, € Spin(12, C) = (E€)™*. From [7, Theorem 4.6.13], we see that y(4)
commutes with f,, f,, respectively. Moreover, as in Proposition 3.36, S,
commutes with f,. Hence since ¥(A4), f;, f, commute each other, PEC 5! is a
homomorphism. We shall show that PEC o) is surjection. For o€ (Ef)”‘i C
(E€)?, there exist 4 € SL(2,C) and e Spin(12,C) such that « = ¢(4,f) (see
[7, Theorem 4.6.13]). Moreover, from the condition o0 = aoy, that is,
9(A4,0,p0, ") = p(4, ), we have that

A=4 A=-4
aifol, =8 o aifo, ! = —ap.

Then the latter case is impossible because of 4 # 0. As for the former case,
from Proposition 3.36, there exist f, € Spin(6,C) and p, € Spin(6,C) such
that ﬂ:%,ﬂ,@;(ﬂlv p,). Thus, PEC o, is surjection. Finally, we determine the
;. From Ker ¢ = {(E,1),(—E,—0)} (see [7, Theorem 4.6.13]) , we have

[

Ker ¢ EC,
that

Ker gpc ;o ={(4, 1, 5,) € SL(2,C) x Spin(6, C) x Spin(6,C) | A = E, 8, = 1}
u{(4,p,,p,) € SL(2,C) x Spin(6, C)

x Spin(6,C)| A = —E, B, = —a}.

So, we obtain the following results.
Case (i) where A =E, 4, =1.
From Ker ¢, , ,» ={(1,1),(0,0)} (Proposition 3.36), we have that

A=F A=F
pr=1 o (B =0
Br=1 By =o.
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Case (i) where 4 = —E, f,5, = —o.
Since 8, = —0g € ((E7C)"'”)”4/, there exist 8, € Spin(6, C) and B, € Spin(6, C)

such that —o = 8,4, (Proposition 3.36). Here, we easily see that

. ~ C ~ C\ K,
0‘1 € Spm(6’ C) = (F4 )El.,Ez,Ez,Fl(fk%k:OJ = ((E7 )K Iu)ElaEflaEZ+E37E2;E3¢F1(6/C)7k:0a1’

—ay € Spin(6, C) = ((E7C)K’N)Fl(ek)‘kzz,...,%

and oj(—0)) = —o, and so together with Ker Pra, = {(1,1),(o,0)}, we have

that
{ﬂl_ai {/31—‘704/1
! Or !
By = —ay By = a(—ay).

Ker PEC.0 C {(E,1,1),(E,0,0),(—E, ay,—0y),(—E, a0y, —aay)},

Hence we see

and vice versa. Thus we obtain that
Ker PEC o) = {(E,1,1),(E,0,0),(—E, 0y, —0y),(—E, 004, —00y)} = Z4.
Therefore we have the required isomorphism
(EC)% =~ (SL(2, C) x Spin(6, C) x Spin(6, C))/Z4. O

a,,50(6,C)

Now, we also determine the structure of the group (E7C) , and prove

the connectedness of its group as another aim of this subsection.

THEOREM 3.39. We have that (ES)"*¢9 ~ SL(2, C) x Spin(6, C).

a,,50(6,C)

In particular, the group (EX) is connected.

ProOF. Let SL(2,C) and Spin(6, C) = ((Ef)"")f (o) k=27 s in Theorem
3.38. Note that

50(61 C) = {¢D = (D,0,0,0) € e7C | De 50(67 C) = (ff)El,EzA,E;,Fl(e/(),k:O,]}'

Then we define a mapping ¢zc 51 su(e.c)  SL(2, C) x Spin(6, C) — (EC)7=(6:0)
by

¢E7C,o4,so(6, Q) (Av ﬁ2) = l//(A)ﬂb
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where note that the mapping PEC 51 50(6,C) is the restricted mapping of the
mapping PEC o] in Theorem 3.38. We have to prove that PEC 51, 50(6,C) is well-
defined. In order to prove this, since ¥ (SL(2, C)) and Spin(6, C) are connected, it
is sufficient to show that for @(¢(v),aE|,bE|,v) € Y (sl(2,C)), &, € spin(6, C) =
((e5)" )£, () k=2, 7> the following formulas hold:

[QDa ¢(¢(V), aE17 bEla V)] = 07 [¢Dy QDZ} = Oa

where (D((b(V), aky, bElaV) € W*(El(z, C))7 Dy e 5pin(6a C) = ((e7c)K7#)F1(€k)~,k:2,“.,7’
here a mapping ¥, is the differential mapping of the mapping  in Lemma
3.37. However, it is clear that [@p, ®(¢(v),aE),bE;,v)] =0, moreover from
Lemma 3.32, it is easy to verify that [@p,d,] =0. Hence PEC o), s0(6.¢) 18 well-
defined. Since the mapping PEC o] 50(6.C) is the restricted mapping PEC 51> it
is clear that the mapping PEC o], 50(6.C) is a homomorphism. We shall show
that the mapping ¢zc ; .o,y 18 injection. Since dime(pec 41 s, c)) = 18 =
3 4 15 = dim¢(sl(2, C) @ spin(6,C)) (Lemma 3.18 (2)), the differential mapping
PEC 5],50(6,C) of PEC 5], 50(6,C) is injection. Hence we see that Ker PEC.o1,50(6,C), =
{0}, that is, Ker PEC ol.s0(6.¢) 18 discrete. Hence, Ker gpc ;1 .6, ¢) 1 contained in
the center z(SL(2,C) x Spin(6,C)) = {(E, 1), (E,0),(E,—0y),(E,—0a}), (—E,1),
(—E,o0),(—E,0;),(—E,—00})}. Note that in general because of the center
z(Spin(6, C)) = Z4, we see that z(Spin(6,C)) = {1,0, —ga}, —a,} (cf. in the proof
of Theorem 3.38). However, since the mapping PEC o1 so(6,c) MAPS the elements
of z(SL(2, C) x Spin(6,C)) to 1, 6, —0y, —ooy, —1, —0, 04, 60, respectively, we
have that Ker ¢zc ; oo6.c) = {(E, 1)}, that is, the mapping PEC o], so(6,C) 1S 1D
jection. Finally, We shall show that the mapping PEC 5], 50(6,C) is surjection.
For ae (EC)*®C) ¢ (EC)%, there exist A€ SL(2,C) and B € Spin(6, C) =
(F) k5 5 e k=01 = (ED) )5, B myik by by o) k0.1 80D By € Spin(6, C)
~ ((E7C)""")Fl(t,k),kzzw7 such that o = (A4)p,4, (Theorem 3.38). Moreover, from
the condition @po = a®p, together with @pr(A4) = Yy (A)®@p (Lemma 3.37), &pp,
= f,®@p (Lemma 3.31), we have @pff, = f,Pp for all D e sn(6,C). Hence f, is
contained in the center z(Spin(6,C)) = Z((F4C)E|.E2.E3,F1(ek),k:O,1) ={l,0,04,00,}
~ Z,. However, we see that

