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SUBSPACES OF THE SORGENFREY LINE

AND THEIR PRODUCTS

By

Vitalij A. Chatyrko

Abstract. In this article we study the products of subspaces of the

Sorgenfrey line S. Using an idea by D. K. Burke and J. T. Moore

[2] we prove in particular the following:

Let Xi, i ¼ 1; . . . ; n, nb 1, be subspaces of S, where each Xi is

uncountable. Then X1 � � � � � Xn � Q can be embedded in Snþ1 but

can not be embedded in Sn, where Q is the space of rational numbers

with the natural topology.

This statement strengthens [2, Theorem 2.1].

1 Introduction

All spaces considered here are assumed to be completely regular. Recall (see

for example [4]) that the Sorgenfrey line S is the real line R with the topology

whose base is the family f½a; bÞ : a; b A R with a < bg. It is well known that S

is a first-countable, hereditarily Lindelöf, hereditarily separable, Baire space such

that the product S2 is not normal. The space S has di¤erent nice properties (see

for example [1], [2], [3], [8]). In particular, D. K. Burke and J. T. Moore proved

the following [2, Theorem 2.1].

If X0; . . . ;Xn, nb 1, are uncountable subspaces of S then the product

X0 � � � � � Xn can not be embedded in Sn.

This result shows that

(a) for any uncountable subspace X of S, X n is homeomorphic to X m i¤

n ¼ m where n, m are positive integers;

(b) for a subspace X of S if the subspace X n of Sn can be embedded in

Sn�1 then X is countable.
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Using an idea of their proof we shall prove the following.

Define S�1 ¼ fqg and S0 ¼ Q, where Q is the space of rational numbers with

the natural topology. Put also qðm; n; pÞ ¼ mþ 1 if n;m > 0, and qðm; n; pÞ ¼ m

otherwise, where m, n, p are integersb 0.

Theorem 1.1. Let F be a finite family of non-empty subsets of S which are

either uncountable, or homeomorphic to Q or discrete. Let also m be the number of

uncountable elements of F, n the number of elements of F homeomorphic to Q, p

the number of discrete elements of F and 1a nþmþ p. Then the product
Q

F of

all elements of F can be embedded in Sq and can not be embedded in Sq�1, where

q ¼ qðm; n; pÞ.

Observe that Theorem 1.1 strengthens the mentioned above [2, Theorem 2.1]

because any uncountable subspace of S contains a copy of Q as we will see in

Lemma 2.2.

Note also that any subspace of S is either uncountable, or countable with

at least one limit point, or discrete (and of course countable).

The next result is not complete as we wanted.

Theorem 1.2. Let F be any finite family of non-empty subsets of S. Let m

be the number of uncountable elements of F, n the number of countable elements

of F with at least one limit point, p the number of discrete elements of F and

1a nþmþ p. If ma 2 then the product
Q

F of all elements of F can be

embedded in Sq and can not be embedded in Sq�1, where q ¼ qðm; n; pÞ.

In particular,

Theorem 1.3. (i) Let X1 and X2 be subspaces of S. Then X1 � X2 can be

embedded in S i¤ X1, X2 are both countable or one of them is discrete.

(ii) Let Xi, i ¼ 1; 2; 3, be subspaces of S. Then X1 � X2 � X3 can be embedded

in S i¤ all Xi, i ¼ 1; 2; 3, are countable or two of them are discrete.

X1 � X2 � X3 can be embedded in S2 i¤ at least two of Xi, i ¼ 1; 2; 3, are

countable, or one of them is discrete.

Problem 1.1. Can one remove the condition ma 2 in Theorem 1.2?

