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ON THE GROUPS OF ISOMETRIES OF SIMPLE

PARA-HERMITIAN SYMMETRIC SPACES

By

Takuya Shimokawa and Kyoji Sugimoto

Abstract. The main purpose in this paper is to completely deter-

mine the groups of isometries of simple para-Hermitian symmetric

spaces. That enables us to also determine the groups of a‰ne

transformations of these spaces, with respect to the canonical a‰ne

connections.

1. Introduction and the Main Result in This Paper

This paper reports the following:

Theorem 1. Let G be a connected absolutely simple Lie group whose center

is trivial, and let ðG=H; s; I ; gÞ be a para-Hermitian symmetric space of hyperbolic

orbit type. Then,

(1) the metric g is the G-invariant extension of the Killing form of LieðGÞ up

to constant;

(2) when ‘1 denotes the canonical a‰ne connection on ðG=H; sÞ, the group

IðG=H; gÞ of isometries coincides with the group AðG=H;‘1Þ of a‰ne

transformations;

(3) the quotient group IðG=H; gÞ=IðG=H; gÞ0 is determined as in Table 1,

where IðG=H; gÞ0 is the identity component of IðG=H; gÞ.

Since the seminal pioneering work of K. Nomizu [No1], the theory of (a‰ne)

symmetric spaces has evolved. As a symmetric space ðG=H; sÞ with a G-invariant

para-complex structure I and with a G-invariant para-Hermitian metric g,
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S. Kaneyuki and M. Kozai have introduced the notion of para-Hermitian

symmetric space ðG=H; s; I ; gÞ in [Ka-Koz]. A para-Hermitian symmetric space is

a pseudo-Riemannian manifold. When we discuss a pseudo-Riemannian manifold

ðM; gÞ, some natural problems arise:

(1) How many such metrics exist there on the manifold M?

(2) With what kind of structure is the group IðM; gÞ of isometries?

For almost e¤ective semisimple para-Hermitian symmetric spaces, we well

know the following fact contributed in [Ka-Koz]:
� For an arbitrary almost e¤ective semisimple para-Hermitian symmetric space

ðG=H; s; I ; gÞ, there exists a unique element Z A g :¼ LieðGÞ such that

cgðZÞ ¼ h and Io ¼ adm Z, where o is the origin of G=H and h (resp. m) is

the 1 ðresp. �1Þ eigenspace of s� in g.
� Furthermore, set I ðresp. gÞ as the G-invariant extension of l1 adm Z

ðresp. of l2Bgjm�mÞ, where l1 ¼G1 ðresp. l2 is any nonzero real number).

Then the quadruplet ðG=H; s; I ; gÞ is a para-Hermitian symmetric space,

also.

If there exists a nonzero real number l such that the metric g is the G-invariant

extension of lBgjm�m, then IðG=H; gÞ coincides with IðG=H; gÞ. As a result, it is

greatly important to determine the group IðG=H; gÞ of isometries in this case.

Thereupon, under certain conditions, we determine the group of isometries for

every para-Hermitian symmetric space.

This paper is organized as follows:

§ 2 Preliminaries. In this section, we provide useful notation and recollect

some definitions and facts on para-Hermitian symmetric spaces. An

important result in this section is a theorem on para-Hermitian structures,

and this is Proposition 2 and Theorem 1-(1).

§ 3 Relation between isometries and Lie algebra automorphisms. Next, under

the same conditions as in Theorem 1, we assert Proposition 3. From this,

we infer relation between isometries and Lie algebra automorphisms.

Using this proposition, we briefly prove the main point in the section,

namely Proposition 4. Those propositions imply Theorem 1-(2) and form

a basis of Theorem 1-(3).

§ 4 A way to determine every quotient group IðG=H; gÞ=IðG=H; gÞ0 and

Examples. The final section presents a way to determine every group

IðG=H; gÞ=IðG=H; gÞ0 for ðG=H; s; I ; gÞ in Theorem 1. In addition, we

consider a way to construct any space ðG=H; s; I ; gÞ in Theorem 1.

With a similar way to this, we individually determine every group

IðG=H; gÞ=IðG=H; gÞ0 and obtain Tables 1 and 2.
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2. Preliminaries

2.1. Notation. We use the following notation in this paper, where M is a

manifold, G is a Lie group, and g is a Lie algebra:

XðMÞ the Lie algebra of vector fields on M,

IðM; gÞ the group of isometries of a pseudo-Riemannian manifold

ðM; gÞ,
‘1 the canonical a‰ne connection on a symmetric space,

AðM;‘Þ the group of a‰ne transformations of an a‰ne manifold

ðM;‘Þ,
LieðGÞ the Lie algebra of G,

AutðGÞ;AutðgÞ the groups of automorphisms of G, g, respectively,

Autðg; fÞ :¼ fc A AutðgÞ j f � c ¼ c � fg, for f A AutðgÞ,
IntðgÞ the group of inner automorphisms of g,

Table 2. The unique elements corresponding to every system of nonzero roots

Type Condition Dynkin diagram with the coe‰cients of the maximal root The element Z

an nb 1 Z1; . . . ;Zn

bn nb 3 Z1

cn nb 2 Zn

dn nb 4 Z1;Zn�1;Zn

e6 — Z1;Z6

e7 — Z7

Here fZigi is the dual basis of faigi .
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Bg the Killing form of g,

CGðZÞ :¼ fx A G jAdðxÞZ ¼ Zg, for Z A LieðGÞ,
cgðZÞ :¼ fX A g j ½Z;X � ¼ 0g, for Z A g,

ZðGÞ; zðgÞ the centers of G, g, respectively,

G0 the identity component of G,

Gs the closed subgroup of G which consists of the fixed points

of an involution s of G,

Ax the inner automorphism of G by an element x A G,

a� the dual space of a vector space a,

idA the identity mapping of a set A.