o= (1)o=y(E)o ey (SL(2,C)) Spin(6, C),
o, = (=1)(=03) = ¥(=E)(—0y) € Y(SL(2, C)) Spin(6, C),
00} = (~1)(~00}) = W(~E)(~a0}) € Y(SL(2, C)) Spin(6, C),

that is, o, 0}, 6o} €Y/(SL(2, C)) Spin(6, C), where Spin(6,C) = ((Ef)"")4 () k=2, 7"
Consequently, we have f; = 1. Hence, PEC 51 50(6,C) is surjection.
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Thus we have the required isomorphism
(ES)7=9) ~ S1(2, C) x Spin(6, C).

Therefore we see that the group (Ef)”"““(s’c) is connected. O

3.3. Connectedness of the Group (EC)% ¢

We define a subgroup (EC)% ¢ of the group (ES)% by

(ESC)ai,so(é,C) _ {“ c E8C

o0 = ooy,
O(Rp)o = a@(Rp) for all Desn(6,C) [’

where Rp = (©p,0,0,0,0,0) e e and O(Rp) means ad(Rp). Hereafter for
Rec§, we denote ad(R) by @(R), moreover in ¢, we often use the following
notations:

¢ = (¢7 07 07 07 07 0)7 P7 = (07 P? 07 07 07 0)7 Q* = (0’ 0’ Q’O’O’O)’
#=(0,0,0,7,0,0), s =(0,0,0,0,50), ¢ =/(0,0,0,0,0,7).

In order to prove the connectedness of the group (ESC)”‘;’”(& C), we use the
method used in [5]. However, we write this method in detail again.
First, we consider a subgroup ((ES)% ), of the group (EL)% =9

(B D), = {ore (B ™™ol =1},
Lemma 3.40. We have the following
1) The Lie algebra ((e§)7 =), of the group (ES)7 ¢, s given by
8 1 8 1

((QSC)G';,SD(G.C))I

{Reesc

a,R = R,
[R,Rp]| =0 for all Desn(6,C), [R,1_]=0

P c (976‘)04,50(6‘6')’

Q = (Z’ W’ C? w)?

& 0 0 o 0 0
={(0,0,0,0,0,)eeS| Z=|0 & z |, W=[0 w wl|, oy,
0 z g:; 0 w3
C,ﬁwk,C,weC,z,wqu

teC

where as for the explicit form of the Lie algebra (e7c)”5‘5°(6‘ C), see Lemma 3.18 (2).
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In particular,

dime(((e§) ¢ ), ) =184+ (3+2) x2+1x2)+1=31.

(2) The Lie algebra (¢£)%* ) of the group (ES)"#*®) is given by

(QSC)(TA:,SD(& C)

e a,R =R,
N 8 1[R,Rp] =0 for all D e so(6,C)
D c (eg)ai,so(&, C)7
P = (X7 Y7 é? 77)7
X=10 & x|, Y=10 5 y|,
= (D,P,0,r,5,1) € el _ _
( Q Jees 0 x & 0 vy m
ék}ﬂk’é?”ec7 x7y€CCa
0= (Z,W,(,w) is same form as P,

r.s,teC

In particular,
dime((e§)# D) =18 4 (34+2) x 2+ 1 x2) x 24 3 = 45.

ProoOF. (1) For R=(®,P,Q,r,s,1) €el, from the condition ojR = R, we

have that
e ()™,
X =EE + &E + &E + Fi(x),&,¢e Coxe C,
P=(X,Y,¢n), c
Y =mE +mE+mEs+ Fi(p),m.,neC,yeC”,

Q:(Z,W7€,Q))7 (l 1+C2 2+§3 3+ 1(2)76:1056 ,Z € , )
W =w E| + 0E> + 03E3 + Fi(w), 0,0 e C,we C©|

r,s,te C.
Moreover, from the condition [R, Rp] =0, we have that

!
D e (e7C)”4"5°(6’C)7 P, Q are same form above, and so are r,s, 1.

Finally, from the condition [R,1_] =0, we have that P=0 and s=r=0
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Hence we have the required explicit form of the Lie algebra ((eg)”‘;’”(é’c))li.
(2) By an argument similar to (1) above, we have the required result.

O

In Proposition 3.41 below, note that the subspace (‘BC)JZ‘ of PBC is defined
by

(B),, = {P B |0}P = P}
:{(X7 Y7é7’7)€ﬂ3C|Xa YE(SC)giafJ?GC},

where (SC)UA; ={Xe3o,X = X}.