A positive answer on this question would also evidently strengthen Theorem

1.1.
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Remark 1.1. There is an analog of Theorem 1.2 for the space R of real

numbers with the natural topology. Really, define R�1 ¼ fqg and R0 ¼ P,

where P is the space of irrational numbers with the natural topology. Note that

any subspace of R is either one-dimensional (and so contains an interval), or

zero-dimensional with at least one limit point, or discrete. Using in particular

Brouwer theorem about the invariance of internal points and the theorem about

the universality of P for zero-dimensional spaces with countable bases one can

prove the following:

Let F be any finite family of non-empty subsets of R. Let m be the number

of one-dimensional elements of F, n the number of zero-dimensional elements of

F with at least one limit point, p the number of discrete elements of F and

1a nþmþ p. Then the product
Q

F of all elements of F can be embedded in

Rq and can not be embedded in Rq�1, where q ¼ qðm; n; pÞ.

2 Preliminaries

A subset AHR with the topology induced from S will be denoted by AS.

The notation XAY means that the spaces X and Y are homeomorphic. Our

terminology follows [4].

We will continue with some properties of subspaces of S.

Countable subspaces properties:

(1) Every countable subspace of Sk, kb 1, has a countable base (readily);

(2) Every countable space with a countable base can be embedded in Q (see

for example [6, Theorem 2, page 296]);

(3) Every countable space with a countable base and which has no isolated

points is homeomorphic to Q (see for example [7, Theorem 1.9.6]);

Lemma 2.1. (i) QAQS;

(ii) For every open non-empty subspace U of Q, we have UAQ;

(iii) If Q ¼ Q1 U � � �UQn, nb 1, then there is an index m and a subspace P of

Qm such that PAQ;

(iv) If X1; . . . ;Xn, nb 1, are countable subspaces of S then X1 � � � � � Xn can

be embedded in Q (and hence in QS and in S).

Proof. Observe that the points (i) and (ii) are simple corollaries of the

properties (1) and (3). The point (iv) is a corollary of the properties (1) and (2).

In order to prove the point (iii) it is enough to show that if Q ¼ AUB then either

A contains a subspace CAQ or there is an open interval ða; bÞHR such that

ða; bÞVQHB. Really, on the first step consider the system n1 of open intervals
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ðn; nþ 1Þ, n A Z. Either there is an element E of n1 disjoint from A and we have

done by the point (ii) or we can choose from each interval of the system n1 a point

from A. Denote the chosen set by A1. On the second step consider the system n2

of open intervals a; aþ 1
21

� �
, aþ 1

21 ; b
� �

, ða; bÞ A n1. Either there is an element E

of n2 disjoint from A and we have done by the point (ii) or we can choose from

each interval of the system n2 a point from A. Denote the chosen set by A2.

Continue by this way we either will find an open interval disjoint from A or

construct a countable sequence A1;A2; . . . of subsets of A. Observe that the system

niþ1 consists of the open intervals a; aþ 1
2 i

� �
, aþ 1

2 i ; b
� �

, ða; bÞ A ni. Denote

C ¼ 6y
i¼1

Ai. Observe that the set CHA is countable and without isolated

points. So CAQ by the property (3). The lemma is proved.

Uncountable subspaces properties:

(4) Every uncountable subspace A of Sk, kb 1, has the weight wA > @0

(readily);

(5) For every uncountable subspace A of S there is a subspace BHA such

that each open non-empty subspace of B is uncountable (see for example

[8, Lemma 6.1]);

(6) Every uncountable subspace A of S contains an infinite, closed in S,

discrete subspace. So A is not compact ([5, Corollary 1]).

Lemma 2.2. Every uncountable subspace A of S contains a subspace home-

omorphic to Q.

Proof. By property (5) there is a subspace B of A such that each open non-

empty subspace of B is uncountable. We will construct a subspace of B which

is homeomorphic to Q. Consider the open cover n1 of S consisting of half-open

intervals ½n; nþ 1Þ, n A Z. From each element E of n1 such that E VB0q

choose a point from B. Denote the chosen set by B1. For every ib 1 consider the

open cover niþ1 of S consisting of half-open intervals a; aþ 1
2 i

h �
, aþ 1

2 i ; b
h ��

,

ða; bÞ A ni. From each element E of niþ1 such that E VB0q choose a point

from BnðB1 U � � �BiÞ. Denote the chosen set by Biþ1. Construct the sequence of

countable disjoint subsets B1;B2; . . . of B. Denote C ¼ 6y
i¼1

Bi. Observe that C is

countable and has no isolated points. So the subspace C of A is homeomorphic

to Q by the properties (1) and (3). The lemma is proved.