2.2. Definitions and Well Known Propositions. Let us begin with a brief

review of para-Hermitian symmetric space. First of all,

Definition 1 (cf. [No1], p. 52, p. 53). (1) Set G as a connected Lie group,

and H as a closed subgroup of G. The pair ðG=H; sÞ of the homogeneous

space G=H and an involution s of G is said to be a symmetric space, if

the following inclusion relation is satisfied:

ðGsÞ0 � H � Gs;

(2) A symmetric space ðG=H; sÞ is uniquely equipped with a G-invariant

a‰ne connection ‘1 making an a‰ne transformation of ŝs, where ŝsðxHÞ
:¼ sðxÞH for xH A G=H. We call the connection ‘1 the canonical a‰ne

connection on ðG=H; sÞ.

Remark 1. If a symmetric space ðG=H; sÞ admits a G-invariant pseudo-

Riemannian metric g, then the Levi-Civita connection induced by g coincides

with the canonical a‰ne connection ‘1 (cf. [No1], p. 55). Additionally, on the

compact-open topology, IðG=H; gÞ is a closed subgroup of AðG=H;‘1Þ (cf.

[No2], p. 823).

Second, we recollect the definition of para-Hermitian symmetric space:

Definition 2 (cf. [Ka-Koz], p. 86–87). A para-Hermitian symmetric space

is the name given to a quadruplet ðG=H; s; I ; gÞ, where ðG=H; sÞ is a symmetric

space furnished with a G-invariant para-complex structure I and with a G-

invariant para-Hermitian metric g.
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Remark 2. Note that a 2-form o, oðX ;YÞ :¼ gðX ; IY Þ for X ;Y A XðG=HÞ,
becomes symplectic. In other words, g is upgraded to a para-Kähler metric

(cf. [Ka-Koz], p. 86).

Next, to characterize para-Hermitian symmetric spaces, we prepare a term

on a Lie algebra:

Definition 3. A real Lie algebra g is called absolutely simple, if its com-

plexification gC is simple. A Lie group G and a symmetric space ðG=H; sÞ are

equally called absolutely simple, if LieðGÞ is absolutely simple.

Last, recall a well known proposition about para-Hermitian symmetric spaces:

Proposition 1 (cf. [Ka-Koz], p. 89–92, and [Koh], p. 306). Let ðG=H; s; I ; gÞ
be an absolutely simple para-Hermitian symmetric space. In addition, put g :¼
LieðGÞ and set h ðresp. mÞ as the 1 ðresp. �1Þ eigenspace of s� in g. Moreover, set

p as the �1 eigenspace in g of a Cartan involution y of g which commutes with s�.

Then there exists a unique element Z A zðhÞ \ p such that

(1) CGðZÞ0 � H � CGðZÞ,
(2) h ¼ cgðZÞ ¼ g0, m ¼ g�1 l g1, where gl is the l eigenspace in g of ad Z,

(3) Io ¼ adm Z, s� ¼ exp
ffiffiffiffiffiffiffi
�1

p
p ad Z,

(4) zðhÞ ¼ RZ.

Furthermore, a quadruplet ðG=H; s; I ; gÞ becomes a para-Hermitian symmetric

space for an arbitrary open subgroup H of CGðZÞ, where I ðresp. gÞ is the

G-invariant extension of l1 adm Z ðresp. of l2Bgjm�mÞ and l1 ¼G1 ðresp. l2 is a

nonzero real numberÞ.

2.3. An Invariant Para-Hermitian Metric. As the first step in this study, we

uniformize the metrics on absolutely simple para-Hermitian symmetric spaces.

Assume that ðG=H; s; I ; gÞ, g, h, m, and Z are the same symbols as in Prop-

osition 1.

Proposition 2. Any G-invariant para-Hermitian metric of G=H with respect

to I is the G-invariant extension of Bgjm�m up to constant. In particular, there

exists a nonzero real number l such that g is the G-invariant extension of lBgjm�m.

Proof. Take any G-invariant para-Hermitian metric ~gg of G=H with respect

to I . Set p as the projection from G onto G=H and set W as the pull back of

~oo with p: W :¼ p� ~oo, where ~ooðX ;YÞ :¼ ~ggðX ; IY Þ for X ;Y A XðG=HÞ. Since ~oo is
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G-invariant symplectic, W is a left-invariant closed 2-form on G. Let q be the

boundary operator of the trivial representation of g. Then, for X ;Y ;W A g,

qWðX ;Y ;WÞ ¼ �Wð½X ;Y �;WÞ �Wð½Y ;W �;XÞ �Wð½W ;X �;YÞ

¼ WðWðX ;Y ÞÞ þ XðWðY ;WÞÞ þ YðWðW ;XÞÞ

�Wð½X ;Y �;WÞ �Wð½Y ;W �;XÞ �Wð½W ;X �;Y Þ

¼ dWðX ;Y ;WÞ ¼ 0;

thus W is a 2-cochain. From the Whitehead lemma (e.g. [Va] Theorem 3.12.1,

p. 220), the 1-cohomology space vanishes and the 2-cohomology space also

dose. The latter implies that W is a 2-coboundary, and then there exists a non-

zero element a A g� such that W ¼ qa. This a is unique, because of the former.