PrOPOSITION 3.41. The group ((Eg )JL,SD(QC))L is a semi-direct product of
groups exp(@(((%c)a‘;L @ C)) and (ES)">®C);

(B> D), = exp(O(((BC),,)- @ C)) >4 (Ef) =69,

In particular, the group ((ES)™* ), s connected.

PrOOF. Let ((‘Bc)@;)f ®C_={(0,0,0,0,0,1)| Q€ (SBC)%,JG C} be a Lie
subalgebra of the Lie algebra ((¢£)%*®))  (Lemma 3.40 (1)). Since it follows
from [Q_,7_] =0 that ©(Q_) commutes with @(7_), we have exp(@(Q_ +1_)) =
exp(0(Q_)) exp(O(z_)), and so we also see that exp(@(((P),,) @ C_)) is the
connected subgroup of the group ((ESC)”Q’SU(G’C))I_ )

Now, let o e ((ES)™*®)),  and set

di=(¢7P,Q,}’,S,Z), a17=(¢17P1,Q17r17s1711),

Then, from the relation formulas [o1,1_] = of1,1_] = —2al_ = =21_, [al~,1_] =
a[l7,1_] = «l, we have that
P=0, 5s=0, r=1, ®=0, Pi=-0, si=1, r=—=~.

2

Moreover, from [al,a17] = a[l,17] = 2¢1~, we have that

12

1 1 !
P =50x0, O :_éQ_?p]Q’ S TR



148 Toshikazu MIYASHITA

Hence we see that o is of the form

¥ % %QXQ 0

x % x 0 -0 0
t 1

ok ok 0 —50--(0x0QQ 0
2 6

o =
* ok x| ! 0
2
x % *x 0 1 0

2
f e r 1 —T5{0.(0x 00 1

On the other hand, we have that

51 = exp <@(<§>>) exp(6(0_ )1~

1

EQXQ

12

1
—ZJF%{Q,(Q x )0}

and also that

ol=ol, Ol_=uol_.

)

Hence we see that 0 o e ((ES)™ ¢ 9);
Thus we have that

S I (E7C)”‘1790(6,C>.

(EO)™ ), = exp(O(((BC),,)- ® C)) (B>,
Furthermore, for f e (E7C)”‘1"5°(6’ 9. it is easy to verify that

Blexp(0(Q-))B~" = exp(O(BQ-)), Plexp(O(r-))f~" = exp(6(r-)).
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Indeed, for (@',P',Q',r',s',1') eeS, by doing simple computation, we have
that

BOQ)p (@' P, Qs 1)) = BlO-, (@, P, Q' 5 1))
=[O, pp (&', P, Q' F s . 1)|(B e EX C Ef)
= [BO, (@', P, Q1,5 1)
= 6(BO) (P, P, Q1,5 1),
that is, f@(Q_)f~' = O(Q_). Hence we obtain that

Blexp(O(0- ﬁ(i%@ ")ﬁ

n

[(BO(Q)B™)"(BO(Q-)™" = O(BQ-))

2|

M 1

1 (0(5Q-))"

3
g
§\~

= exp(0(fQ-)).

By the argument similar to above, we have that B(exp(@(r_)))f ' =
exp(O(r-)).

This shows that exp(6(((R<),,)_ @ C_)) = exp(6(((HC),,)_)) exp(6(C_)) is
a normal subgroup of the group ((Egc)”4 E’”(G'C))L '

Moreover, we have a split exact sequence

1= exp(@(((B),;)_ ® C)) — (E) W=D — (Ef) ™= - 1.

Hence the group ((ES)% <)), is a semidirect product of
exp(O(((B),,)- @© C.)) and ()7

((Egc)dvso(é,c))li = eXp(@(((%C)q)f @ C)) (E7C)oj‘,su(6, o)

Therefore since exp(@(((%c)ﬂi)_@c,)) is connected and (E7C)04350(6~,C)
is connected (Theorem 3.39), we have that the group ((E8C)04’5°(6'C>)] is

connected. |
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For Re¢{, we define a C-linear mapping R x R:e§ — ¢{ by

1
(Rx R)R = [R,[R, Ri]| + 35 Bs(R, RI)R, Ry € el

where By is the Killing form of the Lie algebra ¢§ (As for the Killing form B,
see [9, Theorem 5.3.2]), and using this mapping we define a space W by

W ={Reel|Rx R=0,R #0},
moreover, define a subspace (QBC)%SD(Q o) of WE by

(mc)ai.so(ﬁc) ={ReW |o4R=R,[Rp,R] =0 for all Deso(6,C)}.

LEMMA 3.42. For R= (®,P,Q,r,s,1) € ¢§ satisfying cjR = R and [Rp, R] =
0 for all D € s0(6,C), R # 0, R belongs to (QBC)J!"SU(@C) if and only if R satisfies
the following conditions:

1) 250 —PxP=0 (2 2P+0x0=0

(1)

() 2wP+Px Q=0 (4) ®P—3rP—350=0

(5) ®Q+3rQ—-3tP=0 (6) {P,Q} —16(st+71*)=0

(7) Z(CDPX 01 +2Px @Q; —rP x Q1 —sQ x Ql)—{P,QI}@:O

(8) 2(PQO x P +20 x ®P| +rQ x P; —tP x P;) —{Q,P;}& =0

9) 8((Px Q1)Q—stQ1 — Q1 — >0y + 2rdQy) + 5{P, 01}0 — 2{Q, 01} P
=0

(10) 8((Q x P)P + stPy + r’Py + ®*P + 2r®Py) + 5{Q, P} P — 2{P, 0} Q
=0

(11) 18(ad @)°®| + O x &P — P x ®,0) + B;(®,D,)® =0
(12) 18(® PP — 20D, P — rd P — s®, Q) + B (D, D|)P =0
(13) 18(D,DQ — 20D, Q + rd,Q — D, P) + B;(®, D)0 = 0,

(where By is the Killing form of the Lie algebra ¢S) for all & € ¢S, Py, Q) € BE.