Remark 2.1. Observe that every subset of S is either uncountable (and

hence containing according to Lemma 2.2 a lot of limit points), or countable with

at least one limit point, or discrete.
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It is convenient to follow some notations and facts from [2]. An element

x A Sn is viewed as a finite sequence x ¼ ðxiÞian. For 0a ka n, x A Sn and

V HSn let

dnkðV ; xÞ ¼ fy A V : jfia n : xi 0 yigj ¼ kg:

This will be used when V is a basic open nbd of x of the form Bn½x; eÞ ¼Q
ian½xi; xi þ eÞ for e > 0. Observe that for such V , fdnkðV ; xÞ : 0a ka ng is a

partition of V such that 6n

i¼k
dni ðV ; xÞ is open in Sn for any ka n. In addition,

for 1a ka n, dnkðV ; xÞ is the topological sum of finitely many subspaces of Sk

and so it can be embedded in Sk (observe also that dn0 ðV ; xÞ ¼ fxg).

3 Products of Subspaces of S

We continue with a statement whose proof follows the base step of induction

from [2, Theorem 2.1].

Theorem 3.1. Let B be an uncountable subspace of S and for each b A B

let AðbÞ be a subspace of S with a limit point pðbÞ. Then the subspace C ¼
6

b ABðAðbÞ � fbgÞ of S2 can not be embedded in S.

Proof. Assume that there is an embedding f : C ! S of C into S. Then

the mapping g ¼ f � id : C �S ! S2 is also an embedding. Define

E ¼ 6
b AB AðbÞ � fðb;�bÞgHC �SHS3:

Observe that E is the topological sum of subspaces EðbÞ ¼ AðbÞ � fðb;�bÞg
AAðbÞ, b A B, of S3, each of which embeds in S2 by g. Let F ¼ gðEÞHS2.

Observe that F is the topological sum of F ðbÞ ¼ gðEðbÞÞAAðbÞ, b A B. For each

b A B, put xðbÞ ¼ gðfpðbÞg � fðb;�bÞgÞ A F ðbÞ (observe that this point is a limit

point for FðbÞ) and choose eðbÞ > 0 such that VðbÞ ¼ B2½xðbÞ; eðbÞÞ is disjoint

from F ðb�Þ for all b�0 b, b� A B.

Recall that the space S�R is hereditarily Lindelöf. For j ¼ 1; 2, let sj

denote the topology on the product Z1 � Z2, where Zj ¼ S and Zi ¼ R for i0 j.

These two spaces are of course homeomorphic and hereditarily Lindelöf. Ob-

serve that for every j ¼ 1; 2, the hereditarily Lindelöf topology sj tells us that

ðintsj VðbÞÞVFðbÞ ¼ q for all but at most countably many b A B. So, we can

find b A B such that FðbÞ is disjoint from the union ðints1
VðbÞÞU ðints2

VðbÞÞ.
Observe also that

VðbÞnððints1
VðbÞÞU ðints2

VðbÞÞÞ ¼ d2
0ðVðbÞ; xðbÞÞ:
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But xðbÞ A VðbÞVF ðbÞH d2
0ðVðbÞ; xðbÞÞ ¼ xðbÞ. So the point xðbÞ ¼ VðbÞVFðbÞ

is an open subset of F ðbÞ. This is a contradiction because xðbÞ is a limit point of

F ðbÞ. The theorem is proved.

Corollary 3.1. Let B be an uncountable subspace of S and A a subspace of

S with a limit point p. Then the subspace C ¼ A� B of S2 can not be embedded

in S. Moreover, there is an uncountable subset E of B such that for each point

q A fpg � E, every open nbd of q in A� E can not be embedded in S.

Proof. Observe that any open nbd of p in A has p as a limit point. Apply

now the property (5).

Corollary 3.2. Let B be an uncountable subspace of S and A a subspace of S

homeomorphic to Q. Then the subspace C ¼ A� B of S2 can not be embedded in S.