Moreover, by use of gG g� as a vector space with X $ BgðX ; �Þ, there uniquely

exists an element A A g such that

WðX ;Y Þ ¼ �BgðA; ½X ;Y �Þ for all X ;Y A g:

Here h¼ cgðAÞ; indeed, �BgðA; ½X ;Y �Þ ¼ WðX ;YÞ ¼ ~ooðp�X ; p�YÞ � p for X ;Y A g

and both Bg and ~oo are nondegenerate. In consequence, Proposition 1-(4) causes

that there exists a nonzero unique real number ~ll such that A ¼ ~llZ. Hence, for

all X ;Y A m,

~ggoðX ;Y Þ ¼ ~ooðX ; IoY Þ ¼ WðX ; IoY Þ ¼ �BgðA; ½X ; ad ZðYÞ�Þ

¼ ~llBgðX ; ðad ZÞ2ðYÞÞ ¼ ~llBgðX ;Y Þ:

Recollecting that ~gg is G-invariant, we obtain this proposition. r

3. Relation between Isometries and Lie Algebra Automorphisms

3.1. An Isotropy Subgroup. In this section, ðG=H; s; I ; gÞ, g, h, m, and Z

are the same symbols as in Proposition 1. Let us just consider the only case

where G=H can be realized as a hyperbolic orbit with the adjoint representation

Ad, namely hyperbolic orbit type. Suppose that G=H is of hyperbolic orbit type

(that is, H ¼ CGðZÞ) and ZðGÞ is trivial. In addition, set o A G=H as the origin of

G=H and let IðG=H; g; oÞ (resp. AðG=H;‘1; oÞ) be the isotropy subgroup at o of

the isometric transformation group IðG=H; gÞ (resp. of the a‰ne transformation

group AðG=H;‘1Þ).
Here, we confirm the following proposition to achieve the main purpose in

this paper:
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Proposition 3. IðG=H; g; oÞ ¼ AðG=H;‘1; oÞGAutðg; s�Þ as a group. More-

over, IðG=H; gÞ ¼ AðG=H;‘1Þ.

This proposition comes from four lemmas. At the beginning, Autðg; s�Þ is

distinguished by Z as follows:

Lemma 1. Put Autðg;ZÞG :¼ ff A AutðgÞ j fðZÞ ¼GZg, and as disjoint union

Autðg; s�Þ ¼ Autðg;ZÞþ tAutðg;ZÞ�:

Proof. Since Z is nonzero, this proof is completed if we prove Autðg; s�Þ
¼ Autðg;ZÞþ [Autðg;ZÞ�. Assume that f A Autðg;ZÞG, and then f � s� � f�1 ¼
exp

ffiffiffiffiffiffiffi
�1

p
p adðGZÞ ¼ sG1

� ¼ s�.

On the other hand, take any f A Autðg; s�Þ. By use of fðzðhÞÞ ¼ zðhÞ and of

Proposition 1-(4), there exists a nonzero real number m such that fðZÞ ¼ mZ.

Applying ðf � Io � f�1Þ2 ¼ idm, we obtain X ¼ ðf � Io � f�1Þ2ðXÞ ¼ ðf � Io � f�1Þ �
ðm ad ZðXÞÞ ¼ m2X for all X A m, and consequently have m ¼G1. r

In the second place, we correlate Autðg; s�Þ with AðG=H;‘1; oÞ:

Lemma 2. For an arbitrary f A Autðg; s�Þ, there exists a unique F A AutðGÞ
such that FðHÞ ¼ H and F� ¼ f. Put F̂FðxHÞ :¼ FðxÞH for xH A G=H, and then

F̂F A IðG=H; g; oÞ; as a result, F̂F A AðG=H;‘1; oÞ.

Proof. G is connected, and there uniquely exists the universal covering

group ð ~GG; rÞ such that (1) N :¼ KerðrÞ � Zð ~GGÞ is a normal subgroup of ~GG, (2)
~GG=NGG as a Lie group, and (3) Lieð ~GGÞG g as a Lie algebra. Since ZðGÞ is

trivial, we have Zð ~GGÞ ¼ N; and then GG ~GG=Zð ~GGÞ as a Lie group.

Take any f A Autðg; s�Þ, and there exists a unique C A Autð ~GGÞ such that

C� ¼ f. Since CðNÞ ¼ N, C induces an automorphism of ~GG=N: ~CCðaNÞ :¼
CðaÞN. Hence there exists a unique F A AutðGÞ such that F� ¼ f. Here

FðHÞ ¼ H; because, by Lemma 1, Ad FðxÞZ ¼ f �Ad x � f�1ðZÞ ¼ Z for all

x A H. Thus an automorphism F̂F of G=H is induced by F̂FðxHÞ :¼ FðxÞH, and

then F̂F is an isometry. Indeed, goðF̂F�X ; F̂F�Y Þ ¼ lBgðfðXÞ; fðY ÞÞ ¼ goðX ;YÞ for

all X ;Y A m, where l is the real number associated with g and Bg (cf. Propo-

sition 2). r

Now set F1, F2, and F as the mappings provided in Lemma 2:

F1 : Autðg; s�Þ ! AutðG;HÞ; f 7! F;
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F2 : AutðG;HÞ ! AðG=H;‘1; oÞ; F 7! F̂F;

F :¼ F2 � F1 : Autðg; s�Þ ! AðG=H;‘1; oÞ;

where AutðG;HÞ is the subgroup of AutðGÞ maintaining H. Note that F is a

homomorphism.

To close, we prove that F2 is a group isomorphism of AutðG;HÞ onto

AðG=H;‘1; oÞ, and accordingly heed the following:

Lemma 3. Put tx : aH 7! xaH for aH A G=H and t : x 7! tx for x A G, and

then the mapping AðG=H;‘1; oÞ ! AutðG;HÞ, f 7! t�1 �Af � t is the inverse

mapping of F2.

Proof. First of all, let us prove that G=H is e¤ective. Take any normal

subgroup N of G contained in H. Since G is simple, N is discrete and then

N � ZðGÞ ¼ feg; thus G=H is e¤ective. This enables us to have tG ¼AðG=H;‘1Þ0
by proceeding in the similar way to that of Proposition 1.6 in [Ka], where

tG ¼ ftx j x A Gg.
Just take any f A AðG=H;‘1; oÞ, and it consequently follows that Af ðtxÞ A

AðG=H;‘1Þ0 for any x A G. Thereupon put Ff :¼ t�1 �Af � t, and then Ff A

AutðGÞ. Here Ff ðHÞ ¼ H; indeed, tyðoÞ ¼ f � th � f �1ðoÞ ¼ f ðthðoÞÞ ¼ f ðoÞ ¼ o

for all h A H, where y :¼ Ff ðhÞ. As a result, an automorphism F̂Ff of G=H is

induced as F̂Ff ðxHÞ :¼ Ff ðxÞH. This automorphism F̂Ff coincides with f ; because

F̂Ff ðxHÞ ¼ Ff ðxÞH ¼ zH ¼ tzðoÞ ¼ f � tx � f �1ðoÞ ¼ f ðxHÞ for all x A G, where

z :¼ Ff ðxÞ. Therefore the mapping f 7! t�1 �Af � t is F �1
2 . r

Applying Lemma 3, we obtain the following:

Lemma 4. There exists the inverse mapping of F , and this is

F 0 : AðG=H;‘1; oÞ ! Autðg; s�Þ, f 7! ðt�1 �Af � tÞ�.