ProoF. For R= (®,P,Q,r,s,1) € e satisfying o;R = R and [Rp, R] = 0 for
all Desn(6,C), R+#0, by doing simple computation of (R x R)R; =0 for
all Ry = (®y,P1,01,r1,81,1) € egc, we have the required relational formulas
above. ]

PROPOSITION 3.43. The group ((EE)%* &)\, acts on (QBC)%BD(& c) tran-
sitively.
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Proor. Since a e (EC)™*®) leaves invariant the Killing form By of
e§ : By(aR,aR') = Bg(R,R'), R,R €e§, we have aRe (W)
(VIBC)UA;&D(G’ ¢)- Indeed, since we see that

o},50(6,C) for Re

1
(eR x aR)R) = [oR, [oR, aR;]] + %Bg(OCR,Rl)OCR

= «[[R,[R, 0 ' Ry]] +%Bg(R, a«'Ry)aR

= a((Rx R)a"'R;

=0,

[Rp,aR] = afa 'Rp, R] = o[Rp, R]
= (),

this shows that the group (ES)%*®) acts on (QBC)%SD(& ) We shall show
that this action is transitive. First, for R; € egc, it follows from

1
(17 X 1,)R1 = [1,7[1,,(@1,P17Q1771,31,t1)]] +_B8(177R1)17

30
=[1_,(0,0, Py, —s1,0,2r1)] + 2591
=(0,0,0,0,—2s1) + 2511
=0,
[Rp,1-]=0,
and oyl =1_ that we confirm 1_ e (ﬁBc)%so(ﬁ o) Then, in order to prove the

transitivity of this action, it is sufficient to show that any element R e (ﬁBC)%SD(G_ o)
can be transformed to 1_ € (*IBC)G‘;‘SD<67 c) by some o e (ES)?#*® ) Indeed, we
have the following.

Case (i) where R= (D, P, Q,r,s,1),1 #0.

From Lemma 3.42 (2), (5) and (6), we have that

1 r 1
D=—— P=-
2tQ><Q, 0

1< 62

r? 1
(QXQ)Qa S:—7+ﬁ{Q,(Q><Q)Q}

Now, for @ = @(0, P1,0,r,s1,0) € @((egc)%/’”“’c)) (Lemma 3.40 (2)), we com-
pute @"1_:
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")rT2Py x Py

n—1 n n
<(_2)”_1 _ 1+ (*l) >r{’—231P1 + 1 - (*2) + (71) >V{1_3(P] X })])P1

—~
—~
[\)
~—
T
—_
_|_
—
I
—
~—

6 2

(=2)" + (=1)" "'y
(=2)" ity

_ 22 (=) R (=)
—((=2)" 2 2222 ( )24 (=1) 4Py, (P x Py)Py}

(=2

Then, by doing simple computation, we have that

exp(@(0, Py,0,r1,51,0))1_

=(expO)l_ = <i%@”> 1_
n=0""

1 .
—ﬁ(t‘fiz" —2e"+1)P; x Py
1
s . 1 .
2*},12(*37%l —e e+ 1)P +@(*672r‘ +e" + 3¢ —3)(P x P)Py
1 1
1
_ r_l(efzr] _ eirl)Pl
Lo
1
2
5] —2r 2r 2r —2r r —r
—R(e It e —2)+W(e Le M —de" —d4e™ +6){Py, (P X P1)P}
672)‘1
Note that if r; =0,
f(:1) means lim f(:l).
rl )’|*>0 }"1(
Here we set
72)‘] —r . Sl 72)’[ 72)’[
0=—(e e"MP, r=—(1- ), t=e
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Then we have that

1
—ZQXQ
r 1

;Q—@(QX 0)0

(exp ©)1_ = 0 =
r
r? 1

—7+W{Q7(Q x )0}

t

~ w2 QN S

Thus R is transformed to 1_ by (exp ©)~' e ((ES)7 ¢y,

Case (ii) where R= (®, P, Q,r,s,0), s #0.

First, we denote exp(6(0,0,0,0,7/2, —1/2)) € (ES)"*®)) by 2" (Lemma
3.40 (2)). Here, operate A’ on R, then we have that

NR=)(D,P,Q,r,s,0)=(D,0,—P,—r,0,—s), —s#0.

Hence this case is reduced to Case (i).
Case (iii) where R = (®,P,Q,r,0,0), r # 0.
From Lemma 3.42 (2), (5) and (6), we have that

O0x0=0, ®0=-3rQ, {P,Q}= 1612,
Then, for € = 6(0,0,0,0,0,0) € O((e§)™**) (Lemma 3.40 (2)), we sce that
(eXp @)R: (¢7P+27Q, Q, r, *4}"2,0), —4;/'2 ;é()

Hence this case is reduced to Case (ii).

Case (iv) where R = (&, P, 0,0,0,0), Q #0.

We choose Pje (‘BC)JA; such that {P;,Q}#0. Then, for 6 =
8(0, P1,0,0,0,0) € O((e§) ™) (Lemma 3.40 (2)), we have that

(exp@)R=(¢+P1><Q7P—¢’P1+%(P1XQ)PI»Qr%{PhQ},
! P, P ! P, —®dP ! Py, (P P}.0
$UPLPY 4 {PL=OPY 3 (P (P X QP1)0)

410 %0

Hence this case is reduced to Case (iii).
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Case (v) where R = (®,P,0,0,0,0), P #0.
We choose Q) € (‘Bc)a‘; such that {P,Q;} #0. Then, for 6O =

6(0,0,01,0,0,0) € O((¢5) =) (Lemma 3.40 (2)), we have

(eXp @)R: <¢—PX Q17P>_¢Q1 _%(P X Ql)Ql?%{P7 Ql}a

0,—%{Q1,—‘DQ1} —%{Ql,—(Px Ql)Ql})a é{Pa O} #0.