Moreover, if every open non-empty subspace of B is uncountable then no open non-

empty subspace of A� B can be embedded in S. In general, there is a subspace E

of B such that no open non-empty subspace of A� E can be embedded in S.

Proof. Lemma 2.1 (ii) together with the property (5) and Corollary 3.1

prove the statement.

Proposition 3.1. Let A be a discrete subspace of S and B a subspace of S.

Then A� B can be embedded in S.

Proof. Observe first that A is countable. Recall that for any n A Z,

½n; nþ 1ÞSAS. Note now that S is the topological sum of ½n; nþ 1ÞS, n A Z,

which is homeomorphic to S�Z. From this fact the statement follows.

Proof of Theorem 1.3 (i). By Remark 2.1 there is a decomposition of the

class of all subspaces of S in the three disjoint subclasses. According to that there

are six di¤erent types of products. Now Lemma 2.1, Corollary 3.1 and Proposition

3.1 prove the statement.

Let pi : S
2 ! S, i ¼ 1; 2, be the projections of S2 onto i-th factor or the

restrictions of these projections on certain subsets of S2. We continue with a

couple of examples following Proposition 3.1.

Example 3.1. Let A ¼ f0gU 1
i
: i ¼ 1; 2; . . .

� �� �
�SHS2. Recall that A

can not be embedded in S by Corollary 3.1. But A is the union A1 UA2 of two
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subspaces such that each Ai can be embedded in S: In fact, put A1 ¼ f0g �S (a

closed subspace of A) and A2 ¼ 1
i
: i ¼ 1; 2; . . .

� �
� S (an open subspace of A).

(Observe that Q�S can not be written as a finite union of subspaces which can

be embedded in S as we will see in Lemma 4.1.)

Example 3.2. Fix an embedding of Q ¼ fq1; q2; . . .g into S. Define

A ¼ 6y
n¼1

ð½n; nþ 1Þ � fqngÞHS2:

Observe that A is the topological sum of the subspaces ½n; nþ 1Þ � fqng,

n ¼ 1; 2; . . . where each term ½n; nþ 1Þ � fqng is homeomorphic to S. So AAS.

But p1ðAÞ ¼ S and p2ðAÞ ¼ Q. Moreover, for every point q A Q we have

p�1
2 qAS. This example shows that the uncountability of B in Theorem 3.1 is

extremely essential. Compare also this example with Corollary 3.2.

We have more example concerning Theorem 3.1.

Example 3.3. Let A be any uncountable subspace of S. Then the subspace

B ¼ fða;�aÞ : a A Ag of S2, being non-Lindelöf, can not be embedded in S.

Observe that p1ðBÞ ¼ A and p2ðBÞ ¼ �A ¼ f�a : a A Ag. Moreover, jp�1
1 ðaÞj ¼

jp�1
2 ð�aÞj ¼ 1 for any a A A. A generalization of this example: Let E be a

subspace of S2 which contains the graph of a strictly decreasing function from

F HS to S, where F is an uncountable subset of S. Then E can not be

embedded in S.

Theorem 1.3 (i) arises the following

Problem 3.1. Determine what subsets of S2 can be embedded in S.

The proof of the following statement follows also the idea of the proof from

[2, Theorem 2.1].

Theorem 3.2. Let B be an uncountable subspace of S and for each b A B let

AðbÞ be a subspace of Sn, nb 2, such that no open non-empty subspace of AðbÞ
can be embedded in Sn�1. Then the subspace C ¼ 6

b ABðAðbÞ � fbgÞ of Snþ1 can

not be embedded in Sn.