Proof. If f A AðG=H;‘1; oÞ and Ff :¼ t�1 �Af � t, then this mapping Ff A

AutðG;HÞ yields ðFf Þ�jh A AutðhÞ. In consequence, ðFf Þ�jm is an isomorphism

of m.

Here ðFf Þ� A Autðg; s�Þ, because s� � ðFf Þ� � s�ðX Þ ¼ s� � ðFf Þ�ðX1 � X2Þ ¼
ðFf Þ�ðX1Þ � ð�ðFf Þ�ðX2ÞÞ ¼ ðFf Þ�ðX Þ for all X ¼ X1 þ X2 A g (X1 A h;X2 A m).

Thus F 0 is well-defined, and we can easily confirm F � F 0 ¼ id and F 0 � F ¼ id.

This lemma is proved. r

Now, we are in a position to prove Proposition 3.
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Proof of Proposition 3. For every f A AðG=H;‘1; oÞ, f is an isometry of

ðG=H; gÞ. Indeed, put Ff :¼ t�1 �Af � t, and then f�o ¼ ðFf Þ�jm. There exists a

nonzero real number l such that g is the G-invariant extension of lBgjm�m (cf.

Proposition 2). Hence goð f�oðXÞ; f�oðY ÞÞ ¼ lBgððFf Þ�ðXÞ; ðFf Þ�ðYÞÞ ¼ lBgðX ;YÞ
¼ goðX ;Y Þ for all X ;Y A m; thus f �g ¼ g. This provides us with IðG=H; g; oÞ ¼
AðG=H;‘1; oÞ. From this relation and the lemmas stated above, IðG=H; g; oÞ ¼
AðG=H;‘1; oÞGAutðg; s�Þ comes. Let us show IðG=H; gÞ ¼ AðG=H;‘1Þ from

now on. Take any f A AðG=H;‘1Þ, and there exists an element x A G such that

f � txðoÞ ¼ o. Since IðG=H; g; oÞ ¼ AðG=H;‘1; oÞ, the mapping f ¼ ð f � txÞ � t�1
x

A IðG=H; gÞ. In consequence, IðG=H; gÞ ¼ AðG=H;‘1Þ. r

3.2. The Connected Components of Transformation Groups. At last, we

obtain the following:

Proposition 4. Put Intðg;ZÞþ :¼ Autðg;ZÞþ \ IntðgÞ, and then as a group

IðG=H; gÞ=IðG=H; gÞ0 ¼ AðG=H;‘1Þ=AðG=H;‘1Þ0

G ðAutðg;ZÞþ tAutðg;ZÞ�Þ=Intðg;ZÞþ:

Proof. The deduction in the proof of Proposition 3 connotes IðG=H; gÞ0 ¼
tG and IðG=H; g; oÞ \ tG ¼ tH , where tL ¼ ftx j x A Lg (L ¼ G or HÞ.

Moreover, the isomorphism F 0 in Lemma 4 correlates th with Ad h through

Ah for h A H. Hence tH GAd H as a group.

Lastly, by use of Ad G ¼ IntðgÞ and H ¼ CGðZÞ, we have Ad H ¼ Intðg;ZÞþ.
Therefore, by Proposition 3 and Lemma 1,

IðG=H; gÞ=IðG=H; gÞ0 ¼ AðG=H;‘1Þ=AðG=H;‘1Þ0 ¼ ðIðG=H; g; oÞ � tGÞ=tG

G IðG=H; g; oÞ=tH GAutðg; s�Þ=Ad H

¼ ðAutðg;ZÞþ tAutðg;ZÞ�Þ=Intðg;ZÞþ: r

4. A Way to Determine Every Quotient Group IðG=H; gÞ=IðG=H; gÞ0 and

Examples

4.1. A Way to Determine Every Group IðG=H; gÞ=IðG=H; gÞ0. In this

subsection, we consider a way to investigate the structure of every group

IðG=H; gÞ=IðG=H; gÞ0 for ðG=H; s; I ; gÞ in Theorem 1 with Proposition 4.

Let G be a connected absolutely simple Lie group whose Lie algebra is g.

Suppose that ZðGÞ is trivial. Now, take any Cartan involution ~yy of g and take
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a maximal abelian subspace ~aa in ~pp, where ~pp is the �1 eigenspace of ~yy in g.

Moreover, set ~DD as the system of nonzero restricted roots of ðg; ~aaÞ, ~DDþ as a

half system of ~DD, ~gg as the maximal root of ~DDþ, and ~WW :¼ f ~AA A ~aa j ~aað ~AAÞb 0

for all ~aa A ~DDþg. Then the following is caused:

Proposition 5. (1) Take any para-Hermitian symmetric space ðG=H; s; I ; gÞ
of hyperbolic orbit type. For any Cartan involution y of g which commutes

with s�, there exists an inner automorphism f of g such that

(a) ~ZZ :¼ fðZÞ A ~WW ,

(b) ~ggð ~ZZÞ ¼ 1,

(c) IðG=H; gÞ=IðG=H; gÞ0 G ðAutðg; ~ZZÞþ tAutðg; ~ZZÞ�Þ=Intðg; ~ZZÞþ,
where Z is a unique element with Proposition 1 for the space ðG=H; s; I ; gÞ
and the Cartan involution y.