Hence this case is reduced to Case (iii).
Case (vi) where R = (£,0,0,0,0,0), @ #0. From Lemma 3.42 (10), we
have ®>=0. We choose P;e (BC), such that ®P; #0. Then, for @ =

(0, P1,0,0,0,0) € O((e5)% =) (Lemma 3.40 (2)), we have that
1
(exp O)R = (@, —¢P1,0,0,§{¢P1,P1},0).

Hence this case is also reduced to Case (v).
Thus the proof of this proposition is completed. O

Now, we shall prove the theorem as the aim of this section.

THEOREM 3.44. The homogeneous space (EL)% ™€) /(EC)7=©9) s

diffeomorphic  to the space (‘IBC) 6,0); (ESC)”‘;’“’(G’C)/((ESC)"!*’”“’C>)L_

c
(QB )Jz’wso(ﬁ,C)' ,
In particular, the group (ESC)U4'5°(6' ) s connected.

I &«
a,,50

PROOF. Since the group (EE)%=(9

transitively (Proposition 3.43), the former half of this theorem is proved.
The latter half can be shown as follows. Since ((Egc)”‘;’s"(ﬁ' ), and (QBC)%

acts on the space (ﬁBc)ai,QD(G,C)

are connected (Propositions 3.41, 3.43), we have that (Ef)“‘;’“(é’c) is also
connected. ]

3.4. Construction of Spin(10,C) in ES

We define a subgroup (Es)™*® of Eg by

[PV /
E 02,50(6) _ E 0400 = U0y, |
) {OC = O(Rp)o. = 0@(Rp) for all D e so(6)

Then we have the following lemma.
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LEMMA 3.45. The Lie algebra (eg)a‘i'so(@ of the group (Eg)*© is given by
(QS)O'L s0(6)

:{Reeg

o R =R,
[R,Rp] =0 for all D e so(6)

@ & (e7)" ),
P=(X,Y,¢n),
& 0 0 m o0 0
=¢(D,P,—tAP,r,s,—1s)eeg| X=[0 & x|, Y=0 n y|,y,
0 x & 0y n
&, &neC o x,yeC,
reiR, se C,

where as mentioned in Lemma 3.28, as for the Lie algebra ¢; of the compact Lie
group E7, see [9, Theorem 4.3.4] in detail, and so the Lie algebra (e7)a‘;’5°(6) above
is defined as follows:

(67) a,,50(6)

o,® = Doy, }

= {gp(gﬁ,A,—rA,V) [®,Pp] =0 for all D e so(6)

J D, | 0 +4(a)
0 | 0/ ti(niEl + 0k + 3B + Fi(n))”
D, esn(2),aeC, 1 € R,

= D(p,A,—TA,v) E &7

T14+17+173=0,1€C,

In particular,

¢ 0 0

A=[0 & x |,&€eC xeCF,
0 X &

veIR

dime((e§) D) =18 + (34+2) x 2+ 1 x2) x 24 3 = 45.

PRrROOF.

By the argument similar to Lemma 3.40 (2), this lemma is proved.

O
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PROPOSITION 3.46. The Lie algebras (eg)”™® and (e§)+*®9 are iso-
morphic to the Lie algebras s0(10) and s0(10, C), respectively: (eg)°+**© = s0(10)
and (§)7*®) ~ s0(10, C).

Proor. We provide the correspondence ¢, between the Lie algebra sn(10) =
{De M(10,R)|'D = —D} and the Lie algebra (eg)™ ™ explicitly as follows:

s0(10) — (eg)”‘;’”(é),

where the elements G; are R-basis in s0(10). As its example, the explicit form of

Ga6 as matrix is of form with (3,7)-component = 1, (7, 3)-component = —1, other

components = 0, moreover the explicit forms of C-basis R; in (eg)”i"”(@ are as

follows.
RO] = (dj(_l(Ez - E3)~707070)7070707070)
i
E2 - E3)a 7§(E2 - E3)7 0> ) 07 07 07 07 0>

1 1
Ry, = (QD O,E(Ez + Eg) 2(E2 + E3) 0),0,0,0,0,0)

(
<

qs(o g - E3),%(E2 - E3),O>,0,0,0,0,0>
(o0

Ry = (®(—i(E, v E),0,0,i),0,0,0,0,0)

Ros = (0, (—(E> — E3),0,0,0), (0, —(E> — E3),0,0),0,0,0)
Ry = (0,(—i(Ey + E3),0,0,0), (0,i(E>, + E3),0,0),0,0,0)
Ryy = (0,(0,iE;,0,—i), (iE;,0,—i,0),0,0,0)

R34 = (0,(0,E1,0,1), (—E), ,0),0,0,0)

Ros = (0, (—i(£2 — E3),0,0,0), (0, (£, — E3),0,0),0,0,0)
Ri5 = (0,(E; + E5,0,0,0), (0, E; + E3,0,0),0,0,0)

Rys = (0,(0,—E;,0,1),(£,,0,—1,0),0,0,0)

Rss = (0, (0,iEy, 0, ), (i1, 0,7,0),0,0,0)
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Rys = (cb(i(El vEQ,0,0,%),0,0, —%,0,0)

Ros = (0, (0, —(E» — Ej3),0,0), (E» — E3,0,0,0),0,0,0)
= (0,(0,i(E, + E»),0,0), (i(E> + E3),0,0,0),0,0,0)
= (0, (iE,,0,—1i,0), (0, —iE},0,),0,0,0)
Rss = (0,(—E;,0,-1,0),(0,—E;,0,-1),0,0,0)