Proof. Assume that there is an embedding f : C ! Sn of C into Sn. Then

the mapping g ¼ f � id : C �S ! Snþ1 is also an embedding. Define
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E ¼ 6
b AB AðbÞ � fðb;�bÞgHC �SHSnþ2:

Observe that E is the topological sum of subspaces EðbÞ ¼ AðbÞ � fðb;�bÞg
AAðbÞ, b A B, of Snþ2, where each EðbÞ can be embedded in Snþ1 by g. Let

F ¼ gðEÞHSnþ1. Observe that F is the topological sum of FðbÞ ¼ gðEðbÞÞA
AðbÞ, b A B. For each b A B, pick a point xðbÞ A FðbÞ and choose eðbÞ > 0 such

that VðbÞ ¼ Bnþ1½xðbÞ; eðbÞÞ is disjoint from F ðb�Þ for all b�0 b, b� A B.

Recall that for any n A N the space S�Rn is hereditarily Lindelöf. For

j ¼ 1; . . . ; nþ 1, let sj denote the topology on the product
Qnþ1

i¼1 Zi where Zj ¼ S

and Zi ¼ R for i0 j. These ðnþ 1Þ spaces are of course pairwise homeomorphic

and hereditarily Lindelöf. Observe that for every j ¼ 1; . . . ; nþ 1, the hereditarily

Lindelöf topology sj tells us that ðintsj VðbÞÞVFðbÞ ¼ q for all but at most

countably many b A B. So, we can find b A B such that F ðbÞ is disjoint from the

union 6nþ1

i¼1
ðintsi VðbÞÞ. Observe also that

VðbÞnð6nþ1

i¼1
ðintsi VðbÞÞÞH6n�1

i¼0
dnþ1
i ðVðbÞ; xðbÞÞ:

So

xðbÞ A VðbÞVFðbÞH6n�1

i¼0
dnþ1
i ðVðbÞ; xðbÞÞ:ð*Þ

Now, for this b, pick the largest k < n such that F ðbÞV dnþ1
k ðVðbÞ; xðbÞÞ0q.

Since

FðbÞV6nþ1

i¼k
dnþ1
i ðVðbÞ; xðbÞÞ ¼ F ðbÞV dnþ1

k ðVðbÞ; xðbÞÞ

is open in FðbÞ we see that

W ¼ g�1½FðbÞV dnþ1
k ðVðbÞ; xðbÞÞ�AFðbÞV dnþ1

k ðVðbÞ; xðbÞÞ

is open in g�1½F ðbÞ� ¼ EðbÞ. Recall that W can not be embedded in Sn�1 by

assumption. In the same time the space F ðbÞV dnþ1
k ðVðbÞ; xðbÞÞ, which is home-

omorphic to W , can be embedded in Sn�1 by the construction (recall that

k < n). This is a contradiction. The theorem is proved.

Corollary 3.3. Let Xi, i ¼ 1; . . . ; n, nb 2, be subspaces of S such that

X1AQ and for every Xi, ib 2, each open non-empty subspace of Xi is uncount-

able. Then X1 � � � � � Xn can not be embedded in Sn�1.

Proof. Apply an obvious induction. The basis of the induction is Corollary

3.2.

Corollary 3.4. Let Xi, i ¼ 1; . . . ; n, nb 2, be subspaces of S such that one

of them is homeomorphic to Q and the others are uncountable. Then X1 � � � � � Xn

can not be embedded in Sn�1.
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Proof. Apply the property (5) and Corollary 3.3.

Corollary 3.5 ([2, Theorem 2.1]). Let Xi, i ¼ 1; . . . ; n, nb 2, be uncount-

able subspaces of S. Then X1 � � � � � Xn can not be embedded in Sn�1.

Proof. Apply Corollary 3.4 and Lemma 2.2.

Proof of Theorem 1.1. Lemma 2.1, Proposition 3.1 and Corollary 3.4 prove

the statement.

Theorems 1.1 arises

Problem 3.2. Determine what subsets of Sn can be embedded in Sk for

1a k < n.