(2) For any ~AA A ~WW with ~ggð ~AAÞ ¼ 1, there exists a unique absolutely simple para-

Hermitian symmetric space ðG= ~HH; ~ss; ~II ; ~ggÞ of hyperbolic type such that

(a) the element ~AA is a unique one satisfying the conditions (1)–(4) on

Proposition 1 for ðG= ~HH; ~ss; ~II ; ~ggÞ and ~yy,

(b) IðG= ~HH; ~ggÞ=IðG= ~HH; ~ggÞ0 G ðAutðg; ~AAÞþ tAutðg; ~AAÞ�Þ=Intðg; ~AAÞþ,
where the uniqueness of metric is up to constant.

Proof. (1) The Lie algebra g is (semi)simple, and then there exists an inner

automorphism f1 of g such that ~yy ¼ f1 � y � f�1
1 . Hence ~yyðf1ðZÞÞ ¼ f1ðyðZÞÞ ¼

�f1ðZÞ; in brief Z1 :¼ f1ðZÞ A ~pp. Take a maximal abelian subspace ~aa1 in ~pp

containing Z1, and then the subspaces ~aa and ~aa1 are conjugate under the action

of K , where K is a maximal compact subgroup of G whose Lie algebra is the

1 eigenspace of ~yy in g. In consequence, there exists an inner automorphism f2
of g such that f2ð~aa1Þ ¼ ~aa; thus Z2 :¼ f2ðZ1Þ A ~aa. Let M be the subgroup of G

with Lie algebra ~aa. Then the Weyl group of ~DD coincides with the Weyl group

NKð~aaÞ=ZKð~aaÞ ¼ NGð~aaÞ=ZGð~aaÞ of ðG;MÞ, where NLð~aaÞ (resp. ZLð~aaÞ) is the nor-

malizer (resp. the centralizer) of ~aa in L ¼ G or K . This causes that there exists a

mapping f3 in the Weyl group of ðG;MÞ such that f3ðZ2Þ A ~WW . As a result, we

obtain f :¼ f3 � f2 � f1 A IntðgÞ with ~ZZ :¼ fðZÞ A ~WW .

Notice that ~ggð ~ZZÞb 0 is an eigenvalue of ad ~ZZ in g and is consequently one of

ad Z in g, and then ~ggð ~ZZÞ ¼ 0 or 1. Since the element Z is nonzero and ~ZZ is also,

the map ad ~ZZ must generate a nonzero eigenvalue in g. Hence there exists a root
~bb A ~DDþ such that ~bbð ~ZZÞ > 0. Owing to ~ggð ~ZZÞb ~bbð ~ZZÞ, the value ~ggð ~ZZÞ is 1.

Moreover, By Proposition 4, IðG=H; gÞ=IðG=H; gÞ0 G ðAutðg;ZÞþ t
Autðg;ZÞ�Þ=Intðg;ZÞþ G ðAutðg; ~ZZÞþ tAutðg; ~ZZÞ�Þ=Intðg; ~ZZÞþ.
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(2) The condition ~AA A ~WW with ~ggð ~AAÞ ¼ 1 causes the decomposition g ¼
~gg�1 l ~gg0 l ~gg1, where ~ggl is the l eigenspace of ad ~AA in g. Thereupon, put
~HH :¼ CGð ~AAÞ, ~ss :¼ Aexp

ffiffiffiffiffi
�1

p
p ~AA, and ~mm :¼ ~gg�1 l ~gg1. Additionally, set ~II ðresp. ~ggÞ

as the G-invariant extension of ad ~mm
~AA ðresp. of Bgj ~mm� ~mmÞ. Then the quadruplet

ðG= ~HH; ~ss; ~II ; ~ggÞ becomes an absolutely simple para-Hermitian symmetric space of

hyperbolic type.

Note in passing that ~yy � ~ss� ¼ ~ss� � ~yy, and there exists a unique element ~AA0

such that (1)–(4) on Proposition 1 for ðG= ~HH; ~ss; ~II ; ~ggÞ and ~yy. This element ~AA0 is

unique and the one ~AA satisfies the same conditions for ðG= ~HH; ~ss; ~II ; ~ggÞ and ~yy; and

consequently ~AA0 is just ~AA. Therefore Proposition 4 induces IðG= ~HH; ~ggÞ=IðG= ~HH; ~ggÞ0
G ðAutðg; ~AAÞþ tAutðg; ~AAÞ�Þ=Intðg; ~AAÞþ.

Assume that a quadruplet ðG=H; s; I ; gÞ, also, satisfies the conditions (2)-(a)

and (2)-(b) on Proposition 5. Then there exists a unique element A0 such that

(1)–(4) on Proposition 1 for ðG=H; s; I ; gÞ and ~yy. This assures ðG=H; s; IÞ ¼
ðG= ~HH; ~ss; ~IIÞ. In addition, Proposition 2 causes that g is the G-invariant extension

of Bgj ~mm� ~mm up to constant. Hence ðG=H; s; I ; gÞ coincides with ðG= ~HH; ~ss; ~II ; ~ggÞ,
where the coincidence of metrics is up to constant. r

Remark 3. Take an arbitrary space ðG=H; s; I ; gÞ in Theorem 1, namely an

absolutely simple para-Hermitian symmetric space of hyperbolic orbit type under

the condition which the center of G is trivial. Assume that this Lie group G is the

above G fixed first in this subsection. Then, for any Cartan involution y of g

which commutes with s�, there exists a unique element Z such that (1)–(4) on

Proposition 1 for ðG=H; s; I ; gÞ and y. Additionally, by Proposition 5-(1), there

exists an inner automorphism f of g such that ~ZZ :¼ fðZÞ A ~WW , ~ggð ~ZZÞ ¼ 1, and

IðG=H; gÞ=IðG=H; gÞ0GðAutðg; ~ZZÞþ tAutðg; ~ZZÞ�Þ=Intðg; ~ZZÞþ. Simultaneously, by

Proposition 5-(2), there exists the para-Hermitian symmetric space ðG= ~HH; ~ss; ~II ; ~ggÞ
of hyperbolic orbit type for the element ~ZZ. This space ðG= ~HH; ~ss; ~II ; ~ggÞ coincides

just with ðG=H; s; I ; gÞ because ~ZZ ¼ fðZÞ and f A IntðgÞ, where the coincidence

of metrics is up to constant.