1 1 11
R46 = (@(07§E17_§E170>7070707 _§7§>

i l i
07 7§E1, 2 0> O O 0 27 2)

Ro7 = (0,(0,—i(E> — E3),0,0), (—i(E, — E3),0,0,0),0,0,0)
Ry7 = (0,(0,—(E> + E3),0,0), (Ex + E3,0,0,0),0,0,0)

Ry; = (0,(—E1,0,1,0),(0,—E1,0,1),0,0,0)

R3; = (0,(—iE,0,—1,0),(0,iE,0,),0,0,0)

ng = (¢(—F1(1)~707070)70707010;0)

Ry = (@(Q—%Fl(l) —%Fl( ) 0) 0,0,0,0 0)
R — (@(0,%&(1)7—%F1(1)70>,0,0,0,0,0)
Ry = (Oa (iF1(1)707070)7 (O,iFl(l),0,0),0,0,0)
RSS = (07( Fl(1)707070)7(07F1(1)7070)707070)
Res = (0, (0, l'Fl(l),(LO), (—iFl(l),0,0,0),0,0,0)
R78 (07 (O Fl( )7070)7(_F1<1)a03070)303070)



158 Toshikazu MIYASHITA

R = (®(id;(e1),0,0,0),0,0,0,0,0)

R19_(¢)( F](E]) 701010)1010101070)

1 1
R29 <(p(0 _EFl(el) _§F1(61)70)7070707070>

R39 @(Oa;Fl(el) _%Fl(el>70>7070707070>

Rug = (0, (iF1(e1),0,0,0), (0,iF(e1),0,0),0,0,0)
Rsg = (0,(—Fi(e1),0,0,0), (0, Fi(e1),0,0),0,0,0)
Rgo = (0, (0, —iF;(e1),0,0), (iFi(e1),0,0,0),0,0,0)
R79 = (0,(0,—F(e1),0,0),(—Fi(e1),0,0,0),0,0,0)

Then we can confirm that ¢, is a Lie-homomorphism, that is:

0. ([Gjj, Gul) = [9.(Gy), 0.(Gur)]-

In order to prove these, we need to check 45C; =990 times if honestly doing.
Then, we give only five examples. As the first example, we shall show that
9.([Gor, Go]) = [9.(Go1), 9.(Go2)]. Indeed, ¢, ([Gor, Goo]) = ¢.(—G12) = —Ru.

On the other hand,

[9.(Go1), 9.(Go2)] = [Ror, Roa]
= [(@(_Z(EZ - E3)~707070)7070707070)7

(¢(o,—é(E2—E3) —E(E2 E), o) 0,0,0,0 0>}
- (1o~ £70.0,0,
(@(0,—%(&—E3),—§(E2—E3),0>>],0,0,0,0,0>

= (fp((), —%(Ez + E3),%(E2 + E3)70>,0,07070,0)
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As the second example, we shall show that ¢, ([Gos, Gas]) = [¢.(Gos), 9. (Gas)].

Indeed, ¢*([G04, G45]) = ¢*(G05) = R()s.
On the other hand,

[0.(Go4), 0.(Ga5)] = [Roa, Ras]
= [(0,(—(E>» — E3),0,0,0),(0,—(E, — E3),0,0),0,0,0),

i i
D i(E; v E) = —=
< ( 1V 1 O>O>2>70707 2707())]

(o, ( (ElvEl)0,0,%)(—(E2—E3),0,0,0)
E( (E> — ),0,0,0),—(qﬁ(i(E]vEQ,0,0,%)

X (Ov _(EZ - E3)7070) _%(07 _(E2 - E3)a0a0)a0a0a0>

= (07 (_i(EZ - E3)70>0>0)7 (07 i(EZ - E3)a0a O),O, Oa O)
= Rys.

As the third example, we shall show that ¢, ([Gs7, Gg7]) = [9.(Gs7), 9. (Ge7)].
Indeed, ¢*([G57, G67]) = (0*(—G5(,) = —R5(,.
On the other hand,

[0.(Gs7),0.(Ge7)] = [Rs7, Re7]
1 1 1 1
:[(‘D(Oath_§E170>7070707§7_§>7
. i
(@(—I(El\/El),(),(),—2>,0,0, 2,0 0>]
=([|@(0 1E 1E 0), @ i(E v Ep),0,0 !
- [ 75 1’_5 1y ) _l( Vv 1)7 ) 7_5 L
i\ [1 i 1
n00.-2(-3) (3)-2(5) ()
i i
(@(0,2E172E1,0) 0 0 0,2 2>

- 7R56 .
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As the forth example, we shall show that ¢, ([G3s, Ges]) = [9.(G36), ¢.(Ges)]-
Indeed, ¢, ([G36, Ges]) = ¢.(G3s) = Rss.
On the other hand,

[0.(G36), 9. (Ges)] = [Rae, Res]
=1[(0,(—E,0,-1,0),(0,—E;,0,-1),0,0,0),
(0,iF1(1),0,0), (—iFi(1),0,0,0),0,0,0)]
— ((—E1,0,—1,0) x (—iF(1),0,0,0))
—(0,iF(1),0,0) x (0,—E1,0,-1),0,0,0,0,0)

i i
~ (0.5~ gR.0)
- @(o,—§F1<1>,—§F1<1>,0),0,0,0,0,0)

= <¢<0,%F1(1), —§F1<1>,0),0,0,0,0,0>
= Rag.