Some examples of subsets of Sn concerning Problem 3.2:

Example 3.4. Recall that SAðð0; 1ÞÞSAð½0; 1ÞÞSAX ¼ ðf0gU
6y

i¼1
ðai; biÞÞS, where 0 < biþ1 < ai < bi for every i and ai ! 0. Using this fact it

is easy to establish that

(i) The subspace

A ¼ ð½0; 1Þ � f0g � f0gÞU ðf0g � ½0; 1Þ � f0gÞU ðf0g � f0g � ½0; 1ÞÞ

of S3 is homeomorphic to S. Really, A ¼ A1 UA2 UA3, where

Ak ¼ ð½0; 1ÞÞS ¼ f0gU6y
i¼1

1

i þ 1
;
1

i

� �	 �
S

; k ¼ 1; 2; 3:

For each k ¼ 1; 2; 3 define a mapping fk : Ak ! X as follows. Put

fkð0Þ ¼ 0, and for each ib 1 let fkjð½1=ðiþ1Þ;1=iÞÞS be any homemorphism

between 1
iþ1 ;

1
i

h �� �
S

and ða3ði�1Þþk; b3ði�1ÞþkÞS. Put f ðxÞ ¼ fkðxÞ for any

point x A Ak. The mapping f is a homeomorphism between A and

XAS. Observe also that

A ¼ 61

i¼0
d3
i ðV ; ð0; 0; 0ÞÞ;ð**Þ

where V ¼ B3½ð0; 0; 0Þ; 1Þ.
(ii) The subspace

B ¼ ðf0g � ½0; 1Þ � ½0; 1ÞÞU ð½0; 1Þ � f0g � f0gÞ

of S3 can be embedded in S2 but can not (readily) be embedded in S.
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Now we are ready to prove two statements necessary for Theorems 1.2 and

1.3 (ii).

Theorem 3.3. Let B be an uncountable subspace of S and for each b A B let

AðbÞ be a subspace of S2 with a point pðbÞ such that no open nbd of pðbÞ in AðbÞ
can be embedded in S. Then the subspace C ¼ 6

b ABðAðbÞ � fbgÞ of S3 can not

be embedded in S2.

Proof. Follow the proof of Theorem 3.2 but the points xðbÞ let us pick up

as in the proof of Theorem 3.1. Use then the inclusion (*) from the proof of

Theorem 3.2 and the equality (**) from Example 3.4 (i).

Corollary 3.6. Let B1, B2 be uncountable subspaces of S and A a sub-

space of S with a limit point p. Then the subspace C ¼ A� B1 � B2 of S3 can

not be embedded in S2. Moreover, there are uncountable subsets E1, E2 of B1,

B2 respectively such that for each point q A fpg � E1 � E2, no open nbd of q in

A� E1 � E2 can be embedded in S2.

Proof. Observe that any open nbd of p in A has p as a limit point. Apply

now the property (5) and Corollary 3.1.

Proof of Theorem 1.3 (ii). Let us again use the decomposition from Remark

2.1 of the class of all subspaces of S in the three disjoint subclasses. According

to that there are ten di¤erent types of products. Lemma 2.1, Corollary 3.6 and

Proposition 3.1 prove the statement.

Proof of Theorem 1.2. Lemma 2.1, Proposition 3.1, Corollary 3.1 and

Corollary 3.6 prove the statement.

A positive answer to the next question would give a positive answer to

Problem 1.1.

Question 3.1. Let nb 4, x A Sn and V ¼ Bn½x; eÞ. Can the set

6n�2

i¼0
dni ðV ; xÞ be embedded in Sn�2?

Recall that for n ¼ 2; 3 this is right.

Now in order to get a complete picture it is time to make some obvious

comments concerning infinite products of subspaces of the Sorgenfrey line.

Denote by D the discrete two points space.
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Proposition 3.2. Let X be an uncountable space with wX ¼ @0. Then X can

not be embedded in Sn for any n A N. In particular, the Cantor space C ¼ D@0

and any its uncountable subspace can not be embedded in Sn for any n A N.

Proof. Recall from (4) that any uncountable subspace A of Sn, nb 1, has

wA > @0.

Observe that from Proposition 3.2 we have also that the Cantor space can

not be embedded in any countable union of subspaces of Sk for each kb 1.

Proposition 3.3. Let t, n be two infinite cardinals and t < n. Then Dn can not

be embedded in St.