Therefore, an arbitrary para-Hermitian symmetric space in Theorem 1 can

be generated from an element ~AA A ~WW with ~ggð ~AAÞ ¼ 1 in an absolutely simple Lie

algebra, where ~gg and ~WW are the same constructed with the above way for this Lie

algebra. Hence, it is su‰cient to determine IðG=H; gÞ=IðG=H; gÞ0 for an arbitrary

space ðG=H; s; I ; gÞ in Theorem 1 that we determine ðAutðg; ~AAÞþ tAutðg; ~AAÞ�Þ=
Intðg; ~AAÞþ for all ~AA A ~WW with ~ggð ~AAÞ ¼ 1 in every absolutely simple Lie algebra g,

where ~gg and ~WW are the same constructed with the above way for g. With the

paper [Ta], we have already known the group AutðgÞ=IntðgÞ. Thus, we can
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individually determine ðAutðg; ~AAÞþ tAutðg; ~AAÞ�Þ=Intðg; ~AAÞþ for all ~AA A ~WW with

~ggð ~AAÞ ¼ 1 in g.

4.2. Examples of the Classical Type. Parenthetically, we note that the

notation of the Lie groups and Lie algebras in this paper is that of in [He].

Our aim in this subsection is to present our procedure for determining

ðAutðg; ~AAÞþ tAutðg; ~AAÞ�Þ=Intðg; ~AAÞþ for g of the classical type. Let us consider

the two types slðn;RÞ and soðn; nÞ.

Type slðn;RÞ. Let g be the Lie algebra slðn;RÞ and let ~yy : X 7! � tX for

X A g, where nb 3. Then the 1 eigenspace ~kk of ~yy in g is soðnÞ and the �1

eigenspace ~pp is fX A slðn;RÞ j tX ¼ Xg. Now we choose

~aa :¼

a1 0 � � � 0

0 a2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � an

0
BBBB@

1
CCCCA

8>>>><
>>>>:

����������
Xn

i¼1

ai ¼ 0

9>>>>=
>>>>;

� ~pp;

~DD :¼ fGðei � ejÞ j 1a i < ja ng, and ~DDþ :¼ fei � ej j 1a i < ja ng, and have

the fundamental system ~PP � ~DDþ as fak :¼ ek � ekþ1 j 1a ka n� 1g and ~gg ¼
a1 þ a2 þ � � � þ an�1:

Set fZ1; . . . ;Zn�1g as the dual basis of ~PP, namely

Zi ¼
1

n

ðn� iÞEi 0

0 �iEn�i

� �
;

where El denotes the unit matrix of order l. Every element ~AA A ~WW with ~ggð ~AAÞ ¼ 1

in the absolutely simple Lie algebra g is any in fZ1; . . . ;Zn�1g. In this connection,

the eigenspaces g�1, g1, and g0 of ad Zi in g are evaluated as

g�1 ¼
O O

Xn�i; i O

� �����Xn�i; i : ðn� iÞ � i real matrix

� �
;

g1 ¼
O Xi;n�i

O O

� �����Xi;n�i : k � ðn� iÞ real matrix

� �
;
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g0 ¼
Xi O

O Xn�i

� ����� TrðXi þ Xn�iÞ ¼ 0;

Xi : i � i;Xn�i : ðn� iÞ � ðn� iÞ real matrix; respectively

� �

G slði;RÞl slðn� i;RÞlR:

Let us assume that 1a ka n� 1 and let us be just about to determine

ðAutðg;ZkÞþ tAutðg;ZkÞ�Þ=Intðg;ZkÞþ.
(Case I: n is odd ). With the paper [Ta], we see that AutðgÞ=IntðgÞGZ2 is

generated by ~yy. Here,

Lemma 5. Intðg;ZkÞ� :¼ ff A IntðgÞ j fðZkÞ ¼ �Zkg is empty.

Proof. If there existed a real matrix

x ¼ Ak Bk;n�k

Cn�k;k Dn�k

� �

such that Ad xðZkÞ ¼ �Zk, then the following conditions would be satisfied:

ðn� kÞA ¼ �ðn� kÞA; �kB ¼ �ðn� kÞB; ðn� kÞC ¼ kC; �kD ¼ kD:

Hence we would have A ¼ O and D ¼ O, and would obtain B ¼ O and C ¼ O

because n0 2k; as a result, x ¼ O and Ad xðZkÞ ¼ O. r

Since Intðg;ZkÞ� ¼ q and ~yyðZkÞ ¼ �Zk, the following holds:

ðAutðg;ZkÞþ tAutðg;ZkÞ�Þ=Intðg;ZkÞþ ¼ f½idg�; ½~yy�gGZ2:

(Case II: n is even). The paper [Ta] reports that AutðgÞ=IntðgÞGZ2 lZ2 is

generated by ~yy and Ad I1;n�1, where

I1;n�1 ¼
�1 O

O En�1

� �
:

By a similar way to Lemma 5, Intðg;ZkÞ� is empty in the condition n0 4k. If

k is just n over 4, for instance Ad a is an inner automorphism of g moving Zk

to �Zk. Here

a ¼ Ok Bk

Ck Ok

� �
; ðBk;CkÞ ¼ ðEk;�EkÞ if k is odd; Bk ¼ Ck ¼ Ek if k is even:

Notice that Intðg;ZkÞ� ¼ Ad a � Intðg;ZkÞþ and ~yy is commutable with Ad a

if n ¼ 4k: thus
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ðAutðg;ZkÞþ tAutðg;ZkÞ�Þ=Intðg;ZkÞþ