Finally, as the fifth example, we shall show that ¢, (|G, Gso]) =

[0.(G2%),9.(Gyo)]. Indeed, ¢,([Gs, Ggo]) = ¢,(Gr9) = Ruo.
On the other hand,

[0.(G2s),9.(Gg9)] = [Rag, Ryo]
- [(czs(o, —éFl(l), _§F1<1),0),0,0,0,0,0),

(QD(_[Al(l)vAl(el)]va O’ O),O, O’O’O’O)]

_ (@(o, LR, —éFl(l),0>,

&(—[A1(1),4,(e1)],0,0, 0)],0,0,0,0,0>
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Since we have dim(s0(10)) = 45 = dim((eg)?***®)) from Lemma 3.45, we see
that ¢, is an isomorphism. Thus we have the required isomorphism (eg)"‘;"g’”(6> ~
s0(10) as a Lie algebra. The other case is the complexification of the case
above (cf. [3]). O

Now, we shall prove the theorem as the aim of this subsection.

THEOREM 3.47. The group (Egc)”‘;"g’”(G’C) is isomorphic to Spin(10,C):
(ES) 9 ~ Spin(10, C).

PrROOF. The group (EE)% ) is connected (Theorem 3.44) and its type
is s0(10, C) (Proposition 3.46). Hence the group (ESC)”4’5°(6’C> is isomorphic to
either one of the following groups:

Spin(10,C), SO(10,C), Spin(10,C)/Z,.

Their centers of groups above are Z4, Z,, {1}, respectively. However, we see that

the center of (E{ )”‘I"s"((”c) has the elements 1, g, o}, ooy, and so its center is Zj.

Hence the group (ESC)”‘I“SD(G’C) have to be isomorphic to Spin(10, C). O
3.5. The Structure of the Group (EL)%

By using the results of previous subsection, the aim of this subsection is to
determine the structure of the group (ES)%.

LEMMA 3.48. The Lie algebra (eg)%’ of the group (Egc)”4 is given by

(e§)% = {Ree§ |oiR = R}

B ()7,
P:(Xa Yvévn)
& 0 0 m 0 0
X=10 & x [, Y=10 n vy
= (D, P,0,r,5,1) € el . _ )
( Q )€ 0 X & 0 vy m

5/0’7/(565’7 € Ca X, )€ CC?
0= (Z,W,(,w) is same form as P,
r.s,te C

as for the explicit form of the Lie algebra (e7c)g‘l‘, see Lemma 3.18 (1).
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In particular,

dime((e§)) =33+ ((3+2) x 2+ 1 x2) x 243 = 60.

Proor. By the argument similar to Lemma 3.40, we have the required
result. [

Now, we shall prove the following theorem as the aim of this subsection.

THEOREM 3.49. We have that (ESC)”‘; =~ (Spin(6, C) x Spin(10,C))/Zs, Z4 =

{(1,1), (a4, 003), (0,0), (004, 04) }-
ProoF. Let

. ~ (C ~ C\K,
Spin(6, C) = (F4 )EI,EZ,E3,F1(ek).k:O,1 = ((E7 )h #)E‘l,E',l,Ez-'}-E;,Ez—'Eg,Fl(ek)‘k:O,l
C (ES)™ C (ES)™

(Theorems 3.16, 3.38) and Spin(10, C) = (EE)7 =) c (ES)" (Theorem 3.47).

Then we define a mapping ¢gc , : Spin(6, C) x Spin(10,C) — (ESC)”‘; by

Orc o1 (0, ) = op.

It is clear that gpc, is well-defined. Since [Rp, Rio] =0 for Rp € spin(6, C)
=50(6,C) = (i), 1y 5y ;y(ey ko010 R10 € 5pin(10, €) = 50(10, C) = (ef ) %)
(Lemmas 3.14, 3.45) and Spin(6,C), Spin(10,C) are connected, we see that
off = fo. Hence PEC o1 is a homomorphism. Moreover, we obtain that
Ker ppc o1 = Z,. Indeed, /since we see that dimc(spin(6,C) @ spin(10,C)) =
15445 =60 = dimc((es)™) (Lemma 3.48) and from z(pgc, ) ={0} (the
mapping PEC o, is the differential mapping of (”ESCJA) we have that Ker PEC.q is
discrete. Hence Ker ¢zc , is contained in the center z(Spin(6, C) x Spin(10, C))
= z(Spin(6, C)) x z(Spin(10, C)) = {1, 0,0}, 004} x {1,0,0},00,}. Note that in
general because of the center z(Spin(10,C)) = Z4, we see z(Spin(10,C)) =
{1,0,04,00,} and z(Spin(6, C)) = {1,0,0),00,} as in the proof of Theorem 3.39.
Then, among them, the mapping ¢gc, maps only (1,1), (o4,00y), (0,0),
(00y,04) to the identity 1. Hence we have that Ker PEC.q; C {(1,1), (g}, 00%),
(0,0),(00),04)}, and vice versa. Thus we see that

Ker (ﬂEgC.aj, = {(17 l)a ((0-4,1700-4,1)7 (07 0-)7 (0-04/1’0-4/1)} =Z,.

Since (Egc)‘ng is connected and Ker PEC o] is discrete, again together with
dim¢(s0(6,C) @ s0(10,C)) = 15+45 =60 = dimc((eg)“‘;), Qe o 1S surjection.
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Therefore we have the required isomorphism

(ES)% = (Spin(6, C) x Spin(10, C))/Z,. O

3.6. Main Theorem

By using results above, we shall determine the structure of the group (Eg)”i,
which is the main theorem.