Proof. Really, assume that there is an embedding f : Dn ! St. Then

f ðDnÞADn is compact and wð f ðDnÞÞ ¼ wðDnÞ ¼ n ([E, p. 84]). By the property

(6) there are countable subspaces Ya, a A t, of S such that f ðDnÞH
Q

a A t Ya.

Recall that by Lemma 2.1 each Ya, a A t, has a countable base. Hence,

wð
Q

a A t YaÞa t < n (see for example [4, Theorem 2.3.23]). This is a contradiction.

Proposition 3.4. Let t be an infinite cardinalb c. Then St can be embedded

in Dt.

Proof. Observe that wðSÞ ¼ c. So S can be embedded in Dc and hence

St can be embedded in ðDcÞtADt.

4 Unions of Subspaces of Sk and Their Products

Recall that two arrows space, shortly TAS, (see for example [4, Exercise

3.10.C]) defined by Alexandro¤ and Urysohn, is the union X ¼ C0 UC1 HR2,

where C0 ¼ fðx; 0Þ : 0 < xa 1g and C1 ¼ fðx; 1Þ : 0a x < 1g, and the topology

on X generated by the base consisting of sets of the form

ðx; iÞ A X : x0 �
1

k
< x < x0 and i ¼ 0; 1


 �
U fðx0; 0Þg;

where 0 < x0 a 1 and k ¼ 1; 2; . . . , and of sets of the form

ðx; iÞ A X : x0 < x < x0 þ
1

k
and i ¼ 0; 1


 �
U fðx0; 1Þg;

where 0a x0 < 1 and k ¼ 1; 2; . . .
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It is easy to see that the TAS is compact and jTASj ¼ c. So by the property

(6) the TAS can not be embedded in Sk for any kb 1. Observe that the TAS is

the union of two copies of Sorgenfrey line. This motivates the following.

Define two sequences of classes of topological spaces as follows.

M
fin
k ¼ funions of finitely many subspaces of Skg and

Mk ¼ funions of countably many subspaces of Skg; where kb 1:

Put also My ¼ funions of countably many subspaces of S;S2;S3; . . .g.

We start with obvious remarks about these classes.

Proposition 4.1. (a) TAS A M
fin

1 ;

(b) Any space X from M
fin

1 (or M1) is hereditarily Lindelöf and hereditarily

separable;

(c) M
fin
k HMk HMy for any kb 1;

(d) If X A M
fin
k ðMkÞ and Y A Mfin

m ðMmÞ then X � Y A M
fin
kþmðMkþmÞ.

The following lemma is one more corollary of Theorem 3.1.

Lemma 4.1. Let B be an uncountable subspace of S and for each b A B let

AðbÞ be a subspace of S. Let also C ¼ 6
b ABðAðbÞ � fbgÞ.

(a) If for every b A B we have AðbÞAQ and C ¼ 6n

i¼1
Yi for some nb 1 then

there is ka n such that Yk can not be embedded in S;

(b) If for every b A B we have AðbÞ is uncountable and C ¼ 6y
i¼1

Yi then there

is kb 1 such that Yk can not be embedded in S.

Proof. (a) For each b A B by Lemma 2.1 (iii) there are iðbÞa n and

subspace EðbÞ of AðbÞ such that EðbÞ � fbgHYiðbÞ and EðbÞAQ. Since B is

uncountable then there are ka n and an uncountable subspace B1 of B such that

for each b A B1 we have iðbÞ ¼ k. By Theorem 3.1, 6
b AB1

ðEðbÞ � fbgÞHYiðbÞ
can not be embedded in S.

(b) This point is proved in the same manner as (a).

By Lemma 4.1 we have readily

Theorem 4.1. (a) Let X A M
fin

1 and X be uncountable. Then X � Q B M
fin

1

but X � Q A M1.

(b) Let X ;Y A M1 and X , Y be uncountable. Then X � Y B M1 but

X � Y A M2.
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What could be done else? Well, I think that it could be interesting to look

what theorems from the previous section are valid for the TAS.

I would like to thank the referee for her (his) big help in the preparation of

this article.
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