G
Z2 lZ2 by ~yy and Ad I1;n�1 ðn0 4kÞ;
Z2 lZ2 lZ2 by ~yy; Ad I1;n�1; and Ad a ðn ¼ 4kÞ:

(

Type soðn; nÞ. Put g :¼ soðn; nÞ and ~yy :¼ Ad In;n, and then ~kkG soðnÞl soðnÞ
and

~pp ¼ O Xn

tXn O

� �����Xn : n real matrix

� �
;

where nb 5. Choose the abelian subspace ~aa in ~pp as the one constructed by all

diagonal matrix of order n and take ~DDþ :¼ fei G ej j 1a i < ja ng. These induce

that the fundamental system ~PP � ~DDþ is fak :¼ ek � ekþ1; an :¼ en�1 þ en j 1a ka

n� 1g and that ~gg ¼ a1 þ 2a2 þ � � � þ 2an�2 þ an�1 þ an:

Denote the dual basis of ~PP by fZ1; . . . ;Zng. Then an element ~AA A ~WW with

~ggð ~AAÞ ¼ 1 in the absolutely simple Lie algebra g is only Z1, Zn�1, or Zn;

concretely

Zk ¼
O X ðkÞ

tXðkÞ O

� �
; Xð1Þ ¼

1 0 � � � 0

0 0 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � 0

0
BBBB@

1
CCCCA;

Xðn� 1Þ ¼ � 1

2
In�1;1; XðnÞ ¼ 1

2
En:

Here the element Zn�1 can be mapped to Zn by the involution Ad In�1;1 of

g. Accordingly, it is su‰cient that we consider the two cases with Z1 or Zn.

Furthermore, we obtain cgðZ1ÞG soðn� 1; n� 1ÞlR and cgðZnÞG slðn;RÞlR.

(Case I: n is odd ). An result of [Ta] is that AutðgÞ=IntðgÞGZ2 lZ2 is

generated by ~yy and Ad Jn, where

Jn ¼
O En

�En O

� �
:
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On both of the cases with Z1 and Zn: the set Intðg;ZkÞ� is empty by a

similar way to Lemma 5 and the maps ~yy and Ad Jn move Zk to �Zk. Hence

ðAutðg;ZkÞþ tAutðg;ZkÞ�Þ=Intðg;ZkÞþ GZ2 lZ2 by ~yy and Ad Jn, where k ¼ 1

or n.

(Case II: n is even). Applying the paper [Ta] in the case, we see that

AutðgÞ=IntðgÞG ðZ2 lZ2ÞzZ2 is generated by Ad a, Ad Jn, and Ad I1;n�1. We

obtain Ad a A Autðg;ZkÞþ and Ad Jn Autðg;ZkÞ�. However, we just note that

Ad I1;n�1 B Autðg;ZkÞþ tAutðg;ZkÞ�. Here k ¼ 1 or n and

a ¼ I1;n�1 � I1;n�1 ¼
I1;n�1 O

O I1;n�1

� �
:

On the one case with Z1: the inner automorphism Ad b of g carries Z1

to �Z1, where b ¼ I1;n�1 ��I1;n�1. Moreover, by this inner automorphism,

½Ad I1;n�1� A ðAutðg;Z1Þþ tAutðg;Z1Þ�Þ=Intðg;Z1Þþ; particularly Ad I1;n�1 �Ad b

A Autðg;ZkÞþ. By regarding the algebraic relation among these, the following

holds:

ðAutðg;ZkÞþ tAutðg;ZkÞ�Þ=Intðg;ZkÞþ

GZ2 l ððZ2 lZ2ÞzZ2Þ by Ad b;Ad a;Ad Jn; and Ad I1;n�1:

On the other case (with Zn): there exists an inner automorphism of g

which can transfer Zn to �Zn, for instance the Cartan involution ~yy ¼ Ad In;n.

Nevertheless, ½Ad I1;n�1� B ðAutðg;Z1Þþ tAutðg;Z1Þ�Þ=Intðg;Z1Þþ by any inner

automorphism of g. This is realized by a similar way to Lemma 5. As a

result,

ðAutðg;Z1Þþ tAutðg;Z1Þ�Þ=Intðg;Z1Þþ

GZ2 lZ2 lZ2 by ~yy; Ad a; and Ad Jn:

4.3. Examples of the Exceptional Type. In the last place, we aim to present

our proceeding of the exceptional type. Let us consider the two types e6ð6Þ and

e7ð�25Þ.

Type e6ð6Þ. Let gC be the complex Lie algebra ðe6ÞC and let hC be a Cartan

subalgebra of gC. Then we have the system of nonzero roots DC of ðgC; hCÞ and a

fundamental system PC :¼ fx1; . . . ; x6g of DC with the coe‰cients of the maximal

root as follows:
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Let gC ¼ hC l0
x ADC

gx be the root space decomposition, where gx is the root

space of x A DC. Then there exist a Weyl basis fXxgx ADC
of gC mod hC, a set

fHxgx ADC
, and a set fNx;hgðx;hÞ A DC�DC

of real numbers such that

Xx A gx; ½Xx;X�x� ¼ Hx A hC; BgC
ðHx;HÞ ¼ xðHÞ ðfor all H A hCÞ for x A DC;

and

Nx;h ¼ �N�x;�h; ½Xx;Xh� ¼
Nx;hXxþh ðxþ h A DCÞ
0 ðxþ h0 0 and B DCÞ

�

for each pair ðx; hÞ A DC � DC. In addition, the real Lie algebra gu :¼P
x ADC

Rð
ffiffiffiffiffiffiffi
�1

p
HxÞ þ

P
x ADC

RðXx � X�xÞ þ
P

x ADC
Rð

ffiffiffiffiffiffiffi
�1

p
ðXx þ X�xÞÞ is a com-

pact real form of gC.