THEOREM 3.50. We have that (Eg)”‘;;(Spin(@xSpin(lO))/Z4, Zy=

{(1,1), (0}, 00%), (9, 0), (904, 04)}-

ProOF. For & e (Eg)®™ = ((EC)™)% = ((ES)™)™ c (ES)%, there exist
o€ Spin(6,C) = (FO) g, g by ke hmo1 = (ED) )5 £\ ik Bk Fi(en) k=01 C
(ES)% c (EQ)™ and f e Spin(10,C) = (EE)7*) c (ES)% such that 6 =
p(o, p) = off (Theorem 3.49). From the condition 7l,04,7 =9, that is,
TAop(o, ) Aot = @(a, ), we have ¢(tl,0ld,T,7f7) = @(o, ). Hence, we have
that

Q) TaT = o (i) T0T = go40
T)hw,g;hwf = ﬁv ThowfroT = azltﬁ7

... [ TOT =00 . TOT = o400
(i) { Thwfhot = af, (iv) { TAwflet = oo, p.

Case (i). From the condition 7ar=0ao, we have «oce Spin(6)=
(Fa) £, £y, s Fi(er) k0,1 Indeed, first since Spin(6, C);(Ff)El,ELELR(ek%k:()y1 is

simply connected, the group (F4)E],E2,E3,Fl(ek),k:0,1:((F4C)E|,EZ,E3,F|(ek),k:().1)r
is connected. Since (F )z g, £ ko) k01 acts on (VE)®, the group

<F4)El7Ez,Es.,Fl(Ek),k:O,1 = ((F4C)El~,Ez«Es.,Fl(fk),k:O:1)T acts on
Ve ={Xe(V9°|tXx =X}
= {X = Fl(l‘) | t = ey + t3ez + lueq + tses + tgeg + t7e7, 1) € R}

with  the norm (X,X)=2t7. We can define a homomorphism
7 (Fa) gy b By () k0,1 — SO(6) = SO(V°®) by m(a) =oalye. Then it is easy
to obtain that Kerz ={l,6} =~ Z,. Since, by doing simple computation
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as in Lemma 3.14 we see dim((4)g g, £ F (o) k=0,1) = 15, we have that
dim((f4) g, g, £y, Py (er), k—0,1) = 15 = dim(s0(6)), moreover SO(6) is connected.
Hence the mapping 7 is surjection. Thus we have that (Fi)g, £, £, £ (o), k=0,1/ 22
= SO(6). Therefore the group (Fa)g, g, g, (o) k—0,1 18 isomorphic to Spin(6) as
the universal covering group SO(6), that is, (Fa)g, g, £, (e, k0,1 = SPin(6).
Next, from the condition 74,04,7 =/, we see that the group
{0 € Spin(10, C) | thfiot = B} = (Spin(10,C))™  (which is  connected) =
((Ef)”i’s“(é’c))”l”’ = (Eg)7+=© (Theorem 3.47), and so its type is s0(10)
(Proposition 3.46) (Note that (ESC)T)'”’ = E3 and the C-linear transformation 74,
induces the involutive automorphism of the group (ESC)”‘;’”(G’C). Hence we see

that the group (Es)?**©® is isomorphic to either one of

Spin(10), SO(10), Spin(10)/Z.

Their center are Z4, Z,, {1}, respectively. However, since the center of
%) has to be

isomorphic to Spin(10) and its center is {1, 00,,0,0,} = Z4. Hence the group of

(Eg)?* has the elements 1, oo}, o, o, the group (FEx)

Case (i) is isomorphic to the group (Spin(6) x Spin(10))/Zs.

Case (ii). This case is impossible. Indeed, for « e Spin(6,C) C Spin(8,C)
we can set a = (o, 00,03), a; € SO(6,C) C SO(8,C), uy,a3 € SO(8,C) satisfying
(1x)(22y) = 03(Xp), x, y € €€, and similarly for o} € Spin(8), set a} = (0}, 7}, 73),
or € SO(8) C SO(8, C) satistying (o(x)(a5y) = d4(Xp), x,y e €. Note that as a
matrix, ¢{, o5 and o} are expressed as follows:

o] =diag(1,1,—1,—-1,—1,-1,—1,-1),

0 1
oy = diag(—J,—J,—J,=J), J( | 0),

oy = diag(J, —J,—J,—J).

Then, from the condition ot =ooj0, we have (tay,ton,ta3) = (o]0, —0502,
—o%o3), that is,
! ! !
T = 010, TUy = —0,00, TH3 = —0303.
Here, as a matrix, «; is expressed as follows:
1 0
u=|01 , AeS0(6,C).
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Then, from 7oy = gjoy, we have

10 0
=01 , A'=iBeSO0(6,C), i*=—1.
0 | A
As for oy, from tay = —ahon, we have o, = 0. Indeed, from the explicit form of

0,, it is sufficient to confirm this in the case 2 x 2-matrix. From

a b 0 -1\ (b —a\ (ta b

c d)\1 0) \d —c) \tc )’
we have that ta = b, th = —a, tc = d, 1d = —c, thatis,a = b = ¢ =d = 0. Hence
we see ap = 0. This is contrary to oy € SO(8, C).

Case (iii). This case is also impossible. Indeed, from the condition 7ot = g,
we have (toy, o, to3) = (o, —op, —03), that is,

T = Ay, TOy = —0Uo, T3 = —03.

From 7oy = oy, we have o € SO(6) C SO(8). Hence, by the Principal of triality
on SO(8) (Theorem 2.3) we see that ox € SO(8), k=2,3, that is, oy = oy,
k =2,3. However, from toy = —oy, k =2,3, we have oy = to = —oy, that is,
o = 0. This is contrary to oy € SO(8).

Case (iv). This case is also impossible. Indeed, from the condition ot = gja,
we have (tay, o, ta3) = (oy01, 050, 6403), that is,

T =010, T = Oy0n,  TO3 = G403.

As in the Case (ii), we have ap = 0. This is contrary to oy € SO(8, C).
Therefore we have the required isomorphism

(Eg)g‘,‘ ~ (Spin(6) x Spin(10))/Zs, Z4={(1,1),(0y,00}),(0,0),(00y,04)}. O
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