Now, define the involution rC of gC by x1 $ x6, x2 $ x2, x3 $ x5, and

x4 $ x4. Moreover, put ~yy :¼ rC � exp
ffiffiffiffiffiffiffi
�1

p
p ad T2, where fT1; . . . ;T6g is the dual

basis of PC. Then ~yy is an involution of gC with ~yyðguÞ ¼ gu. When k ðresp.
ffiffiffiffiffiffiffi
�1

p
pÞ

is the 1 ðresp. �1Þ eigenspace of ~yyjgu in gu, the subalgebra k of gu is spð4Þ (cf. the

list on p. 305 in [Mu]). Thus the real form kl p of gC is the Lie algebra e6ð6Þ,

and we accordingly settle g as kl p.

Assume ~yy to be ~yyjg, and then ~yy is a Cartan involution of g. Take a maximal

abelian subspace ~aa in p, and set ~DD as the system of nonzero restricted roots of

ðg; ~aaÞ and ~DDþ as a half system of ~DD. Then the fundamental system ~PP � ~DDþ is the

fa1; . . . ; a6g with the coe‰cients of the maximal root as follows:

Let ~gg be the maximal root of ~DDþ and let fZ1; . . . ;Z6g be the dual basis of ~PP. It

is only Z1 or Z6 that an element ~AA A ~WW ¼ f ~AA A ~aa j ~aað ~AAÞb 0 for all ~aa A ~DDþg with

~ggð ~AAÞ ¼ 1 in the absolutely simple Lie algebra g. This element Z6 can be translated

to Z1 by the involution of g defined by a1 $ a6, a2 $ a2, a3 $ a5, and a4 $ a4.

Accordingly, let us consider the case with the element Z1.
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Here the algebra cgðZ1Þ is soð5; 5ÞlR (cf. the list on p. 97 in [Ka-Koz]). In

addition, the paper [Ta] informs us of what AutðgÞ=IntðgÞGZ2 is generated by ~yy.

In addition,

Lemma 6. Intðg;Z1Þ� ¼ q.

Proof. Put G :¼ E6ð6Þ and s :¼ Aexp
ffiffiffiffiffi
�1

p
pZ1

, and then we see ðGsÞ0 �
CGðZ1Þ � Gs. By Theorem 3.6.8-(2) on p. 219 in [Yo], the fixed points Gs has

two connected components and Gs ¼ R� � Spinð5; 5Þ, where R� ¼ Rnf0g.
Setting Rþ as the set of positive numbers, we have Rþ � Spinð5; 5Þ ¼ ðGsÞ0 �

CGðZ1Þ. In particular,

f1g � Spinð5; 5Þ � CGðZ1Þ:

Since R� � feg � ZðGsÞ,

R� � feg � CGðZ1Þ:

Owing to these conditions, Gs ¼ R� � Spinð5; 5Þ � ðR� � fegÞðf1g � Spinð5; 5ÞÞ �
CGðZ1ÞCGðZ1Þ � CGðZ1Þ, and then this assures CGðZ1Þ ¼ Gs and Intðg;Z1Þ� is

empty. r

Lemma 6 and what the involution ~yy transfers Z1 to �Z1 report a result:

ðAutðg;Z1Þþ tAutðg;Z1Þ�Þ=Intðg;Z1Þþ ¼ f½idg�; ½~yy�gGZ2:

Type e7ð�25Þ. Let gC be the complex Lie algebra ðe7ÞC. Similarly to the

type e6ð6Þ, we settle a Weyl basis, the compact real form gu, and the dual basis

fT1; . . . ;T7g of a fundamental system fx1; . . . ; x7g with the coe‰cients of the

maximal root as follows:

Here, the involution ~yy :¼ exp
ffiffiffiffiffiffiffi
�1

p
p ad T7 of gC leaves gu invariant. Hence

we have the decomposition gu ¼ kl
ffiffiffiffiffiffiffi
�1

p
p, where k ¼ e6 l

ffiffiffiffiffiffiffi
�1

p
R ðresp.

ffiffiffiffiffiffiffi
�1

p
pÞ

is the 1 ðresp. �1Þ eigenspace of ~yyjgu in gu (cf. [Mu]). Thus the real form kl p

of gC is the Lie algebra e7ð�25Þ, and accordingly put g :¼ kl p.
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Think of ~yy as ~yyjg, and then ~yy is a Cartan involution of g. Take a maximal

abelian subspace ~aa in p. With due order, we have a fundamental system ~PP ¼
fa1; a2; a3g with the coe‰cients of the maximal root as follows:

Set ~gg as the maximal root of ~PP and set fZ1;Z2;Z3g as the dual basis of ~PP,

and then an element ~AA A ~WW with ~ggð ~AAÞ ¼ 1 in the absolutely simple Lie algebra g

is only Z3.

Here, the algebra cgðZ3Þ is e6ð�26Þ lR (cf. [Ka-Koz]) and the group

AutðgÞ=IntðgÞGZ2 is generated by ~yy (cf. [Ta]). Additionally, the mapping c in

the Weyl group of G :¼ E7ð�25Þ related to the following reflection is an inner

automorphism of g carrying Z3 to �Z3:

Sa1þa2þa3 � Sa1þa2 � Sa1þa2þa3 � Sa1þa2 � Sa1þa2þa3 � Sa3 � Sa1þa2

� Sa2 � Sa2þa3 � Sa1þa2 � Sa1þa2þa3 ;

where Sa is the reflection along a root a of a.

Since the involution ~yy transfers Z3 to �Z3 and commutes with c,

ðAutðg;Z1Þþ tAutðg;Z1Þ�Þ=Intðg;Z1Þþ ¼ f½idg�; ½~yy�; ½c�; ½~yy � c�gGZ2 lZ2:

With a similar way to the above examples, we individually determine

ðAutðg; ~AAÞþ tAutðg; ~AAÞ�Þ=Intðg; ~AAÞþ and accordingly obtain Tables 1 and 2.
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